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Abstract— This work presents an unsupervised mining strat-
egy, applied to an independent component analysis (ICA) of
segments of data collected while participants are answering
to the items of the Halstead Category Test (HCT). This new
methodology was developed to achieve signal components at
trial level and therefore to study signal dynamics which are
not available within participants’ ensemble average signals.
The study will be focused on the signal component that can
be elicited by the binary visual feedback which is part of the
HCT protocol. The experimental study is conducted using a
cohort of 58 participants.

I. INTRODUCTION

The Halstead Category Test is a popular measure of ab-

straction, concept formation, and logical analysis skills. The

test is applied since long clinically, and, to facilitate its ad-

ministration, computer versions of the test are now available

[1]. Traditionally, the test provides only an overall error score

indicative of global impairment, but there is a recent interest

to develop and validate several scoring subscales to reflect the

changes of the participant’s performance across a sequence of

items of the test [2]. The item’s stimuli consist of geometric

figures or designs, and the participant was asked to indicate a

number between 1 and 4, which each stimulus suggests. After

every response, visual feedback on whether the response

was correct or incorrect is provided. The feedback helps

participants to adjust their strategy to answer to the next

item. In this work, a computer version of the test was used

and the EEG was recorded while the participants answered

to the items of the test. The main aim of the study was to

analyse signals while the participants performed the test. The

hypothesis was that if an error was indicated by means of an

explicit feedback, a feedback-related negativity (FRN) signal

could be reliably measured at the fronto-central region at 200

- 300 ms after the feedback. In [3] it was possible to find

this signal signature in denoised, ensemble-averaged signals

calculated for correct and incorrect responses. In the study, it

was necessary to denoise the signals, because trial removal

would discard most of the recording. It has to be noticed

that with the described acquisition scenario it was useless

to instruct participants to avoid movements or blinks, and

therefore common strategies to eliminate or correct segments

with artifacts were not applicable.
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Electroencephalogram signals have been used in applica-

tions where the signals were registered in conditions less

constrained than in traditional brain cognitive studies. These

new applications introduced signal processing and machine

learning techniques in order to extract useful information

from the signals. Exploratory matrix factorizations tech-

niques, like ICA, are widely used to decompose multichannel

recordings and to remove components related with noise

sources, like blinks and other biological interferences [4].

The selection of components is one of the most studied

problems when ICA is used to decompose signals [5], [6].

Another strategy, introduced in Brain Computer Interfaces,

is the so-called common spatial filtering [7], whose goal is to

estimate the component that enhances the difference between

the tasks performed while the EEG is recorded. In that case

the computation of the model is supervised, as the label

information is relevant to estimate that particular column of

the de-mixing matrix [8]. In this work, we exploit unsuper-

vised techniques to identify components which correspond

to clusters of scalp maps. This methodology was applied

to find the component that could be related with the FRN

component at single trial level. The single-trial component

of all participants are averaged in the four sub-tests of the

HCT test. It will be shown that the trial level signals can

also be studied.

The paper is organized as follows: the section Methods

and Materials presents the organization of the HCT test, the

methodology to find template scalp methods and the signal

signatures. Finally Results and Conclusions are presented.

II. MATERIAL AND METHODS

The signal processing steps are performed at different

levels: single-trial level, participant level and group level.

The single-trial level comprises the application of a standard

ICA [9],[10]. At participant level, the K-Means clustering

algorithm [11] is applied to features extracted from the

normalized columns of the mixing matrices. The templates

of the clusters are used to guide the selection of signal

components with specific scalp localizations. These signals

can be compared at group level as average ERP components

as well as be analysed at sub-test level or single-trial level.

A. Participants and HCT test

Fifty eight participants (39 females and 19 males) were

enrolled in the study. The EEG was continuously registered

and electrodes were placed according to the 10− 20 system

with an Easy - Cap comprising C = 26 channels and were

recorded, using a sampling rate of 1 kHz. The HCT involves
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the presentation of 208 trials divided into seven subtests [1].

This test is used to measure a person’s ability to formulate

abstract principles based on the feedback received after their

response to each specific test question. The visual feedback

provided indicates if the participant’s response was right or

wrong. Note that at trial level, the signal segment comprises

the following sequence of time stamps: presentation of

the stimulus, the participant’s response and the feedback

information. The time interval between stimulus presentation

and the participant’s response is variable, while the time

between response and feedback is 1500 ms. The average

time for the participant to answer was 1790 ms± 400 ms.

B. Scalp Templates

The processing chain is based on the application of a

standard ICA algorithm to the segment of data comprising

visual stimulus, the response and the feedback. Therefore, the

multichannel segment with 9 s, 6 s before and 3 s after the

response is chosen to perform the ICA decomposition. After

this step, the multichannel trial segment X(t) is modelled as

X
(t) = A

(t)
S
(t) (1)

where A
(t) is the inverse (or pseudo-inverse) of the de-

mixing matrix, and S
(t) is the matrix with the corresponding

sources estimated by the algorithm. In order to have an

identical scale in all trials, the elements of the matrix A
(t)

are normalized to the range [0 1]. To achieve this goal, all

absolute values of the elements of the matrix are divided

by the L2 norm of the corresponding row. Afterwards,

the entries of each column are pooled according to the

their scalp localization (pre-frontal, frontal, fronto-central,

occipital, parietal and temporal). The median value of each

scalp region then forms the feature vector [12]. These feature

vectors of all trials are then clustered and the templates are

estimated as it is described on the block diagram of figure

1. The centroids of the clusters in the original dimension

C = 26 are then calculated . In order to compare participants,

the centroids are re-ordered so that the first cluster has the

largest activation values on the frontal region, the second

cluster the largest activations in fronto-central and so on (see

the example of figure 1).

Fig. 1. Estimating the centroids of the clusters: on the right scalp map
templates belonging to one of the participants.

After clustering the elements, e.g. the columns of the

normalized mixing matrices, of each cluster are also known.

Note that at trial level the C = 26 columns of the normalized

matrix are then assigned to the 5 clusters.

Fig. 2. Reconstruction: The selected component back-projected to the
scalp sensors. The topoplot is estimated mean amplitudes in an interval of
5ms of the peak detected between [80 100]ms in channel O1. The visual
component P100 is clearly visible on the occipital sensors.

C. Cluster signatures

At trial level, a particular cluster signature is chosen using

a template matching strategy. Within trial elements of a

cluster, the element closest to the template is chosen. The

cosine distance is used as similarity measure to compare

the normalized scalp maps with the centroid. Therefore,

assuming that the selected scalp map has an index i, and

using the outer product model to represent the product of

two matrices, eqn. 1 is a sum of C matrices. In particular,

the contribution of the i-th scalp map and the corresponding

component is written as

X̂
(t) = A

(t)
∗i
S
(t)
i∗

where A∗i represents the i-th column of the mixing matrix

and Si∗ represents i-th row of the source matrix. The figure

2 illustrates the result of this procedure, showing a short

segment of the multichannel signals, which corresponds to

the occipital template. The segment includes the stimulus

presentation (t=0), and the signals show a clear positive peak

around 100 ms. The peak is naturally more visible in the

occipital regions as it is shown in the topoplot of the on the

right side of the figure.

III. RESULTS

Most reward-related electroencephalogram (EEG) studies

focus on the feedback-related negativity (FRN). This com-

ponent is usually measured approximately 200 − 300 ms

post-feedback at a single electrode in the fronto-central area

(Cz, Fz or FCz). The procedure described in the methodology

section is applied to identify this component in the recon-

structed version of the component related with fronto-central

cluster of each trial. Each trial on the signals corresponds to

the presentation of one of the visual items of the HCT test.

A. HCT and Participant’s performance

The HCT is divided into seven subtests. The participants

are instructed to determine or guess the correct number,

ranging from one to four, based on their conceptualization

of the abstract principle represented by the stimulus. The

participant receives visual feedback after each response, to
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TABLE I

PARTICIPANT’S RESPONSES ON THE FIRST AND LAST THREE TRIALS:

ENTRIES REPRESENT THE NUMBER OF PARTICIPANTS ANSWERING 0, 1,

2 OR 3 TIMES wrong.

First three trials Last three trials

# wrong 0 1 2 3 0 1 2 3

Subtest III 7 7 30 14 42 10 6 0
Subtest IV 31 19 5 3 40 9 6 3

Subtest V 9 19 16 14 47 9 2 0
Subtest VI 42 9 5 2 20 13 22 3

msec

0 100 200 300 400 500

-10

-8

-6

-4

-2

0

2

4

6

msec

0 100 200 300 400 500

-10

-8

-6

-4

-2

0

2

4

6

Fig. 3. Subtest III: recontructed component at FCz scalp position of one
participant.Left: three first trials;Right: three last trials.

indicate if his response was right or wrong. Furthermore,

the participant knows when a sub-test starts, and at the

beginning of the test he/she is informed that the underlying

abstract principle may(or may not) change from one sub-

test to the next. The participant is never sure of this on

the first trials, and he will only be able to determine the

correct abstract principle on the basis of the feedback he

receives about his performance. Each of the sub-sets III, IV

, V and VI comprise 40 trials. The subtests III and IV assess

spatial/positional reasoning and subtests V and VI assess

proportional reasoning. In general, the participants provide

more often wrong answers in subtest III and subtest V than

in subtests IV and VI. Anyway, note that the number of

wrong answers in a total of 40 trials is usually not more

than 15. The table I shows how the participants perform

in the first three trials and in the last three trials of each

subtest. On the first three trials, the number of participants

giving wrong responses is larger on substests III and V. On

the other hand, more than half of participants do not give

any wrong response on the beginning of the subtests IV

and V. Note that the last case represents two subtests where

the underlying principle did not change from the previous

subtest. On the last three trials of each subtest, more than

half of the participants do not have any wrong answer in

three of the subtests.

In this case, we were interested in studying the FRN. In

particular, we were interested in subtest transitions, when

participants are still unsure about the abstract principle

underlying the following subtest.

B. Participant level analysis

For each participant the transitions between the subtests

were analysed. With that purpose, the first three trials and the

last three trials were averaged. The figures 3 and 4 illustrate

the component reconstructed at FCz scalp position. In both

subtests, the signals show that the most negative peak occurs
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Fig. 4. Subtest IV: recontructed component at FCz scalp position of one
partipant Left: three first trials;Right: three last trials.

in the time window of the FRN event on the first trials.

However in subtest III the negativity is larger than in subset

IV.

For the last three trials of the subtests, the FRN related

pattern is not clearly defined. The signals show negative

peaks with smaller amplitude in other time intervals and in

the FRN window more than one negative peak is presented.

The visual inspection illustrated here was performed to the

subtests V an VI and the results were similar.

Fig. 5. ERP average image of the back-projected component, at scalp
location FCz, related to the fronto-central.Left: Subtest III;Right: Subtest
IV.

C. Inter-participant subtest analysis

The fronto-central time signatures are calculated for all

trials. Note that the subtests of the HCT test have the

same number of trials and the participants answer while

performing the same task. Therefore, after reconstructing the

fronto-central signature, the signals are now averaged for

every participant. For each scalp position, it is possible to

represent the information as an image following the strategy

suggested in the EEGLAB platform [13]. Then the i-th row

of the image represents the average of i-th trial across all

participants. The figures 5 and 6 illustrate the results for the

40 trials of the four subsets.

Both spatial or proportional reasoning sub-tests have a

similar outcome. The transition subtests (III and V) present

on the first trials a clear negativity, with latency around

250 ms, as can be seen on the left images of both figures.

The images on the right side, related with subtests where the

underlying principle does not change, the negativity, at that

latency, is present but less intense. Note as well that in all

cases this negativy is visible sequentially on the 10 to 15
trials but at later trials is less negative.
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Fig. 6. ERP average image of the back-projected component, at scalp
location FCz, related to the fronto-central cluster. Left: Subtest V; Right:
Subtest VI.

The topoplots represent the component reconstructed in all

scalp positions (see fig 7). The topoplots consistently show

a negativity in the fronto-central region for the three trials

of the test. Note that for convenience of representation, the

topoplots have different scales. On the beginning of the test,

the amplitude range, between [−15 4]µV , is smaller and

more localized. For the 10-th trial, the amplitude is less

negative with a range of [−6 1]µV and spreads into the

frontal region. The 38-th- trial shows a similar pattern within

an amplitude range of [−3 1]µV .
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Fig. 7. Topoplots of the reconstructed component averaged for all
participants. The i-th trial: Left: i = 1; Middle:i = 10; Right:i = 38. The
mean amplitude in an interval of 20ms around the latency of the negative
peak, detected at FCz, occuring between [200 300]ms.

IV. CONCLUSIONS

In this work an unsupervised methodology is proposed

which combines an ICA decomposition with a K-means

clustering to identify signal signatures related with the binary

(failure and success) feedback of the HCT. Different studies

have been conducted following the methodology explained

in [12]. This work presents the results of the application

of this methodology to characterize specific phases of the

HCT test. The main conclusion supports that an FRN signal

is present whenever the participant is uncertain about the

outcome. For instance, between the transition of subtests,

where the principle does not change, the number of wrong

answers decrease, still the FRN is present. Future work shall

comprise the study of other characteristics of the signals as

is nowadays suggested in brain cognitive studies [14].
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[6] T. Radüntz, J. Scouten, O. Hochmuth, and B. Meffert, “Automated
EEG artifact elimination by applying machine learning algorithms to
ICA-based features,” Journal of Neural Engineering, vol. 14, no. 4, p.
046004, 2017.

[7] B. Blankertz, R. Tomioka, S. Lemm, M. Kawanabe, and K. r. Muller,
“Optimizing Spatial filters for Robust EEG Single-Trial Analysis,”
IEEE Signal Processing Magazine, vol. 25, no. 1, pp. 41–56, 2008.

[8] Y. Wang and T. P. Jung, Improving brain- computer interfaces using

independent component analysis. Springer Berlin Heidelberg, 2013,
pp. 67–83.

[9] A. Belouchrani, K. Abed-Meraim, J. F. Cardoso, and E. Moulines, “A
blind source separation technique using second-order statistics,” IEEE

Transactions on Signal Processing, vol. 45, no. 2, pp. 434–444, Feb
1997.

[10] P. Common and C. Jutten, Handbook of Blind Source Separation:

Independent Component Analysis and its Applications. Academic
Press, 2010.

[11] A. K. Jain, “Data clustering: 50 years beyond k-means,” Pattern

Recognition Letters, vol. 31, no. 8, pp. 651 – 666, 2010.
[12] A. R. Teixeira, I. M. Santos, and A. M. Tomé, “Identifying evoked
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