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Abstract
Independent Component Analysis (ICA) is a pre-processing stepwidely used in brain studies. One of
themost commonproblems in artifact elimination or brain activity related studies is the ordering and
identification of the independent components (ICs). In this work, a novel procedure is proposed
which combines ICAdecomposition at trial level with an unsupervised learning algorithm (K-means)
at participant level in order to enhance the related signal patterns whichmight represent interesting
brainwaves. The feasibility of thismethodology is evaluatedwith EEGdata acquiredwith participants
performing on theHalsteadCategory Test. The analysis shows that it is possible tofind the Feedback
ErrorNegativity (FRN)Potential at single-trial level and relate its characteristics with the performance
of the participant based on their knowledge of the abstract principle underlying the task.

1. Introduction

During the last decade, electroencephalographic
(EEG) signals have been used to develop applications
such as personal authentication [1], control of drowsy
driving [2], emotion recognition [3] and so on. These
applications are still developed and tested in research
laboratory environments, however, the EEG recording
is achieved under less constrained conditions [4] than
those which are traditionally applied in brain cognitive
studies. Therefore, only the combination of more
powerful signal processing and machine learning
algorithms are able to extract useful information about
brain processing. One of the signal processing strate-
gies is to decompose the multichannel recordings into
a set of independent components. ICA is an explora-
tory matrix factorization method which decomposes
the data matrix into a linear combination of indepen-
dent components. When applied to multichannel
recordings like EEG, ICA decomposes the raw data
into maximally statistically independent components
and a set of weights which explain the spread of the
components over the scalp (scalp maps). The method
has been introduced to EEG analysis by Makeig et al
[5, 6] and it has been disseminated by the EEGLAB, a

widely used software package running under
MATLAB [7]. Since then, the development of graphi-
cal tools to assist the EEG reviewer in the selection of
components has been a wide-spread trend among the
EEGLAB users [8]. Moreover, most of the early studies
were focused on evaluating different ICA or blind
source separation (BSS) algorithms using either artifi-
cially mixed data or real data [9, 10]. The success of
ICA in EEG analysis is largely due to the plausibility of
the solution returned by the method [11]. Usually, the
scalp maps are regular and smooth and the indepen-
dent components present a unique waveform pattern
or shape. Recently in [12] it is pointed out that ICA is
by far the most widely used method for artifact
elimination and correction. One of the key issues of
any signal decomposition via ICA is the selection or
identification of components related with artifacts or
with brain signals. In [13] several methods to detect
these artifacts are evaluated, and the authors conclude
that the methods were not consistent in the selection
of components. There, a new tool is offered, whose
goal is to guide the experimenter’s decisions. An
alternative approach discussed in the literature is
inspired by the observation of experts during visual
classification of components. For this process, the 2D
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scalp maps are observed (sometimes in conjunction
with power spectrum of corresponding components)
and a decision about artifact or non-artifact is made.
This procedure can be modeled as a supervised
machine learning problem and in [14, 15] a complete
set-up is proposed to identify artifact related compo-
nents. With that proposal, the scalp maps (columns of
the mixing matrix) are interpolated and texture
features are computed from the resulting images.
Furthermore, to form the training data, the scalpmaps
are also labeled by experts.

In most of the applications of brain computer
interfaces, the label coincides with the task performed,
thus avoiding the manual data labeling [16, 17]. This
feature is shared with emotion recognition systems,
where the type of stimulus to elicit the emotions serves
as label to the supervised learning algorithm [3, 18].
When ICA is introduced as a pre-processing step, the
goal is to find out which of the components is of inter-
est [19]. However, BCI systems use algebraic methods
to compute the columnof the separationmatrix which
enhances the component related with one of two pos-
sible tasks [4]. This procedure is called common spa-
tial filter calculation [20, 21]. The aim of the operation
is to transform the multichannel recording into one
component from which several measures result which
form the inputs to a classifier (supervised machine
learning algorithm) [22]. A variant of the common
spatial filter incorporates the average amplitudes of a
chosen wave (for instance the P300) on the calculation
of the filter coefficients [23]. The prior knowledge
about stimulus type (target versus non-target) and and
its latency are also essential information to calculate
filter coefficients [24, 25].

Several attempts also have been made to incorpo-
rate available signal characteristics and to develop the
so-called semi-blind source separation techniques.
These strategies incorporate constraints in the con-
trast function, related with source independence, to be
optimized [26]. The constraints might be applied to
the columns of the mixing matrix [27, 28] or to the
extracted components [29–32]. These approaches
imply the existence of either a reference signal or a
model to be used as constraint and the choice is depen-
dent on the problem under study. Unsupervised
machine learning techniques have also been intro-
duced in brain studies with the advantage of working
without labels [33, 34].

In this work, K-means clustering is applied to deal
with the permutation indeterminacy of the ICA
decomposition. The methodology is evaluated with
EEG signals acquired while participants performed on
theHalstead Category Test [35], which is used to assess
cognitive executive functions. The complete test
involves a short number of trials and it is meant to
measure the paticipant’s ability to formulate abstract
principles based on the feedback received about his/
her performance. Therefore, the goal is to track the
ICA component related with the participant’s

performance at single trial level. The analysis shows
that it is possible to find the Feedback RelatedNegativ-
ity (FRN) potential at the single-trial level and relate its
characteristics with the performance. This approach
was also applied to identify one of most studied ERP
which is related to visual processing mechanisms (the
P100). In this study, the trial averages were estimated
in synchronization with the stimulus onset and with
the feedback onset related with participant’s response.
The former is important to study the event-related
potential P100 which peaks around 100 ms after the
stimulus onset. The feedback onset is relevant to study
the FRNcomponent, which peaks around 250 ms after
providing the information about the performance.
These waves were chosen as case studies to demon-
strate the adequacy of the proposed analysis technique
because they are relevant markers of perceptive and
cognitive performance in the present paradigm. The
P100 is one of the most studied neural correlates of
visual processing, being elicited in posterior areas in
response to visual stimuli [36]. This component has
been localized to activity in lateral extrastriate cortex
and inferior occipital-temporal cortex [37]. The FRN
component is a neural response related to error-
processing which has been demonstrated during per-
formance on the HCT (please see [35], for a more
detailed description of the paradigm). It occurs at
fronto-central electrodes after feedback regarding the
accuracy of the performance is provided. This negative
component is typically more prominent for incorrect
compared to correct feedback and seems to reflect per-
formancemonitoring considering specifically the pro-
cessing of external cues about one’s performance [38].
This is particularly relevant in the present paradigm,
where participants must adjust their response strategy
according to the feedback they receive, in order to
avoid making an error in the following trial. Although
it has been suggested that multiple cortical sources
might be involved [39, 40], the generators of the FRN
have been frequently located around the anterior cin-
gulate cortex [41]. This region plays an important role
in cognitive control, planning and executing beha-
viour, and in adapting behaviour as a function of task
demands and situations [42].

The paper is organized as follows: section 2
describes task and the signal acquisition protocol and
the main steps of the signal processing methodology
and the appendix complements the formulation;
section 3 presents the results which is followed by the
discussion (section 4) and finally the conclusion
(section 5).

2.Methods

Early cognitive brain studies with ICAwere focused on
event-related response averages but some authors
considered that event related single-trial EEG epochs
would bemore promising [7, 43, 44]. However, one of
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themain drawbacks of standard ICA is its permutation
indeterminacy, i.e. that the extracted components are
not ordered. Therefore, to limit the complexity of the
selection of components, the trials are concatenated
into a single data set, or ICA is applied to the
continuous version of the signal. The latter is often
considered after applying low-pass and high-pass
filters and down-sampling, in order to assure the
convergence of contrast-based ICA algorithms in a
reasonable time. Furthermore, to achieve group infer-
ences, the individual components of each subjectmust
be matched. One strategy, borrowed from functional
Magentic Ressonace is to apply ICA decomposition to
a concatenated data set formed by the principal
components of all subjects. The technique is called
Group-ICA and the indivual componets are found by
backprojecting the data [40, 45]. Another alternative is
to construct feature vectors comprising characteristics
of the individual components and the corresponding
scalpmaps and apply clustering techniques [33].

2.1. Participants and task
Fifty eight (58) participants (39 females and 19 males)
were enrolled in the study. They performed a compu-
terized version of the Halstead Category Test (HCT)
which was used to assess cognitive executive frontal
lobe functions. This test is used to measure a person’s
ability to formulate abstract principles based on
receiving feedback after their response to each specific
test item [35]. The EEG was continuously registered,
using Ag–AgCl sintered electrodes which were placed
according to the 10–20 system, with a Neuroscan
SynAmps2 amplifier through an Easy-Cap with 26
channels and recorded, sampling rate of 1 kHz and
with an analogue notch filter at 50 Hz, with the
software Scan 4.3 (Neuroscan Systems) using the tip of
the nose as reference.

The HCT involves the presentation of 208 trials
divided into 7 subtests. The first two subtests, with 28
trials, are training subtests. The subtests III and IV,

each with 40 trials, measure spatial/positional reason-
ing. The subtests V and VI, each with 40 trials, assess
proportional reasoning. Finally, the last subtest is a
memory test and comprises 20 trials. Each test item
shows one or more figures that, altogether, suggest a
number ranging from one to four. In subtests I to VI,
participants are instructed to determine or guess the
correct number based on their conceptualization of
the abstract principle represented by the stimulus [35].
Visual feedback is provided after each response, to
indicate if the participant’s response was Right or
Wrong. The information is presented 1500 ms after the
response and remains on the screen for 750 ms. Based
on this feedback, the participants must maintain or
change their response strategy accordingly. The aver-
age time for the participant to answer was 1790 ms
with a standard deviation of 400 ms.

Observing the sequence of responses, in general,
the participants provide more often answersWrong in
subtest III and subtest V than in subtests IV andVI (see
figure 1). Anyway, note that the number of Wrong
answers in a total of 40 trials is usually not more
than 15.

2.2. Signal processing
The main signal processing steps are the ICA decom-
position, clustering of normalized scalp maps to find
the prototypes which are used to look for components
at trial-level. ICA is applied at single-trial level with a
segment of data taken from continuous data and
having as reference the participant’s response. Then,
for each participant, the spatial scalp maps (columns
of mixing matrices) of all trials are clustered and a
prototype for each cluster is estimated. This template
resulting from each cluster is the average of all scalp
maps of the cluster. In order to assure that scalp
prototypes represent similar scalp localizations across
participants, a re-ordering of these templates is
performed. Afterwards, and for each trial individually,
the component related with the scalp map closest to

Figure 1.Number ofWrong answers in subtests III, IV, V andVI for all participants.
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the template was chosen as the representative of that
particular cluster. These relevant cluster related com-
ponents were then back-projected onto the scalp
electrodes and average signals were estimated.

2.2.1. Single trial ICA
After the application of an ICAalgorithm, it is possible,
to explain the original trial t data with N samples of P
channels as

X A S 1t t t= ( )( ) ( ) ( )

where X(t) is a P×Nmatrix related with the t-th trial,
the matrix A(t) is the P×L mixing matrix and S(t) is
the L×Nmatrix of the components. In this work, an
algebraic variant of the ICA decomposition is applied
to decompose the segment related with the t-th trial.
The second order blind identification (SOBI) algo-
rithm [46], without any dimension reduction (L=P)
at the singular value decomposition pre-processing
step, is applied (see appendix and [26]). The outcome
of the algorithm is the separation matrix, from which
it is possible to estimate the components and the
mixing matrix. Note that several works report that
SOBI has good performance in artifact reduction
applications [10, 12].

2.2.2. Clustering scalpmaps
As mentioned before, the mixing matrix is in fact
estimated as the inverse (or pseudo-inverse) of the de-
mixing (or separation) matrix which is used to
estimate the components. And in most of the algo-
rithms, the energy of the estimated components has
the same value (even equal to one). Therefore, the
columns of the mixing matrix give the relative projec-
tion strengths of the respective components onto each
of the scalp sensors [5]. Thesemay be interpolated [14]
and the values might be normalized in order to
facilitate comparisons. The latter are usually achieved
by visual inspection of the color-coded column values
displayed on the corresponding scalp positions. In this
work, in order to apply a clustering algorithm, it is
necessary to perform a normalization that allows
having an identical scale in all trials. Therefore each
element of themixingmatrix is written as

a

a a a
2ij

ij

i i iP1
2

2
2 2

r =
+ +¼+

∣ ∣
( )

The value ijr measures the importance of the j-th

source contribution to the i-th sensor signal. This is
because the denominator of the second term of the
equation involves all coefficients that contribute to the
i-th sensor signal, while the numerator reflects the
weight for the j-th source. These values are naturally in
the range (0, 1) and the P×P normalized mixing
matrix relatedwith the t-th trial can bewritten as
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Note that j-th column j
tr( ) of the matrix tY( )

represents the relative spread of the j-th source on the
scalp.

The scalp map data set is obtained by concatenat-
ing the matrices t T, 1tY = ¼( ) . For the sake of
simplicity, let’s represent the participant data matrix
P×I, where I=P×T and where the column index
i is i P t c1= ´ - +( ) , with t=1, K , T and
c=1K P representing the indexes of the trials and the
columns of the normalized scalp maps of each trial,
respectively.

4I1 2 3r r r rF = ¼( ) ( )

2.2.2.1. Pooling scalpmaps
The P sensors are related to different positions on the
scalp andmight be pooled together into different scalp
regions. Table 1 shows the pooling of electrodes into
six scalp regions. For each normalized scalp map, a
feature vector is estimated where the entries corre-
spond to the median value of the channels pooled in
each of the regions. This new data set is clustered using
the K-means algorithm and using the cosine distance
as proximity criterion.

2.2.2.2. Clustering
After the application of K-means algorithm, the set of
indices is distributed among all K clusters. Therefore,
the data is assumed to be partitioned in K groups (or
clusters). Let us denote by p the vector, of length I,
representing the partition of the data. The entry pi is
equal to the integer k, where 1�k�K, of the cluster
that the normalized scalpmap ir belongs to.

Let us denote by Ik̂ the set of indices i of the obser-
vations ir belonging to the cluster

I i p k 5k i= =ˆ { ∣ } ( )

The centroid of the k-th cluster is defined as the
mean of the elements of the group

Table 1. Scalp regions and pooling of EEG channels [47]. The EEG
channels corresponding to the 10–20montage used in the
experimental set-up.

Pool Channels name Partitions of indexes

pre-frontal Fp1, Fp2, Fpz J1={1, 2, 3}
frontal F7, F3, Fz, F4, F8 {4, 5, 6, 7, 8 }
fronto-central FC3, FCz, FC4,C3,

Cz,C4

J2={9, 10, 11, 13,
14, 15 }

parietal P7,P3, Pz,P4 , P8 J3={17, 18, 19,
20, 21}

parieto-occipital PO7,PO8,O1,

Oz,O2

J4={22, 23, 24,
25, 26}

temporal T7,T8 J5={12, 16}
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N

1
6k

k i I
i

k

åm r=
Î

ˆ ( )
ˆ

where Nk is the number of elements of the set Ik̂.
Different works discuss the use of scalp maps to
identify artifact or task related components [4]. In this
work, the centroids constitute the templates which are
used to select signal components. Hence, the column
of the mixing matrix close to the template is con-
sidered an implicit spatial signature for the comp-
onent. Preliminary tests, using our data set, confirm
the results of the referred works. In particular using
K=5 clusters the corresponding templates show that
the largest values in each template are concentrated
into distinct scalp localizations.

2.2.2.3. Ordering of templates
Different runs of K-Means conduct to similar tem-
plates, e.g., its visual analysis show similar patterns.
However these patterns do not show up in the same
order. This problem is relevant because the clustering
step is applied individually to each participant. In
order to combine the results across participants, it is
necessary to identify the clusters according to their
scalp localizations. Therefore a re-ordering step is
introduced to assure that each cluster Ck represents
identical scalp maps for all participants. The re-
ordering is based on the computation of scores which
represent the relative contribution of the pools of
electrodes to the global template. For each template,

km̂ , the following scores are estimated

r k, 1, 2, , 5 7kj
j J kj

j
C

kj1

k
å m

m
=

å
= ¼Î

=

ˆ

ˆ
( )

where the channel index partition Jk is defined as
indicated in the last column of table 1. An empirical
sequential procedure as described by the algorithm 1 is
applied. Therefore the template that has the largest
contribution among all the templates not ordered is
selected as representative of each pool of electrodes.

Algorithm1.Ordering clusters

INPUT: The estimated scores rkj for all clusters.

for k=1 to 5do
FIND j j r r jkj kj= > "+ +{ ∣ }
Ck cluster’s template is k jm m= +ˆ and corresponding

elements are I Ik j= +ˆ
r j0kj = "
end for

The goal is to assure that the clusters of the differ-
ent participants are organized according to the rele-
vance of the scalp localizations. Hence, the cluster Ck

whose members are identified by the Ik and the
corresponding template km correspond to a similar
scalp localization for all participants.

2.2.2.4. Selection of the ICA components
In this work we propose, in each trial, only to select
one component according to its spread on the scalp.
Note that ICA decomposes the single trial segment
into P scalp maps and related components. To select
components related with cluster Ck, the set of indexes
for this group, j IkÎ are converted into a pair of
indexes: the first indicating the trial and the second the
column index for the mixing matrix. Those indexes
are related with integer and rest of the division of the
index j by P. Then, for all the elements of the partition
Ik the steps are the following

• Compute the trial index for all j IkÎ ,

t
j

P
1= +

⎢
⎣⎢

⎥
⎦⎥

• Compute the column number of the mixing matrix
for the trial t-th.

c j Pmod=

More than one column might belong to t-th trial
because the number of scalp maps is larger than the
number of clusters. To select the relevant component,
first it is chosen the scalp map

c
tr +

( ) which is closer to
the template km . The relevant component is the one
related with the selected scalp map. The t-th trial
relevant component is back projected to the scalp by

X A S 8t
c

t
c
t

* *
= + +ˆ ( )( ) ( ) ( )

Which corresponds to the outer product of the
selected row c th-+ of the matrix of components
S B Xt t t=( ) ( ) ( ) (see appendix A.1 for more details).
Note that the matrix X t( ) represents the data of one
trial.

2.3.Data analysis
The length of the multichannel segment to apply an
ICA algorithm is an open issue which naturally has
impact on the computational load and it influences the
quality of the decomposition. In [12] the authors
report as common choices a length of 10 s or a number
of samples corresponding to a few times the square of
number of channels. In this case, being interested in
signals after the stimulus and also after the feedback,
which occurs 1500 ms after the participant’s response
onset (to analyse the P100 and the FRN potentials,
respectively), the multichannel EEG was segmented
from 6000 ms prior to response onset to 3000 ms after,
corresponding to 9000 samples. Note that in this way,
at each trial level, the segment comprises the following
sequence of time stamps: presentation of the stimulus,
the participant’s response and the feedback informa-
tion. As referred before, the time interval between
stimulus presentation and the participant’s response is
variable, while the time interval between the partici-
pant’s response and the presentation of feedback is
1500 ms (formore details see [35]).
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The data segments were bandpass filtered in the
range (1–40)Hz using the discrete Fourier transform.
After the application of the FFT algorithm, the coeffi-
cients outside of the defined range were eliminated
and the inverse discrete Fourier Transform (IFFT)was
then applied.

The 26×26 ICA separationmatrix was estimated
using Second Order Blind Source Separation (SOBI)
algorithm [46]. The mixing matrix for each trial and
the corresponding signal components were then esti-
mated as described in appendix A.1.

2.3.1. Scalpmaps and selection of components
The clustering stepwas performed as described before.
The number of clustersK is a pre-assigned value which
is often determined by trial and error and validated
experimentally. The quantitative evaluation of cluster-
ing algorithms is often achieved using a globalmeasure
that reflects the intra-cluster versus the inter-cluster
similarities [48, 49]. The silhouette value is a common
choice to evaluate the quality of clustering algorithms.
Figure 2 shows themean silhouette score assigning the
number of clusters K=2 to K=20 to partition the
scalp maps of all participants of the study. The average
value of silhouette close to one means that the data is
appropriately clustered (see appendix A.3). In the
different runs of the algorithm, the best values are
achieved withK=5 toK=7 (see figure 2). The study
was finally conducted with K=5 because the re-
ordering of templates gave visually comparable pat-
terns across participants.

Figure 3 shows the cluster templates (the centroids
of the clusters) of the normalized scalpmaps of 5 parti-
cipants. Although there is variability among partici-
pants, the different clusters still show different scalp

localizations. In all cases the differences among the
participants concern the symmetry and the focus of
the scalp patterns. Some participants present sym-
metric patterns while in others the activity is more
concentrated on one of the sides of the scalp. Some
participants have scalp values that change abruptly,
corresponding to a more precise localization, while in
others the values spread smoothly over the scalp with
peaks occurring in distinct scalp regions. For instance,
the template corresponding to clusterC1 (first column
of figure 3) is localized in the frontal region, but in par-
ticipant 1 it is focused while in participant 2 it is dif-
fuse. In participant 1 a symmetric pattern is observed
while in participant 4 there is a non-symmetric
pattern.

The cluster C2 (second column of figure 3) repre-
sents the fronto-central region and the participants
have symmetric and non-symmetric patterns. How-
ever all of them involve the most relevant electrodes of
this region which are FCz and Cz. The cluster C3 (3rd
column of the figure) represents mostly the parietal
region but the spread is also different among the parti-
cipants resulting in more or less focused patterns. The
clusterC4 (4th column of the figure) is related with the
occipital region and cluster C5 (5th column of the
figure) is related with temporal regions. The latter also
shows symmetric and non-symmetric patterns among
hemispheres.

Figure 2 (on the right) shows the number of scalp
maps belonging to the different regions in the total of
208×26=5408 scalp maps for each participant.
These results show that it is possible to find members
of all clusters in the 26 scalp maps of every trial. The
cluster C1 has the smallest number of elements. Note
that, in spite of the filtering operation before ICA,

Figure 2.Clustering the scalpmaps of all participants: Left: Silhouette score (mean and standard deviation) varying the number of
clusters;Right:K=5 clusters—size of the clusters.
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there are 2–3 components which are artifact-related
components in the 26 components of each trial.

3. Results

Regarding the previously described clusters that
emerged from the component selection process, the
cluster C4 (occipital region) is the one that best
provides the scalp signature of the P100 component,
while the cluster C2 provides the signature of the FRN
(fronto-central region, encompassing electrodes FCz
andCz, where the FRN ismost conspicuous).

In the following sections, we will use these two case
studies to demonstrate the effectiveness of the pre-
viously described signal processing methodology. This
methodology allows applying ICA at the single trial level
using the unsupervised learning algorithm K-means to
automatically select the relevant components and
enhance the signal patterns related to specific neural
activity. We will thus demonstrate that the waves P100
and FRN are identifiable in the reconstructed signal by
back-projection of the relevant components to the

scalp, both when average signals are computed and at
the single-trial level.

3.1. P100
After the selection of the component of each trial
relatedwith clustersC4 andC3 (C3 was also included in
the analysis in order to clearly demonstrate that the
P100 component is indeed more prominent in cluster
C4), the component segment centered on the onset of
the visual stimuli (from1000 ms prior to visual stimuli
onset to 2000 ms after) is back-projected to the scalp.

Figure 4 represents the ERP image [7] and the ERP
average of one participant using the back-projected
signal into O1. The positive deflection around 100 ms
is present either using C3 or C4 components, although
being more evident if the scalp map of the cluster C4 is
considered, as expected.

The P100 pattern clearly visible in the average ERP
with a peak with latency equal to 100 ms, is also visible
in the ERP image where a larger intensity value is visi-
ble with latency of 100 ms across all trials.

Figure 3.Centroids of the cluster for 5 participants: Rows (participants) columns centroids of clusters: st C1 1- , nd C2 2- ,
rd C3 3- , th C4 4- and th C5 5- . For visualization purposes each scalpmapwas normalized individually.Minimumamplitude
(very small positive number) corresponds to blue andmaximum to red.
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3.1.1. Single trial P100
The P100 event-related potential, defined as a positive
deflection around 100 ms, is detected automatically
for all trials of all subjects defining three different
intervals to look for the local peak maximum. In the
literature, the variability of the latency of the P100 in
single trial detection is also described [50]. The three
intervals are I1: [70 130] ms, I2: [50 150] ms and I3
[30 170] ms. Our goal was to find out if the pattern is
present in all trials and to understand the latency
variability. The hit rate was defined as the number of
trials where the condition is accomplished, divided by
the total number of trials (208). Figure 5 represents the
results for all participants.

The larger interval allows to identify the positive
deflection at least in 95% of the trials. These single-
trial P100 peaks were comparedwith the peak detected
on the participants’ ERP average signal. The absolute
differences, for all participants and trials, are also

shown in figure 5. It is possible to see that the median
absolute difference is around 15 ms, which is a value
smaller than what is observed between ERP avera-
ges [50].

3.2. FRN single-trial level
In [35] it was shown that the FRN has larger amplitude
after the feedback of wrong answers, i.e., it was
demonstrated that wrong answers elicit an FRN of
larger amplitude than correct answers, given that this
ERP component is related to our error-monitoring
system, which allows to adapt behavioral responses
based on the success of previous performance.

In this case, we were interested in studying the
FRN at the subtest level and trial level. In particular, we
were interested in subtest transitions, when partici-
pants are still unsure about the abstract principle
underlying the following subtest. At the beginning of
the test, participants are informed that the underlying

Figure 4.ERP image of the back-projected components inO1 channel for one participant. The vertical traces indicate stimulus
presentation. Left: Component relatedwith clusterC4 ;Right: Component relatedwith clusterC3.

Figure 5. Left: Hit-rate forfinding theP100within the respective interval, considering all participants and three latencies intervals.
Right: Absolute differences between P100 latency of ERP average signal and the single-trial P100 using I3 interval.
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abstract principle may change from one subtest to the
next. Sometimes this principle remains the same, and
other times it changes. Participants are never sure of
this on the first trials, and they will only be able to
determine the correct abstract principle on the basis of
the feedback they receive about their performance.

Table 2 shows how the participants perform in the
first three trials of each subtest. The number partici-
pants giving a higher number ofWrong answers is lar-
ger on sub-test III. It has to be noticed that, in subtest
IV, more than half of the participants do not give any
Wrong answer. On subtest IV the principle did not
change from the previous subtest.

The ERP single-trial signal, resulting by back-pro-
jecting the components related to cluster C2, was stu-
died and the mean of the three first trials of subtest III
and subtest IV of the HCT was estimated. Then, a
negative deflection was detected in the interval
[150 350]ms. Figure 6 (left side) shows the amplitude
of the FRN for the group of participants which have
similar values in both subtests. And in both subtests
there are outliers. The same figure (right side) also
illustrates the range of latencies of the wave. It has to be
noticed that, although the median value is similar in
both subtests, in subtest IV the range is larger. Figure 7
shows an ERP like image with the signals of all partici-
pants. Note that for visualization purposes the images
only show truncated values of the amplitudes to avoid
the influence of the outliers.

3.3. FRN—Case study of one participant
As referred before, the participants must adjust their
response strategy according to the feedback they
receive, and therefore their performance changes
along each subtest.

Figure 8 shows the sequence of Wrong and Right
answers in two subtests of one participant. The goal of
the following study was to compare the wave patterns
in three performance scenarios. The consecutive trials
were chosen as follows:

• Case1: The first three trials (t1, t2 and t3). Note that
in both sub-tests the answers are type Wrong and
Right.

• Case2: Three trials in themiddle (t25, t26 and t27 ). In
this case the answer is alwaysRight in both subsets.

• Case3: Three consecutive trials (t19, t20 and t21
subtest III ) corresponding to answers type Wrong

(t19, t20 ) and Right (t21) after a long sequence of
answersRight.

The following figures represent the analysis of the
dataset considering the criteria described above.
Regardless of the type of response, the FRN wave, a
negative deflection with latency around 250 ms, is
visible in the first trials of each subtest (see figures 9
and 10 on the left—top pannel in each figure, Case 1).
The FRN is also visible if, after a sequence of answers
type Right, the participant gives answers type Wrong,
as it is visible in figure 9 (bottom pannel in the figure,
Case 3). The FRN is not so clearly present if the
answers are of type Right after a long sequence of
correct answers (Case 2). The topoplots of the average
amplitudes in the defined interval also reflect the
presence of a clear negativity associated with the FRN.
When the FRN wave pattern is present, the signals in
fronto-central channels are clearly negative (see Case 1
and Case 3 of figure 9). If the FRN pattern is not so
clear, either the negativity has smaller amplitude
(subtest III, Case 2) or does not appear (subset IV, Case
2). This strategy of analysis was repeated with the
signals of different participants and similar outcomes
were obtained. In the supplementary material
available online at stacks.iop.org/BPEX/5/015019/
mmedia results concerning four more participants are
discussed. This preliminary results show that the FRN
wave reflects the performance of the participant. Its
amplitude is higher in the case ofWrong answers or in
the transition of the test when the participant is not
certain about the abstract principle of the stimulus.

4.Discussion

EEG registrationwhile participants answer to theHCT
test provides an acquisition scenario where it is useless
to instruct participants to avoid movements or blinks.
Therefore the ERP analysis should be conducted in
pre-processed data because the number of trials is too
small. The ERP study [35] shows that the FRN is visible
and its amplitude is different in the average of Right
and Wrong answers. In that work, the average signals
were pre-processed with a singular spectrum analysis
filter.

The HCT is a neuropsychological test that tradi-
tionally provides only an overall error score indicative
of global impairment [51]. However, recent works
have attempted to develop and validate several scoring
subscales that allowmeasuring cognitive skills inmore
detail and provide more information about the indivi-
duals performance, which increases the clinical utility
of the test [52, 53]. Some of these subscales (ex., the
CAT-2 and CAT-2A subscales) highlight the impor-
tance of examining how performance changes across a
sequence of trials, instead of an overall score or a single
trial, in order to evaluate the process of learning and
applying the underlying abstract principle [52]. The

Table 2.Performance in thefirst three trials: entries
represent the number of participants answering 0, 1,
2 or 3 timeswrong.

Number ofwrong 0 1 2 3

sub-test III 7 7 30 14

sub-test IV 31 19 5 3
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coupling of information about brain activity recorded
during test performance can be useful in increasing the
diagnostic potential of the HCT. Therefore is it

important to develop signal analysis techniques that
allow examining brain activity on a trial-by-trial basis.
In the present work, in order to relate the performance

Figure 6.Amplitude and Latency of the FRNwave in all participants considering themean of first three trials in each subtest III and
subtest IV of theHCT.

Figure 7.ERP image of the back-projected components related to clusterC2 in channelCz for all participants. Left: subtest III of the
HCT;Right: subtest IV of theHCT. The participant’s signals are ordered according to the latency of the detected peak.

Figure 8. Sequence ofWrong andRight answers: Left: subtest IIIRight and subtest IV
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of the user in short sequences of answers with the
corresponding signals, ICA at single-trial level was
applied. The study shows that it is possible to find
back-projected ICA components where ERP events
are clearly visible. The P100 study shows that ERP
image of the proper back-projected component is
clearly visible on the occipital channel. The single-trial
P100 peak latencies and the peak latency detected on
the participant’s average signal have differences whose
median is around 15-ms which is a value smaller than
what is observed between ERP averages [50]. Related
with the HCT test, the FRN wave is visible in all parti-
cipants in transitions between sub-tests either when

the principle changes (sub-test III) or when does not
change (sub-test IV) even when the partipant is
answering Right , but is still unsure about the abstract
principle in that particular subtest. The exploratory
study conducted with different participants indicates
that the FRN wave is related with the performance of
the user. This is a very important result because it
demonstrates that the proposed analysis method
allows the detailed inspection of this potential on a
trial-by-trial basis.With this detailed analysis, it is pos-
sible to make inferences about the underlying cogni-
tive processing and how the participant approaches
each individual stimulus in terms of their certainty

Figure 9. Subtest III: Left: ERP signal in FCZ;Right: topoplots associated to each ERP signal in all electrodes, between 230 270[ ]ms.
Top toBottom: Case 1, Case 2 andCase 3.
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about the underlying abstract principle. This knowl-
edge is important to understand the neural mechan-
isms associated with executive function and abstract
reasoning.

5. Conclusion

In this work a new approach is proposed to deal with
the main drawbacks of independent components
analysis: ordering and scaling indeterminacies. The
ordering drawback was achieved by introducing a well
known algorithm of clustering. This step proves to be
essential in order to accomplish the application of the
algorithm at the single-trial level. Furthermore, with a
simple heuristic the centroids (templates) of the
clusters of the different participants are pairwise to
perform inter-participant analysis. The scaling inde-
terminacy was partially solved by choosing only one
component by trial. The main idea was to select the
component that can be the best representative of each
cluster in a particular trial. The experimental study
conducted with EEG data acquired with participants
performing the HCT test shows the usefulness/
viability of the methodology. The P100 was detected
and characterized at the single-trial level and the study

shows that the characteristics of this visual potential
are according to what is expected. However, the more
promising application was the detection of the FRN
potential and the possibility of using its detection to
study the dynamics of the brain while assessing
performance on a specific task, monitoring perfor-
mance for errors and adjusting behavior on the basis
of feedback. The analysis of a sequence of three trials in
different context shows that the amplitude of the FRN
is related with the performance of the user in the HCT
test. Further developments of this work are to study
the dynamics of the signals detected and to relate them
with the participants’ performance.
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Appendix

A.1. Blind source separationmodel
Most of BSS/ICA algorithms follow a two step
procedure to estimate the separation (or de-mixing)
matrix [26]. The first step is based on Principal
Component Analysis or Singular Value Decomposi-
tion (SVD) of the data matrix X [26]. For the second
step, different approaches have been proposed
[26, 54]. The separation matrix B is estimated as the
product of matrices computed in both steps. For
convenience, these steps are reviewed

• Performing the SVD of the original data X, two
matrices are computed: the C×L eigenvector
matrix V and the L×L diagonal singular value
matrix D. The user can decide to perform dimen-
sion reduction after the first step by discarding the
smallest singular values and corresponding eigen-
vectors. In that case L<P and the number of
sources will be smaller than the number of mea-
sured signals. Without dimension reduction, the
number of singular values and corresponding
eigenvectors is L=P.

• After whitening the original data X, i.e
Z D V XT1= - , time-delayed correlation matrices
are estimated [26, 46]. The approximate joint
diagonalization of this set of matrices leads to an
orthogonalmatrixW.

The separationmatrix is defined as B W D VT T1= -

and its pseudo-inverse as A VDW= . The mandatory
parameter of this algorithm isQ, the number ofmatri-
ces of the second step. Eventually, the user can decide
to perform dimension reduction after the first step by
discarding the smallest singular values and corresp-
onding eigenvectors. In this work, the dimension
was maintained equal to the number of sensors
(channels),i.e. C, and Q is assigned to 100. And note
that the energy of the components, i.e., the rows of the
matrix S BX= , is equal to one. For the sake of simpli-
city the identification of each trial by a proper index is
omitted here as it is explained in the text. But remem-
ber, the ICAalgorithm is applied to each trial separately.

A.2. K-means and cosine distance
K-means is a recursive procedure which groups the
data intoK clusters by computing a similarity measure
between data instances and the cluster’s centroid. The
inputs of the algorithm are the number of clusters and
the choice of the similarity measure. In this work the
cosine distance was applied. Considering two data
instances (a, b), the distance is defined as

d a b
a b

a b
, 1

T

2 2

= -
   

( )

where . means the length of the argument, then the
second term on the right side of the equality is the
cosine of the angle between the two vectors It has to be
noticed that d da b a b, , , 0a a= >( ) ( ) . And if the
vectors a b, have the same direction, the distance is
zero. Note that all the entries of the normalized scalp
maps are positive, so the distance ranges
between (0–1).

A.3. Silhouette score
The score [48, 49] is estimated individually for each
i-th example of the data set as

s i
b i a i

a i b imax ,
=

-( ) ( ) ( )
( ( ) ( ))

where a(i) represents the intra-cluster distance, eg, is
the average distance of the i-th example to all the
elements of its cluster while b(i) represents the inter-
cluster distance, then is the average distance of the i-th
example to the examples of the closest cluster. There-
fore ideally a(i)=b(i) and the s(i) is close to 1,
meaning that the example s(i) is properly assigned to
its cluster. A global silhouette score is the average of
the individual scores allowing to have a global score to
evaluate the clustering results.
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