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Abstract: 

 In this study we will present the most common and adequate network measures to analyse graph 

properties and to inspect the prominence of each player on a soccer team. Both approaches can provide a range 

of useful information. This kind of analysis will help to identify the prominence of players and also characterize 

the collective organization and patterns of the teams. General measures and centrality levels will be described 

and the applications will be discussed. By using social network analysis will be possible to quantify the structure 

of play and predict some behaviour. Such methodology will add new options to the field of match analysis. 

Keywords:  graph theory; network analysis; team sports; match analysis. 

 
Introduction 

 A team sport involves players working together to achieve a common goal, thus, within a team, 

intragroup relationships are important and include decisive indicators such as cohesiveness and hierarchies 

among players (Lusher, Robins, & Kremer, 2010). One of the main challenges in team sport is that the 

teammates must coordinate their efforts and actions to avoid and overcome the opponent’s strengths (Deleplace, 

1995), a team should work together to recapture and conserve territory in order to earn points (Gréhaigne, 

Bouthier, & David, 1997). However, it is not enough to have a lot of very good players if they cannot play 

together. Thus we have the impression that a team is more than the sum of its parts (Grund, 2012). In sum, a 

team of experts it is not necessarily an expert team (Bourbousson, Poizat, Saury, & Seve, 2010).  

 In team sport there may be problems related to the organization, for example players must accept a 

move from an individual to a collective project (Gréhaigne et al., 1997). In that sense, macroscopic patterns of 

behaviour emerge from teammates interactions at a microscopic level of organization, thus the individual actions 

are strongly associated with collective project, and the inverse is a dynamic and complex point-a-view (Davids, 

Araújo, & Shuttleworth, 2005). This becomes an assessment problems of players in team sport such as 

(Gréhaigne, Godbout, & Bouthier, 1997): (i) intervening elements that are not only numerous but also 

interacting; (ii) the rapport of strength plays an important role and may vary in different opposition contexts; (iii) 

the members of a team are interdependent; and (iv) the player must be assessed within a system (the team) that 

has its own coherence. In fact, the assessment of individual players must be understood in a global concept of the 

team. Match analysis has been used in the last decades to provide coaches the best possible information about 

the individual and collective organization of players and teams (Clemente, Couceiro, Martins, Mendes, & 

Figueiredo, 2013a).  

 Starting from this concept of match analysis and its utility for coaches, this article aims to discuss an 

integrated approach that analyses individual performances within the collective organisation and allows 

identification of the collective characteristics that determine the style of play and the specific patterns and 

signatures of teams. This article also aims to be a survey tool for sport researchers and coaches that integrates 

several techniques using a single approach, social network analysis, to inspect individual and collective 

organization in team sports.  

 

 The analysis to the overall team: Looking for the graph theory characteristics 

 The analysis at different network properties can provide valuable insight into the organization of 

teammates’ network, identifying some global characteristics of the overall players’ interactions. In the following, 

will be provided a short description about the main properties that are commonly analysed in network with 

application for team sports analysis. 

For such application and analysis the SocNetV (Kalamaras, 2014) free software will be used. This software is a 

graphical application for the analysis and visualization of social networks. It allows the researcher to load 
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formatted network data such as sociomatrices, analyze the social and mathematical properties of the 

corresponding social networks in the form of mathematical graphs, and compute basic graph properties, such as 

density, diameter and clustering coefficient, as well as more advanced structural measures such as centrality and 

prestige indices, which were used in this survey. 

 

 Total Links 

 The first metric used in this study called total Links.  

 In our case considering each element  of the adjacency matrix was the number of interactions 

(passes) from player  to player  and, in terms of the corresponding weighted digraph (sociogram) produced 

by SocNetV, it was represented by a directed line (arc) between node  and node .  

The sum of the elements of each row of the adjacency matrix  was the total number of 

passes from player  to all its other teammates. The sum of all elements  of the adjacency matrix,  

 , is the total Links (passes) between each team's players. In the corresponding weighted 

directed graph, this number is the total arcs between all nodes.  

If from of the interaction between nodes result a undirected weighted graph, the total Links is obtained 

. In the corresponding weighted graph, this number is the total lines between all nodes.  

 Considering only one interaction between two nodes, if exist, each element  of the adjacency matrix 

is 1 or 0. If from of the interaction between nodes result a undirected graph or digraph, we obtain the total 

distinct links.   

One can presume that a higher than the average total Links index of a team is an indicator for stronger 

cooperation between the players of that team. It might also be correlated with a higher probability of its players 

to interact successfully with each other, which might result in longer ball possession, better performance and 

generally strong collective organization against the opponent team. 

 

 Graph Density 

 In graph theory, the density of a (directed) graph is the proportion of the maximum possible lines (or 

arcs) that are present between nodes. The graph density shows how sparse or dense a graph is according to the 

number of connections per node (Pavlopoulos et al., 2011). Because a graph is consisted of a finite number of 

nodes (denoted by ), in the case of an undirected graph there can be at a maximum  

possible distinct pairs between nodes and possible distinct links (divided by  because the link 

 is the same to  and we do not want to count that twice). The density  of the graph is defined as the 

ratio of the distinct total lines present to the maximum possible number of links that could exist:  

 
(1) 

 In the case of ordered relations, as in the teammate interactions, the possible distinct directed links in a 

digraph of n nodes is so the density is computed by: 

 
(2) 

 In both cases, the density is a ratio having a minimum of zero (no lines/arcs present) and a maximum of 

 (all lines/arcs are present).  

 As network interpretation the density measure the overall affection between teammates. In the case of 

binary graphs or digraphs a density value close to  indicates that all teammates strongly pass each other, while a 
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density value of  suggests the presence of more ambiguous relationship (Horvath, 2011). In the case of 

weighted digraphs the bigger values represents a higher affection among team-members if the network density is 

big as well. In the case of small network density and bigger weighted density it is ambiguous the conclusion, 

because in a digraph with 11 nodes only three members can be highly connected and the others non-connected. 

Considering weighted graphs or digraphs, the density is obtained from the expressions (1) and (2), respectively. 

In this case, the density is a ratio having a minimum of zero (no lines/arcs present) and a maximum of . 

 

 Graph Distance 

 In graph theory, two nodes are connected if there is a sequence of nodes and their adjacent links (walk) 

from one to the other. In the example above, nodes 3 and 9 are connected through the walk 3-1-4-3-1-5-9. If a 

walk is consisted only of distinct nodes and lines, then it is called a path. In the same example above there is the 

path 3-1-5-9 from node 3 to node 9.  

 The geodesic distance, between two nodes,  and   is the length of shortest path between 

them and in cases that no path was generated it is possible to set  assuming that the nodes are so 

far between each other so they are not connected (Pavlopoulos et al., 2011).  

 In a unweighted graph or digraph, a geodesic distance between   and  is  

, 
(3) 

where h are intermediary nodes on paths between node  and , and  are elements of the corresponding 

adjacency matrix (Opsahl, Agneessens, & Skvoretz, 2010; Rubinov & Sporns, 2010). 

In particular, considering only unweighted graph the the distance between   and  is equal to the distance 

between   and ;   (Wasserman & Faust, 1994). Let us provide an illustrative example 

in the following Figure 1. 

 
Fig. 1. Geodesic distance between nodes of a undirected and unweighted graph. 

 

 The average path length of a unweighted graph is defined to be the average and maximum value of 

 taken over all pairs of distinct nodes,  which are connected by at least one path, thus the 

average path length of a network is the average number of edges between teammates, which must be crossed in 

the shortest path between any two nodes  (Pavlopoulos et al., 2011):  

 
(4) 

where d is the minimum distance between nodes  and . If , then we consider that 

d  (Pavopoulos, 2011). In similar for unweighted digraph we obtain 

 
(5) 

 In a weighted graph or digraph, a geodesic distance between   and  is  

 
(6) 

where h are intermediary nodes on paths between node  and , and  are elements of the corresponding 

(weighted) adjacency matrix (Opsahl et al., 2010). 
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The average path length of a weighted graph or digraph is determined by (Rubinov & Sporns, 2010). 

 
(7) 

 As network interpretation one can define that lowest average values represents that teammates have a 

great connection between them and greater average values suggests that teammates are more disconnected 

between them. 

 The distance can be also used to characterize the spatio-temporal relationship between players. In the 

case of distance between teammates, would be very interesting to identify how close or how far way are the 

players from their teammates. This would help to characterize the defensive process (keeping the block of 

pressure) and the attacking process (exploring the width and length) (Costa, Garganta, Greco, Mesquita, & 

Seabra, 2010).  

 

 Clustering Coefficient 

 The Clustering Coefficient, introduced by (Watts & Strogatz, 1998), quantifies how close a node and its 

neighbors in a undirected and unweighted graph are to become a clique (a complete subgraph). Watts and 

Strogatz used the local version of Clustering Coefficient to determine whether a graph is a small-world network 

(a network of small average distance but relative large number of cliques).  

In the case of undirected and unweighted graphs the (local) Clustering Coefficient of a node is obtain the 

following expression (Fagiolo, 2007; Rubinov & Sporns, 2010): 

 
(8) 

where   are elements of the corresponding adjacent matrix A and  . 

 In the case of weighted undirected graphs the (local) Clustering Coefficient of a node is obtain the 

following expression (Fagiolo, 2007; Rubinov & Sporns, 2010): 

 

(9) 

where  are elements of the corresponding (weight) adjacent matrix A,  and we define 

, thus the matrix obtained from  by taking the 3
rd
 root of each entry.  

 In the case of directed and unweighted graphs the (local) Clustering Coefficient of a node is obtain the 

following expression (Fagiolo, 2007; Rubinov & Sporns, 2010): 

 

(10) 

  

where  are elements of the corresponding adjacent matrix A,  and  shut that 

,  are outdegree and  indegree of node . 

In the case of directed and weighted graphs the (local) Clustering Coefficient of a node is obtain the following 

expression (Fagiolo, 2007; Rubinov & Sporns, 2010): 

 

(11) 

  

where  are elements of the corresponding (weighted) adjacent matrix A,  and  

shut that ,  are outdegree and  indegree of node  and . 
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 Thus the local Clustering Coefficient measures the degree of interconnectivity in the neighborhood of a 

node. The higher it is, the closer this node and its neighbors are to become a clique. 

 In the present survey, it was used a variant of the global version of Clustering Coefficient which 

measures the level of clustering in the whole network. This variant is the network average of the local clustering 

coefficients (Rubinov & Sporns, 2010):  

 
(12) 

where  is the number of vertices and we consider of  based on the type of graph that will be performed 

(undirected, directed and weighted). 

 For the case of weighted undirected graphs the higher the clustering coefficient of a player, the higher is 

the affection between team-members (Horvath, 2011). In the case of  implies that . 

 

 Testing the centralities of players: How prominent is a player? 

 The present section aims to show how players can be ranked or sorted according to their properties 

within the graph. In team sports it is important to detect central players or intermediate players that affect the 

patterns of play and the collective organization of team. Thus, a set of centrality metrics to inspect the 

prominence of players can be following found. 

  

 Degree Centrality (out-degree) 

 A centrality node means that player must be the most active in the sense that they have ties to other 

players in the network graph (Wasserman & Faust, 1994).  

 A centrality measure for a player should be the degree of the node, , thus it is possible to define 

 as a player-level degree centrality index in the case of undirected and unweight graphs as (Wasserman & 

Faust, 1994):  

 (13) 

Besides this algorithm, another can be used as a standard measure:  

 
(14) 

For the case of direct and unweight graphs, we can obtain: 

 
(15) 

Besides this algorithm, another can be used as a standard measure: 

 
(16) 

that is the proportion of nodes that are adjacent to .  is independent of , and thus can be compared 

across networks of different sizes (Wasserman & Faust, 1994).  

The case of undirected and weight graphs as (Opsahl et al 2010):  

 
(17) 

Besides this algorithm, another can be used as a standard measure: 

 

(18) 

that is the proportion of weights of nodes that are adjacent to . 

The case of directed and weight graphs as (Opsahl et al., 2010):  

 
(19) 

Besides this algorithm, another can be used as a standard measure: 

 

(20) 

that is the proportion of weights of nodes that are adjacent to . 

 In this analysis the players with very high degree centrality are called hubs since they are connected to 

many other neighbours (Pavlopoulos et al., 2011).   

 As network interpretation a player with a high degree centrality level is “where the action is” in the 

network (Wasserman & Faust, 1994). Thus, such player with high level is in direct contact with the majority of 

their teammates and also is adjacent with the remaining players.  

  

Closeness Centrality 

 This closeness centrality indicates the nodes that can interact quickly with other nodes of the network 

by their proximity on distance (Pavlopoulos et al., 2011). 

In case of a unweighted graph or digraph (Wasserman & Faust, 1994), the closeness can be obtain: 



FILIPE MANUEL CLEMENTE, FERNANDO MANUEL LOURENÇO MARTINS, RUI SOUSA MENDES, 

FRUTUOSO SILVA 

--------------------------------------------------------------------------------------------------------------------------------------- 

---------------------------------------------------------------------------------------------------------------------------- 

JPES ®      www.efsupit.ro  
828

 

(21) 

 Another algorithm can be used to produce comparisons between unweighted  graphs or digraphs with 

different sizes:  

 
 

(22) 

 In particular case of this index for undirected graphs, the range between  and  and can be viewed as 

the inverse average distance between node  and all of the other nodes (Wasserman & Faust, 1994). Generally, a 

decrease in closeness centrality is caused by of an increase in distance between pathways (Pavlopoulos et al., 

2011).  

In case of a weighted graph or digraph (Opsahl et al., 2010), the closeness can be obtain: 

 

(23) 

Another algorithm can be used to produce comparisons between weighted  graphs or digraphs with different 

sizes: 

 

 
 

(24) 

 This measure can be very useful to study the spatio-temporal relationship between teammates, 

particularly using the distance as the variable. The closeness centrality may be a very good topic to identify the 

coverage provided by the teammates to the colleagues with ball (attacking coverage) or to the colleagues in 

direct marking to the opponent with ball (defensive coverage).  

 

Betweenness Centrality 

 

 Betweenness centrality measures the intermediate nodes between neighbours. Without such nodes the 

distance between the neighbours turns bigger. In that sense, betweenness centrality shows important nodes that 

lie on a high proportion of paths between other nodes in network (Pavlopoulos et al., 2011).  

Consider the case of unweighted and undirected graphs. For distinct nodes let  be the total 

number of shortest paths between  and  and  be the number of shortest paths from  to  that 

pass through . Furthermore, for , let  denote the set of all ordered pairs,  in 

 such that  are all distinct (Pavlopoulos et al., 2011). In that sense, the betweenness centrality 

is calculated as: 

 
(25) 

 

 It has a minimum of zero, attained when  falls on geodesics (Wasserman & Faust, 1994). Its 

maximum is achieved when the node falls on all geodesics. Thus, this metric can be useful to identify the players 

that generates shortest paths within the team, being the linkage nodes between teammates. 

In the case of unweighted and undirected graphs, we standardize it just like the other actor centrality indices 

(Wasserman & Faust, 1994): 

 
(26) 

 

 For the other cases, weighted or/and direct graphs, the betweenness centrality is calculated the similar 

form shut that the path lengths are computed on respective weighted or direct paths.  
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Degree Prestige (in degree) 

  The degree prestige measure the in-degree of each node, which can be denoted by  or 

. In the case of soccer the prestigious players can be how receive more passes from their teammates, so can 

be defined on directed and unweight graphs as (Wasserman & Faust, 1994): 

 
(27) 

In order to standardize the group size , it is possible to compute as follows: 

 
(28) 

that is the proportion of nodes that are adjacent to . 

 The case of directed and weight graphs as (Opsahl et al 2010):  

 
(29) 

In order to standardize the group size , it is possible to compute as follows: 

 

(30) 

that is the proportion of weights of nodes that are adjacent to . 

As network interpretation the largest index represents the most prestigious nodes, thus in the case of passing 

sequence analysis represents the player that received more ball from their teammates. The maximum prestige 

occurs when all passes are performed for the same player.  

 

Looking to the future: An easy, quick, and low-cost approach for practical research applications in sports 

 Network analysis based on graph theory metrics can be a very useful and user-friendly solution when 

used as match analysis techniques in team sports. The analysis is not limited to examining the pass interactions 

between teammates. Many more possibilities can be found using network techniques. Here are some possible 

directions for further research using graph theory metrics. 

 Other important tactical behaviour that can be assessed using graph theory techniques can be the 

switching positions between teammates (Costa et al., 2010) (Duarte, Araújo, Correia, & Davids, 2012). This 

behaviour emerges in a match according to the tactical roles of each player. For example, the lateral defender 

goes to the side to confront an attacking player, and in the moment of the opponent’s counter-attack, a teammate 

must switch positions to fill the space of their lateral defender teammate who is too far away from their original 

position. This kind of tactical behaviour between teammates can be also understood as a connection, thus a 

network analysis can be carried out. Besides a good source of information for researchers who try to understand 

the frequency of this switching behaviour, and what kind of players are the most likely to perform the behaviour, 

network analysis predicts useful information for coaches. Players can be characterized by their switching 

behaviour, which can be optimized during training sessions. Moreover, coaches may find these techniques 

helpful in examining the opposition – the information can be used to identify players that change position 

frequently and exploit free spaces in a given moment of counter-attack. 

 Finally, network analysis can be useful for players marking an opponent. This behaviour is a defensive 

strategy for players without possession of the ball make to avoid the attacker who receives the ball (Bangsbo & 

Peitersen, 2002). The connection between these players is a connection that emerges throughout a match, thus 

they can be viewed as a specific kind of network. This behaviour can be studied to discover the regularity of this 

kind of connection and to determine how players vary their behaviour based on the opponent’s strategy 

(Clemente, Couceiro, Martins, & Mendes, 2015). Moreover, such analysis can be useful to understand how 

certain kinds of movements should be performed by attackers to avoid the man-defender system. 

 

Acknowledgements 

 This work was supported by the FCT project PEst-OE/EEI/LA0008/2013. This article was made in the 

scope of uPATO project granted by Instituto de Telecomunicações. 

 

References 

Clemente, F. M., Couceiro, M. S., Martins, F. M. L., & Mendes, R. S. (2015). Using Network Metrics in Soccer: 

A Macro-Analysis. Journal of Human Kinetics, 45, 123–134. doi:10.1515/hukin-2015-0013 

Costa, I. T., Garganta, J., Greco, P. J., Mesquita, I., & Seabra, A. (2010). Influence of Relative Age Effects and 

Quality of Tactical Behaviour in the Performance of Youth Football Players. International Journal of 

Performance Analysis in Sport, 10(2), 82–97. 

Fagiolo, G. (2007). Clustering in complex directed networks. Physical Review E, 76(2), 026107. 

doi:10.1103/PhysRevE.76.026107 

González-Víllora, S., García-López, L. M., & Contreras-Jordán, O. R. (2015). Evolución de la toma de 



FILIPE MANUEL CLEMENTE, FERNANDO MANUEL LOURENÇO MARTINS, RUI SOUSA MENDES, 

FRUTUOSO SILVA 

--------------------------------------------------------------------------------------------------------------------------------------- 

---------------------------------------------------------------------------------------------------------------------------- 

JPES ®      www.efsupit.ro  
830

decisiones y la habilidad técnica en fútbol / Decision Making and Technical Skills Evolution in Football 

pp. 467-487. RIMCAFD, 59(2015), 467–487. doi:10.15366/rimcafd2015.59.005 

González-Víllora, S., Serra-Olivares, J., Pastor-Vicedo, J. C., & da Costa, I. T. (2015). Review of the tactical 

evaluation tools for youth players, assessing the tactics in team sports: football. SpringerPlus, 4(1), 663. 

doi:10.1186/s40064-015-1462-0 

Horvath, S. (2011). Weighted Network Analysis: Applications in Genomics and Systems Biology. New York: 

Springer. 

Kalamaras, D. (2014). Social Networks Visualizer (SocNetV): Social network analysis and visualization 

software. Social Networks Visualizer. Homepage: http://socnetv.sourceforge.net . 

Opsahl, T., Agneessens, F., & Skvoretz, J. (2010). Node centrality in weighted networks: Generalizing degree 

and shortest paths. Social Networks, 32(3), 245–251. doi:10.1016/j.socnet.2010.03.006 

Pavlopoulos, G. A., Secrier, M., Moschopoulos, C. N., Soldatos, T. G., Kossida, S., Aerts, J., … Bagos, P. G. 

(2011). Using graph theory to analyze biological networks. BioData Mining, 4(1), 10. 

Peña, J. L., & Touchette, H. (2012). A network theory analysis of football strategies. In arXiv preprint arXiv (p. 

1206.6904). 

Rubinov, M., & Sporns, O. (2010). Complex network measures of brain connectivity: uses and interpretations. 

NeuroImage, 52(3), 1059–69. doi:10.1016/j.neuroimage.2009.10.003 

Serra-Olivares, J., González-Víllora, S., García-López, L. M., & Araújo, D. (2015). Game-Based Approaches’ 

Pedagogical Principles: Exploring Task Constraints in Youth Soccer. Journal of Human Kinetics, 46(1). 

doi:10.1515/hukin-2015-0053 

Wasserman, S., & Faust, K. (1994). Social network analysis: Methods and applications. New York, USA: 

Cambridge University Press. 

Watts, D. J., & Strogatz, S. H. (1998). Collective dynamics of “small-world” networks. Nature, 393, 440–442. 

 


