

DEPARTAMENTO DE INFORMÁTICA E SISTEMAS

Automatic Test Definition for High-Integrity

Systems

Relatório de Trabalho de Projeto para a obtenção do grau de
Mestre em Engenharia Informática

Especialização em Desenvolvimento de Software

Autor

Luís Miguel Coelho Jordão

Orientadores

Professor Doutor João Cunha, DEIS-ISEC

Professor Doutor João Gabriel Silva, Critical Software

Coimbra, Maio 2023

INSTITUTO POLITÉCNICO
DE COIMBRA

INSTITUTO SUPERIOR

DE ENGENHARIA
DE COIMBRA

Mestrado em Engenharia Informática

Automatic Test Definition for High-Integrity
Systems

Relatório de Projeto apresentado para a obtenção do grau de Mestre em
Engenharia Informática

Autor

Luís Miguel Coelho Jordão

Orientadores

Professor Doutor João Cunha

Departamento de Engenharia Informática e Sistemas

Instituto Superior de Engenharia de Coimbra

Professor Doutor João Gabriel Silva

Critical Software, SA

Coimbra, Maio 2023

Acknowledgments

Este projecto de mestrado é o resultado de um longo caminho percorrido.
O resultado deste caminho surge com um enorme sentimento de gratidão para

com as pessoas que directa e indirectamente me ajudaram a percorrê-lo.
Agradeço ao professor Doutor João Cunha pela sua inexcedível orientação, pela

visão crítica, pelo rigor científico e pelas palavras de motivação para o longo caminho
a percorrer.

Agradeço ao professor Doutor João Gabriel Silva por me ter proposto este tema
de trabalho e pela sua preciosa orientação na Critical Software, S.A., pelo estímulo
intelectual nas conversas técnicas que fomos tendo, e por ter zelado sempre pelo
sucesso deste projecto.

Quero também agradecer ao Instituto Superior de Engenharia de Coimbra,
nomeadamente aos professores, por me terem providenciado os recursos, ensinamentos
e a oportunidade de conduzir este trabalho e pesquisa, assim como aos meus colegas
de mestrado que me acompanharam neste percurso, pelo suporte e pelo ambiente
colaborativo que providenciaram.

Aos colaboradores da Critical Software, S.A. pelo contributo, pelas discussões
técnicas e pelo interesse que demonstraram no Sesnando.

À minha familia, à minha companheira e aos amigos, pelo companheirismo, pelas
conversas, pela compreensão e por torceram pela minha chegada à meta. A vocês
irei dedicar mais tempo.

Estou-vos bastante grato por ter aqui chegado.

i

Resumo

A atividade de testes é uma das tarefas mais dispendiosas no ciclo de vida de
desenvolvimento de software.

No sentido de otimizar o esforço gasto nestas tarefas, foi desenvolvida uma
ferramenta, Sesnando, cujo objectivo é interpretar e compilar requisitos de sistema
escritos numa linguagem natural controlada e a partir destes gerar automaticamente
um conjunto de testes que permitam verificar a implementação destes mesmos
requisitos.

Durante a fase de interpretação do requisito, o Sesnando age como um validador da
sua escrita e fornece mensagens ao utilizador sobre a sua construção. Posteriormente,
gera um conjunto de testes para a sua verificação.

Neste trabalho, é também feita uma avaliação sobre as capacidades do Sesnando
assim como uma análise relativamente aos métodos tradicionais. Os resultados
obtidos mostram que é possível reduzir o esforço na atividade de especificação de
testes de sistema em até 90%.

Palavras Chave: Sesnando, Testes, Automaticamente, Software, Comboios,
Ferrovia, Locomotiva, Requisitos, Testes Automáticos

iii

Abstract

The Software testing activity is one of the most expensive tasks in the lifecycle
of software development.

In order to optimize the effort spent on these tasks, Sesnando tool has been
developed whose objective is to interpret and compile system requirements written
in a controlled natural language and from these, automatically generate a set of tests
that verify the implementation of these requirements.

During the requirements interpretation phase, the Sesnando acts as a validator
of the requirement writing and provides messages to the user about its construction.
Afterwards, it generates a test specification for its verification.

In this work, an assessment is made of the capabilities of Sesnando as well as
an analysis of traditional methods. The results obtained show that it is possible to
reduce the effort in the system testing specification activity up to 90%.

Keywords: Sesnando, Automatic Test Generation, Testing, Tests, SDLC, Rail-
way, Requirements

v

"I have no special talent,
I am only passionately curious"

Albert Einstein

Luís Miguel Coelho Jordão vii

Contents

1 Introduction 1

1.1 Problem and Motivation . 2
1.2 Objectives . 2
1.3 Schedule . 3
1.4 Starting point . 4
1.5 Scope of this document . 5

2 State of the art 6

2.1 Software Requirements . 7
2.1.1 Requirements Specification Techniques 7
2.1.2 The Given-When-Then Blueprint 8

2.2 Computational Linguistics and Language Recognition 10
2.3 Software testing and validation . 12
2.4 Vehicle Concept and Operability . 14
2.5 Overview of the current industry procedures 15
2.6 Related Work . 18

3 Sesnando 20

3.1 Architecture of Sesnando . 21
3.2 Requirements of Sesnando . 25
3.3 Data Analysis and Pre-processing . 26
3.4 Software Detailed Design . 30

3.4.1 Command Line Arguments . 30
3.4.2 Input Requirements . 31
3.4.3 Requirement processing . 32
3.4.4 Grammar Elements . 34
3.4.5 Signal Mapping . 40
3.4.6 Test Generation . 42
3.4.7 Signal Manager . 52
3.4.8 Test Designer . 56

ix

4 Experimental Analysis and Results 59
4.1 Effort analysis . 59
4.2 Requirement complexity analysis . 64

5 Conclusion 67

Appendices 72
A Benchmarking . 72
B Thesis proposal . 73

x Mestrado em Engenharia Informática

List of Figures

1.1 Scheduled Activities . 3

2.1 GIVEN-WHEN-THEN Requirement Histogram [1] 9
2.2 Translation Process . 11
2.3 Decimal Numbers in BNF notation 11
2.4 EBNF Notation Decimal Numbers . 11
2.5 Characters, tokens and AST . 12
2.6 V-Model . 13
2.7 Train coupling and configurations . 15
2.8 Train main components . 15
2.9 SIL Table from CENELEC EN 50129 16
2.10 System Hierarchy . 17
2.11 Test Rack - Train Test Equipment . 18

3.1 Basic execution flow . 20
3.2 Main application modules . 22
3.3 Main flow diagram . 24
3.4 Process of requirement analysis . 26
3.5 N-gram Model, N = 10 . 29
3.6 Parse tree from the Requirement 3.2 33
3.7 Requirement Quantifier Parse tree . 38
3.8 AST Class Diagram . 39
3.9 LogicalSignal and TechnicalSignal class relationship 40
3.10 Test Inputs and Expected Results . 42
3.11 Cause-Effect-Graph of Dragging Brake detection 45
3.12 Door open permit signals attributes 50
3.13 Table train elements and attributes (excerpt) 50
3.14 Signal Manager PIBS Signal Mapping example 53
3.15 Signal Manager DB Architecture (Excerpt) 55
3.16 Test Designer Interface . 56
3.17 Test Environment . 58

xi

4.1 System test specification - Traditional method 60
4.2 Testing using Traditional methods versus using Sesnando 62

xii Mestrado em Engenharia Informática

List of Tables

3.1 Sesnando Config parameters . 31
3.2 Requirement grammar - Operators 35
3.3 Signal mapping of train speed and door status 41
3.4 Test Spec for single AND . 43
3.5 Signal Mapping for Dragging Brake detected 46
3.6 Dragging Brake detection - Evaluation Table 46
3.7 Test Spec Dragging Brake Detected 47
3.8 Test Spec Dragging Brake Detected 48
3.9 Test Spec - for the same side quantifier 51
3.10 Test Spec - for the same side quantifier 52

4.1 Effort using traditional methods . 63
4.2 Effort analysis of Signal management on Signal Manager 63
4.3 Requirement Complexity Analysis . 64

1 ANTLR Grammar Profiler . 72

xiii

List of Requirements

3.1 Given-When-Then Blueprint . 32
3.2 Door Obstacle Alarm and CCTV . 32
3.3 JRU Dragging Brake Detected . 36
3.4 JRU Dragging Brake Detected . 37
3.5 Traction Safe Status . 40
3.6 Requirement Signal Structure . 43
3.7 For at least one Brake quantifier . 44
3.8 TCMS command door open . 49
3.9 Evt Loss of CSDE Protection . 53
3.10 JRU Dragging Brake Detected . 56
4.1 Guard Panel . 65
4.2 Doors failed to close . 65
4.3 HMI Vehicle Overrun . 65

xv

Acronyms

ANTLR ANother Tool for Language Recognition
API Application Programming Interface
ASDT Aerospace, Defense and Transportation
AST Abstract Syntax Tree
BDD Behaviour Driven Development
CCTV Closed-Circuit Television
CNL Controlled Natural Language
CSW Critical Software
FAA Federal Aviation Administration
GUI Graphical User Interface
GWT Given-When-Then
ICD Interface Control Document
IREB International Requirements Engineering Board
ISEC Instituto Superior de Engenharia de Coimbra
ISL Interface Signal List
JRU Juridic Recording Unit
MCDC Modified Condition / Decision Coverage
MEI Mestrado em Engenharia Informática
NLP Natural Language Processing
PIBS Passenger Information and Beacon System
RSSB Rail Safety and Standards Board
SIL Safety Integrity Level
SRS Software Requirements Specification
TCMS Train Control and Management System
VnV Verification and Validation

xvii

Definitions

• Logical Signal - A requirement signal that is contained within a Requirement
Clause.

• Manufacturer - Critical Software (CSW) client that assembles and maintains
the hardware parts of the railway systems under testing. The manufacturers’
name will not be disclosed due to a non-disclosing agreement.

• Railway Project - Safety-critical project in the area of the Railway, developed
at CSW, that is intended to run on the Manufacturers’ systems and has been
used to evaluate Sesnando.

• Requirement Clause - A single condition within a Requirement Predicate.

• Requirement Predicate - GIVEN, WHEN, or THEN statements within a
requirement.

• Requirement Statement - A structure that follows the Given-When-Then
blueprint to define a particular behavior of the system.

• Sesnando Inputs - A text document containing requirement statements.

• Technical Signal - A software signal or variable that holds a value on the system
and maps to a Logical Signal.

• Test Case - A set of read and write actions to verify part of the requirement.

• Test Specification - A set of test cases to verify the requirement statement.

xix

Chapter 1

Introduction

By mid-1968 the term Software Engineering was coined at NASA by Margaret
Hamilton [2]. During that time, more than 400 people were working on Apollo’s
software, because software was how the US was going to win the race to the moon.
As it turned out, of course, software was going to help the world do so much more
[3].

At that time, programming meant punching holes in stacks of punch cards, which
would be processed overnight in batches on a giant computer that simulated the
Apollo lander’s work. Everything needed to be tested precisely [3].

One day, Margaret’s daughter was playing with the command module simulator’s
display-and-keyboard unit and as she toyed with the keyboard, an error message
popped up. Lauren had crashed the simulator by somehow launching a pre-launch
program called P01 while the simulator was in mid-flight. There was no reason
an astronaut would ever do this, but nonetheless, Margaret wanted to add code to
prevent the crash.

NASA denied this idea by stating that the astronauts were trained to be perfect
and they would not make any mistakes. So Margaret added certain procedures to the
documentation stating what astronauts should and should not do. However, they did
mistakes. In the late 1968, an astronaut inadvertently selected a functionality that
had wiped out all the navigation data and, without that data, the Apollo computer
would not be able to figure out how to get the astronauts home. Fortunately, Houston
uploaded new navigational data and the Apollo astronauts came home [2] [3].

Testing activities are within the most important tasks of any business, from the
world of software to the toothpaste we use, which should be meticulously tested to
guarantee quality before being placed in the hands of the user. The objective of this
phase is to guarantee quality standards, avoiding failures in the product that might
lead to catastrophic losses.

A comprehensive verification effort ensures that all requirements in the specifica-
tion are adequately tested. However, one criticism of verification is that it increases

1

software development costs considerably [4].
The objective of this project is to create a compiler capable of understanding

system Requirements and automatically generate their test cases in order to reduce
the cost and effort involved in the testing activities.

1.1 Problem and Motivation

Common requirements engineering activities involve elicitation, interpretation and
structuring (analysis and documentation), negotiation, verification and validation,
change management and requirements tracing. There are several process models
available to describe the requirements engineering process. The process itself is
often depicted in different forms, including linear, incremental, non-linear and spiral
models [5].

Despite the effort to produce good requirements, requirement testing can also
be a costly and challenging activity. Functional tests are usually done by teams
independent of the development organization on a technical basis, but have well-
established, working relationships with the development organization [6].

Considering the environment that motivated this work, Software testers are
required to gather solid domain-knowledge about software systems and to learn
technical features and operational concepts on complex systems such as Trains,
Satellites or in the area of Avionics that take time to master. A misunderstood
requirement or lack of technical domain can result in tests that fail or in countless
hours of back-and-forth communication.

To address this problem, a software program has been conceptualized to store
common technical knowledge and with it, to be capable of automatically generate
test specifications given any software requirement as an input.

1.2 Objectives

Precise requirements are critical for the creation of successful systems, therefore
heavy and vague natural language is highly discouraged when it comes to critical
systems [7]. Thus, having the written requirements following a stipulated grammar
makes those requirements much easier to understand by developers and test engineers.

One of the goals of this project is to guarantee that the requirements of the
system under testing are compliant with a predefined grammar (See Section 3.4.4)
by checking their syntax and whether they are parseable, otherwise a syntax-error

2 Mestrado em Engenharia Informática

message is generated.
Also, traditional methods carry significant effort regarding the verification activi-

ties (Section 2.5). Sesnando aims to reduce this effort by automatically generating
test cases from requirements. A requirement can be seen as a mini-model that takes
a set of inputs and generates outputs. Its test cases will be generated by obtaining
and combining the input values from the requirement according to the coverage
criteria in place, whereas its outputs will be used as expected results.

1.3 Schedule

This project was planned for five main activities. Those are illustrated on Figure
1.1.

Figure 1.1: Scheduled Activities

• SotA - State of the art - Study of the existing technologies and scientific
advances and how they can contribute to this project.

• Analysis - Analysis and problem dismantling - This task consisted of the
analysis of the available resources, results from state of the art and Datasets
(e.g. sets of requirements).

• Dev. - Development of the solution - Development of the application, capable
of understanding requirements, generating test cases, and test artifacts.

• Results - Results and further testing - Analysis of the produced results from
the developed tool as well as possible adjustments.

• Report - Final project Report - Writing a final project report containing the
results from all previous phases.

Luís Miguel Coelho Jordão 3

1.4 Starting point

Sesnando kicked-off at Critical Software (CSW) under the management of Profes-
sor João Gabriel Silva conceived to automatically generate tests for railway projects.
When the current masters’ project works have started to be carried out, there were
already some advances made in the research field by two software engineers at Critical
Software.

The existing team carried a deep research on which programming language to
use and which tools. Initially, Sesnando was projected to be implemented using the
C++ programming language with Flex and Bison as its language recognition tools
(Section 2.2). However, because Flex and Bison is no longer maintained, and due
to other existing approaches providing fast development and scalability, the final
decision (by the team) was the use of the C# programming language with Antlr [8]
library, which is actively maintained.

When I’ve joined the team, the existing members had already started to design
a grammar to support GIVEN-WHEN-THEN predicates (Section 2.1.1). Most of
the word elements under each predicate were then tagged and processed individually.
The signal mapping (Section 3.4.5) was done by editing an XML file, as well as the
rules to combine test case inputs.

I have done several additions and improvements to the grammar in order to
support quantifier elements (Section 3.4.4) as well as the whole grammar back-end
engine for the transformation rules to generate the intermediate model, in this case,
an Abstract Syntax Tree (AST) (Section 3.4.4.2). The main difference is that, instead
of word tagging and individual processing, the engine now generates concrete objects
(e.g a condition, a signal, etc) that extends the Abstract model (an Expression) from
the requirement. These grammar additions were also supported by a tool that I
have made using the python language as presented on Section 3.3, that was used to
analyse the existing requirements, guaranteeing that the current designed grammar
supports all possible logic paths present on such requirements.

It will be explained further that some requirement elements (signals) need to
map to software elements, acting as the glue between requirements and software
models (Section 3.4.5). This was previously achieved through the use of an XML
file. Back and forth discussions within the team made evident the benefit of having
an internal server containing this information (Requirement Signals mapped to
Technical signals, In Section 3.3), where every tester could collaboratively populate
information to support multiple instances of Sesnando, hence, the need to create
Signal Manager. The Signal Manager is a Web Application that Sesnando connects to,
in order to obtain information that aids the process of translation from Requirement

4 Mestrado em Engenharia Informática

Signals into Technical signals that will be used to generate test cases. I have
actively participated into the design of the server database (Section 3.4.7.2) due
to my experience participating in Railway projects. However, the front-end design
as well as the API endpoints were done by another engineer. The interface of
this WebApplication is presented in Section 3.4.7 where a mapping between a
Requirement signal and a Technical Signal is demonstrated. A bit of the signal
translation functionality is also presented at Section 3.4.6.1.

The Test Generator (Section 3.4.6) and the Test Designer (Section 3.4.8) modules
were done entirely by me. Previously the combination of test inputs, i.e., the
combination of input values to meet the coverage criteria was done using the rules
defined on an XML file. This proved to be inefficient, as we had to predict how many
conditions a requirement would had beforehand, hence, the need to create the Test
Generator where the Modified Condition / Decision Coverage (MCDC) criteria is
automatically calculated for every input requirement. The functionality of the Test
Generator is presented at Section 3.4.6.

Previously, in order to identify which test cases were generated for a given
requirement, it was needed to read and identify such test cases directly from the
test script that was generated from Sesnando. I have designed and implemented a
Graphical User Interface (GUI) Test Designer (Section 3.4.8), that is launched from
the Test Generator that presents the test specification in a tabular way, so any user
can easily identify the list of test cases generated. The user is able to export test
scripts from there.

The overall solution evolved to a scalable architecture respecting design principles
and best practices, so that it can be easily adapted to future projects.

1.5 Scope of this document

Chapter 1 introduces the current project, its main motivations and objectives in
general.

Chapter 2 presents the state of the art, what are the current scientific advances
in this subject, the available tools and technology.

Chapter 3 is divided in four main sections. It discusses the work done for this
project by defining the architecture of Sesnando 3.1, an analysis on its requirements
3.2, analysis and pre-processing of the existing resources such as existing Railway
requirements 3.3 and details the design of the solution adopted 3.4.

Chapter 4 presents the results and experimental analysis of this tool in-the-field.
Chapter 5 presents a conclusion of this project and the future work.

Luís Miguel Coelho Jordão 5

Chapter 2

State of the art

This section presents the study of the technology and the concepts contained
within this project, as well as some research done on the topic of automatic test
generation. Sesnando interprets software requirements written in a controlled natural
language using computational linguistics and language recognition techniques. Tests
for these requirements are then generated by applying software testing algorithms.

This chapter is organized in 6 sections:

• Software Requirements (Section 2.1) - Presents the requirements engineering
activity as well as the requirements specification techniques in the context of
this project.

• Computational Linguistics and Language Recognition (Section 2.2) - Presents
the language recognition techniques and the tools that were used for this
project.

• Software testing and validation (Section 2.3) - Presents the V-Model and
Testing activities as well as the coverage criteria in the scope of the involved
railway projects.

• Vehicle Concept and Operability (Section 2.4) - Introduces concepts and railway
terminology from the vehicle perspective that is presented throughout this
document.

• Overview of the current industry procedures (Section 2.5) - Presents the current
industry testing procedures and traditional methods.

• Related Work (Section 2.6) - Presents some of the research and works done in
the area of automatic test generation.

6

2.1 Software Requirements

Software Requirements are a set of statements that describe the behaviour or
functionality of a system. Usually, software requirements are a low-level design of
the business requirements.

Software requirements play an essential role when designing a system. Require-
ments are descriptions of how a software product should perform and therefore,
should include not only user needs but also those arising from general organizational,
government and industry standards [5].

Extremely accurate requirements are hard to define, as such, some principles have
been designed to ease this process, e.g. the INCOSE Guide for Writing Requirements
[7] or the S.M.A.R.T criteria [9] in order to improve how they are written, so they
are strongly understandable by a human or a machine.

Requirements are written prior to the development phase and are usually written
by the Developers and Requirement Managers. Errors introduced during the Re-
quirements Engineering phase have exponential costs on later phases, therefore, the
importance of writing precise requirements.

Error-free requirements are the foundations on which the code should be built
and tested. If the requirements are faulty, the code is likely to be faulty and tests
of the code will be impossible, will fail, or give meaningless results. The effort to
produce error-free requirements is considerable, but is nevertheless smaller that the
effort to answer technical questions and to correct the requirements, the code and its
tests because the original requirements were faulty [1].

2.1.1 Requirements Specification Techniques

A requirement is a statement which translates or expresses a need and its
associated constraints and conditions. Requirements should state ’what’ is needed,
not ’how’. Requirements should state what is needed for the system-of-interest and
not include design decisions for it [10].

The quality of software requirements is a major factor that determines the quality
of a system. Most requirements are written in a natural language, which is good for
understandability, but lacks precision. To make them more precise, researchers have
started using formal methods and notations. There are different styles, scopes and
applicability [11].

The survey "The role of formalism in system requirements" [11], has analyzed
a wide range of techniques for expressing software requirements, with a degree of

Luís Miguel Coelho Jordão 7

formalism ranging over a broad scale: from completely informal (natural language),
through partially formal (semi-formal, programming-language-based), to completely
formal (automata theory, other mathematical bases).

Inevitably, proponents of formal methods will point to the imprecision of natural
language. Just as inevitably, opponents will argue that formal texts are incompre-
hensible to many stakeholders. There is truth is such statements on both sides, but
they cannot end the discussion [11].

2.1.2 The Given-When-Then Blueprint

The GIVEN-WHEN-THEN (GWT) is a requirement blueprint defined by the
Railway Manufacturer (a Critical Software client) as a syntax rule to write system
requirements.

The GIVEN-WHEN-THEN-template defined as part of the well known BDD
(Behaviour Driven Development) methodology in the engineering literacy is applied
when writing logical requirements, as it will be presented later in this section.

This template helps to create uniform logical requirements to easily distinguish
the requirement from its pre-condition (GIVEN), the trigger (WHEN) and its action
(THEN) [10]. The results of a requirement (THEN) are obtained when both pre-
conditions and triggers are fulfilled as per Figure 2.1.

Figure 2.1 demonstrated that only when A and B conditions are fulfilled, the C
action is set.

It is strongly recommended that when comparing values on requirements (equal,
greater than, less than, etc.), the requirement text should avoid using mathematical
symbols. The intent is to prevent risk of deviate into writing equations instead of
text. For instance:

• Instead of writing
GIVEN the train tread brake applied status = TRUE,
it should be written as:
GIVEN the train tread brake applied status is equal to TRUE

The main difference between GIVEN and WHEN statement is that the GIVEN
conditions must be present in order for the THEN actions to be performed whereas
the WHEN can be defined as a trigger, in other words, a button press or a signal
pulse. See Figure 2.1.

8 Mestrado em Engenharia Informática

Figure 2.1: GIVEN-WHEN-THEN Requirement Histogram [1]

The need for this formality is also presented by the International Requirements
and Engineering Board (IREB) on the Requirements Engineering Fundamentals
book, chapter 5 [12], where a Conditional condition and a temporal condition must
be stated.

Example of a requirement following IREB conventions:
if train speed is greater than 3km/h as soon as emergency brake pushbutton
is pressed the train shall apply emergency brakes.
(Note that the word shall has the same effect as the word must).

a) Conditional condition: if

b) Temporal condition: as soon as

As per the Manufacturer, in the context of this project, for the conditions the
following keywords are defined and shall be used:

a) Conditional condition: GIVEN

b) Temporal condition: WHEN

If several conditional conditions (preconditions) have to be fulfilled, then each
precondition shall begin in a new line. Begin the new line starting with the second
precondition with the keyword AND. Example on Requirement REQ211-1.

1 REQUIREMENT REQ211-1

2 GIVEN <precondition 1>

3 AND <precondition 2>

4 AND <precondition 3>

5 WHEN <trigger1>

6 THEN <action1>.

As such, defining the previous requirement into a Given-When-Then stricture
results in the following expression:

Luís Miguel Coelho Jordão 9

1 REQUIREMENT REQ211-2

2 GIVEN train speed is greater than 3km/h

3 WHEN emergency brake pushbutton is pressed

4 THEN the train shall apply emergency brakes.

2.2 Computational Linguistics and Language Recog-

nition

The human brain subconsciously groups character sequences into words and
looks them up in a dictionary before recognizing a grammatical structure. The first
translation phase is called lexical analysis and operates on the incoming character
stream. The second phase is called parsing and operates on a stream of vocabulary
symbols, called tokens, emanating from the lexical analyzer [8].

Flex and Bison (formerly Yacc) were the first widely used open source versions
for lexing and parsing. Each of these software has a history of more than 30 years,
which is an accomplishment in itself. For some people, they are still the first software
they think of when it comes to parsing [13][14].

Like any other software, there are benefits from implementing a compiler in a
high-level language. In particular, a compiler can be self-hosted, that is, written
in the programming language it compiles. Building a self-hosting compiler is a
bootstrapping problem, i.e. the first such compiler for a language must be either
hand written machine code or compiled by a compiler written in another language, or
compiled by running the compiler in an interpreter [15]. Besides lexing and parsing,
tree walking involves traversing the parse tree and applying rules or other operations
at each node in the tree to extract meaning or perform other language-processing
tasks.

The translation requires multiple steps (lexing, parsing and tree walking) as
presented on Figure 2.2.

This intermediate form is a tree data structure, called an abstract syntax tree
(AST)(Figure 2.5), and is a highly processed, condensed version of the input [8].

A more modern language translation solution is AnTLR, which is inspired on Flex
and Bison, and is a sophisticated parser generator that can be used to implement
language interpreters, compilers, and other translators [8]. An AnTLR grammar
is an artifact written in Backus-Naur Form (BNF) that contains lexer tokens and
parsing rules.

Backus-Naur Form is a formal mathematical way to specify context-free grammars.
John Backus, who was also the inventor of Fortran, won the 1977 Turing Award

10 Mestrado em Engenharia Informática

Figure 2.2: Translation Process

for BNF and Fortran [16]. An example of the BNF form for decimal numbers is
presented in Figure 2.3.

Figure 2.3: Decimal Numbers in BNF notation

Niklaus Wirth started the early developments of Extended Backus-Naur Form
(EBNF) which is an extension of BNF and make expressing grammars more convenient
[16]. One of the greatest improvements is the definition of the symbol occurrences
(from 0 or more occurences). An example of the EBNF form for decimal numbers is
presented on Figure 2.4.

Figure 2.4: EBNF Notation Decimal Numbers

EBNF is now widely used as the de-facto standard to define grammars and
programming languages.

AnTLR executes an action according to its position within the grammar. In
this way, it executes different code for different phrases (sentence fragments). For
example, an action within, say, an expression rule is executed only when the parser
is recognizing an expression [8]. This process is demonstrated on Figure 2.5.

ANTLR is mainly targeted for Object Oriented Programming (OOP) languages

Luís Miguel Coelho Jordão 11

Figure 2.5: Characters, tokens and AST

like Java or C# and allows for an easily scalable solution and a fast-paced develop-
ment, hence, the use of ANTLR in Sesnando.

2.3 Software testing and validation

The purpose of software testing activities is to verify that a system is operating
according to requirements and meets the customer needs. Without tests, systems
would be prone to errors. Testing can occur at different levels and this is presented
in the commonly known in the engineering literacy as V-Model, as presented on
Figure 2.6. This cycle is named V-Model after its "V" design and is used to improve
the overall quality of the software, where for every design and implementation phase
there is a verification activity. V-Model can be presented with slight changes as it is
usually tailored according to the type of project under development.

The V-model was derived from the waterfall model so there is similarity in the
activities and their sequence. There is progression through requirements, design,
coding/implementation, testing, and release. The single lengthiest activity in this
software development flow is code development. Code development encompasses
fixing previously identified and prioritized defects and adding features. Testing
activities on the same phase can be done concurrently [17]. However, as per 2.6, a
new upper testing phase only starts when the previous one is verified.

The activities present on Figure 2.6 can be described as follows.

• User / Business Requirements - Conceptualisation phase and customer require-

12 Mestrado em Engenharia Informática

Figure 2.6: V-Model

ments analysis and engineering.

• System Requirements Engineering - Involves the apportionment of requirements
on a technical level.

• Low level design - System architecture and interfacing of low level components.

• Implementation - Coding

• Unit testing - Unit testing involves testing the smallest units of code, typically
individual functions or methods, to ensure that they are working properly. This
is typically done by the developer who wrote the code, and it is usually done
early in the development process to catch any bugs or problems before they
become more difficult to fix.

• Component testing - Component testing, involves testing groups of related
units of code, called components, to ensure that they work together properly.
This is usually done by a quality assurance (QA) team, and it is typically done
later in the development process, once the individual units have been tested.

• System testing - Tests are performed on a simulated environment where only
the domain model and specification of requirements are known. These tests
should not be performed by developers.

• Acceptance Testing - Also known as Functional testing, these tests are per-
formed on the final product using a specification generated from the Business

Luís Miguel Coelho Jordão 13

Requirements. Those can be done with the presence of the client, hence, the
name Acceptance tests.

The scope of this project is within the System testing activities, as per Figure
2.6. System testing is a testing technique where only the Requirement Specification
and the Domain model is known. There are several coverage criteria that serves
the purpose of requirements specification testing. A coverage criteria is a rule of
collection of rules that impose test requirements on a test set. The coverage criteria
under the scope of this Railway project is Modified Condition / Decision Coverage
(MCDC) as defined by the Manufacturer. It is a de-facto standard for certifying
software in the safety-critical markets [18], hence, the use of MCDC.

MCDC applies to logic testing and has a high probability of error detection for
the cost incurred (number of tests), especially when compared with other coverage
criteria specified in DO- 178B [19] (Statement Coverage, Decision Coverage). The
benefit of MCDC is that it requires a much smaller number of test cases while
sustaining a quite high error-detection probability. As published by Federal Aviation
Administration (FAA), the following is stated regarding MCDC:

• Modified Condition / Decision Coverage - Every point of entry and exit in the
program has been invoked at least once, every condition in a decision in the
program has taken all possible outcomes at least once, every decision in the
program has taken all possible outcomes at least once, and each condition in a
decision has been shown to independently affect that decision’s outcome [20].

2.4 Vehicle Concept and Operability

Figure 2.7, illustrates the most common train topology on the projects where
Critical Software is involved. This figure also presents a common terminology that is
present throughout this document.

As per Figure 2.7, a train unit might contain 3 to 10 cars, in which the standard
is the use of 5 cars. A train unit is commonly defined as "Unit" or "Consist" and
can be coupled to form a longer operating train.

14 Mestrado em Engenharia Informática

Figure 2.7: Train coupling and configurations

Figure 2.8: Train main components

Figure 2.8 presents the most common components on the train. Train cars are
very similar throughout the train. However, train cabs are only present on the train
unit extremes, also, a train unit contains only one pantograph. These values are
doubled when a train is formed of two units.

2.5 Overview of the current industry procedures

This section presents the system testing activities in the railway industry, which
Critical Software (CSW) is involved. The process begins when the rolling stock
manufacturer receives a set of customer requirements commonly known as Business

Luís Miguel Coelho Jordão 15

Requirements.
Aside from these requirements, there are Rule Book requirements created by Rail

Safety and Standards Board, which are documents that contain direct instructions
to Railway staff, as well as the requirements from the standards catalogues related
to a Safety Integrity Level (SIL).

The concept of safety integrity was then taken up and adapted in the various
offshoot standards. For the railway domain, the concept of safety integrity was taken
up in the CENELEC EN 50126, EN 50128 and EN 50129 standards [21].

SIL levels are based on risk of failure and go from level 1 to level 4 according to
the criticality of a system, being SIL-4 systems with a lower probability to fail.

The acceptable (or tolerable) risk is a value of a risk level arrived at by an objective,
deliberate decision. This threshold of acceptability is known as the Tolerable Hazard
Rate (THR). The THR is expressed as the probability of occurrence of a failure,
expressed in the form

10x

per hour. When identifying hazardous situations, it is crucial to assign them a THR
and consequently a SIL Level [21].

For the railway domain, Figure 2.9 shows the link which exists between the SIL
and the THR. In fact, this table was introduced for railway signaling and can be
extended to all or part of the system [21].

Figure 2.9: SIL Table from CENELEC EN 50129

For instance, software for the Passenger Information System and for Passenger
Comfort is non-SIL (SIL-0) as the failure of this system does not cause a disastrous
situation. However, for instance, software that deals with Traction, Braking and
Doors is identified as SIL2, as if this software fails it might incur in damages. To
mitigate this identified risk, SIL2 software runs on a redundant device that becomes
the primary device if the other fails.

There are several standards catalogues applicable to the railway industry. The
practices involved in the development of the software are mostly presented on BS EN
50126 [22] and CENELEC 50128 [21]. BS EN 50126 is a standard that introduces the
RAMS process, which is a process that characterises a system in terms of Reliability,
Availability, Maintainability and Safety. The objective of the RAMS process described

16 Mestrado em Engenharia Informática

in this standard (BS EN 50126) is to ensure that all aspects of RAMS are covered in
order to make provision for the safety of railway applications and for the avoidance
of loss of their value [22].

CENELEC 50128 specifies the process and technical requirements for the devel-
opment of software for programmable electronic systems for use in railway control
and protection applications. It is aimed at use in any area where there are safety
implications. These systems can be implemented using dedicated microprocessors,
programmable logic controllers, multiprocessor distributed systems, larger scale
central processor systems or other architectures [23].

The Functional Architecture team is responsible for the apportionment of the
existing requirements, that is part of System Requirements Engineering as illustrated
on Figure 2.6 . These existing requirements are usually derived into new architectural,
performance, functional and sub-system requirements as seen on Figure 2.10.

Figure 2.10: System Hierarchy

The functional team, responsible of Functional requirements, needs to assure that
these derived requirements satisfy the original customer requirements, are testable,
coherent and non-contradictory. The development team writes software requirements
derived from functional level and implements the software following the norm EN
61131 [24]. To facilitate code safety, Ada language [25] and Misra-C guidelines [26]
are also used at critical software in the area of Aerospace, Defense and Transportation
(ASDT).

The software is only uploaded to vehicle level once all previous tests pass under
a simulated environment in the form of a Test Rack (Figure 2.11), containing all the
train equipment that compose the TCMS (Train Control and Management System)
like the Central Control Unit of the train.

Luís Miguel Coelho Jordão 17

Figure 2.11: Test Rack - Train Test Equipment

The activity of testing relies on the interpretation of the software requirements
stored on an IBM DOORS database by the manufacturer, and the verification if the
system is behaving accordingly. To support the testing activities at system testing
level, an Interface Control Document (ICD) is required.

The realisation of testing a requirement relies on the identification of software
signals that represent the logic present on a requirement e.g. the command to open a
train door, passenger emergency button, etc. and on the definition of the combination
between the inputs and expected results in order to meet the requirement coverage
criteria. This combination of test steps results in a test specification that can be
converted into a test script using a test tool provided by the manufacturer. The test
script is then loaded on the test tool which will then produce a test report file. Tests
might by automatic or semi-automatic depending on the nature of the system.

2.6 Related Work

A controlled natural language (CNL) is a language that is designed to be easy
for humans to read and write, while still being precise and well-defined enough to
be processed by a computer. CNLs are often used in specific domains where it is
important to have clear and unambiguous communication, such as legal documents,
medical records, or technical specifications [27]. Like a Controlled Natural Language

18 Mestrado em Engenharia Informática

(CNL), a Requirement Specification Language (RSL) has a formal syntax. In 1992,
NASA described a general purpose RSL.

RSL is a hybrid of features found in several popular requirement specification
languages. The purpose of RSL is to describe precisely the external structure of
a system comprised of hardware, software, and human processing elements. To
overcome the deficiencies of informal specification languages, RSL includes facilities
for mathematical specification [28]. Purposes of RSL include the production of
executable code and test cases for a system.

Daniel Maciel et al., proposed a Model Based Testing approach using an RSL
and the Robot Framework. This approach included model-to-model transformation
techniques, semi-automatically generating test cases from the RSL as well as test
cases into test scripts [29].

The benefits of automatic test generation are widely acknowledged today and
there are many proposed approaches in the literature [30]. Chunhui Wang et al.
proposes in the paper (Automatic Generation of Acceptance Test Cases from Use Case
Specifications: an NLP-based Approach) an approach that supports the generation
of executable, system-level, acceptance test cases from requirements specifications in
natural language, with the goal of reducing the manual effort required to generate
test cases and ensuring requirements coverage [30].

System test cases might be derived from the requirements of the system under
test [31]. Javier J. Gutiérrez et al. presented a Survey (Generation of test cases from
functional requirements) containing the results of among 13 approaches to drive the
generation of test cases from functional requirements [31].

Pre-made tools and solutions cater for the average use cases and sometimes
simplify things to make it easy to use. Due to specific needs, such as the development
of a grammar for a specific language (Manufacturers’ Given-When-Then blueprint),
requirement coverage criteria, and type of System under test and centralized testing
information, Sesnando has been created.

Luís Miguel Coelho Jordão 19

Chapter 3

Sesnando

This chapter presents the core functionalities of Sesnando project and is divided
into four sections.

• Architecture of Sesnando (Section 3.1) - Describes the project architecture by
presenting the main modules, communication and data flow.

• Requirements of Sesnando (Section 3.2) - Presents an analysis of the require-
ments of this Project.

• Data Analysis and Pre-Processing (Section 3.3) - Presents an analysis of the
existing Railway requirements and how they have been used to define the
Grammar of the requirement interpreter.

• Software Detailed Design (Section 3.4) - Presents the functionality of Sesnando,
its operability concepts and building blocks.

Figure 3.1: Basic execution flow

In general, this chapter describes how Sesnando can be used, what the intermedi-
ate steps are, how they have been built and what will be generated as a result.

The entry point of this software is a Windows Console application that can take
a set of arguments (as defined on Section 3.4.1). From this application Sesnando
takes the requirements (compliant with format defined on Section 3.4.2) contained
on an input file and starts generating test cases (Section 3.4.6).

20

Once the set of test cases have been generated for each requirement, Sesnando
calls a Graphical User Interface (GUI) application (Test Designer - Section 3.4.8), to
display such test cases.

Most Software Development Life Cycles (SDLC) require test specifications to be
reviewed and approved, as such, the user is able to edit the generated test specifica-
tions (Fig. 3.16) if an improvement is required before exporting its corresponding
test script. The final test script can then be imported into the Manufacturers’ tool
to execute such tests.

It is important to mention that in order to properly generate test specifications,
Sesnando relies on an internet connection to access a remote repository (Signal
Manager Service) containing information about the software under testing. This is
detailed on Sections 3.4.6.3, 3.4.5 and 3.4.7.

The displayed test specification can be saved on a persistent file (which can be
opened at any time using the Test Designer). The user is also able to export this test
specification as a test script to be used on an external test execution tool defined by
the Railway manufacturer (Section 4). The saving functionality has been included
for cases when an internet connection is not available and the user wants to recreate
the test script.

While I actively participated in the design of the Signal Manager Service, the
works presented on this thesis do not include its development and programming
activities.

Figure 3.1 presents the basic execution flow of Sesnando whereas Figure 3.3 on
Section 3.1 presents the main execution flow in a detailed manner.

3.1 Architecture of Sesnando

Sesnando is divided into multiple modules that communicate with each other.
This section presents these modules and their main roles.

• Sesnando Setup – This module is responsible for verifying and installing all
the Application dependencies on the operating system.

• Sesnando Compiler – This module is the entry point of Sesnando Application
and will call all the relevant modules as needed.

• Requirements Module – This module will be called at the beginning of the
program execution. It will read the Input Requirements and will then parse its
contents using an Abstract Syntax Tree (Section 2.2), i.e. this module contains

Luís Miguel Coelho Jordão 21

Figure 3.2: Main application modules

a predefined grammar that will be used to compile the requirements into a set
of Objects. This will be detailed on Section 3.4.3).

• Test Generator – Once the object tree is successfully constructed by the
Requirements Module, this module will be notified to extract the required data
from it in order to start to define the first tests. See Section 3.4.6.

• Common Lib – A Library where the actual Abstract Syntax Tree objects will
be stored, accessed by Requirements module and Test Generator module.

• Code Generator – This module receives the standard output from the test
generator and will then generate proper test scripts compatible with the external
test environment.

• Signal Manager – Signal Manager is a remote service that receives requests
from the Test Generator. Test Generator connects to Signal Manager to request
additional data of a requirement signal, e.g., in which state should the system
be set in order to verify a requirement. This is fully described on Section 3.4.7.
Signal manager implements a Controller-Service-Repository Pattern – This
is a layered design pattern presented as a good practice when developing a
back-end service as it provides a separation of concerns.

– Controller – This layer is responsible to expose the Rest API endpoints,
so the functionality can be consumed by external entities.

22 Mestrado em Engenharia Informática

– Service – This layer contains all the Business Logic and receives requests
from the Controller and dispatches read and write requests to the reposi-
tory.

– Repository – This layer receives requests and dispatches data to the
Service layer. Its only responsibility is to read and to persist data on the
Signal Manager Database.

Tom Collings published an article in 2021 explaining this pattern on https://

tom-collings.medium.com/controller-service-repository-16e29a4684e5

[32].

• Test Designer – Test designer is a detachable Graphical User Interface (GUI)
that displays the generated test cases to the User. This tool also allows the
user to review, edit and export the generated test specifications. This is fully
described on Section 3.4.8.

Regarding Figure 3.2, Sesnando is provided as a native windows application that
contains Setup, Compiler and Test Designer. Sesnando communicates with a Signal
Manager service to obtain additional railway requirements data and calls the Test
Designer module to present test data to the user.

Figure 3.3, details this approach, the Requirements Compiler takes the require-
ments from the input file and parses them into a parse tree, which is managed by
ASTController on Common Lib project. The structure of this tree is presented on
Class Diagram - Fig. 3.8.

Test Generator (3.4.6) is then called to retrieve the parse tree by asking the AST
Controller and requests the necessary information from the Signal Manager (Section
3.4.7) trough a Web API.

Once the tests are generated, the Test Designer (Section 3.4.8) is called to display
the test specification to the user where a test script can be created to be imported
to the customer test tool.

This is a superficial overview of the main execution flow of Sesnando. The whole
process is detailed on Section 3.4.

Luís Miguel Coelho Jordão 23

https://tom-collings.medium.com/controller-service-repository-16e29a4684e5
https://tom-collings.medium.com/controller-service-repository-16e29a4684e5

Figure 3.3: Main flow diagram

24 Mestrado em Engenharia Informática

3.2 Requirements of Sesnando

The activity of identifying software functionalities and behavior is described as
Requirements Engineering. The requirements of the Sesnando tool (denominated as
’The application’) will be identified in a simple manner.

• The application must be able to recognize a requirement statement (Section
3.4.2) identified by its keyword REQUIREMENT.

• The application must be able to identify Given, When and Then predicates
(Section 3.4.2).

• The application must extract Logical Expressions between AND and OR
boolean operators (Section 3.4.4).

• The application must identify Logical Expressions using the operators: Equal
to, Lower Than, Lower Than or Equal, Greater Than and Greater Than or
Equal (Section 3.4.4).

• The application must be able to identify Requirement Signals (Logical Signals,
Section 3.3) within a Logical Expression.

• The application must be able to identify an Operand (bool, int) (Section 3.4.4)
within a Logical Expression.

• The application must be able to identify a Logical Expression Quantifier
(Section 3.4.4.1), i.e., the system components to which the expression shall be
evaluated, e.g., a train axle.

• The application must be able to compile the requirement into a Parse tree
(Section 3.4.3).

• The application must be able to access the Parse Tree (Section 2.2) and generate
a set of test cases from the compiled requirements (Section 3.4.6).

• The application must be able to generate a test script (Section 3.4.8) to be
used on the external testing environment (provided by the customer, Section
4).

• The application must allow saving the generated set of test cases into a
persistence storage in CSV file format (Section 3.4.8).

Luís Miguel Coelho Jordão 25

3.3 Data Analysis and Pre-processing

This section presents the analysis procedures towards the available Railway
software requirements. The requirements of the Railway project used for this study
are stored on a Requirement Management Tool. Those requirements (presented
as examples on Section 3.4) have been exported and analysed in order to extract
relevant knowledge from them towards building a solid grammar that could satisfy
the logic of these requirements. This process is presented on Figure 3.4.

Figure 3.4: Process of requirement analysis

Regarding Figure 3.4, IBM DOORS is the repository containing the Railway
software requirements. Initially, sets of requirements have been exported from this
repository in chunks of Excel files as supported by the IBM DOORS interface, but
later, a software tool has been developed (by myself) with the ability to directly access
the requirement repository via Open Services for Lifecycle Collaboration (OSLC)
REST API and to support the Analysis and treatment process of requirements.

The objective of this analysis is to identify the most common requirement struc-
tures towards building a grammar that is able to support them. The principal analysis
taken was in the fields of the contiguous sequences and main requirement structures.
For this, several models on N-Grams and Skip-grams have been generated. N-grams
model analysis are widely used in computational linguistics and communication
theory such as Natural Language Processing (NLP) [33].

N-gram analysis is a technique that involves identifying sequences of N consecutive
words in a text. For instance, N-grams of value 5 (5-Grams), statistically presents
the most repeating sequences of 5 words, and so on. This is used to identify the
most common requirement structures. Some parts of the requirements have even
been anonymized, such as Requirement Signals, to avoid biased data, i.e, repeating
structures containing the same signal.

Skip-gram analysis is similar, but allows words to be skipped in the sequence.
Stop-word analysis is used to identify and remove commonly used words with little
meaning from a text, such as "the", "a", etc.

Stop-Words analysis was a tentative to remove words that could have less meaning
on requirements

26 Mestrado em Engenharia Informática

The techniques to export the best N-gram models relied on arbitrary values and
trial and error. N-grams models above the value of 10 started to produce the same
sequences, so the model analysis sat between the values of 2 and 10. As it was
intended to obtain a variety of the most repeating sequences. Figure 3.5 presents a
N-gram Model analysis where N = 10.

The results of this analysis expressed the grammar of Sesnando shall contain:

• Logical boolean operators such as "AND" and "OR";

• Operators such as: Equal, greater than, less than, greater than or equal to,
less than or equal to;

• Signal attributes such as "is active";

• Quantifiers containing their attribute and scope, as in "for at least one side of
the train" (four quantifiers are supported on Sesnando, See Section 3.4.4.1);

• THEN condition in the form of "THEN <Outcome Requirement signal> is
set to VALUE".

These have been used to define the requirements grammar, as presented on Section
3.4.4 (Grammar Elements) and Section 3.4.4.2 (Defining requirement grammar). In
other words, the existing requirement structure and common natural instructions
have been analysed to support the writing of a grammar that supports the same
logic that is already presented on the existing requirements.

This analysis and the obtained results involved the writing of a python program
that took several sets of requirements as input. The main activities that have been
performed using this tool are presented as bullet points.

• Export existing requirements written in a natural language from the manufac-
turer requirement repository (IBM Doors).

• Treat existing requirements by anonymizing Requirement Signals, so that,
these do not influence the extraction of the most common used expressions.
Anonymizing the data can also help prevent any bias or unfair treatment of the
requirements being analyzed, as it ensures that the analysis is based solely on
the information that defines the requirement structure and not on any signal
information.

• N-gram, Skip-gram and Stop-word analysis [34], as previously defined.

• Analysis and plotting of the obtained results that will be used to support the
requirement logic already presented in natural form.

Luís Miguel Coelho Jordão 27

The following is a list of libraries that have been used to develop this Requirement
analysis tool:

• pandas - for importing requirement files to the python tool as dataframes, for
data storage and data analysis. "pandas is a fast, powerful, flexible and easy
to use open source data analysis and manipulation tool, built on top of the
Python programming language." - For further details see: https://pandas.
pydata.org/.

• nltk - Natural Language Toolkit for word sequence and requirement structure
analysis. "NLTK is a leading platform for building Python programs to work
with human language data." For further details see: https://www.nltk.org/.

• matplot - Data plotting and visualisation, for instance, to build the diagram
of Figure 3.5. "Matplotlib is a comprehensive library for creating static,
animated, and interactive visualizations in Python" For further details see:
https://matplotlib.org/.

• xlswriter - To locally persist processed data. "XlsxWriter is a Python module
that can be used to write text, numbers, formulas and hyperlinks to multiple
worksheets" For further details see: https://xlsxwriter.readthedocs.io/.

28 Mestrado em Engenharia Informática

https://pandas.pydata.org/
https://pandas.pydata.org/
https://www.nltk.org/
https://matplotlib.org/
https://xlsxwriter.readthedocs.io/

Figure 3.5: N-gram Model, N = 10

Luís Miguel Coelho Jordão 29

3.4 Software Detailed Design

This section provides a detailed description of the internal building blocks of Ses-
nando as well as its inputs, functionalities and outputs. These have been introduced
in Section 3.1.

• Command Line Arguments (Section 3.4.1) - Describes the arguments that
Sesnando supports from the command line.

• Input requirements (Section 3.4.2) - Presents examples of the requirements’
structure that Sesnando supports.

• Requirements processing (Section 3.4.3) - Describes the compilation of the
requirements into a Parse tree and how an XML sample can be obtained by
using Debug mode.

• Grammar Elements (Section 3.4.4) - Presents the installed grammar on Ses-
nando and how requirements should be defined.

• Signal Mapping (Section 3.4.5) - Describes how Requirement signals are trans-
lated into Software signals.

• Test Generation (Section 3.4.6) - Describes how Sesnando compiles input
requirements and how tests are generated on a design level.

• Signal Manager (Section 3.4.7) - Describes the main role of Signal manager on
test generation and presents an overview of its user interface.

• Test Designer (Section 3.4.8) - Presents the test designer user interface, and
how test specifications are visualised with the aid of this module.

3.4.1 Command Line Arguments

The entry point of Sesnando is a command line application. The command line
arguments can be passed at the application launch, but a configuration file can be
set, so that the user can define a set of default parameters avoiding the need to pass
the arguments at all times. Default values from the configuration file will be used
when omitting these parameters from the command line. The available command
line arguments are defined on Table 3.1.

As Sesnando can be executed following a set of parameters from the command
line or from a JSON configuration, a detailed description of these commands are as
follows.

30 Mestrado em Engenharia Informática

• signal_manager - The address of the remote Signal Manager server, containing
the data required to successfully generate test cases.

• input - The location of the input file containing the requirements to be parsed
by Sesnando.

• output_folder - The default location for the artifacts generated by Sesnando
(Can be overriden using "Save as..." from the test designer).

• test_designer - The location of the Test Designer GUI module (usually on the
same folder as the compiler binaries).

• debug - Debug mode mode allows a verbose execution of Sesnando.

Table 3.1: Sesnando Config parameters

Command Default Value Description

-sm –signal_manager 127.0.0.1 Signal Manager IP Addr.

-i –input ./input_files/requirements.txt Input Requirements location

-o –output_folder ./output_files/ Output Folder

-td –test_designer ./SESNANDO.TestDesigner.exe Test Designer Location

-d –debug N/A Debug mode

3.4.2 Input Requirements

At this stage of the development, Sesnando takes a set of input requirements
written in a text file (.txt) and parses them from there. These requirements must be
compliant with a predefined grammar. The grammar specification is presented on
Section 3.4.4. The grammar guidelines [35] were documented by me and were then
reviewed and approved by the Requirement Managers at CSW. Requirement 3.1 is a
simple example of a generic requirement structure that can be parsed by Sesnando.

Luís Miguel Coelho Jordão 31

Requirement 3.1: Given-When-Then Blueprint

1 REQUIREMENT(REQ342-1, function, module)

2 {

3 GIVEN <RequirementSignal1> is equal to true

4 and <RequirementSignal2> is equal to true;

5 WHEN;

6 THEN <RequirementSignalX> is set to true;

7 }

GIVEN and WHEN predicates combined, dictate the outcome of the requirement
through the fulfilment of the THEN clauses.

While Requirement 3.1 presents the requirement Given-When-Then Blueprint,
Requirement 3.2 presents a concrete example that follows the structure presented in
Requirement 3.1 by providing examples of possible Requirement Signals.

Requirement 3.2: Door Obstacle Alarm and CCTV

1 REQUIREMENT(REQ342-2, function, module)

2 {

3 GIVEN <Status Door Closing> is equal to true

4 and <Status of Obstacle Detection> is equal to true;

5 WHEN;

6 THEN <Door Obstacle Alarm and CCTV> is set to true;

7 }

As stated on the above requirement, when the GIVEN predicate evaluates to
true, i.e, a Door is closing and an obstacle has been detected, the Train Control and
Management System must set a CCTV signal to true (and generates a driver alarm),
so the incident can be visualised by the train driver.

3.4.3 Requirement processing

From the requirement example at Section 3.4.2, Sesnando uses a lexer and a
parser (ANTLR Library, Section 2.2) to translate it into a Parse tree. A parse tree is
a concrete representation of the input and contains all the requirement information.
Figure 3.6 is a representation of the Parsed Requirement 3.2.

In order to use Sesnando, such software requirements shall be written on a con-
trolled natural language (CNL) (following the Given-When-Then blueprint presented
on Section 3.4.2) that define the functionalities of a software system. This compiler
aims to automatically generate system tests (Section 2.3) by parsing and interpreting
requirement contents in this so called Parse tree.

32 Mestrado em Engenharia Informática

Figure 3.6: Parse tree from the Requirement 3.2

Before executing Sesnando, Debug mode can be enabled by setting the debug
flag trough the command line. This turns Sesnando into a more verbose execution
by displaying the intermediate steps to the user. Due to this, Sesnando provides a
representation of the Parse tree in an XML format:

1 <?xml version="1.0" encoding="utf-8"?>

2 <AST>

3 <RequirementSet>

4 <Requirement>

5 <Id>123456</Id>

6 <TestCaseId>R151_2F03_DoorStat_TC_001</TestCaseId>

7 <Namespace>MWT_</Namespace>

8 <GivenConditions p4:type="ComparisonExpression">

9 <ExpressionType>EXP_COMPARISON</ExpressionType>

10 <ExpressionOperator>

11 <ExpressionType>EXP_COMP_OPERATOR</ExpressionType>

12 <OperatorType>OP_EQ</OperatorType>

13 </ExpressionOperator>

14 <LogicalSignal>

15 <ExpressionType>EXP_SIGNAL</ExpressionType>

16 <SignalName>CTC_OPDoorsFromMIO</SignalName>

17 <SignalFormat>SIGNAL_ALIAS</SignalFormat>

18 </LogicalSignal>

19 <SignalValue>

Luís Miguel Coelho Jordão 33

20 <ExpressionType>EXP_SIGNAL_VALUE</ExpressionType>

21 <Type>SV_BOOL</Type>

22 <Value>TRUE</Value>

23 </SignalValue>

24 </GivenConditions>

25 <WhenConditions p4:type="EmptyLogicalExpression">

26 <ExpressionType>EXP_EMPTY</ExpressionType>

27 </WhenConditions>

28 <ThenActions p4:type="ActionExpression">

29 <ExpressionType>EXP_ACTION</ExpressionType>

30 <LogicalSignal>

31 <ExpressionType>EXP_SIGNAL</ExpressionType>

32 <SignalName>CTC_STrcnSafeFromMIO</SignalName>

33 <SignalFormat>SIGNAL_ALIAS</SignalFormat>

34 </LogicalSignal>

35 <SignalValue>

36 <ExpressionType>EXP_SIGNAL_VALUE</ExpressionType>

37 <Type>SV_BOOL</Type>

38 <Value>TRUE</Value>

39 </SignalValue>

40 <Actor />

41 </ThenActions>

42 </Requirement>

43 </RequirementSet>

44 </AST>

The above XML representation is a direct export of the Parse tree stored in
Common Library (Common Lib) that can be generated by the ASTController.

The process of serializing an object’s public properties and fields into a serial
format (in this case, XML) for storage or transmission is known as XML serialization.
In this case, this is achieved using the XmlSerializer class of .NET4.5.

The benchmarking results of this requirement interpretation is present in Annex
A.

3.4.4 Grammar Elements

One of the core values of Sesnando is the ability to validate the writing of
requirements given the installed grammar. This tool is able to display detailed error
messages when it fails to interpret a given requirement as well as error messages
when certain keywords or expressions are inadvisable.

34 Mestrado em Engenharia Informática

Besides, the installed grammar tends to approach a level of natural language
given that there is a tendency on these markets to describe high-level requirements
using natural language as they are more readable by the stakeholders.

A requirement contains sets of conditions defined by GIVEN and WHEN elements
and a set of actions defined by THEN element, these are defined as requirement
predicates. GIVEN and WHEN define the outcome of the requirement (i.e. whether
the THEN actions are applied or not) but are not mandatory, when omitted the
outcome of the requirement is evaluated on the system with no restrictions.

A requirement clause is a single logical condition contained on each requirement
GIVEN and WHEN predicate and may be separated from other clauses by boolean
operators e.g. ANDs. The most simple predicate (GIVEN or WHEN) clause contains
two operands and one operator. The first operand is described as requirement signal
and the second the signal value, which might be a boolean or an integer value. The
most common operators are defined using natural language and are presented on
Table 3.2

Table 3.2: Requirement grammar - Operators

Grammar Operator Logical Operator

is equal to =

is greater than >

is greater than or equal to <=

is lower than <

is lower than or equal to <=

As per Table 3.2, an example of a clause containing a natural operator, could be
defined as: GIVEN <Traction Safe Status> is equal to true in at least one DTCar
in the train.
This expression would check whether the requirement signal Traction Safe Status
evaluates to true on a given car of the train. A train usually contains 5 coupled cars.

3.4.4.1 Quantifiers

Each requirement predicate condition can be enhanced with a quantifier. A
quantifier is useful when a requirement signal represents more than one element on
the train of the same type, e.g. a train door, a train axle, brake mechanisms, etc.
A quantifier defines how many or which elements of the same type need to fulfil a

Luís Miguel Coelho Jordão 35

condition in order for the full clause (i.e., the base condition plus the quantifier)
to evaluate to true. Thus, a requirement signal can map to one or more technical
signals. This will be presented on next Section 3.4.5.

The following, is a description of the Requirement 3.3. Right after, the actual
requirement will be presented using the Given-When-Then (GWT) blueprint.

Given that a dragging brake is detected for at least one brake

in the Train Unit, Dragging Brake Detected shall be set on the

Juridical Recording Unit.

Requirement 3.3: JRU Dragging Brake Detected

1 REQUIREMENT(REQ344-1, 2F02_Traction_Braking, CCUS)

2 {

3 GIVEN <Dragging Brake Detected> is equal to true

4 for at least one brake in the Unit;

5 WHEN;

6 // Juridical Recording Unit

7 THEN <JRU Dragging Brake Detected> is set to true;

8 }

The above requirement written in the GWT blueprint defines that at least only
one dragging brake is necessary for this event to be registered on the JRU. Line
6 of the second verbatim represents a comment that might be presented on the
requirement to clarify any definition. This is supported by the installed grammar
and will be ignored during the compilation of the requirement.

The complete list of the supported quantifiers is presented on the following bullet
point list.

• FOR ONE - Predicate clause evaluates to true if one and only one component
within the quantifier evaluates to true, e.g. one of the two driver cabinets of
the train.

– Example: <Status Train cab> is active for one cab of the train;

• FOR AT LEAST - Predicate clause evaluates to true if at least one component
within the quantifier evaluates to true, e.g. a door in a set of train doors.

– Example: <Status door> is open for at least one door of the train;

36 Mestrado em Engenharia Informática

• FOR ALL - Predicate clause evaluates to true if all attributes/components
within the quantifier evaluates to true, e.g. all the emergency brakes need to
be applied in order for the clause to evaluate to true.

– Example: <Status Emergency brake> is applied for all emergency brakes
of the train;

• FOR THE SAME - When the value of an attribute of a technical signal,
needs to be checked on the set of technical signals of another condition.

– Example:
WHEN <Driver Desk Door Open> is equal to true for one side of the
train;
THEN the <TCMS command door open> is set to true for the same
side as in <Driver Desk Door Open>;

<component> as in <Requirement Signal in FOR ONE quantifier>" - This
quantifier must be used in conjunction with "for one" quantifier in the same
requirement when both signals share the same attributes, i.e., the requirement
signal within the clause containing the "for one" quantifier and the requirement
signal within the "for the same..." quantifier. Predicate clause evaluates to
true if the same attribute as in the "for one" clause contains the same attribute
value. The following example describes a use case of this quantifier.

A requirement predicate supports multiple clauses and each clause supports only
one quantifier. Each different quantifier is parsed into a different class object. Figure
3.7 presents the Requirement 3.4 containing a quantifier parsed into a Parse tree.

Requirement 3.4: JRU Dragging Brake Detected

1 REQUIREMENT(REQ344-2, 2F03_Door_Functions, CCUS)

2 {

3 GIVEN <Status of Obstacle Detection> is equal to

4 true for at least one door of the train;

5 WHEN;

6 THEN <Door Obstacle alarm and CCTV> is set to true;

7 }

On Figure 3.7, for the quantifier node, "for at least one" defines the type of the
quantifier. Door is the component of the signal and the train is the scope of the
signal (i.e., local car, unit, or the whole train), meaning that each Door needs to be

Luís Miguel Coelho Jordão 37

Figure 3.7: Requirement Quantifier Parse tree

checked whether the present conditions evaluates to true for at least one door of the
train (i.e., an obstacle has been detected during door close sequence).

3.4.4.2 Technical approach for grammar definition

As the grammar lexer set has been identified it was then necessary to define
an Abstract Syntax tree (AST). It is known that GIVEN, WHEN and THEN are
the main predicates that define the skeleton of a requirement, thus, each predicate
should implement its own Condition tree.

There are widely known libraries to support the building of a grammar, such as
Antlr, Flex and Bison [13], however, flex and bison only work with the C++ language
and Antlr works with a number of different languages [8], hence the choice of Antlr
library to support the development of this grammar. GIVEN, WHEN and THEN
are represented in the form of a Logical Expression that can be derived into child
classes, given the lexer type. The representation of the syntax tree is presented on
Figure 3.8.

The AST on Figure 3.8 implements a list of requirements that Sesnando has
compiled from the input file. The type of each expression is given by the ELogicalEx-
pressionType enumerator. AndExpression and OrExpression are the defined boolean
operators, however, Sesnando will report a warning message when an "OR" is used,
as it usage is not advised according to Railway original requirement guidelines. A
ComparisonExpression is used for GIVEN and WHEN predicates and the ActionEx-
pression on THEN predicates, as they define the output actions of a requirement,
i.e., the expected results.

The defined grammar also supports the use of comments in the input file in the
format of line comment or block-comment, "//" and "/**/" respectively.

38 Mestrado em Engenharia Informática

Figure 3.8: AST Class Diagram

Luís Miguel Coelho Jordão 39

3.4.5 Signal Mapping

Signal Mapping is the activity of identifying the required software signals used
for testing from the signal names present on the Requirements. This functionality is
integrated on the Test Generator module as presented on Figure 3.3.

Requirement signals are from now on defined as Logical signals, as per naming
conventions by the Railway project stakeholders.

A Logical signal maps to one or more Software signals (defined as Technical
signals as per naming conventions) Figure 3.9.

Technical signals can be seen as software variables that are being used in tra-
ditional programming. The most common variable types are boolean and integer
values that define the status of a system or sub-system of the train and these variable
values change while the train is in operation.

The Train control and Management system (TCMS) acts as the brain of the train
and keeps track of all the remaining device status, e.g. Brake status, Door status,
whether the train is at a station or not, whether it is being energised by the external
network, the status of propulsion systems, converters and transformers, whether
there is a fire on the train, etc.

Figure 3.9: LogicalSignal and TechnicalSignal class relationship

Expanding on this subject, Requirement 3.5 is given as example.

Requirement 3.5: Traction Safe Status

1 REQUIREMENT(REQ345-1, 2F03_Door_Functions, CCUS)

2 {

3 GIVEN <Doors enabled> is equal to false

4 and <Train speed> is equal to 0;

5 WHEN;

6 THEN <Traction Safe> is set to true;

7 }

Regarding Requirement 3.5, a signal within a clause evaluating the train speed
(Logical signal: <Train Speed>), would map to one technical signal (BUS.ETH_-
1.trainStatus.TrainSpeed) of the system, as the train speed is an atomic and singleton
value throughout the train (i.e., it is not possible to have multiple train speeds).

40 Mestrado em Engenharia Informática

However, when checking whether the doors are enabled (Logical signal <Doors
enabled> is equal to false), checkings need to be performed for each door on the
train. In other words, if a train contains 10 doors, this requirement signal would
actually map to as many signals as needed to represent all the door status.

In order to determinate the status of the doors of the train, a collection of
requirements are necessary containing the conditions for each state. If any door is
open, the train door status is set as Open, thus, when all doors are closed, the train
door status is set as Closed. This is the role of quantifiers, as presented on Section
3.4.4.1.

The signal mapping of these two requirement signals is presented on Table 3.3.

Table 3.3: Signal mapping of train speed and door status

Logical Signal Technical Signal

<Train speed> BUS.ETH_1.trainStatus.TrainSpeed

<Doors Enabled>

BUS.ETH_1.DCUStatus.C1ISDOEnCD
BUS.ETH_1.DCUStatus.C1ISDOEnAF
BUS.ETH_1.DCUStatus.C2ISDOEnCD
BUS.ETH_1.DCUStatus.C2ISDOEnAF
BUS.ETH_1.DCUStatus.C3ISDOEnCD
BUS.ETH_1.DCUStatus.C3ISDOEnAF
BUS.ETH_1.DCUStatus.C4ISDOEnCD
BUS.ETH_1.DCUStatus.C4ISDOEnAF
BUS.ETH_1.DCUStatus.C5ISDOEnCD
BUS.ETH_1.DCUStatus.C5ISDOEnAF

Requirement 3.5 expresses the use of the signals previously mentioned. As per
Table 3.3, each technical signal mapping to <Doors Enabled> provides the status of
all doors throughout the train. It is also important to mention that when omitting
any type of quantifier, the default behavior is the same as "for all" quantifier, hence,
for the verification of each door that maps to the requirement signal, the quantifier
can act as a filter of the signals that go into the verification.

The corresponding signals are obtained by sending a request to the Signal Manager
API (3.4.7), which is a centralised knowledge base that supports the information
present on a requirement with additional data. This will be discussed in detail on
next Section.

Once the technical signals that are used for testing are identified, Sesnando starts
to generate tests to verify the requirement.

Luís Miguel Coelho Jordão 41

3.4.6 Test Generation

Test Generator has two main roles: Translate each requirement signal into one or
more software signals, and generate the combinatory explosion from the input signal
values into test cases. This will be detailed throughout this section.

Once a requirement is compiled into a Parse tree, Test Generator module firstly
picks up the GIVEN and WHEN clauses. The evaluation of these combined predicates
(evaluation of GIVEN conditions AND WHEN conditions) dictates the outcome of
the requirement (decision), in other words, dictates how the set of the THEN actions,
or the effects on the train system should be observed (Figure 3.10). These effects
are defined as expected results. When both predicates evaluate to True, the THEN
actions defined by the requirement should be observed on the system, otherwise,
they should be observed in its negative form or unrealised.

Figure 3.10: Test Inputs and Expected Results

3.4.6.1 Requirement coverage and applications of MCDC

Generated tests shall follow the the MCDC (Modified Condition/Decision Cov-
erage) coverage criteria. MCDC is used in critical software development to ensure
adequate testing.

Essentially, it states that every condition in a decision should independently
affect the outcome of a decision and every decision should take every possible
outcome. In the context of the railway requirements of this project, it means that
every clause/condition within a GIVEN and WHEN that affects the outcome of the
requirement should be exercised with its possible inputs.

Considering the presented constrains, the outcome of a requirement decision is
given by the Equation 3.1.

THEN Actions = GIVEN Predicate ◦ WHEN Predicate (3.1)

The THEN actions (expected results) shall be observed on the system under
testing if GIVEN and WHEN predicates combined evaluate to True. Equation 3.2
presents how GIVEN and WHEN Predicates are determined.

42 Mestrado em Engenharia Informática

Predicate Outcome = Clause1 ∧ Clause2 ∧ ClauseN (3.2)

Previous Equations will be demonstrated by using the Requirement 3.6 blueprint
as example, containing one GIVEN AND operator and a single WHEN clause,
which results in a set of tests presented on Table 3.4.

Requirement 3.6: Requirement Signal Structure

1 REQUIREMENT(REQ346-1, function, tcmsdevice)

2 {

3 GIVEN <SignalIn1> is equal to true

4 and <SignalIn2> is equal to true;

5 WHEN <SignalIn3> is equal to true;

6 THEN <SignalOut1> is set to true;

7 }

Regarding Requirement 3.6, SignalIn(1,2,3) will be set on the system as True (as
dictated by the requirement signal values SignalInX), whereas SignalOut1 will be
read from the system and compared against expected results provided on Table 3.4.

Requirement Logical expression:
signalOut1 = SignalIn1 AND SignalIn2 AND SignalIn3

Table 3.4: Test Spec for single AND

Cell values: 0 = False, 1 = True

Test case SignalIn1 SignalIn2 SignalIn3 SignalOut1

1 0 1 1 0

2 1 0 1 0

3 1 1 0 0

4 1 1 1 1

It can be seen on Table 3.4 that when the GIVEN and WHEN conditions evaluate
to true, the expected result (signalOut1) is expected to to be observed on the system
as True.

It is important to mention that this requirement compiler supports predicate
clauses separated by AND boolean operators only. The reason is that the manu-
facturer prohibits the use of OR operators on system requirements by stating the
following on document [1]: "Multiple conditions shall be linked only by AND, i.e.
OR conditions are forbidden.".

The use of Sesnando on a different manufacturer project where Requirements
with multiple boolean logic operator are used, require further developments on

Luís Miguel Coelho Jordão 43

Sesnando tool. This approach might include the reduction and simplification of the
input logical expression and the application of a newly developed algorithm. These
techniques have already been explored by this Github user (armin-montigny) [36].
However, OR operators are implicitly present on element quantifiers as described on
next Section 3.4.6.2.

3.4.6.2 Handling quantifiers on requirements

Previous Section 3.4.6.1 introduces the handling of Logical Signals from a compiled
requirement. A Logical signal maps to 1 to N technical signals and this approach is
detailed on Section 3.4.5.

Quantifiers define how to handle the set of technical signals that a Logical Signal
maps to. For instance, by observing the following clause:

<Brake Applied> is equal to true

Being <Brake Applied> a Logical Signal mapping to 4 individual brake technical
signals, one might ask: "How many brakes should be applied to fulfill the condition?
Should all train brakes be applied? Is only 1 brake applied enough?" The answer to
these questions are given by the quantifiers.

To better understand this concept, a real world scenario will be presented. Train
Control and Management System (TCMS) has a functionality to detect whether a
brake failed to release whilst at speed. When it happens, this event is recorded on
the Juridical Recording Unit, commonly known as black-box. This functionality is
described by Requirement 3.7.

Requirement 3.7: For at least one Brake quantifier

1 REQUIREMENT(REQ346-2, 2F02_Traction_Braking, CCUS)

2 {

3 GIVEN <Train speed> is greater than 3 kph

4 and <Brake Applied> is equal to true

5 for at least one brake in the Unit;

6 WHEN;

7 // Comment: JRU - Juridical Recording Unit

8 THEN <JRU Dragging Brake Detected> is set to true;

9 }

Requirement 3.7 explicitly indicates by the for at least one quantifier that if
ANY brake is applied whilst at speed a Dragging Brake Detected event is recorded
on the train. In order to register this event, it is necessary to actually verify that the
train is at Speed (greater than 3 kph) and there is at least one brake applied. This
is illustrated by the cause-effect-graph [37] on Figure 3.11.

44 Mestrado em Engenharia Informática

Figure 3.11: Cause-Effect-Graph of Dragging Brake detection

The requirement Requirement 3.7 contains two signals whereas the <Train speed>
maps to only one technical signal and the <Brake Applied> Logical signal maps to
4 Technical signals. The clause containing the <Train speed> evaluates to true if
the speed is above 3 kph, so value 4 is used for the cases where the clause evaluates
to true, and the value 3 is used when the clause should evaluate to false.

Test Generator proceeds to ask the Signal Manager remote service (Section 3.4.7)
for the corresponding technical signals (Section 3.3) for every Logical Signal in
Requirement 3.7.

On a detailed technical point-of-view, the Test Generator extracts all the Require-
ment signals by traversing the Parsed Object Tree of the requirement (See Figure 3.6)
and for each Logical Signal found, requests the corresponding Technical Signals from
the Signal Manager calling an API endpoint (API/signal/LOGICAL_SIGNAL_-
NAME) where LOGICAL_SIGNAL_NAME is the actual Requirement Signal name
from the input requirement.

For instance, on the <Brake Applied> request, Signal Manager returns 4 corre-
sponding technical signals. Train Speed and the Event of dragging brake detected
are unique signals, thus, they map to only 1 signal each.

The mapping of these Logical signals and their respective Technical Signals is
presented on Table 3.5.

Luís Miguel Coelho Jordão 45

Table 3.5: Signal Mapping for Dragging Brake detected

Logical Signal Technical Signals Alias

Train Speed BUS.ETH_1.trainStatus.TrainSpeed TSpeed

Brake Applied

BUS.ETH_1.BkStatus1.Applied

BUS.ETH_1.BkStatus2.Applied

BUS.ETH_1.BkStatus3.Applied

BUS.ETH_1.BkStatus4.Applied

Bk1

Bk2

Bk3

Bk4

JRU Dragging Brake Detected BUS.ETH_1.JRU.BkDrgDetected JRU DBkDet

Obs.: BUS.ETH terminology means that the software Technical Signal can be
read and set by connecting to the system via an ethernet port, but this feature is
not relevant for the scope of this project.

The Logical expression resulting from the Requirement 3.7 is (Eq. 3.3):

JRUDraggingBrakeDetected = TrainSpeed > 3kph ∧BrakeApplied (3.3)

Whereas, once the technical signals are identified, it turns into (Eq. 3.4):

JRUDBkDet = TSpeed > 3kph ∧ (Bk1 ∨Bk2 ∨Bk3 ∨Bk4) (3.4)

What initially was a simple AND expression, turned into a more complex ex-
pression due to quantifiers. Before generating the Test Specification for Logical
Expression in Eq. 3.4, the Test Generator evaluates all the possible outcomes for
each requirement clause. This is presented by Table 3.6.

Table 3.6: Dragging Brake detection - Evaluation Table

Logical Signal JRU DBkDet = True JRU DBkDet = False

Train Speed >3 kph <= 3kph

Brake Applied

1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 1

 = True

4 Signals
Brake Applied is true if:

BrakeApplied[i] = True ∀i ∈ {1, 2, 3, 4}

(
0 0 0 0

)
= False

As per MCDC, every input condition in a decision shall generate every possible
outcome. As such, given that one requirement signal might map into multiple

46 Mestrado em Engenharia Informática

technical signals, every technical signal must be tested (as per the previous example,
every brake on the train). Meaning that the logical expression on Eq. 3.4 results in
the test specification of Table 3.7.

Table 3.7: Test Spec Dragging Brake Detected

Test Case TS Bk1 Bk2 Bk3 Bk4 JRU DBkDet

1 4 0 0 0 0 0

2 3 1 0 0 0 0

3 4 1 0 0 0 1

4 4 0 1 0 0 1

5 4 0 0 1 0 1

6 4 0 0 0 1 1

On Table 3.7, and regarding the Requirement 3.7 it is verified that:

• Test Case 1 - Requirement decision outcome is False when Brakes are not
applied.

• Test Case 2 - Requirement decision outcome is False when the train is not
above the speed threshold (>3kph).

• Test Case 3-6 - Requirement decision outcome is True when both conditions
are True.

When the for-at-least-one quantifier is used on a Logical expression, the inner
Technical signals (ts) that map to the Logical signal is given by 3.5:

Logical Signal on for-at-least-one (OR) = (ts1 ∨ ts2 ∨ ts3 ∨ ts4) (3.5)

The applicability of this equation can be seen on Eq. 3.4.
However, if for instance, the Brake Applied condition quantifier mandates that

all brakes must be Applied using the for-all quantifier as in:

1 <Brake Applied> is equal to true for all brakes in the Unit;

Applying the same principle, the Brake Applied Technical signals inner condition
expression would be given by Eq. 3.6.

Logical Signal on for-all (AND) = (ts1 ∧ ts2 ∧ ts3 ∧ ts4) (3.6)

As such, with regard to the variables used in Eq. 3.4, a for-all quantifier would
result in the extended Logical Expression on Eq. 3.7.

Luís Miguel Coelho Jordão 47

JRUDBkDet = TSpeed > 3kph ∧ (Bk1 ∧Bk2 ∧Bk3 ∧Bk4) (3.7)

This results in the Test Specification of Table 3.8.

Table 3.8: Test Spec Dragging Brake Detected

All brakes applied whilst at speed
Test Case TS Bk1 Bk2 Bk3 Bk4 JRU DBkDet

1 3 1 1 1 1 0

2 4 0 1 1 1 0

3 4 1 0 1 1 0

4 4 1 1 0 1 0

5 4 1 1 1 0 0

6 4 1 1 1 1 1

When a Requirement Signal maps to multiple technical signals, and in order to
exercise every possible outcome of a requirement decision, Sesnando expands every
requirement Logical Signal into (No. Technical Signals + 1) test cases. This scenario
is detailed on Table 3.6 and can also be observed on the Test Specifications on Table
3.7 and Table 3.8. The process to create these Test Specifications is automated
within the Test Generator module of Sesnando.

3.4.6.3 Quantifiable attributes on requirements

Sesnando extracts every Logical Signal from the input requirements and asks
the Signal manager (Section 3.4.7) for their corresponding Technical signals (Section
Section 3.3).

A Logical Signal quantifier defines how these technical signals are tested (from
the Test Generator perspective), and when applied to a train element (Doors, Brakes,
Axles). Then Sesnando tests these components individually as seen on previous
Section 3.4.6.2 on the Brake Applied example.

For instance, a requirement that states that all doors shall be closed, would state
the following:

<Door Closed> is equal to true for all doors in the Train;

However, there might be some cases where a subset of technical signals fulfill a
requirement condition, for instance, the doors on one side of the train. This can be
put as:

<Door Closed> is equal to true for one SIDE of the train;

48 Mestrado em Engenharia Informática

Requirement 3.8 illustrates this scenario. It states that, given the train doors are
allowed to be open for one side, when the driver presses the Door Open push-button
on Cabin Desk for the same side, the Train Control and Management System (TCMS)
sends a command throughout the train for the doors on the same side.

Requirement 3.8: TCMS command door open

1 REQUIREMENT(REQ346-3, function, module)

2 {

3 GIVEN <Door Open Permit> is equal to true for one side;

4 WHEN <Driver Desk Door Open> is equal to true

5 for the same side;

6 THEN <TCMS command door open> is set to true

7 for the same side;

8 }

Naturally, Sesnando will set all the Technical signals, such as Door Open Permit,
in order to exercise every possible requirement outcome. However, on the field, that
signal is set according to the train and location circumstances (i.e., is set from other
requirements).

Expanding on this subject, Door Open Permit technical signals must have the
attribute side assigned on the Signal Manager database. This is how Test Generator
handles the sorted signals by the signals attribute (side). The technical signals
mapping to Door Open Permit logical signal are the following:

1 MWT.PAD_PAD_P_SiglBindout.CO_MIO_CCsdeDrPrmtLft_1

2 MWT.PAD_PAD_P_SiglBindout.CO_MIO_CCsdeDrPrmtRgt_1

The mapping from Logical Signals to Technical Signals as well as their attributes
can be found on the railway project documentation (Interface Control Documents
(ICDs) and Interface Signal List (ISL)) and are then populated on Signal Manager
Server to support the generation of tests by Sesnando. Figure 3.12 presents 3
attributes that have been assigned for each technical signal of Door Open Permit
Logical signal.

Luís Miguel Coelho Jordão 49

Figure 3.12: Door open permit signals attributes

Meaning that the first Technical Signal defines the permission to open the doors
on the left side and the second signal on the right side.

From a business perspective these attributes can be arranged on an hierarchical
way. An excerpt of this hierarchy is presented on Figure 3.13. The illustrated
designations are detailed on Chapter 2.

Figure 3.13: Table train elements and attributes (excerpt)

Regarding Figure 3.13, one Train contains at least 1 Consist (also called Unit) and
a Consist contains Cars and Cabins (Cabs). DT, DMS, etc., are cars identifiers and
not relevant for this example. Thus, if a requirement states the following quantifier:

<Door closed and Locked> for all Cabs on the train;

only the doors within train cabins are considered on the requirement.
As such, and returning to the example Requirement 3.8 in the beginning of this

section, Test Generator generates tests for Left and Right side of the train, resulting
in the logical expressions in Eq. 3.9 and Eq. 3.10 respectively.

50 Mestrado em Engenharia Informática

Given that the "same side" refers to the side where the Door Open Permit is
equal to true, the MCDC test cases for the given requirement would be as follows:

• GIVEN: Door Open Permit = true, WHEN: Driver Desk Door Open = true
THEN: TCMS command door open = true

• GIVEN: Door Open Permit = true, WHEN: Driver Desk Door Open = false
THEN: TCMS command door open = false

• GIVEN: Door Open Permit = false, WHEN: Driver Desk Door Open = true
THEN: TCMS command door open = false

These test cases ensure that the TCMS command door open is set to true only when
the Door Open Permit is true and the Driver Desk Door Open is also true for the
same side. The Boolean expression of this statement is given as:

TCMS command door open = DoorOpenPermit ∧DriverDeskDoorOpen (3.8)

This can be illustrated on the Table 3.9:
Being L and R the left and the right side respectively

Table 3.9: Test Spec - for the same side quantifier

Test case DrPm[L,R] DrDsk[L,R] DrCmd[L,R]

1 0 1 0

2 1 0 0

3 1 1 1

When mapping previous Logical signal signals to their Technical signals, Table
3.9 is expanded to cover the following expressions applied to Technical Signals:

DrCmdLft = DrPmLft ∧DrDskLft (3.9)

DrCmdRgt = DrPmRgt ∧DrDskRgt (3.10)

Where,

• DrPmLft and DrPmRgt are Technical Signal aliases representing <Door Open
Permit> Logical signal for Door Open Permission;

• DrDskLft and DrDskRgt are Technical Signal aliases representing the <Driver
Desk Door Open> the Logical signal for the Driver Door open command;

Luís Miguel Coelho Jordão 51

• DrCmdLft and DrCmdRgt are Technical Signal aliases representing the <TCMS
command door open> Logical Signal representing the Command for Door
opening which are the Expected results of the Requirement 3.8.

Requirement 3.8 results in the Test Specification of Table 3.10.

Table 3.10: Test Spec - for the same side quantifier

Test case DrPmLft DrDskLft DrPmRgt DrDskRgt DrCmdLft DrCmdRgt

1 0 1 0 1 0 0

2 1 0 0 1 0 0

3 1 1 0 1 1 0

4 0 1 1 0 0 0

5 0 1 1 1 0 1

Referring to Table 3.10, DrCmdLft is expected to be set as 1 (True) when the
left doors are allowed to be open and the Driver presses the Door Open button for
the Left side on the Cab desk, otherwise, the door open command is not expected to
be set on the TCMS. This approach also applies to the doors on the Right side of
the train.

This test table covers all possible combinations of the input variables, DrPmLft,
DrPmRgt, DrDskLft, and DrDskRgt, and ensures that the output variables, Dr-
CmdLft and DrCmdRgt, are set to true only when the corresponding Door Open
Permit and Driver Desk Door Open variables are true for the same side.

3.4.7 Signal Manager

Signal Manager runs on a remote server where additional signal data is stored.
The main benefit of this centralized data approach is that every tester, developer or
project stakeholder can contribute to develop a solid knowledge-base to sustain the
test generation process of Sesnando.

As mentioned on the previous sections, the Test Generator asks the Signal
Manager service for the technical signals that map to a given requirements’ Logical
Signal. This is achieved by calling a Signal Manager API endpoint, such as:
https://<IP_Address>:5001/api/signal/<LogicalSignal>

52 Mestrado em Engenharia Informática

3.4.7.1 Signal Manager Interface

Signal Manager can be accessed trough a Web App Interface running on port
5001. From there, the user is able to edit Technical signals (Software signals) which
can be mapped to the corresponding Logical Signals (Requirement Signals) as well
as add relevant data, like attributes and states.

To introduce the Signal Manager interface, the following use case scenario can
be given as an example: When a Logical signal is not found on the Signal Manager
Database, the Test Generator reports an error message to the user regarding the
Logical Signal, as it must be added to the Database. The execution halts and no
Test Specification is generated.

This process will be demonstrated using Requirement 3.9 as example:

Requirement 3.9: Evt Loss of CSDE Protection

1 REQUIREMENT(REQ347, function, doors_module)

2 {

3 // Passenger Information and Beacon System

4 GIVEN <PIBS Fault> is equal to true;

5 AND <PIBS Isolated> is equal to false;

6 THEN <Evt Loss of CSDE Protection> is set to true;

7 }

Assuming PIBS Fault Logical Signal is not found on the Signal Manager database,
Test Generator would return the following error message:

Error while fetching Logical Signal from Signal Manager: PIBS Fault

To overcome this problem, this signal needs to be mapped on the Signal Manager.
See (Fig. 3.14)

Figure 3.14: Signal Manager PIBS Signal Mapping example

Luís Miguel Coelho Jordão 53

Figure 3.14 is an excerpt from the Signal Manager user interface. Logical Signals
can be added by pressing Add Logical Signal. Once PIBS Fault is added, it is
identified by the id 1047 which is a foreign key on the Technical Signals database,
meaning that it maps to two technical signals as highlighted on Figure 3.14.

Every database change will be recorded on a Log table that can be audited if
necessary.

Signal Manager also supports the upload of XLSX spreadsheets containing the
mapping data of Logical Signals and Technical Signals.

3.4.7.2 Signal Manager Architecture

As previously stated, Signal Manager runs as a detached service from the local
compiler solution.

Since the information is centralized on a remote server, this would allow that every
tester, developer or involved user could contribute to the growth of the information
in it. This benefits all the users of Sesnando as all the local client instances would
make use of this information to generate tests. Meaning that every piece of testing
information such as signal mapping, attributes, etc., would be added only once.

The Signal Manager acts as a Web Service and serves the Test Generator through
a REST API. There are several endpoints to consult, edit and create additional
signals on the Signal Manager Database.

The purpose of these API Endpoints is not only to support the Test Generator,
but also the management of the signal data without the need of accessing the web
user interface, e.g, automating the import of signal data by an external client or tool.

The Signal Manager contains 14 database tables to support the logic described
throughout this document. An excerpt of this database is presented on Fig. 3.15.

54 Mestrado em Engenharia Informática

Figure 3.15: Signal Manager DB Architecture (Excerpt)

A Logical Signal maps to one or more technical signals and a technical signal
supports multiple attributes and states.

A train Brake can be used as an example, as a possible attribute would be the
location of this Brake within the train (Car=1,2..N) and its Train Axle (Axle=1..2),
given that a train Car contains two axles and a possible state would be whether this
brakes are released or not (state="released", "not released").

Technical Signal states map to an integer value to represent the state. This
information is cross-checked on the Test Generator to process the correct technical
signals values according to the requirement information.

For instance, the Technical Signal states are used to mask Logical Signal values
such as:

<Brake Status> is equal to Released

It can be seen that Technical Signals map to a Logical Signal trough a database
id. A Technical signal might map (not mandatory) to several attributes, e.g., a door
Side or Car location within the train or a state, e.g., Open, Released, Closed. The
same way, a given state or attribute can be present on multiple Technical Signals
(N-to-N relationship). Technical Signal states is a feature under development. It is
fully supported by the Signal Manager, but not yet by Test Generator.

Luís Miguel Coelho Jordão 55

3.4.8 Test Designer

The Test Designer is a Graphical User Interface (GUI) module of Sesnando that
displays the generated Test Specifications to the user. This section presents an
example of a generated specification of a requirement.

3.4.8.1 Test Designer Interface

Once the Test Specification is generated by the Test Generator, it notifies the
Test Designer and all the requirement test cases are displayed.

Requirement 3.10 from Section 3.4.6.2 will be used to present the Test Designer
interface.

Requirement 3.10: JRU Dragging Brake Detected

1 REQUIREMENT(REQ348, 2F02_Traction_Braking, CCUS)

2 {

3 GIVEN <Train speed> is greater than 3 kph

4 and <Brake Applied> is equal to true

5 for at least one brake in the Unit;

6 WHEN;

7 // Comment: JRU - Juridical Recording Unit

8 THEN <JRU Dragging Brake Detected> is set to true;

9 }

The interface of the Test Designer is presented on Figure 3.16.

Figure 3.16: Test Designer Interface

Similar to Table 3.7, boolean values True and False are converted to 1 and 0
respectively. The first row contains all the technical signals, and the second row the

56 Mestrado em Engenharia Informática

direction of the signal, i.e., if its a signal to be read or to be set on the system under
testing.

• in_write - The value to be set on the corresponding technical signal.

• out_read - The expected results after setting the signals under in_write.

Third to last row are the list of test cases to execute on the system. Tests are
executed from top to bottom. First, all the signals from the third row are exercised,
then the forth one, and so on.

Sesnando is a functional tool under continuous development. It is not a certified
tool, however, it is generating tests for certified software. Due to this circumstances
the user is responsible to review and accept the outputs given by Sesnando, thus, he
or she is able to modify the Test Specification as intended, and from there, generate
a test script. The main usage of test scripts is presented on next Section 3.4.8.2.

The test tables from the Test Designer is a representation of the test specifications
presented on Section 3.4.6.

3.4.8.2 Test Scripts and Test Execution

After visualising and reviewing the test specification on the Test Designer, the
tester is able to export it into a test script compatible with the Manufacturer test
execution tool.

This feature can be located by navigating to "File -> Export to test script" in
the interface of Figure 3.16. At this moment Sesnando only supports one script
type (only to one specific test tool) but it is intended that the user interface could
be extended to support other test tools as needed. For instance, in the future, one
could create a set of transformation rules in a C# script that could be compiled from
Sesnando using the CodeDOM Compiler.

Figure 3.17 presents the Manufacturer test tool that allows the setting and
observation of the internal signals of a simulated train in operation.

Luís Miguel Coelho Jordão 57

Figure 3.17: Test Environment

On Figure 3.17 the background window presents a terminal that connects to a
simulated train environment running on a validation facility.

The validation facility (which might be in a form of Test Rack or a local testers’
computer (Section 2.5)) loads the script generated from Sesnando. On a simple
operation, the signal values start to be set on the software to produce the desire
outcomes. The real-time value of every technical signal through the test time-span
can be observed on the multi-chart displayed on the focused window of the test tool
on Figure 3.17. (Window names omitted due to copyrighted material)

This demonstrates that a complete end-to-end pipeline from requirements to test
execution is possible with little user intervention.

58 Mestrado em Engenharia Informática

Chapter 4

Experimental Analysis and Results

This chapter analyses Sesnando advantages and limitations comparing to the
traditional approach regarding testing of Railway software projects, namely regarding
the testers’ effort, MCDC test coverage, and requirements complexity.

4.1 Effort analysis

This section presents the obtained results using the traditional methods versus
the obtained results using the Sesnando application regarding the effort spent during
testing activities. The results presented here were applied on a real railway project
for a rolling stock manufacturer.

In order to write system test specifications for such project, several steps are
required, which are illustrated on Figure 4.2. First, new requirements need to be
obtained from the Requirement management tool such as IBM Dynamic Object
Oriented Requirements System (DOORS). The software under test needs to be
downloaded or the remote test racks need to be accessed depending on the nature of
the requirement, SIL0 (non-SIL) to SIL2 respectively (See Section 2.5).

The design of a test specification requires the identification of the applicable
software signals (technical signals) on the Interface Control Document (ICD), as
defined on section 2.5, that satisfy the conditions of those requirements. As well
as software signals, the requirement clauses need to be identified and combined
according to the applicable requirement coverage criteria in the in the form of test
cases.

Once all Test Requirements are identified, the tester designs a Test Specification
containing all test cases in an Excel spreadsheet and must then generate a test script
which is generated by a VBA program provided by the Manufacturer and is then
run against the current software release. Figure 4.1 presents a manually written test

59

specification using traditional procedures.

Figure 4.1: System test specification - Traditional method

The items on Figure 4.1 are as follows:

• A - List of requirements under test;

• B - Description of test case;

• C - Test Case Number;

• D - Input Technical Signals;

• E - Button to run a VBA macro to generate a test script;

• F - Delay until checking the output;

• G - Expected Results.

The content within this test specification is not really important for the subject.
The main idea is to demonstrate that Sesnando is able to generate similar test
specifications as presented on Section 3.4.6.

60 Mestrado em Engenharia Informática

A test report is automatically generated by the Manufacturers’ test tool once
the test finishes. Both the test specification and test report (which is an HTML file
generated by the manufacturer test tool discriminating all pass/fails for every test
step) are subject to a peer review. The goal of this activity is to detect possible human
errors and validate the test results if no flaws are detected. An introduced human
error on the specification will influence the test results, as such, the specification
needs to be redesigned and re-executed.

Sesnando significantly reduces the effort involved in this process by automating the
activities of Signal mapping (From Logical to Technical signals) and by automatically
generating the test specification. This corresponds to steps 2. and 3. of Traditional
methods in Figure 4.2, which result in the activities of using Sesnando in the right
diagram of Figure 4.2. These are compared side by side, where text in gray represents
the common testing activities and in bold the activities automated by Sesnando.

The requirements of the railway project must be loaded to Sesnando which then
connects to a remote service (Signal Manager) to acquire the corresponding technical
signals (this process is automatic). Once done, it will automatically generate a set
of test steps using the railway project requirement coverage criteria and returns
a test script compatible with the manufacturers’ test tool. The activity of peer
reviewing should not be discarded, this tool is not certified and human errors might
be introduced on software signals repository.

A research was carried out at CSW to accurately determine the effectiveness
of Sesnando. Four people were inquired about the effort spent to design a test
specification for a single requirement. Given that the most common activities
between Sesnando and manual procedures are the technical signal identification and
test generation, those will be considered for comparison, as these are the activities
automated by using Sesnando.

Table 4.1 illustrates the effort that each participant (identified as P1 to P4) took
to determine the software technical signals for a given requirement and the writing
of the specification. They have all worked on the same requirement.

Taking the results obtained from the participants, Technical Signal Analysis
represents an average effort of 26 minutes and the Specification Writing represents
an average effort of 123 minutes for a single requirements containing a couple of
AND conditions, resulting on an average of approximately 150 minutes per simple
requirement. A participant also stressed out that most complex requirements can
take up to two days to have a specification ready.

Sesnando is able to execute both activities mentioned on Table 4.1 in less that 1
minute, as through a simple application launch results in a generated specification.

When using Sesnando, the requirement signals need to be available on the Signal
Manager. The ideal scenario would be to have all the necessary signals on the

Luís Miguel Coelho Jordão 61

(a
)

T
es

ti
ng

ac
ti

vi
ti

es
us

in
g

T
ra

di
ti

on
al

m
et

ho
ds

(b
)

T
es

ti
ng

ac
ti

vi
ti

es
us

in
g

Se
sn

an
do

F
ig

ur
e

4.
2:

Te
st

in
g

us
in

g
Tr

ad
it

io
na

lm
et

ho
ds

ve
rs

us
us

in
g

Se
sn

an
do

62 Mestrado em Engenharia Informática

Table 4.1: Effort using traditional methods

Participant Technical Signal Analysis Specification Writing

P1 15 Min. 75 Min.

P2 15 Min. 120 Min.

P3 45 Min. 195 Min.

P4 30 Min. 105 Min.

Avg. P 26 Min. 123 Min.

Signal Manager, so a specification is generated for any given requirement instantly.
At the current stage of development, a functionality is being created, so Interface
Control Documents (ICDs) and Input Signal Documents can be uploaded to populate
the remote Signal Manager Repository 3.4.7, as every tester will benefit from this.
However, adding signals manually is already possible.

It is important to enumerate the scenarios where Requirement signals are not
available on the remote tool. The participants were asked to add a couple of signals
to the Signal Manager. The effort required to generate a specification using Sesnando
is presented on Table 4.2, for situations where the signals are present on the remote
database and when they are not. The Signal Manager is now referenced as SM.

Table 4.2: Effort analysis of Signal management on Signal Manager

Scenario Technical Signal Analysis Specification Writing

Signals available
in SM

(Best Case Scenario)
< 1 min. < 1 min.

Signals not available
Experienced user in SM 10 Min. < 1 min.

Signals not available
Unexperienced user in SM

(Worst Case Scenario)
25-35 Min. < 1 min.

On the worst case scenario, a tester needs to identify technical signals on the
available project resources, such as ICDs, learn how to use the Signal Manager and
insert the new technical signals to be used by Sesnando in the future. However the
generation of the specification is instant.

During this process it was considered the time that each participant took to
learn the tool (Participant 1-4 (Technical Signal Analysis) + Learning SM + Adding
signals).

Luís Miguel Coelho Jordão 63

This process is not applicable for future requirements that use the same signals,
as they will already be available. According to the obtained results, Sesnando can
save up to 90% of effort spent during the design of a test specification on the system
testing activities.

4.2 Requirement complexity analysis

This section presents an analysis of the complexity of requirements and how
Sesnando interprets them and what are the main difficulties on this process.

To analyse the complexity of existing requirements, a set of eighty (80) require-
ments has been exported and for each one, a complexity value of 1 to 4 was assigned.
The result of this analysis is shown on Table 4.3.

Table 4.3: Requirement Complexity Analysis

Complexity Number of Req. Req. Percentage

1 - Interpretable 22 27%

2 - Requires Rewrite 13 17%

3 - Tool to be improved 29 37%

4 - Non-Compatible 15 19%

The level of complexityof each requirement is defined as follows:

• 1 - Interpretable - The existing requirement is written in a way that it is
interpretable by Sesnando and its test specification can be generated.
Example: Requirements on Section 3.4.

• 2 - Requires rewrite - The existing requirement contains words, characters or
expressions that are not interpretable by Sesnando, however, its main logic is
supported after the rewriting of such requirement.
Example:

64 Mestrado em Engenharia Informática

Requirement 4.1: Guard Panel

1 REQUIREMENT(REQ421-1, 2F03_Doors, TCMS)

2 {

3 GIVEN <Guard Only mode> is equal to true

4 AND <Train Speed> is less than or equal to 3kph

5 // Should be: <active guard panel> for one cab;

6 AND <active guard panel> in a single cab location;

7 THEN <Doors Released> is set to True for all sides

8 of the train;

9 }

• 3 - Tool to be improved - The existing requirement contains expressions that
need additional checkings like timed signal pulses.
Example:

Requirement 4.2: Doors failed to close

1 REQUIREMENT(REQ421-2, 2F03_Doors, TCMS)

2 {

3 WHEN <TCMS command door close> is equal to true

4 AND <Status door closed> is equal to false

5 after 10 seconds;

6 // Evt - Event

7 THEN <Evt Doors failed to close> is set to True;

8 }

• 4 - Non-Compatible - Requirements that in order to be tested require in-
formation that is out-of-scope of Sesnando. Usually, those are defined as
semi-automated tests and require a manual action from the tester. For in-
stance, check that certain information is present on drivers’ screen.
Example:

Requirement 4.3: HMI Vehicle Overrun

1 REQUIREMENT(REQ421-3, 2F03_Doors, TCMS)

2 {

3 // Human machine Interface

4 WHEN <Vehicle Overrun> is selected on the HMI;

5 // Evt - Event

6 THEN <Evt Vehicle Overrun> is set to True;

7 }

Luís Miguel Coelho Jordão 65

This analysis concludes that, from the selected sample of requirements, 27% can
be interpreted by Sesnando, 17% are not compliant with the predefined grammar and
need rewriting, 37% require new developments on Sesnando, as they need specific
observations e.g. a signal value is set within a given timeframe and 19% cannot
be handled by Sesnando as they need the observation of the tester, e.g. an icon
is blinking on the drivers’ desk (on traditional methods, these are semi-automated
tests).

66 Mestrado em Engenharia Informática

Chapter 5

Conclusion

Sesnando has been presented at Critical Software and received very positive
feedback by Requirement managers and testers. However, we believe that there is
still a lot of room for improvement.

Such improvements are towards the interpretation and validation of all kinds of
requirement conditions such as time-frames that aren’t yet covered by Sesnando,
as well as requirements from different markets that are written under the GIVEN
WHEN THEN blueprint, not only on the Railway markets, but on ASDT (Aerospace
Defense and Transportation) markets.

Moreover, it is ambitioned that Sesnando could be used on projects that do not
solely rely on a signal based architecture systems as it is the case for the Railway
project under study, but also, for instance, for Desktop and Web Applications.

Given this realisation, Sesnando could be a great tool that supports any tester in
its daily activities. It is believed that there is a place out there for Sesnando in the
world of behavior-driven-development, given that once a requirement is written, a
test specification can be instantly generated. The advantage of generating tests in
such an early phase can help to detect problems on requirements.

It is intended to turn Sesnando into a very robust solution, user-friendly and
easy to adopt. Therefore, the following future work is proposed.

Future work

• Ability to include more than one requirement into a single specification, group-
ing requirements by functionality.

• Improvement of the user interface and the ability to export test scripts in multi-
ple formats. Ability to compile user-defined scripts (written in C#) containing
transformation rules from the Test Specification generated by Sesnando to the

67

desired test scripts.

• Development of a user interface or a VSCode plugin that is capable to detect
syntax errors and compilation warnings on requirements, so it becomes evident
whether they are compliant with the grammar installed on Sesnando. It could
have an internal dictionary to detect ambiguities on requirements.

• Checks for conflicting requirements, i.e. requirements that contradict each
other, facilitating the process of requirements’ review.

• Integration with Cucumber and defining the grammar of Sesnando as an
extension to the Gerkin syntax, as Gerkin is very similiar to the GIVEN
WHEN THEN blueprint presented on this document. Sesnando could, for
instance, be used as a Cucumber engine for Signal based systems.

• Ability to pull and push the remote signal database, so Sesnando could be
used offline.

• Integration with Jira. For instance, the ability to collect requirements directly
from Jira so their test specifications could be generated using Sesnando.

68 Mestrado em Engenharia Informática

Bibliography

[1] Luciana Provenzano. 3egm015__en TCMS GIVEN WHEN THEN instructions
for developers and testers.docx.

[2] Lori Cameron. First Software Engineer | IEEE Computer Soci-
ety. https://www.computer.org/publications/tech-news/events/

what-to-know-about-the-scientist-who-invented-the-term-software-engineering/,
2008. [Online; Accessed 14-11-2022].

[3] Robert McMillan. Her Code Got Humans on the Moon—And Invented Software
Itself. Wired. Section: tags.

[4] William E. Lewis and Gunasekaran Veerapillai. Software testing and continuous
quality improvement. Auerbach Publications, 2nd ed edition.

[5] Ayba1/4ke Aurum and Claes Wohlin. Engineering and Managing Software
Requirements. Springer Science & Business Media, July 2005. Google-Books-ID:
pUG1IaikDhMC.

[6] Independent Verification and Validation (IV&V) Through
the Eyes of DoD. https://logapps.com/2013/07/

independent-verification-and-validation/, July 2013. [Online;
Accessed 15-11-2022].

[7] Alexander Alexandrovich and Kirill Igorevich. INCOSE Guide for Writing
Requirements. Translation experience, adaptation perspectives. page 15. [Online;
Accessed 04-08-2022].

[8] The Definitive ANTLR 4 Reference. https://pragprog.com/titles/

tpantlr2/the-definitive-antlr-4-reference. ISBN: 9781934356999.

[9] Mike Mannion and Barry Keepence. SMART requirements. ACM SIGSOFT
Software Engineering Notes, 20, March 2004. [Online; Accessed 04-03-2022].

[10] Aaron Chou. Derived requirements syntax rules (vehicle functions). page 39.

69

https://www.computer.org/publications/tech-news/events/what-to-know-about-the-scientist-who-invented-the-term-software-engineering/
https://www.computer.org/publications/tech-news/events/what-to-know-about-the-scientist-who-invented-the-term-software-engineering/
https://logapps.com/2013/07/independent-verification-and-validation/
https://logapps.com/2013/07/independent-verification-and-validation/
https://pragprog.com/titles/tpantlr2/the-definitive-antlr-4-reference
https://pragprog.com/titles/tpantlr2/the-definitive-antlr-4-reference

[11] Jean-Michel Bruel, Sophie Ebersold, Florian Galinier, Alexandr Naumchev,
Manuel Mazzara, and Bertrand Meyer. The role of formalism in system require-
ments (full version). type: article.

[12] Klaus Pohl and Chris Rupp. Requirements engineering fundamentals: a study
guide for the certified professional for requirements engineering exam, foundation
level, IREB compliant. Rocky Nook, second edition edition.

[13] John Levine. Flex & Bison: Text Processing Tools. "O’Reilly Media, Inc.",
August 2009. Google-Books-ID: nYUkAAAAQBAJ.

[14] Why you should not use (f)lex, yacc and bison. https://tomassetti.me/

why-you-should-not-use-flex-yacc-and-bison/. [Online; Accessed 29-
05-2022].

[15] Donald E. Knuth and Luis Trabb Pardo. Early development of programming
languages. 7:419–493. [Online; Accessed 29-05-2022].

[16] DePaul University. BNF and EBNF. https://condor.depaul.edu/ichu/

csc447/notes/wk3/BNF.pdf. [Online; Accessed 15-04-2022].

[17] Front-matter. In Robert Oshana and Mark Kraeling, editors, Software Engineer-
ing for Embedded Systems, pages i–iii. Newnes. [Online; Accessed 18-05-2022].

[18] Test coverage analysis of safety-critical sys-
tems. https://ercim-news.ercim.eu/en75/special/

test-coverage-analysis-of-safety-critical-systems. [Online;
Accessed 15-05-2022].

[19] Gregory Zoughbi, Lionel Briand, and Yvan Labiche. Modeling safety and
airworthiness (RTCA DO-178b) information: conceptual model and UML profile.
10(3):337–367. [Online; Accessed 14-05-2022].

[20] John Joseph Chilenski and Boeing Commercial Airplane Company. Investi-
gation of three forms of the modified condition decision coverage (MCDC)
criterion. https://rosap.ntl.bts.gov/view/dot/42764. [Online; Accessed
23-05-2022].

[21] CENELEC 50128 and IEC 62279 standards | wiley. https://www.wiley.com/
en-us/CENELEC+50128+and+IEC+62279+Standards-p-9781848216341.
[Online; Accessed 30-04-2022].

[22] CENELEC - EN 50126-1 - Railway Applications - The Specification and Demon-
stration of Reliability, Availability, Maintainability and Safety (RAMS) - Part 1:

70 Mestrado em Engenharia Informática

https://tomassetti.me/why-you-should-not-use-flex-yacc-and-bison/
https://tomassetti.me/why-you-should-not-use-flex-yacc-and-bison/
https://condor.depaul.edu/ichu/csc447/notes/wk3/BNF.pdf
https://condor.depaul.edu/ichu/csc447/notes/wk3/BNF.pdf
https://ercim-news.ercim.eu/en75/special/test-coverage-analysis-of-safety-critical-systems
https://ercim-news.ercim.eu/en75/special/test-coverage-analysis-of-safety-critical-systems
https://rosap.ntl.bts.gov/view/dot/42764
https://www.wiley.com/en-us/CENELEC+50128+and+IEC+62279+Standards-p-9781848216341
https://www.wiley.com/en-us/CENELEC+50128+and+IEC+62279+Standards-p-9781848216341

Generic RAMS Process | Engineering360. https://standards.globalspec.
com/std/10262901/EN2050126-1. [Online; Accessed 08-04-2022].

[23] CENELEC - EN 50128 - railway applications - communication, signalling and pro-
cessing systems - software for railway control and protection systems | engineer-
ing360. https://standards.globalspec.com/std/14317747/EN2050128.
[Online; Accessed 08-04-2022].

[24] European Standards. EN 61131-6.

[25] Grady Booch, Douglas L. Bryan, and Charles G. Petersen. Software Engineering
with Ada. Addison-Wesley Professional. Google-Books-ID: iPZGJRW9bKgC.

[26] Les Hatton. Safer language subsets: an overview and a case history, MISRA c.
46(7):465–472. [Online; Accessed 30-04-2022].

[27] Rolf Schwitter. Controlled natural languages for knowledge representation. In
Coling 2010: Posters, pages 1113–1121. Coling 2010 Organizing Committee.
[Online; Accessed 14-05-2022].

[28] Deborah Frincke, Dave Wolber, Gene Fisher, and Gerald C. Cohen. Requirements
specification language (RSL) and supporting tools. https://ntrs.nasa.gov/
citations/19930003157. NTRS Author Affiliations: California Polytechnic
State Univ., Boeing Co. NTRS Document ID: 19930003157 NTRS Research
Center: Legacy CDMS (CDMS).

[29] Daniel Maciel, Ana Paiva, and Alberto Rodrigues da Silva. From requirements to
automated acceptance tests of interactive apps: An integrated model-based test-
ing approach:. In Proceedings of the 14th International Conference on Evaluation
of Novel Approaches to Software Engineering, pages 265–272. SCITEPRESS -
Science and Technology Publications. [Online; Accessed 23-05-2022].

[30] Chunhui Wang, Fabrizio Pastore, Arda Goknil, and Lionel C. Briand. Automatic
generation of acceptance test cases from use case specifications: an NLP-based
approach. http://arxiv.org/abs/1907.08490. type: article.

[31] Javier J Gutiérrez, María J Escalona, Manuel Mejías, and Jesús Torres. Gen-
eration of test cases from functional requirements. a survey. page 10. [Online;
Accessed 29-05-2022].

[32] Tom Collings. Controller-service-repository. https://tom-collings.medium.
com/controller-service-repository-16e29a4684e5. [Online; Accessed
30-10-2022].

Luís Miguel Coelho Jordão 71

https://standards.globalspec.com/std/10262901/EN2050126-1
https://standards.globalspec.com/std/10262901/EN2050126-1
https://standards.globalspec.com/std/14317747/EN2050128
https://ntrs.nasa.gov/citations/19930003157
https://ntrs.nasa.gov/citations/19930003157
http://arxiv.org/abs/1907.08490
https://tom-collings.medium.com/controller-service-repository-16e29a4684e5
https://tom-collings.medium.com/controller-service-repository-16e29a4684e5

[33] Andrei Z. Broder, Steven C. Glassman, Mark S. Manasse, and Geoffrey Zweig.
Syntactic clustering of the web. 29(8):1157–1166. [Online; Accessed 05-11-2022].

[34] A Alajmi, E Mostafa Saad, and RR Darwish. Toward an arabic stop-words list
generation. International Journal of Computer Applications, 46(8):8–13, 2012.
[Online; Accessed 09-05-2022].

[35] Luís Jordão. CSW-SESNANDO-Requirement-Guidelines, 2022.

[36] Armin-Montigny. Evaluation of boolean expressions and MCDC test
cases. https://github.com/Armin-Montigny/MCDC. original-date: 2019-04-
27T09:08:04Z.

[37] Khenaidoo Nursimulu and Robert L. Probert. Cause-Effect Graphing Analysis
and Validation of Requirements. In In Proceedings of CASCON’95 , IBM
Canada Ltd. and National Research Council, pages 293–293, 1995.

72 Mestrado em Engenharia Informática

https://github.com/Armin-Montigny/MCDC

Appendices

A Benchmarking

The Requirement 3.2 from Section 3.4.2 has been benchmarked using the Eclipse
IDE with ANTLR4 IDE 0.3.6 from the marketplace, resulting in the Figure 3.6.
Benchmark results are as follows:

Table 1: ANTLR Grammar Profiler

Measurement Value

Input Size 198 chars, 6 lines

Number of Tokens 34

Parse Time (ms) 2268

Prediction Time (ms) 0,711 = 31.36%

Lookahead Burden 53/34 = 1.56

DFA Cache miss rate 43/53 = 81.13%

B Thesis proposal

Luís Miguel Coelho Jordão 73

DEPARTAMENTO DE ENGENHARIA
INFORMÁTICA E DE SISTEMAS

IDENTIFICAÇÃO DA EMPRESA

1/3

PROPOSTA DE PROJECTO
Ano Lectivo de 2020/2021

Mestrado em Informática e Sistemas (Desenvolvimento de Software)

TEMA

Automatic test generation from software requirements

SUMÁRIO
Pretende-se desenvolver uma ferramenta capaz de gerar testes de software
automaticamente. Esta, deverá ser capaz de interpretar um conjunto de requisitos
escritos numa dada linguagem e gerar um conjunto de Scripts prontos a executar num
ambiente de testes.

1. ÂMBITO

Os testes de software e de sistema são uma actividade intrínseca no desenvolvimento
de software. Estima-se que um grande esforço no desenvolvimento de um sistema
reside na parte de verificação e validação do mesmo. A presente dissertação tem como
âmbito o desenvolvimento de uma ferramenta capaz de automatizar a criação desses
mesmos testes através da interpretação de requisitos de software escritos no formato
Given When Then permitindo assim reduzir largamente os custos associados a esta fase.

O trabalho aqui proposto visa uma colaboração entre o Instituto Superior de Engenharia
de Coimbra e a Critical Software.

2. OBJECTIVOS

O presente projecto pretende atingir os seguintes objectivos genéricos :

• Desenvolver uma primeira versão da aplicação capaz de interpretar um dado
conjunto de requisitos e gerar os respectivos Scripts de teste;

• Dissertação/Relatório final de projecto sintetizando o estado da arte, problemas
encontrados e como estes foram superados, a conclusão e a sua contribuição
científica.

• Prova pública final que será realizada no Instituto Superior de Engenharia de
Coimbra.

DEPARTAMENTO DE ENGENHARIA
INFORMÁTICA E DE SISTEMAS

IDENTIFICAÇÃO DA EMPRESA

2/3

•

3. PROGRAMA DE TRABALHOS

O projecto consistirá nas seguintes actividades e respectivas tarefas:

• T1 – Estado da arte – Estudo das tecnologias e avanços científicos existentes e
de que forma estes podem contribuir para o presente projecto.

• T2 – Análise e desmantelamento do problema – Esta tarefa consiste na análise
das fontes de dados e ferramentas disponíveis, i.e. conjuntos de requisitos e
resultados de T1.

• T3 – Desenvolvimento da solução – Desenvolvimento de um interpretador capaz
de reconhecer o conjunto de dados fornecidos.

• T4 – Testes - Actividades de verificação e validação da aplicação desenvolvida
e possíveis ajustes.

• T5 – Relatório final de projecto – Escrita de um relatório final de estágio
contendo o resultado de todas as fases anteriores.

4. CALENDARIZAÇÃO DAS TAREFAS

As Tarefas acima descritas, incluindo os testes de validação de cada módulo, serão

executadas de acordo com a seguinte calendarização:

O plano de escalonamento dos trabalhos é apresentado em seguida:

INI Início dos trabalhos
M1 (INI + 4 Semanas) Tarefa T1 terminada
M2 (INI + 8 Semanas) Tarefa T2 terminada
M3 (INI + 18 Semanas) Tarefa T3 terminada
M4 (INI + 22 Semanas) Tarefa T4 terminada
M5 (INI + 24 Semanas) Tarefa T5 terminada

DEPARTAMENTO DE ENGENHARIA
INFORMÁTICA E DE SISTEMAS

IDENTIFICAÇÃO DA EMPRESA

3/3

5. RESULTADOS

Os resultados do projecto serão consubstanciados num conjunto de documentos a

elaborar pelo aluno de acordo com o seguinte plano:

M1 Elaboração do estado da arte

M2: Apresentação e Discussão do problema

M3: Tecnologias usadas e solução adoptada

M4: Resultados e Conclusão da Dissertação

M5: Relatório final completo

6. LOCAL DE TRABALHO

Não se aplica.

7. METODOLOGIA

Reuniões Semanais/Bi-Semanais entre os orientadores e o orientado.

Organização de um Dossier de Projecto.

8. ORIENTAÇÃO

ISEC:

João Cunha (jcunha@isec.pt)
Professor Director

Critical Software:
João Gabriel Silva(joao.gabriel@criticalsoftware.com)
Board Member

9. CARACTERIZAÇÃO E REMUNERAÇÃO

• Data de início: 01/10/2020

• Data de fim: A determinar

	Introduction
	Problem and Motivation
	Objectives
	Schedule
	Starting point
	Scope of this document

	State of the art
	Software Requirements
	Requirements Specification Techniques
	The Given-When-Then Blueprint

	Computational Linguistics and Language Recognition
	Software testing and validation
	Vehicle Concept and Operability
	Overview of the current industry procedures
	Related Work

	Sesnando
	Architecture of Sesnando
	Requirements of Sesnando
	Data Analysis and Pre-processing
	Software Detailed Design
	Command Line Arguments
	Input Requirements
	Requirement processing
	Grammar Elements
	Signal Mapping
	Test Generation
	Signal Manager
	Test Designer

	Experimental Analysis and Results
	Effort analysis
	Requirement complexity analysis

	Conclusion
	Appendices
	Benchmarking
	Thesis proposal

