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Abstract— This work proposes a clustering technique to
analyze evoked potential signals. The proposed method uses an
orthogonal subspace model to enhance the single-trial signals
of a session and simultaneously a subspace measure to group
the trials into clusters. The ensemble averages of the signals
of the different clusters are compared with ensemble averages
of visually selected trials which are free of any artifact. Pre-
liminary results consider recordings from an occipital channel
where evoked response P100 wave is most pronounced.

I. EVOKED POTENTIALS

Evoked potentials (EPs) represent transient components in
the electroencephalogram (EEG) generated in response to a
stimulus, e.g. a visual or auditory stimulus. Due to the small
amplitude of evoked potentials, they are typically obscured
by the the spontaneous activity of the brain (EEG). Although
EP waves occur at lower frequencies than the background
electroencephalogram (EEG), they are difficult to visualize
in the overall single-trial scalp signal. To render the EP
signal visible, a large number of single-trial responses are
required to perform an ensemble average over all trials.
However, this simple methodology has some drawbacks.
The EP averaging may not cancel some artifacts induced
by eye movements or blinks if they are time-locked to
the experimental events. Thus it is common practice in EP
studies to reject all EEG epochs contaminated with artifacts.
But when the amount of data is limited, this constitutes an
unacceptable procedure [1]. The averaging process has the
further drawback of masking the single-trial variability of the
task-related responses, e.g., in amplitude or latency. The fact
that the same stimulus can elicit somewhat different signals
has been evident since a few decades [2]. Despite these
drawbacks, cognitive brain studies even consider a grand
average of the ensemble averages obtained in several sessions
with different patients to characterize main peaks. Early
works, reporting signal processing manipulations applied to
single trial signals, attempted to improve the entire waveform
of an average EP. Artifact reduction in single-trials was
another motivation to manipulate the single-trial signals [1].
But it was argued that the trial-to-trial variability in event-
related activity implies that the simple ensemble average is
not the optimal estimator for event-related potentials (ERP).
For instance, Woody filtering is a matched filter technique for
estimating latency of single-trials and aligning the signals to
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estimate an ensemble averaged signal [2]. Despite not being
optimal, the ensemble average waveform can still be the goal
or it can constitute a reference signal [3], [4] for further
data manipulations. Different signal processing techniques
like adaptive filtering, wavelets [5], subspace techniques like
Principal Component Analysis (PCA) [1], Independent Com-
ponent Analysis (ICA) [1], [3] and Blind Source Separation
(BSS) [4], are known to be efficient for denoising or signal
enhancement. Both wavelet and subspace techniques perform
a decomposition of the signals into components that need to
be selected and eventually combined to obtain the evoked
response. PCA or ICA based methods can also differ in the
methodology used to compute the subspace model. Some use
the spacial information (e.g. the multichannel records)[1], [4]
while others use temporal correlations like [3] which uses
blocks of trials or temporal correlations within the single-
trial signal [6]. The latter approaches as well as wavelet
based methods [3] are then applied in parallel to each of
the channels of the multichannel recording.

This work proposes a method that combines a subspace
distance measure [7] with single spectrum analysis to obtain
an enhanced version of the evoked potential signal. The
subspace measure is used to cluster the trials so that the
signals in the same clusters have similar characteristics while
SSA provides signals with frequency profiles that represent
different frequency bands of the input signal. The ensemble
averages of the signals of the different clusters are compared
with ensemble averages of visually selected trials which are
free of any artifact.

II. LINEAR SUBSPACE MODELS

Orthogonal subspace techniques can be applied to uni-
variate sensor signals by forming a data matrix with shifted
versions of the signal. These methods can be found in litera-
ture under distinct names depending on the domain of appli-
cation: Singular Spectrum Analysis(for instance in climate
time series analysis) [8] and SVD (for instance in speech
enhancement) [9]. Considering a segment of an univariate
signal (x[0],x[1], . . . ,x[N − 1]), its multivariate counterpart
is obtained by embedding the signal into its time-delayed
coordinates forming, e.g., xk = (x[k − 1 + M − 1], . . . ,x[k −
1])T ,k = 1, . . . ,K = N − 1−M. The lagged vectors lie in a
space of dimension M, and constitute the columns of the
data matrix X, usually called trajectory matrix[8]. The non-
normalized correlation matrix S = XXT allows the estimation
of the orthogonal subspace model of the data via its eigen-
decomposition S = UDUT . The eigenvectors U = (u1 · · ·uM)
form an orthonormal basis of the multidimensional space
of the time-delayed coordinates. The data X = (x1 · · ·xK)
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can be projected onto selected eigenvectors and afterwards
reconstructed to recover the original dimension

X̂ = UPUT X = UPY (1)

The matrix P is a diagonal matrix that represents the selec-
tion process: with the m-th diagonal entry equal pmm = 1 if
the m-th row of Y is to be selected or equal to pmm = 0 if it is
to be removed. Inserting the subspace model U = (u1 · · ·uM)
into eqn. (1) and using block manipulation operations yields

X̂ = u1 p11uT
1 X+ u2 p22uT

2 X+ . . .+ uM pMMuT
MX (2)

Each term on the right side is a rank-one matrix. And uT
mX is

the m-th row of Y. If all components are selected, i.e, pmm =
1 ∀ m = 1, . . . ,M the reconstructed data matrix becomes X̂ =
X .
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Fig. 1. Frequency response of filters computed with M = 31 of 4 trials.
Ten filters cover the relevant frequency range [0−30]HZ of EEG signals.

A. Extraction of Signal Components

In SSA or SVD methods, a reconstructed univariate time
series x̂[n] is formed with the mean of the values along each
descendent diagonal of X̂, i.e. by reverting the embedding
in time-delayed coordinates. However, considering that this
operation can be applied to every term on the right hand side
of eqn. (2), the reconstructed time series can be written as

x̂[n] =
M

∑
m=1

pmmam[n] (3)

where pmm can be also a scaling factor that changes the
amplitude of components am[n] [9] instead of being a sim-
ple selection term. Each sequence am[n], m = 1, . . . ,M is
obtained via

• Computing uT
mX which is equivalent to the following

convolution sum

ym[n] =
M

∑
i=1

uimx[n− i+ 1] (4)

where (M − 1) ≤ n ≤ N and ym[n] are the elements of
the m− th row of Y taken by their natural order. The

components of the eigenvector um are the coefficients
of the finite impulse response (FIR) filter.

• The product umYm with diagonal averaging can also be
written as a convolution sum

am[n] =
1

Md

s

∑
i=l

uimym[n + i−1] (5)

where the values Md , l and s have values according to
the number of elements in the diagonals to be averaged
and according to the time index. However in case of
a steady state response, i.e. (M − 1) ≤ n ≤ (N −M) it
holds l = 1,s = M,Md = M.

Notice that the global system forms a cascade of a causal
filter (eqn.4) with an anti-causal filter (5). The transfer
functions Hm(z),FM(z) can be computed by substituting
every delay step by a corresponding delay operator z±d . For
instance in eqn. (4) x[n± d] is substituted by z±dX(z) and
ym[n] by Ym(z) [10].

Hm(z) =
Ym(z)
X(z)

= (u1m + u2mz−1 + . . .uMmz−(M−1)) (6)

And the transfer function of the second filter of the cascade
reads

Fm(z) =
Am(z)
Ym(z)

=
1
M

(u1m + u2mz1 + . . .+ uMmz(M−1)) (7)

Notice that the transfer functions differ by a scale factor
1/M and by the sign of the powers of z. Therefore the
magnitudes of the frequency response of both filters are
related by the same scale factor 1/M and their phases are
symmetric. Therefore the zero-phase global transfer function
reads

Tm(z) =
Am(z)
X(z)

= Fm(z)Hm(z) =
M−1

∑
k=−(M−1)

tkmzk (8)

where tk = t−k, k = 1, . . . ,(M − 1) holds . Therefore, the
frequency response Tm(e jω ) has the following expression
[10]

Tm(e jω) = t0m +
M−1

∑
k=1

2tkm cos(kω) (9)

where j =
√−1. The frequency response is a real function,

with period equal ω = 2π (the normalized sampling rate),
so corresponds to a zero-phase filter. This means that each
extracted component am[n] is then in-phase with its related
original component x[n]. Fig. 1 represents the frequency
responses of 10 filters computed using signals belonging
to different trials. The filters um, m = 1, . . . ,10 are ordered
according to the corresponding values of the eigenvalues:
u1 corresponds to the largest eigenvalue, u2 to the second
largest and so on. The filters are centered so that they reflect
the importance of that band in the signal. It can be seen that
the chosen trials have different profiles. In the the first on
top the frequency profile decreases with increasing frequency
( f ); the second on top is a trial with no signal (electrode
contact problem); the ones on the bottom have clear peaks
around 10Hz (alpha burst).
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B. Comparing Subspaces

Signal enhancement is achieved by selecting a subspace
of the M-dimensional space of time-delayed coordinates, i.e.
by choosing a subset of the eigenvectors which span the M-
dimensional data space. Suppose that a subspace UA with
p < M eigenvectors is estimated for a single trial ERP and
another UB with q < M eigenvectors is estimated for another
single trial ERP. It will be interesting to know if there exists
some similarity between these two subspaces. Considering
two matrices (UA and UB) with p and q eigenvectors span-
ning the two subspaces, then the following distance measure
compares the two subspaces [7]

d(UA,UB) =
√

max(p,q)− trace(UT
AUBUT

BUA) (10)

The maximum distance corresponds to
√

max(p,q) in case
of orthogonal subspaces and the minimum is 0 when the
subspaces coincide. So [7] considers the normalized distance
defined as dAB = d(UA,UB)/

√
max(p,q) to establish a cri-

terium to classify the models: if dAB ≤ 1/2, the two subspaces
are similar otherwise not. For instance taking the subspaces
formed with the um,m = 1,2,3 of the previous example, the
distance of the first model with the remaining models is:
0.76, 0.57 and 0.56 respectively.

C. Ensemble Average in Clusters

The subspace distance is used to cluster the single trial
ERP signals and the ensemble average is performed for each
cluster. Therefore adapting a subspace model for each single
trial signal, the subspace distance is used to assign every
single trial ERP to a particular cluster. The main steps of the
algorithm are

• Initialization: compute a subspace model Uc randomly
selecting a single trial EEG and assign Uc as the
subspace model for cluster c = 1

• Repeat for all t = 1, . . . ,T single trial ERPs xt [n].
– Compute the subspace model for single trial ERP

xt [n]
– Compute the normalized subspace distances dct , ∀c

clusters.
– If

∗ min(dct) < α , assign the single trial ERP to the
closest cluster and update the ensemble average
and the related subspace model.

∗ min(dct)≥α , create a new cluster c → c+1 and
its subspace model Uc = Ut

• Aggregate clusters into meta-clusters. Recursively group
the clusters whose normalized subspace distances are
dAB < β .

The thresholds α and β as well as the dimension (p = q) of
the subspace models must be assigned before the application
of the algorithm.

III. RESULTS AND DISCUSSION

The data set comprises 32 sessions (two sessions by
participant) with around 250 trials per session. The experi-
mental protocol and data acquisition is completely described

in [11]. The stimulus consisted of overlapping pictures of
faces and houses. The participant’s task was to determine,
during each trial, if the relevant stimulus (house or face,
depending on the condition) had the same identity as the
relevant stimulus presented on the previous trial, i.e., if it
was the same house or the same person. Disregarding any
eventual differences between conditions, early potentials like
the P100 are clearly visible in ensemble averages , mostly in
occipital derivations [11]. All subspace models used in the
experimental section were computed using a similar strategy:
the embedding dimension is M = 31 , N = 300 (B = 37
before stimulus) samples used to estimate S and finally p = 3
filters/eigenvectors, corresponding to the largest eigenvalues,
were used to form the subspace model.
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Fig. 2. Grand-average versus ensemble average: top: correlation coefficients
(input and output); bottom: distance between subspace models.

A. Raw data and model adaption

The EEG was visually inspected and segments with ex-
cessive EOG artifacts were marked. The averages xs[n] of a
session were estimated

xs[n] = 1
T

T
∑

t=1
xt [n] n = −B,−B + 1, . . . ,0, . . . , (11)

with all T single trial ERPs considered free of artifacts.
The signals xs[n] were averaged finally to form the Grand-
average x[n]. A model was computed for x[n] and a subspace
model with p = 3 provides a smoother version of the signal.
Subspace models were also computed for each xs[n]. The
fig. 2 shows the result of using two different comparison
measures: on top the correlation coefficient is shown (see
[3]) and below the normalized distance (see 2). The former
is a comparison between the xs[n],s = 1 . . .32 and x[n]. The
latter is a comparison between models computed with the
signals.

And globally both comparisons give a similar indication,
i.e. when the correlation coefficient is high, the subspace
distance is low with the exception of the signal corresponding
to session 29 that exhibits the largest subspace distance and
a large correlation coefficient. Comparing the most strongly
correlated signal with the Grand average signal x[n] reveals
that after the stimulus n > 0 both signals have a very
similar shape except for the peak value occurring around
0.1s, called the P100 (upper trace, see fig. 3). For the
signal corresponding to the minimal correlation coefficient
the positive peak is less relevant than the following negative
peak, called N170 (lower trace, fig. 3). Concerning subspace
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Fig. 3. Grand-average (thick trace) and ensemble average signals: left-trials
with largest (top) and smallest(bottom) correlation coefficient ; right largest
(top) and smallest (bottom) subspace distance.

distances, for the signal with the maximum distance the
session signal corresponds to 29th and the waveform after
the stimulus has a slower increase up to the maximum when
compared to the Grand-average (upper trace, see fig. 3).

B. Ensemble average in clusters

The algorithm was applied to all the single trial ERPs
of a session (including those which were rejected by visual
inspection). The clustering was performed using α = 0.5 and
aggregation was done with β = 0.1. Comparing the ensemble
average of the cluster which contains the largest number of
single trial EEG signals with the ensemble average formed
with the visually selected single trial EEG signals taken from
the same session, results similar to fig. 2 are achieved. The
largest correlations are for the same group of signals as
well as the minimum normalized distances. Concerning the
correlation coefficients of most of the signals, the minimal
correlation coefficient corresponds to differences between the
signals occurring after 200ms (see fig 4 - top left). In case
of maximal correlation coefficients, the signals practically
coincide (see fig 4 - bottom left). With the distance measure,
the signals also show noticeable differences only after 200ms
(see fig 4 - top right). Fig. 5 shows the ensemble averages of
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Fig. 4. Evoked potentials:selected trials (dot) versus cluster ensemble
average (line).left:correlation coefficient; right: normalized distance

the 3 meta-clusters for two sessions. Note that the subspace

distance of the 3rd meta-cluster might be even larger than the
threshold distance β as it collects all remaining signals. Re-
markably, in session 32 (fig. 5, right) a clear P100 response
is visible for all clusters. This seems to be observable only
for strong P100 responses. The rhythmic activity visible in
session 8 (fig. 5, left) seems to be related with the α-rythmn
of the proband.

−0.2 0 0.2 0.4 0.6 0.8 1
−30

−20

−10

0

10

20

−0.2 0 0.2 0.4 0.6 0.8 1
−10

−5

0

5

10

15

Fig. 5. Ensemble averages of the clusters: largest cluster (line), second
largest (dash), and last (dot). The number of trials in each cluster :on the
left- {137,84,10}; on the right-{211,22,12}.
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