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Abstract

The closest point of a linear variety to an external point is found by
using the equality case of an Ostrowski’s type inequality. This point is
given in a closed form as the quotient of a formal and a scalar Gram
determinant. Then the best approximation pair of points onto two
linear varieties is obtained, besides its characterization.

1. Introduction

In this paper, we answer an implicit open question of Fan and Todd
[5, p. 63]. We give a determinantal formula for the point where the
inequality of the referred one turns into equality. We obtain the point of |east
norm of the intersection of certain hyperplanes, and present aresult, in terms
of Gram determinants, for the minimum distance from a certain linear
variety to the origin of coordinates (Proposition 1). We note that this formula
generalizes the one by Mitrinovic [10, 11] for the case of two equations.
This best approximation problem was dealt with in [13], where the centre
of (degenerate) hyperquadrics plays a decisive role. In [13], no answer in
closed form was given.

In this paper, we give a new proof of Beesack’s inequality
([1, Theorem 1]; [12, Theorem 1.7]), by following arguments used in
[5, p. 63, Lemma].

The Beesack’s formula (Theorem 2) gives the point of a general linear
variety closest to the origin of the coordinates. We extend the formula of
Beesack [1, Theorem 1] in order to get the nearest point of a linear variety

to an externa point, in R". When extending Theorem 2, we obtain the
projection of an external point onto a general linear variety (Proposition 2).
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Proposition 2 is used for getting the best approximation points of two linear
varieties (Proposition 3). Also, a characterization of the best approximation
pair of two linear varietiesis presented (Proposition 4).

The approach we use in this paper has a constructive flavour. In [4] and
[6], we present another way to obtain the Euclidean distance between two
linear varieties and exhibit the optimal pair of points, respectively.

Our context is the Euclidean space R", endowed with the standard unit

basis
(&, &, ... &)
and the ordinary inner product
UeV =WV + Uy + -+ UpVp,
where
d=af + k) + - +an = (a, A, ..., a).
The Euclidean norm || a | = va e a isused and the Gram determinant is
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G(Py, Pas o By ) = det] P2 ) rlo1<r<n (1

Pr ® P Pr ® P2 - B * P
It is well known that G(py, Po, ..., Pr) = 0 and G(py, P2, -, Pr) =0
if and only if the vectors p;, po, ..., Py are linearly dependent. See, for
example, [3, p. 132].
Some abuse of notation, authorized by adequate isomorphisms, is to be

declared, notably the identification of point, vector, ordered set, column-
matrix.

This paper is organized in seven sections. In Section 2, we present and
prove a result, Proposition 1, which answers an open question of Fan and
Todd and make a remark concerning a formula of Mitrinovic. Section 3 is
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dedicated to a generalization of Proposition 1. This means that we study the
projection of the origin onto a general linear variety. In Section 4, we ded
with the projection of an external point onto a genera linear variety. In
Section 5, we treat the distance between two digoint linear varieties. We
characterize the best two points, one on each linear variety, that are the
extremities of the straight line segment that materializes the distance
between the two linear varieties. An illustrative numerical example is
presented in Section 6. Finally, in Section 7, we draw some conclusions.

2. TheMinimum Norm Vector of a Certain Linear Variety

In this section, we state Proposition 1, which solves an old open gquestion
of Fan and Todd. The proof makes use of a result of the mentioned by the
authors.

The next result [5, p. 63, Lemma)] gives the radius of the sphere tangent
to acertain linear variety, as the quotient of two Gram determinants.

Theorem 1. Let &, &y, ..., 4y, be mlinearly independent vectorsin R",

2<m<n. Ifavector X € R" variesunder the conditions

g eX=0 withl<i<m-1

adneX=1 (2
then

%o X > G(&y, ay, ..., 8m_1) 3)

G(&, ay, ..., 8m_1, 8m)

Furthermore, the minimum value is obtained if and only if X is a linear

combination of &, &, ..., 8n,.

For the sake of completeness and for later use in the proof of our
Proposition 1, we present here, essentialy, the proof given by Fan and Todd
[5, p. 63, Lemma].
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Proof. For the vector X satisfying conditions (2), we have
G(&, a, ..., &y, X) = -G(&, ay, ..., dp1) + (X ¢ X)G(&, a5, ..., y) = 0.
Hence

Gléy, dy, .. )
G(@y, . - -1, )

XeX2>

By hypothesis, the vectors &y, ay, ..., &, arelinearly independent, so
G(a, ay, ..., a,, X) =0

if and only if X isalinear combination of &, a,, ..., . It follows that

G(&q, ay, ..., am_1) @)

XeoX= —= — =
G(ay, 8y, ..., 8m_1, 8y)

if and only if the vector X isof theform X = 048 + ap8y + -+ + A8y [

Now we are in a position for stating the equality case. A determinantal
formula for the closest vector to the origin lying in a certain linear variety is
given.

Proposition 1. (1) Let &, &y, ..., 8y be linearly independent vectors in
R". The minimum Euclidean norm vector in R" satisfying the equations
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isgiven by
EIRE q ey o @ edm & ® dm
n-1°8 8ng°d - 8n1°8pg  apgam
~ a a A a
g = _ 1_> _ 2_> _ m_’l _“m ., (6)
e q e & ®am-1 & ®am
ap e a dedy - @edpg dy ® am
dm-1°d dn1°d - dn1°dm1  An1°®am
aned am ® am ® dm-1 am ® am

wher e the determinant in the numerator is to be expanded by the last row, in
order toyield alinear combination of the vectors &, a,, ..., .

(2) Furthermore,

0@, 3. Ama)
G(&y, 8, -y 8m-1, 8m)

a||2:§O§:

I's
Proof. (1) We look for the scalars o4, ap, ..., oy, Such that the vector
X = 048y + ooy + -+ + 08y, Satisfies the conditions (5).

For that end, we solve the system

[ A e d ) o @ ®am dedn |[ o 0
ded ded v Eedmg dredy || ap 0
dm-1°d dnq1°d - 8p1°dn1  8n1°an||%ma 0

L dne*d dnedy -+ dne®adng dne®dn JL om | [1]

As the vectors &, ay, ..., 8y are, by hypothesis, linearly independent,
the determinant of the matrix of the above system, which is the Gram
determinant

G(ay, @y, ..., @m_1, 8m)s

is non-null.
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So, by the Cramer’s rule, we have

63

8 ®8 o8 0 &edy 8y ® am
ded ded_ 1 0 aedy dy ® ay
dm-1° 3 dm-1°d-1 0 ani1°d, dm-1 ® anm
o = dm ® & dned_1 1 &aned, dm ® &
! IR & ®dy & ®am1 & ® an
dy e 3 d e d d ®dm 1 d * an
dm-1°8d dn1°a dm-1®am-1 8m-1°®am
dmeqy ame a dm ® am_1 am ® any
withi=1 .., m
Here, for brevity, we introduce some notations:
G - _G.._G
% G MATGEA TG
where
G = G(&, a, ..., 81, 8ny),
g ed Ged 1 0 ged, 4 ® an
ayed dpediy 0 ayed, dp ® ap,
G=| : : :
am-1°* & dn-1°d-1 0 anji°d, dm-1® am
dmedqy dmed_ 1 am® 81 dm ® any
and the symbolic determinant
] aeg1 0 &edy g ® 8m
ay e d dhed_y1 0 ayed, dy ® am
G=| : : :
dm-1° 3 dm-1°d-1 0 anqed, dm-1 ® anm
0 0 5 0 0
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Using these notations and rearranging in a suitable manner the terms of
the determinants, we get

ERE dedy -+ Hedng & ®any
ay e d aedy -+ Aredm ap ® an
dn-1°% 8m-1°8 - @p1°8p1 an1®an
m — — . —
~ _ q e%) Amn-1 am
S = Zocia,- = = = = = = —
=l qeq qeay v G ®anm
i=
e d dedy - dyeady
dm-1°8 &mq1°3d - am1®any
dmedy ame dm ® am
(2) Itisjust sufficient to use (4), in order to obtain || $ ||2. O

For computational purposes, we notice that, in the numerator of (6), the
coefficients of the vectors &, ay, ..., &, are the co-factors of the elements

in the last row of the matrix

BERE dedry -+ Fedp & ® an
ayedy dedy - Apedm dp ® an
dm-1°3d 8n1°d - dp1°dn1  dnpg®am

1 1 1 1 i

Remark 1. The particular case of Mitrinovic

The determinantal formula (6), for the least norm vector of the given
linear variety, is a generalization of the formula of Mitrinovic [10, p. 67] and
[11, p. 93], after the correctionsin [2] of the misprints:
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p P
b > a’ -a > al
i=1 i=1

Xy = i= = k=12 ..0p,

B B

i=1

where (&, &, ..., 8p) and (by, by, ..., by) are two non-proportional sequences

of real numbers satisfying
p p
Zaixi =0 and Zbixi =1
i=1 i=1

3. TheMinimum Norm Vector of a General Linear Variety

Here we treat the projection of the origin of the coordinates onto a
general linear variety extending Proposition 1. The point where the sphere
centered at the origin is tangent to any linear variety is given in a closed
form by relation (8) to follow. This result has been obtained in a different
form and by another approach in [1].

Theorem 2 [1]. Let &, &y, ..., ay be linearly independent vectors in

R", with m > 2. The minimum Euclidean norm vector in R" satisfying the

equations
g eX=0

éz')?ZCz

am ® X = Cm, (7)
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with, at least, one non-zero ¢, i =1, ..., m, isgiven by therelation
a;®d a e a 8 ®am1 a1 ® an
dm-1°d] dpg1°d dm-1°dm1  dng®dy
o | & 3 81 an
aj e & a e a a1 ®am 1 ag ® am
d e d ded a ® dy 1 d ® an
dm-1°d dny1°d dm-1®dm1  dmg®dy
dm® & am ® & dm ® am-1 dm ® am
where
o = G 4
& =§ -——3&, I1=1.,m-1
Cm
and
o 1
am = C_am
m
Furthermore,
~ L G(&, 8, ..., a,_
”S,”Z:S,.S,_ (al 2 aml)

- G(a], &, ..., dnq, dm)

(8

(9)

(10)

(11)

Proof. Performing elementary matrix operations, we turn into the form

-
G

Cm-1

[00---0 1]T the last column of the augmented matrix of the system (7)
Ay A, N A,
a a2, Bn-1 e
an-1  4m-1, m-1,1 am-1,
| 8m Omp g Oy

Where é.'I = (ail’ aiz’ e ainfl’ a'n)

Cm
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4. Projection of a Point onto a Linear Variety

To deal with this problem by taking into account the result of the
preceding section, we use the fact that Euclidean distance is preserved under
trang ations.

We are given a linear variety V and an external point Q. We perform
a trandation towards the origin O of the coordinates: the pair (Q, V) turns

into the pair (O,V'). We, then, apply Theorem 2 to the par (O, V’).
Finally, we undo the performed translation: we go back from the origin O to
the point Q. We state the following:

Proposition 2. Let &, &, ..., &, be linearly independent vectors in

R", with m > 2. Then:

(1) The projection Sof the external point Q := g = (g, 0, ..., 0y) Onto
the linear variety V defined by

al.)_(ZCl

éz')?ZCz

dm ® X = Cn, (12)
with, at least, onenon-zero ¢, i =1, ..., m, isgiven by

S:=5§=¢+4, (13)
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where
ded  ded dedns  dedn
dm1°d dpi1°a dm-1°®8m1 dme®an
v a a3 dm-1 dm 14
S - =n =" =n =" =n =" =" =n ’ ( )
a 2] a ®8m-1 % ® dm
aeal a5 eds edn,  dedn
dm-1°d dmi1°a dm-1°®8m1 dm-1®dan
hed  aned dhedna  ahed;
with
Ci/
a’-r:ai_fa:rn, |=:L...,m—:L
Cm
- 1.
’ = (15)
Cm
and
G =G-&-+q (16)
(2) For the distance, we have
2 2 2 G(a”, éﬂ, . an_ )
d*(Q.V) = d*(O,V) = [ = grap 2zl (1)
(&, 8, ..., m-1, 8m)

Proof. (1) We perform a trandation towards the origin of the
coordinates of the pair (Q, V) in order to get the pair (O, V'). We have

X =X+Q0 = X - q.

Replacing, in equations (12), X with X' + G, we get
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am-1®X =Cmg
dm * X' = Ch, (18)
with, at least, onenon-zero ¢ and ¢ = ¢ — & * G.
Now, by using relations (8)-(11), we obtain the relations (14)-(16).
Finally, undoing the translation, we have
§s=8+4.
(2) The Euclidean distance is trandlation invariant:
d?(Q,V) = d?Q, S) = d?(0, V') = | &'|?

G(a, @, ... dn1) .

" G(a, 8, .. amy, 8m)

5. Distance between Two Linear Varieties

In this section, we deal with the interesting problem of finding the best
approximation pair of points of two given disoint and non-parallel linear
varieties V; and V,. In other words, we are looking for the point S; on the

linear variety V; and the point S, on the linear variety V, such that the

vector §S, is, to within a signal, the shortest one linking the referred to

linear varieties. Here the main tool is Proposition 2. This result is applied
twice, just bearing in mind that, in the present case, the external point is

either the generic point Gy, = g_Vi of the linear variety V; or the generic
point Gy, = gV of the linear variety V,.

Some notation is in order, for the sake of simplicity of the statement of
our next result.

Wewritethevector f € R" in the following manner:

f=(f, 2 oo fry fhods oo oo fn) = (F fou o fry @) € RM 5 RPN,
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We state the main result of this paper.
Proposition 3. Let us consider two digoint and non-parallel linear

varieties V; and V, given, respectively, by

=Q
Vl = (19)

where &, &, ..., 8y, are linearly independent vectors in R" and with, at

least, one non-zeroscalar ¢, i =1, ..., my, my > 2, and

V=4 (20)

where by, by, ..., by, are linearly independent vectors in R" and with, at
least, one non-zeroscalar dj, i =1, ..., mp, mp > 2.

Let us denote X = (X, ..., Xmy» Xy s -+ Xn) € V4 @S K= (X0, 10es Xy, E) €
R™xR™™ and ¥= (Y1, Yy Ymp+1r s Yn) €V2 8 Y= (Y1, s Yy 1)
e R™ xR,

Let us denote by [S;S,] the shortest straight line segment connecting the
two linear varieties V; and V.

Then

(1) The points § €V; and S, €V, are obtained through the
unique solution of the overdetermined consistent system of linear algebraic
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equations

{sl(ﬁ)=6v1(a), -

S$2(8)=Gy, (1),

where

(i)
Gy, (8) = Gy (Xmy+1, Xmy+25 -+ Xn) @A Gy, (7)) := Gy, (Yimy 1, Yimp+2s -+ Yn)
are the generic points of, respectively, the linear varieties V; and V,;

(i)
SI(1) = SU(Ymp+1: Ymps2s = Yn) @A SH(E) = S;(Xmy41: X2+ -+ Xn)
are given, respectively, by

S(M) = Si(n) + Gy, (W)

and
$2(8) = S(8) + Gy (8);
and where
(iii) S{(n) isgiven by
& e a & & o dn,
dm-1°8 - dpgdn-1  dmop®dm
arni-= "(—= éj,f o an 71 alc,rh_
Si(M) = S(W) = 2= = o (22)
aj e af aj ®dm 1 aj e amy
as e &/ azedm 1 az e dam
am-1°8 - @ 1°8np1  dmi®am
dm *d - A edm-q  8m *dm
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being

By « b e byt Bie b,
Brmy 1. bf Dirp—1® b1 Biny1.* By,
an (e " (e B-i-' _.'[;’]2_1 6'[;’]2
SZ(&) = SZ(&) = o an A " 6/! ! (23)
'Y cee t).l.. rT12—1 [} rnz
" o b bi.lt’nz—]_ ”.It’nz
L B STl S
by, © bf b, #Bmp-1 Dy by
being
e UL e R,
dItT\z ’ )
B, = 5P
A,

with, at least, onenon-zero df = d; =y e gy, i =1, ..., M.
(2) Thedistance d(V4, V,) between the two linear varietiesis given by

d(Vi, Vo) = | S, |-
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Proof. Essentially the proof consists on dealing once at a time with the

two linear varieties V; and V5:

(1) finding the generic point of each linear variety;

(2) applying Proposition 2.
In the following way:

(i) The generic points

From the underdetermined system (19), we can, without loss of

generality, assume that the generic point Gy, = El depends on the

n—m +1 parameters Xpy, 11, X

We write

Gy, = Gy (8) =

my+20 Xn-

| X (Xmy 420 -0 Xn)

Xy (X425 0 Xn)
Xmy+1

L Xn ]

(24)

Similarly, we write for the generic point Gy, = @ of the linear variety

V2:

Gy, = Gy, (i) =

I Yl(ym2+1’ s Yn) |

Ymy (Ymyp+1 - Yn)
Ymy+1

L Yn i

(25)
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(i) The application of Proposition 2

(a) Concerning the pair (Gy,,, V1), we get

ajedy aje 5.;101,1 aje 5.;101
amy-1°8 dm-1°8m-1 dm-1°dm
, a é;’nl_l é;’nl
S.L(sz+11 ymz+2’ =y yn) = all ° all é”. a// é”. a//
&3 1 ®am -1 1 ® amy
ay e a] ae é}’nl_l ae é}’nl
am-1°8] dm-1°8m-1 8m-1°8m
a;’Tl ¥ a;'nl . a;’Tl_l a;'nl . a;’m
where
S o .
ai=ai—%arq7 I=1..,m-1
é{ﬁ = _1 éml
- U
Cmy

with, at least, onenon-zero ¢/ = G — & Wz =1 .., m.

(b) Concerning the pair (Gy,, V), we get

By o Bebi, 1 BieB,
brm, 1.+ bf mp—1* By —1 b, -1 # b,
1" b‘llf ;4’12—1 lc'nZ
SZ(Xm]_+1’ Xml+2""' Xn)= W AN A
e b T
b% e by ”.b["'nz—l bﬁ.b;"nz
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where
B =B~ By, =L L
mp
" 1 -
bmz:%bmz

with, at least, onenon-zero d/ = d; — b o El i=1 .., m.

Essentialy, the points S/ and S; resulted from tranglations of the pairs
(Gv,, V1) and (G, V). Undoing the translations, we have

S =+ Gy,
S = S + Gy,
We must get the unique solution of the overdetermined system

{S.L(szﬂ’ Ymp+2: - Yn) = Gy (X420 X425 - %n), (26)

SZ(er+11 Xmy+25 o Xn) = G\/Z(Yrmﬂa Ymp+2s -+ Yn)
of 2n equations and the (n — my + 1) + (n — my, + 1) indeterminates
Xep+10 Xmy+25 -+ Xns Ymp+1s Ymp+25 -+ Y-

This system is consistent and has the unique solution

(Xr*nl-rli X;kq+2’ o X:;, Yr*nz+b y;knz+21 " Yrﬂ;)

Hence, we obtain

I X (Xry 15 -+ yoll X

§ = G = Gy (") = | "m0t )| | X
Xrn‘l+1 XTT“H-&-l

i X Il
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and
Yi(Ymp+1, -+ Yn) i
5 oy | Yy (Y1 0 Vi Y
S2 = Gl = Gy (7) = | e Umeet = )| | I |
Ymp+1 Ymp+1
i Yn Lo

The assertion on consistency of system (26) and uniqueness of the solution
of system (26) are supported by results on existence and uniqueness of best
approximation problems [8, p. 64, Theorem 1] [7, p. 45, Theorem 2.2.5]. O

Remark 2. Some attention must be paid to the formulas (22) and (23). In
fact, we have

NE!

§ - S(7) = 5 D AG (27)

Il
[SY

where A, A, i =1, ..., my are higher-degree polynomialsin several variables

Ymo+1 Ymp+25 - Yn and

mp
an 2 (e 1 I~
=52(§)=§Z|3jb', (28)
j=1
where B, Bj, j=1..,m are higher-degree polynomials in several

variables Xmy 41, Xm, 12, -+ Xn. However, from (27) and (28), we have

n
s = §([H) = ) L8, (29)
i=1
where Ly, i=1..,n, ae first degree polynomials in the variables

Ymp+1: Ymp+25 -+ Yn and

L2i ()8, (30)

NgE

% = ()=

Il
[
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where Ly, i=1..n, are first degree polynomias in the variables
Xmp+10 Xmp+2s -+ Xn-

This question is worth for alonger explanation as follows:

By performing the mentioned convenient translations on the systems
(19) and (20), we obtain two systems where the right hand sides are vectors
whose entries are linear expressions in the parameters that are coordinates of

the vectors Gy, and Gy,. By using arguments involving the uniqueness

of (least squares) solution of a linear system by using the Moore-Penrose
inverse, we assert that the solutions of the afore-referred to systems are given
in terms of such parameters. The best solution in the least squares sense of

the system A% = b is given [9, p. 439] by X = A'b, where A’ stands for
the Moore-Penrose inverse of matrix A. In our case, A" is a constant matrix,

so X depends on the parametersin vector b.

Hence,

Ll(sz+1’ Ymp+2s -0 Yn)
| L20Ymyi1s Ymp42s 0 Yn)
S =

Ln(Yn12+1v Ymp+2s -0 Yn)

and

Ly (Xmy 20 Xy 420 -0 %n)

g - Lo(Xmy +1+ Xmy+25 -+ Xn)

Ln(Xmy 410 Xy 425 -+ Xn)
For the sake of clarity, we synthesize:

Scholium. Regarding the given linear varieties and without loss of
generality, we can write
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[ X (X1 0 %) |
Xy, ( 1 - Xn) B
vy = mlx'mxn:ll "1 Kyt oo X) € R
+
L Xn J
and
" Vi(Ymp41s 0 Yn) ]
Y, ( s Yn) _
V, =] M2 X”;Z”l "1 (Y1 o Yn) € RTM2 0
m2+
L Yn J
Hence, we may write
X1(X*ml+1, s Xn) X
S -G - Xy (K10 -+ %) Xy
1 * %
Xmy+1 Xmy+1
and
Yi(Ymp+1, -+ Yn) i
S, =G, = yn'lz(y;‘lz-Fl’ s V) yzlz
2 * % !
Ymp+1 Ymp+1
i Yn Lo

M. A. Facas Vicenteet a.
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where

(X;'kr!L+]_! X:;l-}-Zl ey X;:l yliknz-i-l’ y;'er-FZ’ B y;_k])
is the unique solution of the overdetermined system (26).
A classical projection theorem [8, p. 64, Theorem 1] [7, p. 45, Theorem
2.2.5] [3, p. 64, Exercise 2] concerning the case of a point and a linear
variety, leads us to a result on the projection vector connecting two linear

varieties. It is a characterization of the pair of best approximation points that
may be useful when testing the accuracy of numerical examples.

Proposition 4. Let V; and V, be two non-parallel linear varieties:
V=R +M; and V, = P, + M5, where M; and M, are subspaces of R"
and P, and P, arefixed pointsin R". Then the unique points S, € V; and
S, €V, form a best approximation pair (S, S,) of the linear varieties V;

and V, if and only if the two vectors whose extremitiesare S; and S, are

orthogonal simultaneously to the subspaces M, and M.

Proof. We need just two facts: the definition of a vector orthogonal to a

set of R", where avector is said to be orthogonal to set if it is orthogonal to
each vector of the set; and a projection theorem, where it is stated that the
projection vector is orthogona to the unique subspace associated to the
given linear variety and not to the linear variety itself [8, p. 64, Theorem 1]
[7, p. 45, Theorem 2.2.5] [3, p. 64, Exercise 2].

We have:

(1) S, =5, isthe projection of S := § onto the linear variety V,:
hence &?é is orthogonal to the subspace M;

(2) § =5, isthe projection of S, :=5, onto the linear variety Vj:

hence &?é is orthogonal to the subspace M. O

Notice that the vector §;S, is not orthogonal either to the linear varieties
Vl or V2.



80 M. A. Facas Vicenteet a.

Finally, we have a result concerning the separating hyperplanes
[3, pp. 105-106] and the smallest sphere tangent to the two linear varieties
simultaneously.

Corollary 1. The smallest sphere S tangent to the linear varieties V;
and V, isgiven by

is the point closest to the origin of the coordinates which belongs to the
smallest sphere tangent to the linear varieties V; and V5.

If the linear varieties V; and V, are trandates of the same given
subspace, then there are infinitely many best approximation pairs (S}, S,) €
Vj xV,. In this context, the optimal approximation pair is (S, S;), where

S/ and S; are the best approximation points with minimum norm.
Hence, we have

Corollary 3. Let (S{, S;) € V; xV, be the optimal approximation pair

of the parallel linear varieties V; and V,. Then the sphere S* tangent to the

parallel linear varieties V; and V, which isnearest to the originis

% 2%

g S S

*
x g n.ll= S +
S—{XGR. 5

2
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Corollary 4. The point

oo AE-glg g
I8 +% |

is the point closest to the origin of the coordinates which belongs to the
family of spheres that are tangent to the parallel linear varieties V; and V5.

6. lllustrative Numerical Example

We are given two linear varieties. We exhibit the best two
approximation points — one on each linear variety, and show that the vector

S;S, is orthogonal to both the subspace M; and the subspace M,
associated to the linear varieties V; and V,, respectively, but not to the

linear varieties themselves.

Let the two linear varieties V; and V, be defined as follows:

aexX=1
V) = {} . (31)

y
oy =-20, (32)
y

withb = (1 -1, -2,1,1), b, =(-1,1, -4,1, 2) and by = (1, 1, -4, -1, 3).
In respect of Proposition 3:

(1) The generic points Gy, and Gy, of the linear varieties V; and V,

are
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—§+3X—X —§ |
27T

1+X 1X5
| 2702
G\/l_ X3
X4
L X5 .
and
_§+ _1 .
> \Zi 2y5
3.4, 1
2 "3Y¥a7 3%
G, = 54 Syy+ s
Ya
Y5 .

() We perform a trandation aong the vector Gy,(ys, ¥5)O =

O -Gy, (vs, ¥5); the linear variety \j is obtained by replacing X in

relation (31) with X + Gy

= )—{Izl
Vi = ?1.—4 :L (33)
azoX=—1—2Y4+y5
with
- E+£ _i ]
7 taaYa %
313, 19
21 6374 &35
, | 4 20 10
Si(Ya: ¥5) = | —57 + 53 Y4 — 53 Y6
5,21
7Y%
2 10, .5
| 21763747 &3% |
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Si(Ya: ¥5) = S+ Gy, =| S+

analogoudly.

(191 23 23
42t YaT Y5
21+£y 25y
42 " 6374 1267°°

101, 41 &3
6374 " 126 Y5

v,=B3, 1
7 210421
2

Z‘@M‘F@% |
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(1) We perform a translation along the vector Gy, (X3, X3, X5)O =

O - Gy (X3, X4, X5); the linear variety V; is obtained by replacing y inthe

relation (32) with y' + G\/l

with

S2(X3: X4, X5) =

oy =-11,
oy =-19 + 6X3 — 2%4 — 3Xs,
oY =1+2% X

(633 366 192 148

1200~ 209 8 209

200 2093 " 2094 " 20075
» 12 1. 1B
19 T19 19 38

674 150 41 159
200 2098 " 2004 " 21878
1371 240 191 129

200 T 209°3 " 20074 " 21875

172 42 70 7

X" 200 |

(34)



84 M. A. Facas Vicenteet a.
and

1893 261 17 331
218 T 200" " 2004 " 4187
8.3, 1. W
3871900 194 19°
, 674 59 1 159

S2(%g X4, %) = 2+ Oy =| 550 + 505 %3 + 506 %4 + 478 %
1871 240 18 129
200 2093 * 20074 " 21875
172 42 70 202
1200 2003 " 20974 * 20076

(IV) Solving the system

{Sl(y4’ ¥5) = Gy, (X3, X4, X5),
S2(X3, X4, X5) = Gy, (¥4, ¥s5),

weobtainx*—g +_ 4765 . 1489 . = 3560 . _ 453
ST aag T e S T e V4T TRoe T 2
Hence, using
_§+3x*—x*—§x§_
28T
P .
et | 2 >
S.I._GV]_ X*
Xa
and
§+ *_1 *—
2 Ya 2y5
é_{_é *_1 *
2 "3¥4T 2%
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we, finally, obtain

77

16

57

212
837
848

_4765

848

1489
L 424 |

55
16
469
424

3169
848
3560

- 509
453
L 212 |

and S, =

The distance between the two varietiesis given by

2174

dvi, Vo) = | SIS, | = g5

In respect of Proposition 4;

Let us consider

3

2

1

2

Vl:Fi_{—Ml:: 0

0

| 0

and

V2=P2+M2:=

_ 3 7

33— X4 — 5 %5
1

B-5%
X3 IXg Xg, X5 € R

X4

X5 i

1
m—E%
4,1
3y4 2y5

1 1 .
TN ZYat5Ys " Ya, Y5 € R

\Z

Y5

85
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(o) The vector S_TSé is orthogonal to the unique subspace Mq
associated to the linear variety V4. Consider the arbitrarily fixed vector

3X3 — X = g X5
1
B—5%
X3
X4
L X5 i

We have
SS, e vy = 0.

(ap) The vector S;S, is orthogona to the unique subspace M,
associated to the linear variety V,. Consider the arbitrarily fixed vector

_ 1
y4‘g¥5

4, 1
3y 2Y5
_|11 1

V2= 3va+ 5 Y| € M2

Ya

Y5
We have

SS, eV, = 0.
(B1) The vector &?é is not orthogonal to the linear variety V;.
Take the fixed vector

U = 1 EVl.

Wehave S;S, o 0y = —1.3750 = 0.
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(B2) Thevector S;S, isnot orthogonal to the linear variety V,.

Take the fixed vector

cl
N
Il

GVz.

N R w|Ro| xR
L

Wehave S;S; e 0, = 13.7500 =

o

7. Conclusions

In this paper, we presented a determinantal formula for the point
satisfying the equality condition in an inequality by Fan and Todd (we
answered the implicit old open question in [5, p. 63]: to get a closed form for
the minimum norm vector of the given linear variety). In a previous paper
[13], we got, by using the center of convenient hyperquadrics, the point
where the inequality (3) turnsinto the equality (4).

Here, we also restated a determinantal formula for the point of tangency
between a sphere and any linear variety.

Furthermore, we obtained the projection of an external point onto
a linear variety as a quotient of two determinants. Subsequently and
consequently, this result was extended for getting the best approximation
pair of two digoint and non-parallel linear varieties. A characterization of
thispair of best approximation pointsis offered.
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