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Abstract

In this work a generalized version of AMUSE, called dAMUSE is proposed. The main modifica-
tion consists in embedding the observed mixed signals in a high-dimensional feature space of delayed
coordinates. With the embedded signals a matrix pencil is formed and its generalized eigendecom-
position is computed similar to the algorithm AMUSE. We show that in this case the uncorrelated
output signals are filtered versions of the unknown source signals. Further, denoising the data can be
achieved conveniently in parallel with the signal separation. Numerical simulations using artificially
mixed signals are presented to show the performance of the method. Further results of a heart rate
variability (HRV) study are discussed showing that the output signals are related with LF (low fre-
qguency) and HF (high frequency) fluctuations. Finally, an application to separate artifacts from 2D
NOESY NMR spectra and to denoise the reconstructed artefact-free spectra is presented also.
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1. Introduction

Blind source separation (BSS) methods deal with the separation of observed sensor
signals into their underlying source signals knowing neither these source signals nor the
mixing process. BSS methods based on a generalized eigenvalue decomposition (GEVD)
of a matrix pencil rely on second order statistics only taking advantage of certain correla-
tion structures present in the data. They are very efficient and easy to implement but they
are sensitive to noise [1,2]. There are several proposals to improve efficiency and robust-
ness of these algorithms when noise is present [1,3].

Considering noisy signals, there exist, beneath others, several projective denoising tech-
niques, the first step of which consists in increasing the dimension of the data set by
joining delayed versions of the signals [4—6]. Hence the sensor signals are embedded in
a high-dimensional feature space of delayed coordinates. Then denoising is achieved by
back-projection of the data into a lower-dimensional subspace corresponding to the dimen-
sion of the underlying source signals. The idea behind is that a random noise spreads all
space equally while a deterministic signal lives on a sub-manifold only. Projecting onto that
sub-manifold thus removes some of the noise components reducing its amplitude thereby.

A similar strategy is used in singular spectrum analysis (SSA) [7] where a matrix com-
posed of the data and their time-delayed versions is considered. Then, a singular value
decomposition (SVD) of the data matrix or a principal component analysis (PCA) of the
related correlation matrix is computed. The data are then projected onto the principal di-
rections of the eigenvectors of the SVD or PCA analysis. The SSA can be used to extract
information from short and noisy time series, hence can provide insight into the underlying
system that generates the series [8].

In this work we will join BSS techniques and denoising strategies to present a modified
version of AMUSE [9], called dAMUSE [10], which solves the BSS problem, albeit a
filtering indeterminacy remains, and in parallel provides an efficient denoising tool, hence
alleviates the sensitivity of GEVD methods against noise.

AMUSE is a BSS algorithm using second-order statistics and the time structure in the
data. It is based on a GEVD, i.e., tsamultaneoudiagonalization of a matrix pencil
formed with a correlation matrix of zero mean sensor data and a time-delayed correlation
matrix. The proposed algorithm dAMUSE also comprises this simultaneous diagonal-
ization but the matrix pencil is formed with correlation matrices computed in a high-
dimensional feature space rather than the input space, i.e., after increasing the data set
dimension by joining delayed versions of each sensor signal.

In the following section we will show, considering a model of linearly mixed sensor
signals, that the estimated uncorrelated signals correspond to filtered versions of the under-
lying source signals. We will also present an implementation of this algorithm to compute
the eigenvector matrix of the matrix pencil which involves a two step procedure based on
the standard eigenvalue decomposition (EVD) approach. The advantage of this procedure
lies in an optional dimension reduction between the two steps with a concomitant reduc-
tion in the number of estimated underlying source signals. The assertion at this step is that
part of the source components correspond to noise components only and can be removed
advantageously. Hence dAMUSE elegantly combines blind source separation techniques
with denoising techniques.
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Finally, to illustrate the proposed method, some applications are discussed comprising
simulations with artificially mixed signals of varying signal to noise ratios (SNR) [10], an
artifact removal and concomitant denoising of 2D NOESY proton NMR spectra of aqueous
solutions of proteins [11], and an analysis of ECG signals [12].

The outline of the paper will be the following: Section 2 presents a concise algebraic
formulation of GEVD methods and the AMUSE algorithm generalized to time-delayed
signals or their filtered counterparts in the canonically conjugated Fourier space. Section 3
will discuss implementation aspects of the algorithm, Section 4 will discuss applications to
artificial and real world noisy sensor signals and Section 5 will present a short discussion.

2. Thealgorithm dAMUSE
2.1. Embedding

Consider a group ofV sensor signalg;, i = 1,..., N, with each sensor signaj;
embedded in a high-dimensional feature spgcef delayed coordinates. Then thith
trajectory matrix[7]

Xi =[5t + (K —DAn, ... 5 @+ a0, 5T @] (1)
is formed with the'th sensor signal and itX — 1) delayed versiongk =0, ..., K — 1),
X+ kAt = (xi(to + kAL, x;(lo+ T + kA1), ..., xi(to+ (L — )T +kAr))

thus represents one signal or one of(i&s — 1) delayed versions. The trajectory matrix
then reads (sep = O for simplicity)

xi((K —DAt) xi(z+(K—-DAr) ... xi(L—1D1)
xi(K —2)At) xi(t+ (K —=2)At) ... x;(L—1D1 — At)
x; (0) x; (1) o xi (=Dt — (K —1)Ar)

wherer; =19+17,1=0, ..., L —1, denotes discrete time; * represents the sampling rate
andAt =nt,n € N, n < L, denotes a fixed delay which is an integer multiple (usually
n = 1) of the sampling intervat. Thus each row of the trajectory matrix of each signal
containsL — n(K — 1) samples of the signal.

The total trajectory matrix of the whole set oV signals will be a concatenation of
the component trajectory matric¥s computed for each sensor:

X =[X1, X2, ..., Xn]". 2

Assuming that each sensor signal is a linear combinatio af N underlying but un-
known and uncorrelated-dim source signalss;), a source trajectory matri$ can be
written in analogy to Eg. (1). To simplify notation, in the following we will only consider
the caseN = M. Then the sensor signal trajectory matrix can be expressed=a#S,
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where the totalvV K x N K-dimensional mixing matriA is given by a Kronecker prod-
uct A =a® lgxkx. Then, the mixing matrix is a block matrix with a diagonal matrix
a;; = a;jl kxk in each block, i.e.,

aillgxx  alkxk .. awwlkxk
azilgkxx  alkxk .

A= ) ) ) . 3)
aNlleK o “ee aNNIKxK

The matrixl x « ¢ represents the identity matrix and the mixing coefficigntrelates the
sensor signal with the source signal of the corresponding component trajectory matri-
ces. As we are dealing with an instantaneous mixing model, all delayed versions of a signal
are related by the same coefficient.

2.2. A GEVD using matrix pencils

Next a correlation matrbR, = (XX*) (H denotes the Hermitian conjugate) of the
sensor data and its time-delayed counterPaKid) are computed to form a matrix pencil.
Note that the delay, =d - 7, d € N forms an integer multiple of the sampling interval
The time-delayed correlation matrix of the matrix pencil is computed with one matrix
X, obtained by eliminating the firstZ columns ofX and another matrixX;, obtained
by eliminating the lastd columns. Then, the time-delayed correlation maRixd) =
(X,XIH) will be an NK x NK matrix. Each of these two correlation matrices can be
related with a corresponding correlation matrix in the source signal domain

R (d) = AR;(d)Af = A(S, ST Al (4)

Then the two pairs of matriced®R, (0), R, (d)) and (R;(0), R;(d)) represent congruent
pencils [13] with the following properties:

e Their eigenvalues are the same, i.e., the eigenvalue matrices of both pencils are identi-
cal: D, =D;.

o If the eigenvalues are non-degenerate (distinct values in the diagonal of the ma-
trix D, = Dy), the corresponding eigenvectors are related by the transformation
E, =AME,.

Assuming that all sources are uncorrelated, the matRGé$) are block diagonal, having
block matriceRR;; (d) = ((S,),-(SI)IH> along the diagonal

R11(d) 0 0

0 Roo(d) ... 0
Ra=| . . ©)

0 0 ... Ryy(@d
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The eigenvector matrix of the GEVD of the pen@®; (0), R;(d)) can be written as

Eix O ... 0
0 Ex ... 0

ES = . . . . ’ (6)
0 0 ... Ewnwn

whereE;; istheK x K eigenvector matrix of the GEVD of the pendR;; (0), R;; (d)). The
estimated uncorrelated componeMtgan be estimated from linearly transformed sensor
signals via

Y =EfX=EfAS=ElS 7

hence turn out to be filtered versions of the underlying source signals. As the eigenvector
matrix E; (Eq. (6)) is a block diagonal matrix, there akesignals in each column of

which are a linear combination of one of the source signals and its delayed versions. For
instance, the block depends on the source signalia

K

Z(Eii)k,jsi (11 + (K —k)At). 8

k=1
Equation (8) defines a convolution operation between colynof E;; and source sig-
nals;. Hence, the columns of the matiis; represent impulse responses of finite impulse
response (FIR) filters. Considering that all the columni§;pfare different, their frequency
response will provide different spectral densities of the source signal spectra. Then each of
the N output signalsy;, i = 1,..., NK, encompassek filtered versions of each of thg
estimated source signals

Note that the frequency shaping introduced by this linear filtering operation depends

on the length (number of delays) of the filter and on the coefficients in each column
of E;;. In summary, the algorithm dAMUSE yields uncorrelated component signals which
are filtered versions of the underlying source signals. Hence similar to blind deconvolution
methods in addition to scaling and permutation indeterminacies there appears a filtering
indeterminacy here.

2.3. Implementation of the algorithm dAMUSE

There are several ways to compute the eigenvalues and eigenvectors of a matrix pencil
if one of the matrices is symmetric positive definite [14]. One of those methods is based on
standard eigenvalue decompositions (EVD) applied in two consecutive steps. One of the
correlation matrices of the pair is computed for delay zére Q) to ensure the symmetric
positive definite condition. So, considering the pergl (0), R, (d)) the following steps
are proposed:

Step 1.Compute a standard eigenvalue decompositioR,ab) = VAVZ | i.e., the eigen-
vectors {;) and eigenvalues\{). As the matrix is symmetric positive definite, the eigen-
values can be organized in descending order= Ao > --- > Ang). In AMUSE (and

other algorithms) this procedure can be used to estimate the number of sources related



A.M. Tomé et al. / Digital Signal Processing 15 (2005) 400-421 405

to the signal, hence can be considered a strategy to reduce noise. Dropping small eigen-
values amounts to a projection from a high-dimensional signal plus noise feature space
onto a lower-dimensional manifold representing the signal subspace. Thereby it is tac-
itly assumed that small eigenvalues are related with noise components only. In this work,
we consider a variance criterium to choose the most significant eigenvalues accord-
ing to
AM+ro+- 4N - ©)
MAd2++hvg

If we are interested in the eigenvectors corresponding to directions of high variance of
the signals, the threshol®( should be chosen so that the maximum energy of the signals
is preserved.

A transformation matrixQ can then be computed using either thenost significant
eigenvalues,; or all of the eigenvalues and respective eigenveciipr€onsidering that
the matrixR, (0) can be approximated witheigenvalues and eigenvectors, iR,,(0) >~
VlAll/zA[l/ZVlH, the transformation matrix [14] is then computed by

-1/2
Q=A; YAV, (10)
whereQ is an! x N K matrix if a reduction in dimensiofl < NK) is considered.

Step 2. Compute the matrix = QR, (d)Q* and its standard eigenvalue decomposition:
the eigenvector matrixU and eigenvalue matri,. The eigenvectors (which are not
normalized) of the pencilR, (0), R, (d)) form the columns of the eigenvector matrix

E. =Q7U=V,A, "U. (11)

Note that if the threshol@® = 1, the corresponding result can be obtained with the
command ei¢R, (0), R, (d)) using the most recent version of MATLAB.

What concerns the uncorrelated components of the sensor signals and their delayed
versions, they can be estimated via the transformation

Y =EfX =UQx = U A Y2V fIX (12)

and eitherl or NK estimated uncorrelated signals are obtained representing filtered ver-
sions of the underlying source signal estimates.

3. Results

The proposed algorithm was applied to artificially mixed signals, RR and QT sequences
of electrocardiograms (ECG) and 2D NOESY NMR signals.The artificial mixtures allow
the illustration of the method once every parameter of the model is known.

The heart rate variability study (HRV), based on RR and QT sequences, illustrates a
preliminary application to real data. The heart rate variability (HRV) spectrum is currently
separated into three frequency bands: very low frequency band (VLF range below 0.04 Hz),
low frequency band (LF range 0.04-0.15 Hz) and high frequency band (HF range 0.15—
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0.4 Hz). Hence it is interesting to know if the extracted signals can be related with LF
and HF fluctuations of cardiovascular signals. A similar strategy applied to RR and QT
sequences was proposed in [15,16] where a principal component analysis (PCA) followed
by a generalized eigendecomposition was used to extract inherent uncorrelated component
signals.

The application of JAAMUSE to 2D NOESY NMR signals was motivated mainly by the
necessity to denoise the reconstructed spectra after the water artifact has been separated
from the protein spectra using BSS techniques. The proposed algorithm dAMUSE offers
an elegant and efficient way to perform both the blind signal separation and the denoising
simultaneously.

3.1. Artificially mixed signals

Using artificial signals, the simulations were designed to illustrate the method and to
study the influence of its parameters, especially the dimension of the embedding the
threshold®, on the respective performance. As the separation process also involves a linear
filtering operation, each uncorrelated component estimated has its maximum correlation
with one of the source signals for a non-zero delay, besides the usual indeterminacy in
order and amplitude.

3.1.1. Delays

In the first experiment, two artificial source signals with very similar frequency contents
were considered (see Fig. 1). The signals were randomly mixed and the algorithm was ap-
plied for different numbers of delays using® =1, d = 1. Figure 2 shows the results
obtained wherk = 3. In that case six uncorrelated components corresponding to filtered
versions of the two source signals are computed: three of them (Fig. 2a) are related with
the first source signal, while the other three (Fig. 2b) are related with the second source sig-
nal. We can see that these estimated components represent different frequency contents of
each of the corresponding source signals which each comprise a high and a low frequency
component. For instance, Fig. 2a shows that:

(1) The first estimated component isolates the high frequency component HF of source
signal 1.

(2) The third estimated component isolates the low frequency component LF of source
signal 1.

(3) The second estimated component contains both frequencies of the source signal.

Figures 2c and 2d represent the frequency response amplitude of the filters represented by
the columns of the transformed mixing matBX A which can be considered as containing
the coefficients of the corresponding filter. These filters are then paired with the respective
uncorrelated source signals. It can easily be verified that the frequency response confirms
the frequency contents of each of the uncorrelated signals as the filters obtained by the
algorithm represent a low-pass, a band-pass, and a high-pass filter (see Fig. 2d).
Increasing the numbek’ of delays, the uncorrelated components show either the low
frequency or high frequency mode of the sensor signals. In these cases, the frequency
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Fig. 1. Artificial signals comprising a superposition of a high-frequency and a low-frequency sinusoidal signal:
(a) source signals, (b) spectral densities of the source signals.

responses of the columns Bf’ A do not show a clear band-pass characteristic anymore
which includes the frequency contents of both source signals. Rather the filters look more
similar to a multi-pass filter structure. Another problem is that the eigenvalues of the first
standard eigendecomposition start to have very low values. In that case it is indicated to
consider a threshol® < 1 and also reduce the number of signals at the output of the first
step fromNK tol < NK.

In a second experiment three artificially generated, narrow-band source signals with
different frequency contents were chosen: one member of the group represents a narrow-
band signal, a sinusoid; the second signal encompasses a wide frequency range; and the last
one represents a sawtooth wave whose spectral density is concentrated in the low frequency
band (see Fig. 3).

For any numbeK of delays, the number of signals after the first step (or the dimension
of matrix C) is/ = 6 < NK, because the thresholé = 0.95 eliminates all very low
eigenvalues. Even though, the number of output signals is still higher than the number
of source signals. Thus only 3 output signals which each has a high correlation (in the
frequency domain) with one of the source signals will be considered in the following. It can
be verified easily that upon increasing the numkiesf delays, the estimated independent
signals decrease their bandwidth (except for the sinusoid).

For example, Fig. 4 shows that the spectrum of output signal 2 has less components
when K increases. The effect is also visible in the spectrum of output signal 3, but here
the time domain characteristics of the wave are less affected as is to be expected. This
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Fig. 2. (a) Independent components correlated with source signal 1, (b) independent components correlated with
source signal 2, (c) frequency response amplitude of filters related with components represented in (a), (d) fre-
quency response amplitude of filters related with components represented in (b).

artificially mixed setup shows that the generalized eigenvalue decomposition in high-
dimensional space results in a filtering indeterminacy that depends on the number of
delaysK . However it has been verified that the frequency range of every source is covered
by the reconstructed signals. And if the sources have a narrow band frequency contents, it
is possible to separate that source from all others.

3.1.2. Signal-to-noise ratios and thresholds
The second group of simulations consider the influence of noise on the performance
of the algorithm. The set of three artificial source signals of the last section was linearly
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Fig. 3. Artificial signals (left column) and their frequency contents (right column).
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Fig. 4. Frequency contents of the output signals considering different time-délayfrm the input data matrix,
hence the embedding dimension of the feature space.
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Fig. 5. Comparing AMUSE and dAMUSE using the MSE error: (a) sinusoid signal, (b) triangular signal.

mixed and random noise was added, resulting in a signal-to-noise ratio SNR in the range
of —5 dB < SNR < 20 dB. The mixtures then have been analyzed with the algorithm
dAMUSE. The parameters of the algorithm were chosen as folléivs: 4, ® = 0.95,

d = 1. In what concerns noise we also tried to figure out if there is any advantage of using
a GEVD instead of a PCA analysis. Hence the signals at the out put of the first step of
the algorithm (using the matri® to project the data) are also compared with the signals
obtained after the second step.

The first experiment compares the performance of algorithm dAMUSE with AMUSE
(the pencil has % 3 matrices and was computed also witk- 0 and 1), using the mean
square error (MSE) to measure the deviations of the source signals from the recovered
signals for the different noise levels. Only those filtered signals, recovered at the output of
dAMUSE, which retain most of their frequency content compared to the original were used
in the comparison (i.e., the sinusoid and sawtooth signals). Figure 5 shows that JAAMUSE
performs the better the higher the noise level, i.e., for SNEO dB for both signals. Fig-
ure 5b, however, shows a better performance for AMUSE when SRR dB, but thisis a
natural consequence of the filtering process causing a lack of high-frequency components
for the filtered version of the source signal obtained at the output of JAMUSE.

The following results illustrate the role of the threshold paraméteselecting the di-
mension of the signal subspace when noisy signals are considered. The par&metérs
and ® = 0.95 were kept fixed. As the noise level increases, the number of significant
eigenvalues also increases. Hence, at the output of the first step more signals need to be
considered. Thus as the noise energy increases, the number of gigoalhe dimension
of matrix C after the application of the first step increases (see last column of Table 1). As
a consequence, with increasing noise level an increasing number of independent compo-
nents will be available at the output of the second step also. Computing, in the frequency
domain, the correlation coefficients between either the output signals of each step of the
algorithm and noise or the output signals and the source signals, we confirm, that some are
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Table 1
Number of output signals correlated with either noise or source signals after each step of the algorithm dAMUSE
SNR (dB) NK First step Second step
Sources Noise Sources Noise Total

20 12 6 0 6 0 6
15 12 5 2 6 1 7
10 12 6 2 7 1 8

5 12 6 3 7 2 9

0 12 7 4 8 3 11

related with the sources and others with noise. Table 1 (columns 3-6) shows that the max-
imal correlation coefficients are distributed between noise and source signals to a varying
degree, but the number of signals correlated with noise (Table 1) is always higher in the
first level.

These results show that for a low noise level, i.e., a high SNR, the first step (which is
mainly a principal component analysis in a space of dimen&ié&t) already achieves good
solutions. But when the noise level increases, hence the SNR decreases, the additional
second step, representing the GEVD of the matrix pencil improves results considerably.
This was corroborated also by adding high energy noise and taking only the five most
significant eigenvalues, and corresponding eigenvectors, at the output of the first step. In
these cases the source signals might not be recovered.

3.2. Heart rate variability study

A second study to show the performance of the algorithm dAMUSE deals with
real world signals. We use ECG signals of two young normal subjects from the
POLY/MEDLAV database [17]. One lead of the recorded ECG signals was processed by a
wavelet transform based automatic delineation system [18], and the RR and QT intervals
(see Fig. 6 for an explanation) were measured between the marks obtained and form the
non-uniform sequences which are processed by dAMUSE.

The ECG signals of these two subjects were chosen because the corresponding respira-
tion signals exhibit spectral contents in distinct bands:

(1) ECG1 corresponds to a respiratory signal in a low frequency bard ((FO5-Q1 Hz).
(2) ECG2 corresponds to a signal in a high frequency baneHB:2—04 Hz).

Each heart beat (Fig. 6) is characterized by two values: the time interval between consecu-
tive R peaks (RR) on the one hand and the interval between the onset of the QRS complex
and the end of the T wave (QT) on the other hand. Then two sequences, synchronized with
the onset of the QRS complex, are constituted by the values of the RR intervals and the QT
intervals. The algorithm dAMUSE was applied[®R(i) and[RR(i), QT(i)]” sequences

of time intervals (to apply the formalism given in Section 2, simplysetl andAr =1

andr = 0 in Eq. (1)). Different numbers of delays were tested but the best results were
achieved byK = 8, the other parameters of the algorithm dre- 1, and® = 0.95. The
estimated independent component signals are not correlated in the time domain and suffer
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Fig. 6. Schematic representation relevant waves and intervals in a cycle of the ECG signal.

from an indeterminacy on its amplitude as it is expected from these methods. Then, in order
to achieve a direct comparison, the ICs were normalized to unit variance and amplitudes in
the rangd —1, 1]. However, in HRV studies, the frequency contents in distinct frequency
bands are the relevant information [19]. Hence an analysis in frequency space is performed
for each independent signal using the Welch method [20]. The results in the frequency
domain are compared graphically and the correlation coefficients are also computed.

3.2.1. RRtime series

In a first experiment we considered the time intervals between the R-waves of the ECGs.
For these experiments a trajectory matrix is formed with the input vegtors, using
K =8 delayed versions of RR time intervals. The number of different independent com-
ponents estimated for both ECG signals studied is not the same as can been see in Figs. 7a
and 7c).

The sequence of RR time intervals contains a prominent high-frequency component if
the corresponding respiratory signal contains a high frequency component as well, i.e., in
ECG?2 signal. Nevertheless, we can see that in both cases (ECG1 and ECG2) the com-
ponents computed correspond to distinct frequency ranges. Table 2 also shows that those
components, which have correlation coefficients equal to zero in the time domain, also
have small values when the coefficients are computed in the frequency domain.

3.3. RR-QT time series

For these experiments the input vectdfg;), i = 1,2 were used to form a concate-
nated trajectory matrix usin = 8 delayed RR- an& = 8 delayed QT time intervals.

The parameters of the algorithi® (= 0.95 andd = 1) are the same as before, but here the
number of output signals is higher (6 and 4, respectively for ECG1 and ECG2). Among
all uncorrelated components estimated those three compopients= 1, 2, 3, with spec-

tral densities in distinct frequency ranges (see Fig. 8) are chosen which show the highest
contributions to the reconstruction of the original RR and QT sequences.

In Table 3 the correlations between the frequency contents of the uncorrelated compo-
nents is shown. The results confirm that the correlation between the frequency contents of
the uncorrelated signals estimated is very low. Also, two of those signals have a frequency
content in the range of the LF and HF fluctuations considered in the HRV studies.
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Table 2
Correlation coefficients between spectra of independent components considering the RR sequence
ECG1 ECG2
51 52 3 S1 52 $3
51 1 0.26 - 1 038 013
52 0.26 1 - 038 1 033
s3 - - - Q13 033 1
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Table 3
Correlation coefficients between the uncorrelated component spectra

ECG1 ECG2

s1 §2 s3 1 52 $3
51 1 0.10 009 1 038 014
52 0.10 1 Q03 038 1 Q13
53 0.09 003 1 Q14 013 1
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For both signals the LF and VLF components are very similar to the ones computed with
sequences of RR intervals as can be seen comparing Figs. 7 and 8. In fact, the correlation
coefficients computed between VLF or LF components using RR or (RR, QT) sequences
are> 0.95. The signal ECG1 now presents a third component, representing the high fre-
guency band which was not found when the input corresponded to the RR sequence alone.
This suggests, that the intervals RR and QT reflect different influences of the autonomous
nervous system as also discussed in Ref. [16]. In spite of a third component appearing for
ECG2, the dissimilarity found in shape and dispersion of the spectra with RR or (RR, QT)
sequences as inputs reinforces the supposition of different effects. This hypothesis was al-
ready stated in Ref. [21] when studying the dynamic relation between HRV and QTV using
a very different approach; furthermore our results are consistent with the ones presented in
Ref. [21].

3.4. Water artifact removal and denoising of NMR spectra

Because of magnetic field inhomogeneities and peak suppression techniques the water
signal cannot be modelled analytically. This prevents maximum likelihood estimations of
model parameters within a nonlinear least squares approach to be applied successfully.
Hence, in recent years post-processing algorithms have been developed to remove the
water resonance (simply called water artifact) from the NMR spectra [22—29]. Early al-
gorithmic approaches use rather crude approximations, causing changes in peak area and
phase which render the structure determination process rather unreliable, hence are unac-
ceptable in protein NMR. More sophisticated water suppression algorithms are based on
second order statistics of the signals within an unsupervised approach. They usually use
a state-space approach in the time domain by modelling the signal subspace using second
order techniques like singular value decomposition (SVD) [30] or some variant of singu-
lar spectral analysis (SSA) [28]. With multidimensional NMR data, these approaches are
computationally very demanding in general. Furthermore they have been applied so far to
rather “simple” NMR spectra only, where the BSS techniques discussed above can yield
rather perfect solutions. Blind source separation techniques using independent component
analysis methods recently became famous for their ability to blindly decompose compli-
cated signals into their underlying component signals without using any prior knowledge.
Hence it is interesting whether BSS techniques can contribute to the removal of the water
artifact in proton NMR spectra of aqueous biomolecular solutions.

We show that the algorithm dAMUSE can be used elegantly to separate the water ar-
tifact from a protein proton NMR spectrum asiinultaneouslyerform denoising of the
reconstructed spectrum. We demonstrate this combination of BSS and denoising with 2D
NOESY proton NMR spectra of the polypeptide P11 [11].

Figure 9 shows a 1D slice (corresponding to the shortest evolution period of the NMR
pulse sequence) of the original proton NMR spectrum of P11 and the corresponding
artefact-free spectrum obtained with a GEVD using a matrix pencil in the frequency do-
main [31]. The huge water artefact could be removed successfully but only at the expense
of an increased noise level of the reconstructed protein spectrum. Hence denoising as a
post-processing deemed necessary. But JAMUSE can achieve both goals in one step as we
will demonstrate next.
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Fig. 9. Proton NMR spectrum of the polypeptide P11 top: original; bottom: GEVD-MP [31].

The starting point for the application of FAMUSE to P11 were 128 complex time do-
main signals taken from a 2D NOESY proton NMR experiment where each of the 128
signals consisted of 2048 samples taken with a sampling rate'of (90 p9—1 ~ 11 kHz.

For every signal the component trajectory matix i = 1,...,128 (cf. Eq. (2)), was
formed by using only one time delak = 2) of size At = 2r = 180 pus. Thus the result-
ing overall trajectory matriX had a size 256 2046.

The data of the trajectory matrix is manipulated in the frequency domain to compute
a filtered versiorX ; of the data inX. The matrixX was determined by computing the
discrete Fourier transform of each rowXf A filtered version of the matriX was gen-
erated by applying a gaussian shaped function to every row lebding to a matr|>¢<f
of bandpass-filtered sensor signals. The Gaussian filter was centered in the region of the
water peak and had a width= 1. The filtering operation is thus achieved by computing
the Hadamard product between the rowsXoénd the frequency response function of a
Gaussian bandpass filter [32]. Finally, an inverse discrete Fourier transform of each row
of the matrixX s was calculated to obtain a filtered version of the time domain data ma-
trix X . The two matrices are used to compute the matrix pencil formedRvith(X X 7
andR; = (X ;X).
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Fig. 10. Reconstructed spectrum of the polypeptide P11 using top: GEVD-MP [31]; bottom: GEVD-dAMUSE.

Next the two step procedure explained in Section 2.3 was applied. Only the 95 largest
eigenvalues of the first EVD of the 256256 correlation matriR were considered after
the first step in order to reduce noise. Then, thex25b6 matrixQ was formed and the
EVD problem of the matrixC = QRfQH was solved. Its eigenvector matrix and the
transformation matrixQ lead to the eigenvector matri, = QU of the matrix pencil
according to Section.3. Finally, those estimated components/of EX X which showed
a significant spectral density only at the resonance frequency of the water protons were
set to zero and with the remaining ICs the artifact-free protein spectra were reconstructed.
Note that if less than the 95 largest eigenvalues were used the separation of the water and
the protein signals failed whereas considering more than 100 of the largest eigenvalues
lead to a drastic increase in noise. Figure 10 compares the results obtained by the stan-
dard GEVD-MP [31] and the dAMUSE algorithms corresponding to SNRs of 17.3 and
22.43 dB, respectively.

4, Conclusions

In this work we propose dAMUSE, a modified version of the algorithm AMUSE. The
new algorithm is also based on a generalized eigendecomposition of a congruent matrix
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pencil. But the latter is formed with correlation matrices which are computed with sensor
signals embedded in a high-dimensional feature space of time-delayed coordinates much in
the spirit of methods used in singular spectrum analysis [8]. It was shown that the indepen-
dent components obtained at the output represent filtered versions of the unknown source
signals. An implementation of the algorithm dAMUSE was also proposed which differs
from the implementation of the algorithm AMUSE (and other blind source separation al-
gorithms). dAMUSE defines a variance criterion for choosing the number of signals at the
output of the first step (which is very similar to a principal component decomposition),
hence paves the way for a denoising of the signals in parallel to the BSS.

The algorithm has a set of parameters, whose proper choice must be further studied,
particularly the number of delay§ used to build the data set and the optimal choice of the
threshold paramete®. The choice ofK naturally constrains the linear filtering operation
that characterizes the method, as was shown in the simulations with artificial signals. It
was shown that additional a priori knowledge of characteristics of the spectral density of
the signals considered can help in chooskh@ppropriately.

The simulations also reveal that noise reduction cannot be achieved completely by PCA
alone. Then having at the output a high number of signals, it is also important to find an
automatic procedure to choose the relevant signals, as in case of noisy signals some might
be related with noise only. The choice of time-delayed matrices to compute the pencil was
done similar to the algorithm AMUSE, as well as the values for time-deldyEL{. With
the NMR data an alternative filtering in the frequency domain was used to estimate one of
the matrices of the pencil as discussed in other works [33—-35] and good results were also
achieved.

In what concerns the HRV study, blind source separation techniques were used to study
similar time-series signals (RR and QT intervals) and to discuss the relation of the uncor-
related components extracted with the LF and HF fluctuations [16] of ECG signals. This
preliminary study achieves results corroborating an earlier study [21] in spite of the use
of different processing steps concerning the pre-processing of the temporal sequences and
the method to estimate the uncorrelated signals. The new algorithm seems to provide a
promising tool to HRV studies. Nevertheless a validation against a conventional method as
well as a large data set should be used to verify the reliability and the performance of the
method.

Concerning the study of 2D NOESY NMR spectra of dissolved proteins, dAMUSE
combines in an elegant and efficient way blind source separation techniques with local
projective denoising techniques. It offers a very fast and efficient way of removing the
water artifact from the spectra and allows a denoising of the reconstructed artifact-free
protein spectra to achieve noise levels at least comparable to those of the experimental
spectra. Although the unknown source signals cannot be obtained straightforwardly, the
method seems well suited to deal with narrow band signals where filtered versions of the
signals do not differ in essential characteristics from their underlying originals. Hence the
BSS problem can be solved using only the filtered signals. As in case of NMR spectra
one has to deal with a large number of extracted independent components, an automatic
assignment procedure is needed to assign extracted independent components to the dif-
ferent signals (artifact, protein, noise). Corresponding investigations are under way in our
laboratories.
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