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Abstract 

 

This study aimed to analyze the most prominent players’ positions that 

contributed to the build of attack in football during FIFA World Cup 

2014. The connections among teammates in all matches of the 

tournament were analyzed, and the tactical lineup and players’ positions 

of players were codified as independent variables. Four centrality network 

metrics were used to identify the pertinence of each players’ position. A 

total of 37,864 passes between teammates were recorded. Each national 

team was analyzed in terms of all their matches, thus all 64 matches from 

the FIFA World Cup 2014 tournament were analyzed and codified in this 

study. A total of 128 adjacency matrices and corresponding network 

graphs were generated and used to compute the centrality metrics. Results 

revealed that the players’ position (p = 0.001; 𝜼𝒑
𝟐= 0.143; Power = 1.00; 

moderate effect size) showed significant main effects on centrality 

measures. The central midfielders possessed the main values in all 

centrality measures in the majority of analyzed tactical lineups. Therefore, 

this study showed that independent of the team strategy, the players’ 

position of a central midfielder significantly contributed to the build of 

attack in football, for example, greater cooperation and activity profile. 

 

Keywords: Match Analysis, Football, Social Network Analysis, Graph 

Theory, Adjacency Matrix, Tactics. 
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1. Introduction 

 

Numerous analyses of the structural properties of interactions among teammates have 

been conducted to identify whether these properties contribute to team performance 

outcomes (Cotta, Mora, Merelo, & Merelo-Molina, 2013). To achieve this objective, 

some techniques and methods from social and exact sciences have been used in the 

specific field of sport sciences to increase the possibility of match analysis (Duarte, 

Araújo, Correia, & Davids, 2012). Such a multidisciplinary approach enables the 

properties of a team to be rapidly identified and the individual and collective behavior 

of players to be characterized (Couceiro, Clemente, Martins, & Tenreiro Machado, 

2014). 

 

Several approaches are used to identify and classify teams and their properties. One 

approach is using the traditional notational analysis of singular events (such as passes, 

recovers, or shots) that quantify the actions of players and provide some information on 

the type of team performance (Hughes & Bartlett, 2002). Such approach has become 

rarely used to facilitate a scientific understanding of team performance, even among 

coaches (Vilar, Araújo, Davids, & Bar-Yam, 2013). Another approach is the 

observational method based on semi-computational systems that identifies the tactical 

behavior of players on the basis of the fundamental principles of play (Barreira, 

Garganta, Guimarães, Machado, & Anguera, 2014). Even if qualitative analysis is 

performed by observers, a great deal of time is spent to accomplish such massive 

analysis. Alternatives to the observational method are tactical metrics, which quantify 

some spatiotemporal relationships of teammates using computational methods 

(Clemente, Couceiro, Martins, Mendes, & Figueiredo, 2013). Such method enables the 

rapid identification of the collective organization of a team. However, this approach 

does not enable the characterization of the interconnectivity among teammates because 

the majority of metrics do not consider individual action with a ball. Another alternative 

is the social network approach that uses the graph theory and provides some mixed 

information between individual action and tactical behavior (Passos et al., 2011). 

Moreover, the social network approach is a mixed method because the observational 

method is first used, followed by the computational method to classify the properties of 

a network graph (Duch, Waitzman, & Amaral, 2010). 

 

Some studies have used social network analysis to characterize the connections among 

players within a team (Bourbousson, Poizat, Saury, & Seve, 2010; Duch et al., 2010; 

Grund, 2012). These studies can be categorized as a network analysis of the global 

structure of the team and that of the individual connections among players (Clemente, 

Couceiro, Martins, & Mendes, 2014). In football, one study of the general analysis to 

the network graph of teams was conducted using 760 matches from the English Premier 

League (Grund, 2012). Using network metrics, high overall density levels of the 

network graph were found to enhance team performance. By contrast, high-centralized 

interaction degraded team performance.  

 

Another study that analyzed the structure of a team investigated the number of passes 

per minute and the clustering coefficient of teams in FIFA World Cup 2010 (Cotta et 

al., 2013). This study concluded that classifying some styles of play was possible. 
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In the individual analysis of players, one of the first studies that used the graph theory 

was applied in the European Cup 2008 tournament. The study aimed to quantify the 

contributions of each player and the overall team performance (Duch et al., 2010). That 

study used a network approach to identify the best individual performance of players 

and the best team performance.  

 

Another work studied the FIFA World Cup 2006 Finals and an international “A” match 

in Japan (Yamamoto & Yokoyama, 2011). This study analyzed the probability 

distribution that emerged in the passing behavior of players. The main results showed 

that a player who touched the ball many times frequently changed the player to whom 

he was connected by passes. 

 

Despite these important studies, an in-depth research on the network analysis of the 

individual classification of players and their contribution to the team process remains 

lacking. In fact, the information on how players connect with one another and build the 

attacking process is decreased. Such information is mainly considered in a tactical point 

of view. Moreover, studies that used the centrality metrics (such as between centralities  

and in-degree and out-degree network metrics) to determine the prominent players who 

contribute to the overall structure of a team’s network graph are scarce (Malta & 

Travassos, 2014; Peña & Touchette, 2012). The studies that used a closer approach only 

focused on the analysis in a small sample, such as case studies, and did not differentiate 

the players’ position that contributes most in building the attacking process in football.  

 

Based on the above-mentioned reasons, the present study aimed to identify the 

connections among teammates in all matches of FIFA World Cup 2014 and analyze the 

variance between players’ positions and the tactical lineup of national teams in their 

levels of in-degree, out-degree, closeness, and betweenness centralities. This study also 

aimed to identify the most prominent players and players’ positions that contribute to 

the building attack in national teams. 

 

 

2. Methods 

 

2.1. Sample 

A total of 64 matches from the FIFA World Cup 2014 tournament were analyzed and 

codified in this study. A total of 37,864 passes between teammates were recorded and 

processed. Each national team was analyzed in terms of all their matches. Thus, a total 

of 128 adjacency matrices and corresponding network graphs were generated and used 

to compute the centrality metrics. 

 

2.2. Data Collecting and Processing 

All matches in FIFA World Cup 2014 were examined. The players of national teams 

were codified by their players’ position on the basis of the tactical lineup of each 

national team. The tactical lineup of each team was classified by three football coaches 

with more than five years of experience. During the matches, the tactical lineup of some 

teams changed, and in these situations, the national teams were classified on the basis of 

tactical lineup on which each team spent more time. To guarantee the reliability of 

classification, the same three coaches classified the teams in two occasions (during and 
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one month after the FIFA tournament). These two classifications were tested by 

Cohen’s Kappa test, adhering to a 30 day interval for re-analysis to avoid task 

familiarity issues (Robinson & O'Donoghue, 2007). A Kappa value of 0.92 was 

obtained after testing the full data (tactical lineup), thus ensuring a recommended 

margin for this type of procedures (Robinson & O'Donoghue, 2007). Based on the 

global observation of the national teams, the tactical lineup variable was generalized in 

four factors: (i) 1-4-3-3, (ii) 1-4-2-3-1, (iii) 1-4-4-2, and (iv) 1-3-5-2. 

 

The tactical lineup was used in codifying the position of each player. A techno-tactical 

assignment was adopted to positional roles (Di Salvo et al., 2007), and the tactical 

position of goalkeeper and striker was added. The tactical assignment can be verified in 

Figure 1. 

 

 
 

Figure 1. players’positions codified based on match analysis. 

 

 

To study the connections between players’ positions, the linkage indicator of ball passes 

between teammates was defined. Thus, during all matches, all attacking instants with 

more than one pass were observed. Each sequence of passes was classified as a unit of 

attack. An attacking unit started at the moment that a team player made a successful 

pass to a teammate and finished when the team lost possession of the ball (e.g., ball out 

of boundaries, ball out of shot, and unsuccessful pass to a teammate). An adjacency 

matrix was generated per unit of attack. This matrix represents the connections between 

a node (player) and an adjacency node (teammate) (Passos et al., 2011). In the 

adjacency matrix, each pass between nodes was codified as 1 (one), and no passes 

between teammates were codified as 0 (zero). More than one pass between the same 

nodes were codified with the number of passes. Each player was classified with a 

number between P1 and P11 for easy codification. Figure 2 shows an example of all 

steps performed in data collecting and processing.  
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Figure 2. Sequence of data collecting and processing. 

 

 

The procedure described in Figure 2 only represents one unit of attack. Nevertheless, 

the final adjacency matrix that comprised the sum of all adjacency matrices from all 

units of attack was computed at the end of each match. The network metrics were 

computed on the basis of the final adjacency matrix, which will be further described in 

this study. The observation and codification of sequences of passes were performed by 

the same researcher with more than five years of experience in match analysis to 

minimize inter-reliability error. The observer was previously trained and was tested in a 

test-retest procedure to ensure the reliability of data. Cohen’s Kappa test adhered to a 

20-day interval for re-analysis to avoid task familiarity issues (Robinson & 

O'Donoghue, 2007). A Kappa value of 0.76 was obtained after testing 15% of the full 

data. The Kappa value ensured a recommended margin for this type of procedures 

(Robinson & O'Donoghue, 2007). 
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2.3. Centrality Measurement 

Once created, the adjacency matrices were imported in Social Networks Visualizer 

(SocNetV), which is an application for the visualization and analysis of social networks 

(Kalamaras, 2014). 

 

Social network analysts use a variety of measures (metrics or indices) to quantify the 

prominence or importance of each actor (node) inside a given social network (called 

“graph” in terms of graph theory). Considering that prominence may have different 

meanings for different types of network data, social network analysts have proposed and 

developed specific metrics or variants of older metrics, with each often focusing on 

different graph notions and thus being suitable for application to special graph types. 

For instance, the so-called out-degree centrality (ODC) considers the number of 

outbound edges from each network actor and may be applied to every network type, 

whereas the closeness centrality (CC) counts the total “distance” from the actor to all 

others but can be applied only to connected graphs and strongly connected directed 

graphs.  

 

The data in this study were analyzed using four widely known actor centrality metrics: 

out-degree, in-degree, closeness, and betweenness. The following sections briefly 

describe each of these metrics along with their common interpretation and meaning in 

the context of network analyses.  

 

2.4. Out-Degree Centrality 

The ODC, also known as “degree centrality” (Nieminen, 1974), of each node 𝑢 in an 

unvalued or directed graph G (V,E), with a set of nodes V and a set of edges E, is 

simply the count of outbound edges (arcs) from that node to all nodes that are connected 

to it (neighbors). This count is called the “out-degree” of a node.  

 

𝑂𝐷𝐶𝑢 = ∑ 𝑒𝑢𝑣
𝑔
𝑣=1,𝑢≠𝑣 where 𝑒𝑢𝑣 = 1if 𝑒𝑢𝑣 ∈ 𝐸, otherwise 𝑒𝑢𝑣 = 0 (1) 

 

Apparently, the theoretical maximum value of 𝑂𝐷𝐶𝑢  in a non-valued graph is (𝑔 − 1), 

where 𝑔 =  |𝑉|. That is, a node will have an absolutely maximum ODC score if it is 

outbound connected to every other node in the network. Thus, a standardized ODC 

index can be computed as follows: 

 

𝑂𝐷𝐶′𝑢 =
∑ 𝑒𝑢𝑣

𝑔
𝑣=1,𝑢≠𝑣

𝑔 − 1
 (2) 

 

In valued graphs and digraphs, that is, graphs where each edge has a value or weight, 

the ODC of each node is computed by summing the weights of all arcs from that node 

to its neighbors.  

 

𝑂𝐷𝐶𝑢 = ∑ 𝑎𝑢𝑣

𝑔

𝑣=1,𝑢≠𝑣

 (3) 

 

where 𝑎𝑢𝑣is the weight of 𝑒𝑢𝑣 ∈ 𝐸. 
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Given that valued graphs can have edges with arbitrarily low or high weights, a 

theoretical maximum ODC cannot be computed in those cases.  

 

For both valued and unvalued graphs, the ODC score of a node can be easily computed 

by summing the elements of the corresponding row of the adjacency matrix. 

 

𝑂𝐷𝐶𝑢 = ∑ 𝐴(𝑢, 𝑣)

𝑔

𝑣=1,𝑢≠𝑣

 (4) 

 

where 𝐴(𝑢, 𝑣) is (𝑢, 𝑣) element of the adjacency matrix A. 

 

By considering only the number of outbound edges, ODC is a simple metric for 

computation that is usually interpreted as a measure of the activity of each node. Nodes 

with higher ODC are connected to more nodes than those with lower ODC. Thus, such 

nodes are believed to be more important for the overall network structure.  

 

In the context of the soccer in this study, where each edge between nodes signifies the 

passes between the relevant teammates, the players with larger ODC scores are those 

who contributed more to their team’s offensive attempts through their passes to the 

other players of their team. 

  

2.5. In-Degree Centrality 

Whereas the ODC focuses on outbound edges from nodes, the “sister” metric called in-

degree centrality (IDC, also known as “degree prestige”) considers only the inbound 

links to each node from other nodes. Thus, the IDC score of each node u is the total 

number of its inbound edges (arcs) from all neighboring nodes that connect to it 

 

𝐼𝐷𝐶𝑢 = ∑ 𝑒𝑣𝑢

𝑔

𝑣=1,𝑢≠𝑣

 (5) 

 

where 𝑒𝑣𝑢 ∈ 𝐸. 

 

Similar to ODC, the theoretical maximum value of 𝐼𝐷𝐶𝑢 in a non-valued graph is (𝑔 −
1), where 𝑔 =  |𝑉|. Thus, a node may have an absolutely maximum IDC score among 

the network if it is inbound connected from every other node. Again, a standardized 

IDC index can be computed as follows: 

 

𝑂𝐷𝐶′𝑢 =
∑ 𝑒𝑢𝑣

𝑔
𝑣=1,𝑢≠𝑣

𝑔 − 1
 (6) 

 

The IDC can be computed for valued graphs and digraphs as well. In these cases, the 

IDC of each node is the sum of weights of all inbound arcs to that node from its 

neighbors 

 

𝐼𝐷𝐶′𝑢 = ∑ 𝑎𝑣𝑢

𝑔

𝑣=1,𝑢≠𝑣

 (7) 
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where 𝑎𝑣𝑢is the weight of 𝑒𝑣𝑢 ∈ 𝐸. 

 

Similar to ODC, the IDC score of a node can be easily computed by summing the 

elements of the corresponding column of the adjacency matrix. 

 

Given that the IDC index considers only inbound links, it is often used as indication of 

the “prestige” of each node among its peers. Nodes with high IDC scores are those that 

receive many inbound links from other nodes. These links can be interpreted as 

“choices” or “nominations” to a specific actor from others. Thus, a larger IDC score of 

an actor indicates that this actor is more prestigious or important among its peers. 

 

Analysis of the data in this study shows that the players with higher IDC scores are 

obviously those to whom their teammates preferred to pass the ball more often. These 

players might possibly be the ones crucial for their team’s offensive development 

because they receive the ball more often than other players during their team’s attempt 

to attack.  

  

2.6. Closeness Centrality 

The CC (Freeman, 1979; Sabidussi, 1966) is a more complex index than both the 

above-mentioned degree centrality metrics. Rather than merely counting edges, this 

index attempts to quantify actor importance in terms of their total graph theoretic 

distance in the social network. 

 

In graph theory, the geodesic distance 𝑑 (or just distance) of two nodes 𝑢, 𝑣 in a non-

directed unvalued graph is the length of the shortest path (called geodesic) between 

them. That is, the distance of two nodes is the minimum number of edges one has to 

traverse to move from the first node to the second. For instance, if node u is connected 

with an edge to v, which in turn is connected to w, then the distance between u and v is 

𝑑(𝑢, 𝑣) = 1 , whereas the distance between u and w is 𝑑(𝑢, 𝑤) = 2 . In undirected 

graphs, the distance of two nodes is reciprocal: if 𝑑(𝑢, 𝑤) = 𝑥 , then by definition, 

𝑑(𝑤, 𝑢) = 𝑤 as well. 

 

Apparently, graphs can have multiple geodesics that connect a pair of nodes with the 

same length. If no path connects two nodes, then these nodes are called not connected or 

not reachable, and their distance is infinite: 𝑑(𝑢, 𝑣) =  ∞.  

 

In directed graphs, the distance d of two nodes 𝑢, 𝑣 is the length of a shortest path 

starting from node u and ending at node v. In this case, their distance is not always 

reciprocal. Whether 𝑑(𝑢, 𝑤) = 𝑑(𝑤, 𝑢) is uncertain because there can be one or more 

directed geodesics of length 𝑙 from 𝑢 to 𝑣, but an “opposite” geodesic from 𝑣 to 𝑢 can 

go through different intermediate nodes or it cannot exist at all. 

 

The CC of each node in an undirected graph is the inverse sum of its distances to all 

other nodes: 
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𝐼𝐷𝐶𝑢 = ∑ 𝑒𝑣𝑢

𝑔

𝑣=1,𝑢≠𝑣

 (8) 

 

Apparently, in unvalued graphs and digraphs, the CC index of each node has a 

maximum value of 1 (𝑔 − 1)⁄ . Thus, a standardized CC can be computed by the 

following formula: 

 

𝐶𝐶′𝑢 =
𝑔 − 1

∑ 𝑑(𝑢, 𝑣)𝑔
𝑣=1,𝑢≠𝑣

 (9) 

 

The computation of CC is more complex than that of degree-based centralities because 

the matrix of distances should be computed first using either Breadth-First Search for 

unvalued graphs or Dijkstra’s algorithm for valued networks. In essence, the CC score 

of each node in a graph is the sum of the corresponding rows of the distance matrix of 

the graph. 

 

At this point, the computation of CC in weighted graphs has even more complications 

because the notion of distance and shortest path should be extended first to 

accommodate edge weights. The distance of two nodes u,v in a valued graph can be 

computed as the sum of the weights of the edges in a shortest path from u to v. 

However, clarifying what a shortest path is would also be necessary. For instance, if the 

edge weights denote “cost,” then the shortest path could naturally be that of minimum 

total sum of weights. By contrast, if the edge weights denote “votes” or “nominations”, 

then a shortest path might also have the maximum total sum of weights. In the latter 

case, social network analysts usually invert the distances before computing distance-

based indices. In this study, the CC index (or betweenness centrality [BC] described 

below) was not extended to consider edge weights. Rather, distances were computed by 

omitting weights.  

 

Given that the distance of two unconnected nodes is infinite, the CC index cannot be 

used straightforwardly in not-connected graphs or not-strongly connected digraphs. In 

not-connected undirected graphs, the CC metric can be calculated either by dropping 

isolated nodes or by computing a variant of CC, which considers the distance of each 

node u to all nodes in its influence range J (the set of nodes that are reachable from 𝑢): 

 

𝐶𝐶𝑢 =
|𝐽| 𝑔 − 1⁄

∑ 𝑑(𝑢, 𝑣)𝑣∈𝐼,𝑢≠𝑣 |𝐽|⁄
 (10) 

 

where 𝐽 the set of all nodes reachable from 𝑢. 

 

The last formula can also compute CC in the case of not-strongly connected directed 

graphs.  

 

In any case, the CC score of a node quantifies the proximity of how close is such node 

to its peers. Nodes with higher CC scores can reach more nodes in fewer steps than 

those with lower CC scores. This metric can also be interpreted as an index of the 

capability of a node to access or pass information to other nodes in the network.  
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In the context of the dataset used in this study (passes between teammates in FIFA 

World Cup 2014), the CC index of each player denotes how close, in terms of passes, 

that player has been to all other teammates during the development of the team’s attack. 

High CC scores of a player might indicate that this player not only participated in the 

attacks successfully passing to other players, but was also closer to the final outcome of 

the attack (i.e., shoot and out). 

 

2.7. Betweenness Centrality 

The last actor centrality index used in this study is BC (Anthonisse, 1971; Freeman, 

1979), which is the most complex yet the most meaningful. Rather than focusing only 

on the distances between actors, the BC index attempts to measure the extent of the 

control that each node holds over the network by considering the shortest paths between 

all pairs of nodes. 

 

The BC index of each node 𝑢 is computed by counting the relative number of shortest 

paths between pairs of other nodes that pass through 𝑢. In graph-theoretic terms, the BC 

score of a node 𝑢 is the ratio of all geodesics between pairs of nodes that run through it. 

Let denote the total number of geodesics between nodes 𝑠  and 𝑡  and 𝜎𝑠𝑡(𝑢) the 

geodesics that pass through node 𝑢 (also called the dependency of 𝑠, 𝑡 on 𝑢), then the 

actor BC index is given by the following formula: 

 

𝐵𝐶𝑢 = ∑
𝜎𝑠𝑡(𝑢)

𝜎𝑠𝑡
𝑠≠𝑡≠𝑢∈𝑉

 (11) 

 

In directed graphs each node 𝑢 can apparently lie at most at (𝑔 − 1)(𝑔 − 2) geodesics, 

which is the number of pairs of nodes, except for u. In undirected graphs, where pair 

ordering does not matter, 
(𝑔−1)(𝑔−2)

2
 pairs exist. Thus, the BC score of each node u can 

be standardized by dividing by (𝑔 − 1)(𝑔 − 2) and 
(𝑔−1)(𝑔−2)

2
 for directed and undirected 

graphs, respectively: 

 

𝐵𝐶′𝑢 =
∑

𝜎𝑠𝑡(𝑢)
𝜎𝑠𝑡

𝑠≠𝑡≠𝑢∈𝑉

(𝑔 − 1)(𝑔 − 2)
 (12) 

 

for diagraphs, and 

 

𝐵𝐶′𝑢 =
2 ⋅ ∑

𝜎𝑠𝑡(𝑢)
𝜎𝑠𝑡

𝑠≠𝑡≠𝑢∈𝑉

(𝑔 − 1)(𝑔 − 2)
 (13) 

 

for undirected graphs. 

 

The computation of BC is the most complicated among the centrality metrics used in 

this study because the shortest paths between every pair of nodes (𝑠, 𝑡)  should be 

computed first. Thereafter, the number of paths that pass through u should be counted. 

Finally, all the fractions for all pairs (𝑠, 𝑡) should be summed.  
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The BC index is often considered the most meaningful measure among other centrality 

indices because it successfully quantifies how often each node lies between other nodes 

of the network, perhaps acting as a mediator or “bridge” for them. In essence, the BC 

score of each node can be explained as a measure of the relative control that node has 

on other nodes. In social network analyses, nodes with higher BC scores are commonly 

assumed to have a higher probability to exert control on the information flow between 

other nodes in the same network.  

 

As regards the passing game data, players with higher BC scores might be those who 

more often were situated between their teammates. For instance, a player with high BC 

score could be important in passing the ball to others. 

 

2.8. Variables of the Study  

This study aimed to analyze the variance of centrality measures between players’ 

positions and attempted to identify the most prominent players’ positions that contribute 

to building the attack. The players’ position of players depends on the tactical lineup 

adopted by each national team. Thus, both variables (players’ position and tactical 

lineup of national teams) were used as independent variables in this study. To identify 

the most prominent players’ positions in all national teams, the social network analysis 

approach, particularly the network metrics of centrality, was used with the following 

considerations: (i) IDC (%IdC—to identify the players’ position that most players 

receive the ball from teammates), (ii) ODC (%OdC—to identify the players’ position 

that starts the build of attack), (iii) CC (%CC—to identify the simplest manner of 

reaching a particular player within a team), and (iv) BC (%BC—to identify how the ball 

flows between other tactical positions depending on a particular players’ position).  

 

2.9. Statistical Procedures 

The influences of tactical lineup and players’ position factors on the %IdC, %OdC, 

%CC, and %BC were analyzed using two-way MANOVA after validating the normality 

and homogeneity assumptions. MANOVA was specifically selected because it reduces 

Type I Error Inflation compared with ANOVA (O’Donoghue, 2012, p. 242; Pallant, 

2011, p.283). In many cases, MANOVA can detect statistical differences that many 

one-way ANOVAs cannot (Maroco, 2011, p. 276; Pallant, 2011, p. 283). The 

assumption of normality for each univariate-dependent variable was examined using 

Kolmogorov–Smirnov tests (p-value < 0.05). The assumption of the homogeneity of the 

variance/covariance matrix of each group was examined using the Box’s M Test 

(Pallant, 2011). No homogeneity was shown. When the MANOVA detected significant 

statistical differences between the two factors, the two-way ANOVA was used for each 

dependent variable, followed by Tukey’s HSD post-hoc test (O'Donoghue, 2012). When 

the two-way ANOVA showed an interaction between factors, it also generated a new 

variable that crossed the two factors (e.g., 1-4-3-3*Goalkeeper; 1-4-2-3-1*Central 

Midfielder) for each dependent variable to identify statistical significance (Maroco, 

2012). Ultimately, the statistical procedures used were one-way ANOVA and Tukey’s 

HSD post-hoc test. If no interactions were detected in the two-away ANOVA, one-way 

ANOVA was used for each independent variable. All statistical analyses were 

performed using IBM SPSS Statistics (version 21) at a significance level of p < 0.05. 
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The following scale was used to classify the effect size and the power of the test 

(Hopkins, Hopkins, & Glass, 1996): very small, 0–0.01; small, 0.01–0.09; moderate, 

0.09–0.25; large, 0.25–0.49; very large, 0.49–0.81; and nearly perfect, 0.81–1.0. 

 

 

3. Results 

 

The two-way MANOVA revealed that the players’ position (p = 0.001; 𝜂𝑝
2= 0.143; 

Power = 1.00; moderate effect size) had significant main effects on the centrality 

measures. No statistical differences were found in the tactical lineup (p = 0.643; 𝜂𝑝
2= 

0.002; Power = 1.00; very small effect size). Significant interaction (Pillai’s Trace = 

0.071; F52,5540 = 1.917; p = 0.001; 𝜂𝑝
2= 0.018; Power = 1.00; small effect size) was found 

between tactical lineup and players’ position on centrality measures. As previously 

indicated in the statistical procedures, two-way ANOVA was conducted for each 

dependent variable after the confirmation of the interaction (O’Donoghue, 2012, p. 

243). 

 

Interaction was found between factors (tactical line up and players’ positions) for %IdC 

(F = 3.764; p = 0.001; 𝜂𝑝
2= 0.034; Power = 0.999; small effect size), %OdC (F = 4.322; 

p = 0.039; 𝜂𝑝
2= 0.006; Power = 1.00; small effect size), and %CC (F = 2.412; p = 0.003; 

𝜂𝑝
2= 0.022; Power = 0.978; small effect size). No interaction was found between factors 

for %BC (F = 1.383; p = 0.160; 𝜂𝑝
2= 0.013; Power = 0.800; small effect size). 

One-way ANOVA tested the crossing among factors. Statistical differences were found 

between the new variable (cross between tactical lineup and players’ position) and the 

dependent variables of %IdC (F = 38.983; p = 0.001; 𝜂𝑝
2= 0.382; Power = 1.00; large 

effect size), %OdC (F = 44.018; p = 0.001; 𝜂𝑝
2= 0.411; Power = 1.00; large effect size), 

and %CC (F = 28.477; p = 0.001; 𝜂𝑝
2= 0.311; Power = 1.00; large effect size). The post-

hoc results are shown in Table 1. 
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Table 1. Descriptive table (mean and standard deviation) and statistical comparison 

between crossing factors. 
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  1-4-3-3 

%IdC 2.71(0.20) 8.98(0.29) 8.67(0.28) 11.53(0.26) 9.57(0.33) - 8.26(0.54) 

%OdC 4.99(0.26) 10.95(0.34) 10.06(0.30) 11.43(0.34) 6.95(0.30) - 4.79(0.25) 

%CC 8.24(0.13) 9.22(0.09) 9.57(0.10) 9.69(0.09) 8.53(0.10) - 8.05(0.11) 

  1-4-2-3-1 

%IdC 2.11(0.18) 10.12(0.33) 8.67(0.26) 11.45(0.28) 9.25(0.26) - 7.48(0.38) 

%OdC 4.38(0.24) 11.46(0.23) 10.01(0.27) 11.29(0.29) 6.95(0.31) - 4.92(0.28) 

%CC 8.01(0.13) 9.39(0.07) 9.35(0.08) 9.88(0.09) 8.47(0.09) - 7.95(0.13) 

  1-4-4-2 

%IdC 2.66(0.38) 10.57(0.62) 8.44(0.81) 12.32(0.77) 9.81(0.53) 7.53(0.66) - 

%OdC 4.41(0.71) 13.46(0.82) 9.84(0.89) 12.67(0.97) 7.20(0.54) 4.62(0.46)  - 

%CC 8.41(0.39) 9.64(0.29) 9.62(0.27) 10.17(0.27) 8.50(0.18) 7.87(0.26)  - 

 
1-3-5-2 

%IdC 3.78(0.46) 9.64(0.38) 9.89(0.49) 9.55(0.42) - 9.31(0.60)  - 

%OdC 5.39(0.50) 10.46(0.35) 11.20(0.47) 8.87(0.48) - 6.72(0.45)  - 

%CC 8.05(0.22) 9.01(0.15) 9.61(0.13) 9.33(0.13) - 8.57(0.17)  - 

 

 

In the case of %BC, one-way ANOVA was performed on each independent variable 

because no interaction was found among factors (Table 2). The results for %BC (Table 

2) showed statistical differences in the tactical lineup of 1-4-3-3 (F = 35.109; p = 0.001; 

𝜂𝑝
2 = 0.264; Power = 1.000; large effect size), 1-4-2-3-1 (F = 51.391; p = 0.001; 𝜂𝑝

2 = 

0.293; Power = 1.000; large effect size), 1-4-4-2 (F = 6.650; p = 0.001; 𝜂𝑝
2 = 0.357; 

Power = 1.000; large effect size), and 1-3-5-2 (F = 10.570; p = 0.001; 𝜂𝑝
2  = 0.164; 

Power = 1.000; moderate effect size). 
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Table 2. One-way ANOVA values in players’ position in each tactical lineup in %BC. 
    M(SD) F p  𝜂𝑝

2 Power 

1-4-3-3 

Goalkeeper 2.05(0.26)b,c,d,e,g 

 35.109 0.001   0.264 1.000  

External Defenders 10.20(0.63)a,d,e,g 

Central Defenders 10.79(0.62)a,e,g 

Central Midfielders 12.39(0.54)a,b,e,g 

External Midfielders 6.59(0.50)a,b,c,d 

Forwards - 

Striker 5.60(0.61)a,b,c,d 

1-4-2-3-1 

Goalkeeper 1.89(0.21) b,c,d,e,g 

 51.391 0.001  0.293   1.000 

External Defenders 10.98(0.56)a,e,g 

Central Defenders 11.02(0.64)a,e,g 

Central Midfielders 12.37(0.47)a,e,g 

External Midfielders 5.82(0.38)a,b,c,d 

Forwards - 

Striker 5.37(0.44) a,b,c,d 

1-4-4-2 

Goalkeeper 1.37(0.28)b,c,d 

 6.650 0.001   0.357 1.000  

External Defenders 11.61(1.50)a 

Central Defenders 10.49(2.09)a 

Central Midfielders 14.40(1.77)a,e,f 

External Midfielders 7.54(1.53)d 

Forwards 5.28(1.25)d 

Striker - 

1-3-5-2 

Goalkeeper 2.48(0.51)b,c,d,f 

 10.570  0.001  0.164  1.000  

External Defenders 9.37(0.89)a 

Central Defenders 11.47(0.78)a,f 

Central Midfielders 9.77(0.81)a 

External Midfielders - 

Forwards 7.52(0.83)a,c 

Striker - 

Significantly different compared with Goalkeeperª, External Defendersb, Central Defendersc, Central 

Midfieldersd, External Midfielderse, Forwardsf, and Strikerg at p ˂ 0.05. 

 

 

In the players’ position analysis, the results for %BC (Table 3) showed statistical 

differences in the Central Midfielders (F = 3.522; p = 0.015; 𝜂𝑝
2  = 0.027; Power = 

0.781; small effect size). No differences were found in Goalkeeper (F = 0.860; p = 

0.464; 𝜂𝑝
2 = 0.020; Power = 0.233; small effect size), External Defenders (F = 0.953; p 

= 0.415; 𝜂𝑝
2 = 0.011; Power = 0.259; small effect size), Central Defenders (F = 0.167; p 

= 0.918; 𝜂𝑝
2 = 0.002; Power = 0.081; very small effect size), External Midfielders (F = 

1.318; p = 0.270; 𝜂𝑝
2 = 0.012; Power = 0.283; small effect size), Forwards (F = 1.835; p 

= 0.182; 𝜂𝑝
2 = 0.035; Power = 0.264; small effect size), and Striker (F = 0.096; p = 

0.757; 𝜂𝑝
2 = 0.001; Power = 0.061; very small effect size). 
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Table 3. One-way ANOVA values in tactical lineup in each players’ position in %BC. 
    M(SD) F p  𝜂𝑝

2 Power 

Goalkeeper 

1-4-3-3 2.05(0.26) 

 0.860  0.464 0.020   0.233 
1-4-2-3-1 1.89(0.21) 

1-4-4-2 1.37(0.28) 

1-3-5-2 2.48(0.51) 

External 

Defenders 

1-4-3-3 10.20(0.63) 

 0.953  0.415  0.011  0.259 
1-4-2-3-1 10.98(0.56) 

1-4-4-2 11.61(1.50) 

1-3-5-2 9.37(0.89) 

Central Defenders 

1-4-3-3 10.79(0.62) 

0.167 0.918 0.002 0.081 
1-4-2-3-1 11.02(0.64) 

1-4-4-2 10.49(2.09) 

1-3-5-2 11.47(0.78) 

Central 
Midfielders 

1-4-3-3 12.39(0.54)d 

3.522   0.015  0.027 0.781  
1-4-2-3-1 12.37(0.47)d 

1-4-4-2 14.40(1.77) 

1-3-5-2 9.77(0.81)a,b 

External 

Midfielders 

1-4-3-3 6.60(0.50) 

1.318 0.270 0.012 0.283 
1-4-2-3-1 5.82(0.38) 

1-4-4-2 7.54(1.53) 

1-3-5-2 - 

Forwards 

1-4-3-3 - 

1.835   0.182  0.035  0.264 
1-4-2-3-1 - 

1-4-4-2 5.28(1.25) 

1-3-5-2 7.52(0.83) 

Strikers 

1-4-3-3 5.60(0.61) 

0.096  0.757 0.001   0.061 
1-4-2-3-1 5.37(0.44) 

1-4-4-2 - 

1-3-5-2 - 

Significantly different compared with 1-4-3-3ª; 1-4-2-3-1b; 1-4-4-2c; and 1-3-5-2d at p˂0.05 

 

 

4. Discussion 

 

Identifying the most prominent players that build the attack of a football team is one of 

the key indicators of match analysis by the opposing teams. In fact, the strategy of 

opponents is often to block the prominent player to prevent a successful attack. 

Moreover, knowledge on the individual contribution of each player for the overall 

connection of the team can be an important indicator that may increase the possibility of 

optimizing the tactical behavior of football players. Thus, this study focused on 

identifying the players’ positions that contribute more to the attacking process of 

national teams in FIFA World Cup 2014. 

 

The pass between players is one of the main indicators that determines the connections 

among teammates in the attacking process. To build a network approach, the players 

were considered as the node and the pass as the linkage indicator. After collecting such 

indicators, social network analysis was used to determine the most prominent tactical 

positions in building the attack on football. During the attacking phase, players who act 

as a link in the moments between recovering the ball until the proximity to shot. Thus, 
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determining the players’ positions that most often start the unit of attack is important. 

The ODC (%OdC) was used in the analysis (Wasserman & Faust, 1994). The results 

revealed that the highest levels of %OdC were found in the central midfielders, 

specifically in the 1-4-3-3 and 1-4-2-3-1 tactical lineups. The highest mean values of 

%OdC were found in external defenders and central defenders in the 1-4-4-2 and 1-3-5-

2 tactical lineups, respectively. These results suggest that the central midfielders act as 

the priority link of the team to build the attack in football. In fact, the central midfielder 

shows higher centrality based on network results. This result is consistent with that of 

previous studies on football (Duch et al., 2010; Malta & Travassos, 2014). The results 

found on 1-3-5-2 can be justified by the higher relevance of the central defender in this 

tactical lineup. Malta and Travassos (2014) found that the player with the highest 

%OdC was the defensive midfielder because he links the defense and the middle in the 

first phase of building attack. In the case of 1-3-5-2, the central defender acts as a 

defensive midfielder in the attacking moment. Thus, player in this playing position is a 

relevant player in building the attack, that is, mainly starts the unit of attack with passes 

for the playmakers and forwards. Excluding the goalkeeper, the forwards showed the 

lowest levels of %OdC. Once again these results were consistent with a study that 

analyzed the attacking transition of one team during four matches (Malta & Travassos, 

2014). These results can be justified by the tactical role and mainly being the final 

targets of the players in building the attack. These players were also not active in the 

majority of the time in building the attack. Nevertheless, it is important to highlight that 

this may not always occur and depends from contextual variables. 

 

Another important indicator that should be considered in match analysis is the players’ 

position in which most players receive passes from their teammates. These players’ 

positions can be considered as the final targets of the attacking process. The network 

metric of IDC (%IdC) was used for such analysis, as suggested by Wasserman and 

Faust (1994). The results showed that the players’ position with the highest levels of 

%IdC was the central midfielder in the tactical lineup with four defenders (1-4-3-3, 1-4-

2-3-1, and 1-4-4-2). In the case of 1-3-5-2, the highest mean value was found in the 

central defender. The results also showed that the forwards and strikers were the 

players’ positions with the lowest %OdC in all tactical lineups. These results differ 

from the findings of Malta and Travassos (2014), who only studied the specific phase of 

the defense–attack transition. In the present study, all units of attack were investigated. 

Thus, most of the time the process of building the attack from behind ends in the middle 

without an active participation of the forward players. Normally, the players in the 

middle of the field increase their participation at the start of building the attack and in 

the final phase of the attacking process when they lose the ball. Therefore, these results 

suggest that in the majority of the tactical lineup, the central midfielder is the prominent 

players’ position at the start and end of building the attack. By contrast, the forwards 

have the lowest participation in building the attack. Finally, the central and external 

defenders could also contribute to building the attack through passing and receiving the 

ball, mainly in the moments of the game in which controlling the match with passes 

between defenders without moving forward is necessary. 

 

Aside from IDC and ODC, CC (%CC) and BC (%BC) of players’ positions were also 

studied. They respectively represent the players who showed highest connections with 

their teammates, and the ball flow between other players depends on that particular 
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players’ position (Peña & Touchette, 2012). The results of this study showed that the 

central midfielders had the highest levels of %CC and %BC in all tactical lineups with 

four defenders, with the exception of 1-3-5-2. In this case, the highest levels were found 

in central defenders. The highest values found in midfielders are consistent with the 

study performed in the FIFA World Cup 2010 Finals, despite of no tactical-lineup have 

been studied (Peña & Touchette, 2012). They found that in the Spanish team, the 

players with greatest values of closeness were Xavi (central midfielder) and Busquets 

(defensive midfielder). Meanwhile, in the German team, the highest values of 

betweenness and closeness were found in Lahm (external defender), Mertesacker 

(central defender), and Schweinsteiger (central midfielder). These results on central 

midfielders and central defenders are consistent with those from %IdC and %OdC. The 

highest volume of passes between such players’ positions, mainly in the first phase of 

building the attack, increases the connection among teammates in the defensive and 

middle sectors. Thus, the lowest values of %CC and %BC in forwards and strikers are 

justified. The results in forwards and strikers in the present study are consistent with the 

study conducted in the FIFA World Cup 2010 Finals (Peña & Touchette, 2012). The 

authors noted that forwards almost always can be identified as the players who have the 

lowest closeness and betweenness values explained by their patterns of play farthest 

from the defenders and midfielders who have the highest volume of play. 

 

The present study had some limitations. First, each player was not identified. Only their 

players’ position, not their name, was considered. This limitation is important mainly 

because some players have different levels of importance in teams, and the overall 

codification can decrease the individual perception of their contribution. Second, a 

particular national team was not analyzed because this study aimed to understand the 

global participation of players’ positions and not to consider each national team. Surely, 

the results in some national teams may vary mainly because each national team has a 

specific style of play and a strategy to act. Despite these limitations, the findings of this 

study may increase the importance of network analysis in match analysis. The network 

metrics used in this study can provide useful information on the specific characteristics 

of each team and help the coaches to understand the most relevant and prominent 

players in building the attacking process. The results of this study can be a great 

practical application for the future of match analysis. This study also provides some 

opportunities for future works. The use of these tactical metrics may increase the 

knowledge on the specific tactical behavior of players in specific moments, such as only 

in counter-attack or even only in the first stage of building the attack during the 

defense–attack transition. Further studies should be conducted using different 

indicators, such as shots and goals, or defensive indicators, such as recovering balls and 

passing interceptions. 

 

 

5. Conclusion 

 

This study extends the previous research on network and team performance in football 

by incorporating repeated observations of top national teams that competed in FIFA 

World Cup 2014. Applied network centrality metrics measured the importance of each 

tactical position in building the attacking process. The results reveal that central 

midfielders are the prominent players in the attacking process in the majority of tactical 
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lineups. These players show the highest levels of connection with their teammates and 

are significantly relevant in making passes and linking the sectors of the team. 

Goalkeepers, forwards, and strikers show the lowest contribution to building the 

attacking process, mainly owing to their specific tactical role. Their specific position 

decreases their participation in the first stages of building the attack. 

 

 

6. Acknowledgments 

 

This work was supported by the FCT project PEst-OE/EEI/LA0008/2013. 

 

 

7. References 

 

Anthonisse, I. M. (1971). The Rush in a Graph. Amsterdam, Netherlands: 

Mathematisch Centrum. 

Barreira, D., Garganta, J., Guimarães, P., Machado, J., & Anguera, M. T. (2014). Ball 

recovery patterns as a performance indicator in elite soccer. Proceedings of the 

Institution of Mechanical Engineers, Part P: Journal of Sports Engineering 

and Technology, 228(1), 61-72.  

Bourbousson, J., Poizat, G., Saury, J., & Seve, C. (2010). Team Coordination in 

Basketball: Description of the Cognitive Connections Among Teammates. 

Journal of Applied Sport Psychology, 22(2), 150-166.  

Clemente, F. M., Couceiro, M. S., Martins, F. M. L., & Mendes, R. S. (2014). Using 

network metrics to investigate football team players' connections: A pilot study. 

Motriz, 20(3), 262-271. 

Clemente, F. M., Couceiro, M. S., Martins, F. M. L., Mendes, R., & Figueiredo, A. J. 

(2013). Measuring Collective Behaviour in Football Teams: Inspecting the 

impact of each half of the match on ball possession. International Journal of 

Performance Analysis in Sport, 13(3), 678-689.  

Cotta, C., Mora, A. M., Merelo, J. J., & Merelo-Molina, C. (2013). A network analysis 

of the 2010 FIFA world cup champion team play. Journal of Systems Science 

and Complexity, 26(1), 21-42.  

Couceiro, M. S., Clemente, F. M., Martins, F. M. L., & Tenreiro Machado, J. A. (2014). 

Dynamical Stability and Predictability of Football Players: The Study of One 

Match. Entropy, 16(2), 645-674.  

Di Salvo, V., Baron, R., Tschan, H., Calderon Montero, F. J., Bachl, N., & Pigozzi, F. 

(2007). Performance characteristics according to playing position in elite soccer. 

Int J Sports Med, 28, 222-227.  

Duarte, R., Araújo, D., Correia, V., & Davids, K. (2012). Sports Teams as 

Superorganisms: Implications of Sociobiological Models of Behaviour for 

Research and Practice in Team Sports Performance Analysis. Sports Medicine, 

42(8), 633-642.  

Duch, J., Waitzman, J. S., & Amaral, L. A. (2010). Quantifying the performance of 

individual players in a team activity. PloS One, 5(6), e10937.  

Freeman, L. C. (1979). Centrality in Social Networks Conceptual Clarification. Social 

Networks, 1, 215-239.  



722 
 

Grund, T. U. (2012). Network structure and team performance: The case of English 

Premier League soccer teams. Social Networks, 34(4), 682-690.  

Hopkins, K. D., Hopkins, B. R., & Glass, G. V. (1996). Basic statistics for the 

behavioral sciences. Boston: Allyn and Bacon. 

Hughes, M. D., & Bartlett, R. M. (2002). The use of performance indicators in 

performance analysis. Journal of Sports Sciences, 20(10), 739-754.  

Kalamaras, D. (Producer). (2014). Social Networks Visualizer (SocNetV): Social 

network analysis and visualization software. Social Networks Visualizer.  

Malta, P., & Travassos, B. (2014). Characterization of the defense–attack transition of a 

soccer team. Motricidade, 10(1), 27-37.  

Maroco, J. (2012). Análise Estatística com utilização do SPSS [Statistical analysis with 

SPSS]. Lisbon, Portugal: Edições Silabo. 

Nieminen, J. (1974). On the centrality in a graph. Scandinavian Journal of 

Psychology, 15(1), 332-336.  

O'Donoghue, P. (2012). Statistics for sport and exercise studies: An introduction. 

London and New York, UK and USA: Routledge Taylor & Francis Group. 

Pallant, J. (2011). SPSS Survival Manual: A Step by Step Guide to Data Analysis 

Using the SPSS Program. Australia: Allen & Unwin. 

Passos, P., Davids, K., Araújo, D., Paz, N., Minguéns, J., & Mendes, J. (2011). 

Networks as a novel tool for studying team ball sports as complex social 

systems. Journal of Science and Medicine in Sport, 14(2), 170-176.  

Peña, J. L., & Touchette, H. (2012). A network theory analysis of football strategies. 

Paper presented at the arXiv preprint arXiv. 

Robinson, G., & O'Donoghue, P. (2007). A weighted kappa statistic for reliability 

testing in performance analysis of sport. International Journal of 

Performance Analysis in Sport, 7(1), 12-19.  

Sabidussi, G. (1966). The centrality index of a graph. Psychometrika, 31(581–603).  

Vilar, L., Araújo, D., Davids, K., & Bar-Yam, Y. (2013). Science of winning football: 

emergent pattern-forming dynamics in association football. Journal of Systems 

Science and Complexity, 26, 73-84.  

Wasserman, S., & Faust, K. (1994). Social network analysis: Methods and 

applications. New York, USA: Cambridge University Press. 

Yamamoto, Y., & Yokoyama, K. (2011). Common and unique network dynamics in 

football games. PloS One, 6(12), e29638.  

 

 

Corresponding author: 

 

Filipe Manuel Clemente 

 

Polytechnic Institute of Coimbra, ESEC, Department of Education, Portugal 

Filipe.clemente5@gmail.com  

 

mailto:Filipe.clemente5@gmail.com

