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Abstract

The closest point of a linear variety to an external point is found by

using the equality case of an Ostrowski’s type inequality. This point is

given in a closed form as the quotient of a formal and a scalar Gram

determinant. Then the best approximation pair of points onto two

linear varieties is obtained, besides its characterization.

1. Introduction

In this paper, we answer an implicit open question of Fan and Todd

[5, p. 63]. We give a determinantal formula for the point where the

inequality of the referred one turns into equality. We obtain the point of least

norm of the intersection of certain hyperplanes, and present a result, in terms

of Gram determinants, for the minimum distance from a certain linear

variety to the origin of coordinates (Proposition 1). We note that this formula

generalizes the one by Mitrinovic [10, 11] for the case of two equations.

This best approximation problem was dealt with in [13], where the centre

of (degenerate) hyperquadrics plays a decisive role. In [13], no answer in

closed form was given.

In this paper, we give a new proof of Beesack’s inequality

([1, Theorem 1]; [12, Theorem 1.7]), by following arguments used in

[5, p. 63, Lemma].

The Beesack’s formula (Theorem 2) gives the point of a general linear

variety closest to the origin of the coordinates. We extend the formula of

Beesack [1, Theorem 1] in order to get the nearest point of a linear variety

to an external point, in .n  When extending Theorem 2, we obtain the

projection of an external point onto a general linear variety (Proposition 2).
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Proposition 2 is used for getting the best approximation points of two linear

varieties (Proposition 3). Also, a characterization of the best approximation

pair of two linear varieties is presented (Proposition 4).

The approach we use in this paper has a constructive flavour. In [4] and

[6], we present another way to obtain the Euclidean distance between two

linear varieties and exhibit the optimal pair of points, respectively.

Our context is the Euclidean space ,n  endowed with the standard unit

basis

 neee


...,,, 21

and the ordinary inner product

,2211 nnvuvuvuvu  

where

 ....,,, 212211 nnn aaaeaeaeaa 


The Euclidean norm aaa

 is used and the Gram determinant is
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

 .1 nr  (1)

It is well known that   0...,,, 21 rpppG


 and   0...,,, 21 rpppG


if and only if the vectors rppp


...,,, 21 are linearly dependent. See, for

example, [3, p. 132].

Some abuse of notation, authorized by adequate isomorphisms, is to be

declared, notably the identification of point, vector, ordered set, column-

matrix.

This paper is organized in seven sections: In Section 2, we present and

prove a result, Proposition 1, which answers an open question of Fan and

Todd and make a remark concerning a formula of Mitrinovic. Section 3 is
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dedicated to a generalization of Proposition 1. This means that we study the

projection of the origin onto a general linear variety. In Section 4, we deal

with the projection of an external point onto a general linear variety. In

Section 5, we treat the distance between two disjoint linear varieties. We

characterize the best two points, one on each linear variety, that are the

extremities of the straight line segment that materializes the distance

between the two linear varieties. An illustrative numerical example is

presented in Section 6. Finally, in Section 7, we draw some conclusions.

2. The Minimum Norm Vector of a Certain Linear Variety

In this section, we state Proposition 1, which solves an old open question

of Fan and Todd. The proof makes use of a result of the mentioned by the

authors.

The next result [5, p. 63, Lemma] gives the radius of the sphere tangent

to a certain linear variety, as the quotient of two Gram determinants.

Theorem 1. Let maaa


...,,, 21 be m linearly independent vectors in ,n

.2 nm  If a vector nx  varies under the conditions

,0 xai


with ,11  mi

,1 xam


(2)

then

 
  .,...,,,

...,,,

121

121

mm

m
aaaaG

aaaG
xx 



 (3)

Furthermore, the minimum value is obtained if and only if x


is a linear

combination of ....,,, 21 maaa


For the sake of completeness and for later use in the proof of our

Proposition 1, we present here, essentially, the proof given by Fan and Todd

[5, p. 63, Lemma].
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Proof. For the vector x


satisfying conditions (2), we have

        .0...,,,...,,,,...,,, 2112121   mmm aaaGxxaaaGxaaaG


Hence

 
  .,...,,,

...,,,

121

121

mm

m
aaaaG

aaaG
xx 





By hypothesis, the vectors maaa


...,,, 21 are linearly independent, so

  0,...,,, 21 xaaaG m


if and only if x


is a linear combination of ....,,, 21 maaa


It follows that

 
 mm

m
aaaaG

aaaG
xx 


,...,,,

...,,,

121

121


 (4)

if and only if the vector x


is of the form .2211 mmaaax


 

Now we are in a position for stating the equality case. A determinantal

formula for the closest vector to the origin lying in a certain linear variety is

given.

Proposition 1. (1) Let maaa


...,,, 21 be linearly independent vectors in

.n The minimum Euclidean norm vector in n satisfying the equations

01  xa


02  xa




01  xam


1 xam


(5)
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is given by

,
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(6)

where the determinant in the numerator is to be expanded by the last row, in

order to yield a linear combination of the vectors ....,,, 21 maaa


(2) Furthermore,
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Proof. (1) We look for the scalars ,...,,, 21 m  such that the vector

mmaaax


 2211 satisfies the conditions (5).

For that end, we solve the system

.
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As the vectors maaa


...,,, 21 are, by hypothesis, linearly independent,

the determinant of the matrix of the above system, which is the Gram

determinant

 ,,...,,, 121 mm aaaaG




is non-null.
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So, by the Cramer’s rule, we have
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Using these notations and rearranging in a suitable manner the terms of

the determinants, we get

.
1

21

12111

22212

12111

121

1112111

2122212

1112111


























m

i

mmmm

mmmm

m

m

mm

mmmmmm

mm

mm

ii

aaaaaa

aaaaaa

aaaaaa

aaaaaa
aaaa

aaaaaaaa

aaaaaaaa

aaaaaaaa

as


















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



For computational purposes, we notice that, in the numerator of (6), the

coefficients of the vectors maaa


...,,, 21 are the co-factors of the elements

in the last row of the matrix
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Remark 1. The particular case of Mitrinovic

The determinantal formula (6), for the least norm vector of the given

linear variety, is a generalization of the formula of Mitrinovic [10, p. 67] and

[11, p. 93], after the corrections in [2] of the misprints:
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where  paaa ...,,, 21 and  pbbb ...,,, 21 are two non-proportional sequences

of real numbers satisfying





p

i
ii xa

1

0 and 



p

i
ii xb

1

.1

3. The Minimum Norm Vector of a General Linear Variety

Here we treat the projection of the origin of the coordinates onto a

general linear variety extending Proposition 1. The point where the sphere

centered at the origin is tangent to any linear variety is given in a closed

form by relation (8) to follow. This result has been obtained in a different

form and by another approach in [1].

Theorem 2 [1]. Let maaa


...,,, 21 be linearly independent vectors in

,n with .2m The minimum Euclidean norm vector in n satisfying the

equations

11 cxa 


22 cxa 




11   mm cxa


,mm cxa 


(7)
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with, at least, one non-zero ,...,,1, mici  is given by the relation
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Proof. Performing elementary matrix operations, we turn into the form
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121

121

121

11111

22222

11111

































mmmmm

mmmmm

caaaa

caaaa

caaaa

caaaa

nn

nn

nn

nn








where  .,...,,,
121 nn iiiii aaaaa






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4. Projection of a Point onto a Linear Variety

To deal with this problem by taking into account the result of the

preceding section, we use the fact that Euclidean distance is preserved under

translations.

We are given a linear variety V and an external point Q. We perform

a translation towards the origin O of the coordinates: the pair  VQ,  turns

into the pair  ., VO   We, then, apply Theorem 2 to the pair  ., VO 

Finally, we undo the performed translation: we go back from the origin O to

the point Q. We state the following:

Proposition 2. Let maaa


...,,, 21 be linearly independent vectors in

,n with .2m Then:

(1) The projection S of the external point  nqqqqQ ...,,,: 21


onto

the linear variety V defined by

11 cxa 


22 cxa 




11   mm cxa


,mm cxa 


(12)

with, at least, one non-zero ,...,,1, mici  is given by

,: qssS

 (13)
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where

,

121

1112111

2122212

1112111

121

1112111

1112111

mmmmmm

mmmmmm

mm

mm

mm

mmmmmm

mm

aaaaaaaa

aaaaaaaa

aaaaaaaa

aaaaaaaa
aaaa

aaaaaaaa

aaaaaaaa

s










































(14)

with

,1...,,1, 


 mia
c
c

aa m
m

i
ii



m
m

m a
c

a



 1

(15)

and

.qacc iii

 (16)

(2) For the distance, we have

     
  .,...,,,

...,,,
,,

121

121222

mm

m
aaaaG

aaaG
sVOdVQd 





 


(17)

Proof. (1) We perform a translation towards the origin of the

coordinates of the pair  VQ,  in order to get the pair  ., VO  We have

.qxQOxx



Replacing, in equations (12), x


with ,qx

 we get

11 cxa 


22 cxa 



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11   mm cxa


,mm cxa 


(18)

with, at least, one non-zero ic and .qacc iii



Now, by using relations (8)-(11), we obtain the relations (14)-(16).

Finally, undoing the translation, we have

.qss



(2) The Euclidean distance is translation invariant:

      2222 ,,, sVOdSQdVQd


 
  .,...,,,

...,,,

121

121

mm

m
aaaaG

aaaG






 




5. Distance between Two Linear Varieties

In this section, we deal with the interesting problem of finding the best

approximation pair of points of two given disjoint and non-parallel linear

varieties 1V  and .2V  In other words, we are looking for the point 1S  on the

linear variety 1V  and the point 2S  on the linear variety 2V  such that the

vector 21SS is, to within a signal, the shortest one linking the referred to

linear varieties. Here the main tool is Proposition 2. This result is applied

twice, just bearing in mind that, in the present case, the external point is

either the generic point 1:
1

gVGV  of the linear variety 1V  or the generic

point 2:
2

gVGV  of the linear variety .2V

Some notation is in order, for the sake of simplicity of the statement of

our next result.

We write the vector nf 


in the following manner:

    .,...,,,:...,,,,...,,, 212121
hnh

hnhhh ffffffffff 
  
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We state the main result of this paper.

Proposition 3. Let us consider two disjoint and non-parallel linear

varieties 1V and 2V given, respectively, by
























,

11

22

11

1

11

11

:

mm

mm

cxa

cxa

cxa

cxa

V









(19)

where
1

...,,, 21 maaa


are linearly independent vectors in n and with, at

least, one non-zero scalar ,2,...,,1, 11  mmici and



























,

11

22

11

2

22

22

:

mm

mm

dyb

dyb

dyb

dyb

V









(20)

where
2

...,,, 21 mbbb


are linearly independent vectors in n and with, at

least, one non-zero scalar .2,...,,1, 22  mmidi

Let us denote   111 ...,,,...,,
11

Vxxxxx nmm  


as  


,...,,
11 mxxx

11 mnm  and   211 ...,,,...,,
22

Vyyyyy nmm  


as  


,...,,
21 myyy

.22 mnm  

Let us denote by  21SS the shortest straight line segment connecting the

two linear varieties 1V and .2V

Then

(1) The points 11 VS  and 22 VS  are obtained through the

unique solution of the overdetermined consistent system of linear algebraic
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equations

   

   









,

,

2

1

2

1




V

V

GS

GS
(21)

where

(i)

   nmmVV xxxGG ...,,,: 21 1111 


and    nmmVV yyyGG ...,,,: 21 2222 


are the generic points of, respectively, the linear varieties 1V and ;2V

(ii)

   nmm yyySS ...,,,: 2111 22 


and    nmm xxxSS ...,,,: 2122 11 


are given, respectively, by

     


211 VGSS

and

     ;
122 


VGSS

and where

(iii)   1S is given by

    ,:

11111

11111

11

11

11

11111

11

11

11111

21212

11111

11

11111

11111

11

mmmmm

mmmmm

mm

mm

mm

mmmmm

mm

aaaaaa

aaaaaa

aaaaaa

aaaaaa

aaa

aaaaaa

aaaaaa

Ss















































(22)
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being

,1...,,1, 11
1




 mia
c
c

aa m
m

i
ii



1
1

1

1
m

m
m a

c
a






with, at least, one non-zero ,...,,1, 12
migacc Viii 


and

    ,:

22222

22222

22

22

22

22222

22

11

11111

21212

11111

11

11111

11111

22

mmmmm

mmmmm

mm

mm

mm

mmmmm

mm

bbbbbb

bbbbbb

bbbbbb

bbbbbb

bbb

bbbbbb

bbbbbb

Ss






































































(23)

being

,1...,,1, 22
2




 mib
d
d

bb m
m

i
ii



2
2

2

1
m

m
m b

d
b




with, at least, one non-zero ....,,1, 21
migbdd Viii 



(2) The distance  21, VVd between the two linear varieties is given by

  ., 2121 SSVVd 
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Proof. Essentially the proof consists on dealing once at a time with the

two linear varieties 1V  and :2V

(1) finding the generic point of each linear variety;

(2) applying Proposition 2.

In the following way:

(i) The generic points

From the underdetermined system (19), we can, without loss of

generality, assume that the generic point
11

: VV gG   depends on the

11  mn  parameters ....,,, 21 11 nmm xxx 

We write

 

 

 
.:

...,,

...,,

1
1

11

1

11
1

1

11

V

n

m

nmm

nm

VV g

x

x

xxx

xxx

GG 







































(24)

Similarly, we write for the generic point
22

: VV gG   of the linear variety

:2V

 

 

 
.:

...,,

...,,

2
2

22

2

22
1

1

11

V

n

m

nmm

nm

VV g

y

y

yyy

yyy

GG 







































(25)
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(ii) The application of Proposition 2

(a) Concerning the pair  ,, 12
VGV  we get

  ,...,,,

11111

11111

11

11

11

11111

11

22

11

11111

21212

11111

11

11111

11111

211

mmmmm

mmmmm

mm

mm

mm

mmmmm

mm

nmm

aaaaaa

aaaaaa

aaaaaa

aaaaaa

aaa

aaaaaa

aaaaaa

yyyS














































where

,1...,,1, 11
1




 mia
c
c

aa m
m

i
ii



1
1

1

1
m

m
m a

c
a






with, at least, one non-zero ....,,1, 12
migacc Viii 



(b) Concerning the pair  ,, 21
VGV we get

  ,...,,,

22222

22222

22

22

22

22222

22

11

11

11111

21212

11111

11

11111

11111

212

mmmmm

mmmmm

mm

mm

mm

mmmmm

mm

nmm

bbbbbb

bbbbbb

bbbbbb

bbbbbb

bbb

bbbbbb

bbbbbb

xxxS




































































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where

,1...,,1, 22
2




 mib
d
d

bb m
m

i
ii



2
2

2

1
m

m
m b

d
b




with, at least, one non-zero ....,,1, 21
migbdd Viii 



Essentially, the points 1S  and 2S  resulted from translations of the pairs

 1,
2

VGV and  ., 21
VGV Undoing the translations, we have

,
211 VGSS 

.
122 VGSS 

We must get the unique solution of the overdetermined system

   
   












nmmVnmm

nmmVnmm

yyyGxxxS

xxxGyyyS

...,,,...,,,

,...,,,...,,,

21212

21211

22211

11122 (26)

of 2n equations and the    11 21  mnmn  indeterminates

....,,,,...,,, 2121 2211 nmmnmm yyyxxx 

This system is consistent and has the unique solution

 ....,,,,...,,, 2121 2211










 nmmnmm yyyxxx

Hence, we obtain

 

 

 















































































n

m

m

n

m

nmm

nm

VV

x

x

x

x

x

x

xxx

xxx

GGS










1

1

1

1

11

1

1

1

1

11

1

11

...,,

...,,
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and

 

 

 
.

...,,

...,,

1

1

1

1

11

2

2

2

2

22

2

22















































































n

m

m

n

m

nmm

nm

VV

y

y

y

y

y

y

yyy

yyy

GGS










The assertion on consistency of system (26) and uniqueness of the solution

of system (26) are supported by results on existence and uniqueness of best

approximation problems [8, p. 64, Theorem 1] [7, p. 45, Theorem 2.2.5]. 

Remark 2. Some attention must be paid to the formulas (22) and (23). In

fact, we have

  



1

1
11 ,

1
m

i
iiaA

A
ss


(27)

where A, 1...,,1, miAi   are higher-degree polynomials in several variables

nmm yyy ...,,, 21 22  and

  



2

1
22 ,

1
m

j
jjbB

B
ss


(28)

where B, ,jB 2...,,1 mj  are higher-degree polynomials in several

variables ....,,, 21 21 nmm xxx  However, from (27) and (28), we have

   



n

i
ii eLss

1
111 ,


(29)

where ,1iL ,...,,1 ni  are first degree polynomials in the variables

nmm yyy ...,,, 21 22   and

   



n

i
ii eLss

1
222 ,


(30)
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where ,2iL ,...,,1 ni  are first degree polynomials in the variables

....,,, 21 22 nmm xxx 

This question is worth for a longer explanation as follows:

By performing the mentioned convenient translations on the systems

(19) and (20), we obtain two systems where the right hand sides are vectors

whose entries are linear expressions in the parameters that are coordinates of

the vectors
1VG and .

2VG By using arguments involving the uniqueness

of (least squares) solution of a linear system by using the Moore-Penrose

inverse, we assert that the solutions of the afore-referred to systems are given

in terms of such parameters. The best solution in the least squares sense of

the system bxA


 is given [9, p. 439] by ,bAx
  where A  stands for

the Moore-Penrose inverse of matrix A. In our case, A  is a constant matrix,

so x


depends on the parameters in vector .b


Hence,

 
 

 

























nmmn

nmm

nmm

yyyL

yyyL

yyyL

s

...,,,

...,,,

...,,,

21

212

211

1

22

22

22




and

 
 

 

.

...,,,

...,,,

...,,,

21

212

211

2

11

11

11



























nmmn

nmm

nmm

xxxL

xxxL

xxxL

s 


For the sake of clarity, we synthesize:

Scholium. Regarding the given linear varieties and without loss of

generality, we can write



M. A. Facas Vicente et al.78

 

 
 























































 








1
1

1

11

1

...,,:
...,,

...,,

1
1

1

11

1
mn

nm

n

m

nmm

nm

xx

x

x

xxx

xxx

V 





and

 

 
  ....,,:

...,,

...,,

2
2

2

22

2

1
1

1

11

2























































 








mn
nm

n

m

nmm

nm

yy

y

y

yxy

yyy

V 





Hence, we may write

 

 















































































n

m

m

n

m

nmm

nm

V

x

x

x

x

x

x

xxx

xxx

GS









1

1

1

1

11

1

1

1

1

11

1

1

...,,

...,,

and

 

 
,

...,,

...,,

1

1

1

1

11

2

2

2

2

22

2

2















































































n

m

m

n

m

nmm

nm

V

y

y

y

y

y

y

yyy

yyy

GS








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where

 









 nmmnmm yyyxxx ...,,,,...,,, 2121 2211

is the unique solution of the overdetermined system (26).

A classical projection theorem [8, p. 64, Theorem 1] [7, p. 45, Theorem

2.2.5] [3, p. 64, Exercise 2] concerning the case of a point and a linear

variety, leads us to a result on the projection vector connecting two linear

varieties. It is a characterization of the pair of best approximation points that

may be useful when testing the accuracy of numerical examples.

Proposition 4. Let 1V and 2V be two non-parallel linear varieties:

111 MPV  and ,222 MPV  where 1M and 2M are subspaces of n

and 1P and 2P are fixed points in .n Then the unique points 11 VS  and

22 VS  form a best approximation pair  21, SS of the linear varieties 1V

and 2V if and only if the two vectors whose extremities are 1S and 2S are

orthogonal simultaneously to the subspaces 1M and .2M

Proof. We need just two facts: the definition of a vector orthogonal to a

set of ,n  where a vector is said to be orthogonal to set if it is orthogonal to

each vector of the set; and a projection theorem, where it is stated that the

projection vector is orthogonal to the unique subspace associated to the

given linear variety and not to the linear variety itself [8, p. 64, Theorem 1]

[7, p. 45, Theorem 2.2.5] [3, p. 64, Exercise 2].

We have:

(1) 22 sS

 is the projection of 11 : sS


 onto the linear variety :2V

hence 21SS is orthogonal to the subspace ;2M

(2) 11 sS

 is the projection of 22 : sS


 onto the linear variety :1V

hence 21SS is orthogonal to the subspace .1M 

Notice that the vector 21SS is not orthogonal either to the linear varieties

1V  or .2V
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Finally, we have a result concerning the separating hyperplanes

[3, pp. 105-106] and the smallest sphere tangent to the two linear varieties

simultaneously.

Corollary 1. The smallest sphere S tangent to the linear varieties 1V

and 2V is given by







 

22
: 2121 ssss

xxS n
 

and the supporting hyperplanes are

      .2,1,0: 21  isxssxH i
n

i
 

Corollary 2. The point

 21
21

21
8
1

ss
ss
ss

s










is the point closest to the origin of the coordinates which belongs to the

smallest sphere tangent to the linear varieties 1V and .2V

If the linear varieties 1V  and 2V  are translates of the same given

subspace, then there are infinitely many best approximation pairs   21, SS

.21 VV   In this context, the optimal approximation pair is  ,, 21
 SS where


1S and 

2S are the best approximation points with minimum norm.

Hence, we have

Corollary 3. Let   2121 , VVSS  be the optimal approximation pair

of the parallel linear varieties 1V and .2V Then the sphere S tangent to the

parallel linear varieties 1V and 2V which is nearest to the origin is

.
22

: 2121







 


 ssss

xxS n
 
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Corollary 4. The point

 



 




 21

21

21
8
1

ss
ss

ss
s





is the point closest to the origin of the coordinates which belongs to the

family of spheres that are tangent to the parallel linear varieties 1V and .2V

6. Illustrative Numerical Example

We are given two linear varieties. We exhibit the best two

approximation points – one on each linear variety, and show that the vector

21SS is orthogonal to both the subspace 1M  and the subspace 2M

associated to the linear varieties 1V  and ,2V  respectively, but not to the

linear varieties themselves.

Let the two linear varieties 1V  and 2V  be defined as follows:









,2

,1
:

2

1
1 xa

xa
V 


(31)

with  1,1,2,1,11 a


 and  ;2,1,4,1,12 a















,3

,20

,10

:

3

2

1

2

yb

yb

yb

V




(32)

with    2,1,4,1,1,1,1,2,1,1 21  bb


 and  .3,1,4,1,13 b


In respect of Proposition 3:

(I) The generic points
1VG  and

2VG  of the linear varieties 1V  and 2V

are
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





























5

4

3

53

543

2
1

2
1

2
3

3
2
3

1

x

x

x

xx

xxx

GV

and

.

2
1

3
1

5

2
1

3
4

2
23

2
1

2
23

5

4

54

54

54

2



































y

y

yy

yy

yy

GV

(II) We perform a translation along the vector   OyyGV 54 ,
2

 ;, 542
yyGO V the linear variety 1V  is obtained by replacing x


in

relation (31) with :
2VGx 











542

1
1 21

,11
:

yyxa

xa
V 


(33)

with

 











































54

54

54

54

54

541

63
5

63
10

21
2

21
1

21
2

7
15

63
10

63
20

21
4

63
19

63
38

21
131

21
1

21
2

7
15

,

yy

yy

yy

yy

yy

yyS
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and

 













































54

54

54

54

54

1541

63
68

63
10

21
2

21
1

21
23

7
15

126
43

63
41

21
101

126
25

63
46

42
221

42
23

21
23

14
191

,
2

yy

yy

yy

yy

yy

GSyyS V

analogously.

(III) We perform a translation along the vector   OxxxGV 543 ,,
1

 ;,, 5431
xxxGO V  the linear variety 2V   is obtained by replacing y


in the

relation (32) with :
1VGy 

















543

5432

1

2

21

,32619

,11

:

xxyb

xxxyb

yb

V




(34)

with

 













































543

543

843

543

543

5432

209
7

209
70

209
42

209
172

418
129

209
191

209
240

209
1371

418
159

209
41

209
150

209
674

38
15

19
1

19
12

19
35

209
148

209
192

209
366

209
633

,,

xxx

xxx

xxx

xxx

xxx

xxxS
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and

  .

209
202

209
70

209
42

209
172

418
129

209
18

209
240

209
1371

418
159

209
41

209
59

209
674

19
17

19
1

19
31

38
89

418
331

209
17

209
261

418
1893

,,

543

543

543

543

543

25432 1













































xxx

xxx

xxx

xxx

xxx

GSxxxS V

(IV) Solving the system

   
   







,,,,

,,,,

545432

543541

2

1

yyGxxxS

xxxGyyS

V

V

we obtain .
212
453

,
509

3560
,

424
1489

,
848
4765

,
848
837

54543   yyxxx

Hence, using











































5

4

3

53

543

1
2
1

2
1

2
3

3
2
3

1

x

x

x

xx

xxx

GS V

and

,
2
1

3
1

5

2
1

3
4

2
23

2
1

2
23

5

4

54

54

54

2 2












































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

y

y
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GS V



Distance between Linear Varieties in .n  … 85

we, finally, obtain







































424
1489

848
4765
848
837
212
57

16
77

1S and .

212
453
509

3560
848
3169
424
469
16
55

2



































S

The distance between the two varieties is given by

  .
559
2174

, 2121  SSVVd

In respect of Proposition 4;

Let us consider
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 1 The vector 21SS is orthogonal to the unique subspace 1M

associated to the linear variety .1V Consider the arbitrarily fixed vector

.2
1

2
3

3

1

5

4

3

53

543

1 M

x

x

x

xx

xxx

v 
































We have

.0121  vSS


 2  The vector 21SS is orthogonal to the unique subspace 2M

associated to the linear variety .2V Consider the arbitrarily fixed vector

.
2
1

3
1

2
1

3
4

2
1

2

5

4

54

54

54

2 M

y

y

yy

yy

yy

v 






































We have

.0221  vSS


 1  The vector 21SS  is not orthogonal to the linear variety .1V

Take the fixed vector

.

3

2

1

0

2

11 Vu 


























We have .03750.1121  uSS

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 2  The vector 21SS is not orthogonal to the linear variety .2V

Take the fixed vector

.

2

1
3

24
6
71
2
23

22 Vu 






























We have .07500.13221  uSS


7. Conclusions

In this paper, we presented a determinantal formula for the point

satisfying the equality condition in an inequality by Fan and Todd (we

answered the implicit old open question in [5, p. 63]: to get a closed form for

the minimum norm vector of the given linear variety). In a previous paper

[13], we got, by using the center of convenient hyperquadrics, the point

where the inequality (3) turns into the equality (4).

Here, we also restated a determinantal formula for the point of tangency

between a sphere and any linear variety.

Furthermore, we obtained the projection of an external point onto

a linear variety as a quotient of two determinants. Subsequently and

consequently, this result was extended for getting the best approximation

pair of two disjoint and non-parallel linear varieties. A characterization of

this pair of best approximation points is offered.

Acknowledgements

M. A. Facas Vicente is supported by INESC Coimbra, DEEC, University

of Coimbra, Pólo II, 3030-290 Coimbra, Portugal. M. A. Facas Vicente

also has been supported by the Portuguese Foundation for Science and

Technology (FCT) under project grant UID/Multi/00308/2019.



M. A. Facas Vicente et al.88

Fernando Martins work is funded by FCT/MEC through national funds

and when applicable co-funder FEDER-PT2020 partnership agreement under

the project UID/EEA/50008/2013.

References

[1] P. R. Beesack, On Bessel’s inequality and Ostrowski’s, Univ. Beograd. Publ.

Elektohn. Fak. Ser. Mat. Fiz. 510 (1975), 69-71.

[2] C. Costa, P. Tadeu and J. Vitória, Geometric application of an analytic

(in)equality of (Ostrowski) Mitrinovic, Inequality Theory and Applications, Yeol

Je Cho, Jong Kyu Kim and Sever S. Dragomir, eds., Nova Science Publishers,

Vol. 6, 2010, pp. 143-150.

[3] F. Deutsch, Best Approximation in Inner Product Spaces, Springer, New York,

2001.

[4] M. A. Facas Vicente, Armando Gonçalves and José Vitória, Euclidean distance

between two linear varieties, Appl. Math. Sci. 8(21) (2014), 1039-1043.

[5] K. Fan and J. Todd, A determinantal inequality, J. London Math. Soc. 30 (1955),

58-64.

[6] Armando Gonçalves, M. A. Facas Vicente and José Vitória, Optimal pair of two

linear varieties, Appl. Math. Sci. 9(12) (2015), 593-596.

[7] P.-J. Laurent, Approximation et Optimisation, Hermann, Paris, 1972.

[8] D. G. Luenberger, Optimization by Vector Space Methods, J. Wiley, New York,

1969.

[9] C. D. Meyer, Matrix Analysis and Applied Linear Algebra, SIAM, Philadelphia,

2000.

[10] D. S. Mitrinovic, Analytic Inequalities, Springer, Berlin, 1970.

[11] D. S. Mitrinovic, J. E. Pecaric and A. M. Fink, Classic and New Inequalities in

Analysis, Kluwer, Dordrecht, 1993.

[12] S. Varosanec, History, generalizations and unified treatment of two Ostrowski’s
inequalities, J. Inequal. Pure Appl. Math. 5(2) (2004), Article 23, 20 pp.

[13] J. Vitória, M. A. Facas Vicente, J. M. F. Santos, C. Costa and P. Tadeu, On an

inequality by Fan and Todd, Inequality Theory and Applications, Yeol Je Cho,

Jong Kyu Kim and Sever S. Dragomir, eds., Nova Science Publishers, Vol. 6,

2010, pp. 121-132.


