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ABSTRACT: Designing compounds with desired properties is a key element of the drug discovery process. However, measuring
progress in the field has been challenging due to the lack of realistic retrospective benchmarks, and the large cost of prospective
validation. To close this gap, we propose a benchmark based on docking, a widely used computational method for assessing molecule
binding to a protein. Concretely, the goal is to generate drug-like molecules that are scored highly by SMINA, a popular docking
software. We observe that various graph-based generative models fail to propose molecules with a high docking score when trained
using a realistically sized training set. This suggests a limitation of the current incarnation of models for de novo drug design. Finally,
we also include simpler tasks in the benchmark based on a simpler scoring function. We release the benchmark as an easy to use
package available at https://github.com/cieplinski-tobiasz/smina-docking-benchmark. We hope that our benchmark will serve as a
stepping stone toward the goal of automatically generating promising drug candidates.

■ INTRODUCTION
Designing compounds with some desired chemical properties
is the central challenge in the drug discovery process.1,2 De
novo drug design is one of the most successful computational
approaches that involves generating new potential ligands f rom
scratch, which avoids enumerating explicitly the vast space of
possible structures. Recently, deep learning has unlocked new
progress in drug design. Promising results using deep
generative models have been shown in generating soluble,3

bioactive,4 and drug-like5 molecules. The history of de novo
compound design dates back to the 1980s.6 Since then,
numerous other approaches emerged, from both ligand- and
structure-based path.7,8 Despite existing cheminformatic
approaches to new compounds generation, it was the
introduction of machine learning (ML) into the field of the
computer-aided drug design that revolutionized also the task of
de novo ligand design. In recent years, the combination of ML
with the information on the target is gaining significant
popularity.
A key challenge in the field of drug design is the lack of

realistic benchmarks.2 Ideally, the generated molecule by a de
novo method should be tested in the wet lab for the desired

property. In practice, typically, a proxy is used. For example,
the octanol−water partition coefficient or bioactivity is
predicted using a computational model.3,4 However, these
models are often too simplistic.2 This is aptly summarized by
Coley et al.9 who notice that the current generative model
benchmarks fail to capture the complexity of real discovery
problems. In contrast to drug design, more realistic bench-
marks have been used in the design of photovoltaics10 or in the
design of molecules with certain excitation energies,11 where a
physical calculation was carried out both to train models and to
evaluate generated compounds. A huge step toward unifying
chemical benchmark was made by Huang et al.12 who
introduced an open-source benchmark, Therapeutics Data
Commons, and showed that current algorithms are yet not
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primed to solve all the key therapeutic challenges. Despite this,
the recent advances in deep learning have already led to
numerous successful applications in drug discovery projects.13

Recently, an increasing number of methods adopts
molecular docking as a means of evaluation for generative
models in drug design.14−16 More specifically, in computer-
aided drug discovery pipelines, docking scores are often used
to preliminarily assess proposed drug candidates before
reaching for costly laboratory experiments.17−19 With an
advent of geometric deep learning for molecular graphs, the
structure-based generative models, often employing roto-
translationally equivariant neural networks, began to develop
rapidly.20−23 Many of these methods use molecular docking to
guide the generative process, so the docking scores are the
most natural way of the compound evaluation.
Our main contribution is a realistic benchmark for de novo

drug design (Figure 1). We base our benchmark on docking, a
popular computational method for predicting molecule
binding to a protein. Concretely, the goal is to generate
molecules that are scored highly by SMINA.24 We picked Koes
et al.24 due to its popularity and being available under a free
license. While we focus on de novo drug design, our
methodology can be extended to evaluate retrospectively
other approaches to designing molecules. Code to reproduce
results and evaluate new models is available online at https://
github.com/cieplinski-tobiasz/smina-docking-benchmark. No-
tably, our benchmark25 was already adopted by Nigam et al.26

to demonstrate the effectiveness of their genetic algorithm for
molecular design.
Our second contribution is exposing the limitation of

currently popular de novo drug design methods for generating
bioactive molecules. When trained using a few thousands
compounds, a typical training set size, the tested methods fail
to generate highly active structures according to the docking
software. The highest scoring molecules in most cases did not
outperform the top 10% molecules found in either the ZINC
database or the training set. This suggests we should exercise
caution when applying them in drug discovery pipelines, where
we seldom have a larger number of known ligands. We hope

our benchmark will serve as a stepping stone to further
improve these promising models.
The paper is organized as follows. We first discuss prior

work and introduce our benchmark. Next, we use our
benchmark to evaluate two popular models for de novo drug
design. Finally, we analyze why the tested models fail on the
most difficult version of the benchmark.

■ DOCKING-BASED BENCHMARK
We begin by briefly discussing prior work and motivation.
Next, we introduce our benchmark.
Why Do We Need Yet Another Benchmark? Stand-

ardized benchmarks are critical to measure progress in any
field. Development of large-scale benchmarks such as the
ImageNet was critical for the recent developments in artificial
intelligence.27,28 Many new methods for de novo drug design
are conceived every year, which motivates the need for a
systematic and efficient way to compare them.29

De novo drug design methods are typically evaluated using
proxy tasks that circumvent the need to test the generated
compounds experimentally.3,5,30−32 Optimizing the octanol−
water partition coefficient (log P) is a common example. The
log P coefficient is commonly computed using an atom-based
method that involves summing contribution of individual
atoms,5,33 which is available in the RDKit package.34 Due to
the fact that it is easy to optimize the atom-based method by
producing unrealistic molecules,35 a version that heuristically
penalizes hard to synthesize compounds is used in practice.5

This example illustrates the need to develop more realistic
ways to benchmark these methods. Another example is QED
score,36 which is designed to capture the drug likeliness of a
compound. Finally, some approaches use a model (e.g., a
neural network) to predict bioactivity of the generated
compounds.4 Similarly to log P, these two tasks are also
possible to optimize while producing unrealistic molecules.
This is aptly summarized in Coley et al.9 as

“The current evaluations for generative models do not reflect
the complexity of real discovery problems.”
Interestingly, besides the aforementioned proxy tasks, more

realistic proxy tasks are rarely used in the context of evaluating

Figure 1. Visualization of the proposed docking-based benchmark for de novo drug design methods. First, the generative model is trained for a
selected drug target and generates 250 ligand proposals. The model score is a combination of the mean docking score (or single docking score
component, e.g., repulsion or hydrogen bonding) of the generated compounds and their diversity. As a reference value, we use the scores of the top
K% of a random ZINC subset (depicted on the right side).
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de novo drug design methods. This is in contrast to evaluation
of generative models for generating photovoltaics10 or
molecules with certain excitation energies.11 One notable
exception is Aumentado-Armstrong37 who try to generate
compounds that are active according to the DrugScore38 and
then evaluate the generated compounds using rDock.39 This
lack of the overall diversity and realism in the typically used
evaluation methods motivates us to propose our benchmark,
which uses molecular docking as a more realistic proxy task.
Arguably, docking-based scoring of compounds has serious

limitations,40 and similarity-based models35 are often chosen in
commercial projects over molecular docking.41 However, the
idea of our benchmark is that docking, even if simplistic,
proves to be challenging for generative models. Our setup aims
to imitate real drug discovery scenarios by employing this
simple docking proxy.
Docking-Based Benchmark. Our docking-based bench-

mark is defined by (1) docking software that computes for a
generated compound its pose in the binding site, (2) a
function that scores the pose, and (3) a training set of
compounds with an already computed docking score.
The goal is to generate 250 molecules that achieve the

maximum possible docking score. We find this number of
compounds large enough to make the optimization of diversity
nontrivial, but small enough to make testing feasible in practice
(in terms of either computational resources or the cost of
ordering compounds for wet lab experiments). For the sake of
simplicity, we do not impose limits on the distance of the
proposed compounds to the training set. Thus, a simple
baseline is to return the training set. Finding similar
compounds that have a higher docking score is already
prohibitively challenging for current state-of-the-art methods.
As the field progresses, our benchmark can be easily extended
to account for the similarity between the generated compounds
and the training set.
Finally, we would like to stress that the benchmark is not

limited to de novo methods. The benchmark is applicable to
any other approaches such as virtual screening. The only
limitation required for a fair comparison is that docking is
performed only on the supplied training set.
Instantiation. As a concrete instantiation of our docking-

based benchmark, we use SMINA v. 2017.11.924 due to its
widespread use and its being offered under a free license. To
create the training set, we download from the ChEMBL42

database molecules tested against selected drug targets: 5-
HT1B, 5-HT2B, ACM2, and CYP2D6. In the extended variant
of our benchmark, we include four additional drug targets:
ADRB1, MOR, A2A, and D2. For instance, the final 5-HT1B
data set consists in 1,878 molecules, out of which 1,139 are
active (Ki < 100 nM) and 739 are inactive molecules (Ki >
1,000 nM). Only molecules that dock successfully are retained.
We list the resulting data set sizes in Table 1.
We dock each molecule using default settings in SMINA to a

manually selected binding site coordinate. Protein structures
were downloaded from the Protein Data Bank, cleaned and

prepared for docking using Schrödinger modeling package.
The resulting protein structures are provided in our code
repository. We describe further details on the preparation of
the data sets in the Supporting Information.
Starting from the above, we define the following three

variants of the benchmark. In the first variant (DOCKING SCORE
FUNCTION), the goal is to propose molecules that achieve the
smallest Vinardo docking score43 (based on the Vina docking
score44) used in the score_only mode of the SMINA
package, defined as follows:

Dockingscore 0.045 gauss

0.8 repulsion

0.035 hydrophobic

0.6 non dir h bond,

= ·
+ ·

·
· _ _ _

where all terms are computed based on the final docking pose.
The first three terms measure the steric interaction between
ligand and the protein. The fourth and the fifth terms look for
hydrophobic and hydrogen bonds between the ligand and the
protein. We include a detailed description of all the terms in
the Supporting Information.
Next, we propose two simpler variants of the benchmark

based on individual terms in the Vinardo scoring function. We
select optimization targets that have clear interpretations:
repulsion that minimizes clashes with protein and hydrogen
bonding that maximizes interactions stabilizing the compound
pose in the binding site. In the REPULSION task, the goal is to
only minimize the repulsion component, which is defined as

l
moo
noo

a a
d a a d a a

repulsion( , )
( , ) ( , ) 0

0 otherwise
1 2

diff 1 2
2

diff 1 2= <

where ddiff(a1, a2) is the distance between the atoms minus the
sum of their van der Waals radii. The distance unit is Angstrom
(10−10 m).
The third task, HYDROGEN BONDING, is to maximize the

non_dir_h_bond term:

l

m

oooooooooooooo

n

oooooooooooooo

a a

a a

d a a

d a a

d a a

non dir h bond( , )

0 ( , ) do not form hydrogen 
bond

1 ( , ) 0.6

0 ( , ) 0

( , )
0.6

otherwise

1 2

1 2

diff 1 2

diff 1 2

diff 1 2

_ _ _

=
<

To make the results more stable, we average the score over
the top 5 best-scoring binding poses. Finally, to make the
benchmark more realistic, we filter the generated compounds
using the Lipinski rule and discard molecules with molecular
weights lower than 100.

Table 1. Sizes of the Data Set Used in the Benchmarka

5HT1B 5HT2B ACM2 CYP2D6 ADRB1 MOR A2A D2

Data set size 1878 1193 2337 4199 1082 10225 9326 9509
# Actives 1139 656 1300 343 86 1094 1084 419
# Inactives 739 537 1037 3856 996 9131 8242 9090

aThe corresponding test data set comprises of 10% of the whole data set, and the rest of it is used in training.
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■ ZINC BASELINE
The premise behind de novo drug discovery is that it enables
access to structurally novel and potent molecules. To
contextualize results in the benchmark, we included as the
baseline sampling from the subset of ZINC database
containing 9,204,719 molecules.45 We selected molecules
having the following properties: 3D representation, standard
reactivity, in-stock purchasability, ref pH, charges from −2 to
+2 inclusive, and a used drug-like preferred subset. For each
protein we have sampled a set of molecules from
aforementioned ZINC subset of the protein’s training set
size. In each task, we compare to the mean value of the top
50%, 10%, and 1% of scores.
Diversity. To better understand the performance of each

model, besides the mean score, we also evaluate the diversity of
the proposed molecules. Concretely, we compute the mean
Tanimoto distance between all pairs of molecules in the
generated sample. We use the 1024-bit ECFP representation46

with radius 2. The diversity score is reported in the benchmark
along with the docking score results. We observe that the
optimized models narrow down to a less diverse subspace of
compounds that are dissimilar to the training set. This can also
be observed in the t-SNE plots of the generated compounds
compared to the training set (Figure 2). In this figure,
compounds are grouped together based on their structural
similarity. The small focused clouds of compounds generated
using different optimization targets always concentrate at one
side of the map. This suggests that there is similar bias of the
model independent of the optimization target, which can be
the ChEMBL prior to the REINVENT model47 (described

below as one of the compared generative models). The
separation between the optimized compounds and the training
set suggests that these are novel molecules (similar structures
are rarely present in the training set). Besides that observation,
we note that the generated compounds are less diverse,
creating one dense blob instead of multiple clusters, where all
compounds are similar to each other inside one optimization
target.
When Is a Task Solved? In the experiments, we compare

to two baselines: (i) random compounds from ZINC as the
baseline and (ii) compounds from the training set. In each case
we report the mean score, the top 10% of scores, and the top
1% of scores. We also report diversity of the results.
Roughly speaking, we consider a given optimization task

solved by a generative model if the molecules generated by this
model achieve a mean score that exceeds the score of top 1%
compounds in the ZINC subset (the values provided in
theResultssection), while achieving at least the same diversity
as observed in the training set of activity data extracted from
ChEMBL (also provided below for each protein). This
criterion is necessarily arbitrary. It is inspired by a natural
baseline�comparing against a random sample of several
thousands of drug-like compounds from the ZINC database.
Model Evaluation Workflow. Below, we summarize all

the steps necessary to evaluate a generative model and
compare it with our benchmark. A general overview of this
workflow is depicted in Figure 1, and the step-by-step
evaluation procedure is shared in our code repository in the
Python notebook named getting-started.ipynb.

1. Download the activity data associated with the selected
drug target using the link provided in our code
repository. This data contain both activity classes (active
or inactive based on the experimental Ki) and docking
scores.

2. Use the provided data to train a generative model that
optimizes docking scores (or other optimization target)
and generate 250 unique compounds.

3. The generated compounds should be filtered using the
Lipinski rule, and each molecule should have molecular
weights greater than 100.

4. Dock the filtered set of compounds and calculate its
diversity and the mean value of the optimization target.

5. Repeat for all proteins in the benchmark and all
optimization targets.

■ RESULTS AND DISCUSSION
In this section, we evaluate three popular models for de novo
drug design on our docking-based benchmark.
Models. We compare three popular models for de novo

drug design. Chemical Variational Autoencoder (CVAE)48

applies Variational Autoencoder49 by representing molecules
as strings of characters (using SMILES encoding). This
approach was later extended by Grammar Variational
Autoencoder (GVAE),3 which ensures that generated com-
pounds are grammatically correct. The third model, RE-
INVENT,47 is a recurrent neural network that generates
SMILES strings. It is first trained in a supervised manner to
produce correct drug-like compounds similar to the ChEMBL
data set (prior). Next, it is trained using reinforcement learning
to optimize docking scores, which are provided as a training
reward.

Figure 2. t-SNE maps of compound fingerprints (ECFP) for each
protein. Each point is a molecule, and the distances between points
are proportional to the dissimilarity of compounds. The training set is
marked with red dots, and the compounds generated by REINVENT
by enhancing different optimization targets are colored in blue
(DOCKING SCORE FUNCTION), orange (HYDROGEN BONDING), and green
(REPULSION).
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We note that CVAE and GVAE were not designed for small
sample sizes, so they may not fully exploit their potential in our
benchmark since they are used out of context. On the other
hand, it was shown that REINVENT is a representative
method in terms of achieving high sample efficiency.50

Experimental Details. To generate active compounds, we
follow an approach similar to the one in Jin et al.,5 disregarding
the penalty for insufficient similarity. Analogous methods using
the sparse Gaussian Process instead of a multilayer perceptron
are also employed in Goḿez-Bombarelli et al.48 and Kusner et
al.3 The exact algorithm for training our generative models is
described below.
First, we fine-tune a given generative model for 5 epochs on

the training set ligands, starting from weights made available by
the authors. All hyperparameters are set to default values used
in Goḿez-Bombarelli et al.48 and Kusner et al.3 Additionally,
we use the provided scores to train a multilayer perceptron
(MLP) to predict the optimization target (e.g., the SMINA
scoring function) based on the latent space representation of
the molecule.
For CVAE and GVAE, to generate compounds, we first take

a random sample from the latent space by sampling from a
Gaussian distribution with the standard deviation of 1 and the

mean of 0. Starting from this point in the latent space, we take
50 gradient steps to optimize the output of the MLP. Based on
this approach we generate 250 compounds from the model.
For the REINVENT model, we use pretrained weights on

the ChEMBL database provided by Olivecrona et al.47 As there
is no latent space in this model, we train a random forest
model to predict the optimization target directly from the
molecule structure. We use the ECFP fingerprint to encode the
molecule.46 The reward is computed based on the random
forest prediction multiplied by the QED score calculated using
RDKit.
The key limitation of all the generative methods above is the

use of an ML model, either an MLP or a random forest, to
predict docking scores. This is an important design decision in
this study. Our benchmark aims to simulate a setting in which
a drug discovery campaign involves designing a small batch of
compounds to be tested for biological activity based on prior
biological data. This is different from searching for a highly
docking compound, in which case a reasonable approach
would be to compute docking scores for a large number of test
compounds.
All other experimental details, including hyperparameter

values used in the experiments, can be found in the appendix.

Table 2. Results on the Three Molecule Generation Tasks, Each Rerun for Four Different Proteins, Composing Our Docking-
Based Benchmarka

5HT1B 5HT2B ACM2 CYP2D6

(a) DOCKING SCORE FUNCTION (↓)
CVAE −4.647 (0.907) −4.188 (0.913) −4.836 (0.905) - -
GVAE −4.955 (0.901) −4.641 (0.887) −5.422 (0.898) - -
REINVENT -9.774 (0.506) -8.657 (0.455) -9.775 (0.467) -8.759 (0.626)
Train (50%) −8.541 (0.850) −7.709 (0.878) −6.983 (0.868) −6.492 (0.897)
Train (10%) −10.837 (0.749) −9.769 (0.831) −8.976 (0.812) −9.256 (0.869)
Train (1%) −11.493 (0.859) −10.023 (0.746) −10.003 (0.773) −10.131 (0.763)
ZINC (50%) −7.886 (0.884) −7.350 (0.879) −6.793 (0.873) −6.240 (0.883)
ZINC (10%) −9.894 (0.862) −9.228 (0.851) −8.282 (0.860) −8.787 (0.853)
ZINC (1%) −10.496 (0.861) −9.833 (0.838) −8.802 (0.840) −9.291 (0.894)

(b) REPULSION (↓)
CVAE 1.148 (0.919) 1.001 (0.914) 1.132 (0.908) 2.234 (0.914)
GVAE 1.361 (0.910) 1.159 (0.942) 1.383 (0.917) - -
REINVENT 1.544 (0.811) 1.874 (0.859) 2.262 (0.845) 2.993 (0.858)
Train (50%) 2.099 (0.845) 1.792 (0.881) 1.434 (0.863) 6.508 (0.895)
Train (10%) 0.835 (0.863) 0.902 (0.893) 0.779 (0.888) 2.823 (0.904)
Train (1%) 0.550 (0.858) 0.621 (0.963) 0.553 (0.921) 1.284 (0.956)
ZINC (50%) 1.803 (0.878) 1.677 (0.882) 1.665 (0.879) 5.786 (0.880)
ZINC (10%) 0.840 (0.880) 0.865 (0.896) 0.792 (0.881) 2.348 (0.887)
ZINC (1%) 0.613 (0.941) 0.625 (0.922) 0.612 (0.938) 1.821 (0.880)

(c) HYDROGEN BONDING (↑)
CVAE 1.089 (0.915) 1.168 (0.909) 0.881 (0.907) 0.539 (0.908)
GVAE 4.152 (0.921) 2.954 (0.912) 2.567 (0.927) 2.732 (0.902)
REINVENT 3.795 (0.626) 2.451 (0.580) 3.520 (0.480) 1.304 (0.574)
Train (50%) 1.069 (0.843) 0.668 (0.882) 0.296 (0.871) 0.684 (0.892)
Train (10%) 2.934 (0.751) 2.327 (0.816) 1.444 (0.896) 2.061 (0.884)
Train (1%) 3.351 (0.825) 3.586 (0.575) 2.519 (0.852) 2.700 (0.917)
ZINC (50%) 1.114 (0.879) 0.871 (0.882) 0.512 (0.877) 0.660 (0.877)
ZINC (10%) 3.623 (0.873) 2.674 (0.887) 2.449 (0.874) 1.831 (0.878)
ZINC (1%) 5.743 (0.928) 3.545 (0.935) 3.253 (0.940) 2.115 (0.861)

aThe key task is DOCKING SCORE FUNCTION in which the goal is to optimize the docking score against a given drug target. Each cell reports the mean
score for 250 generated molecules in each task. In the parentheses, the internal diversity of generated molecules is reported (see text for details).
The tested models tend to improve upon the mean score in the ZINC database (ZINC). However, they generally do not improve upon the top
molecules from ZINC; ZINC (10%) and ZINC (1%) show the top 10% of scores and the top 1% of scores. Missing results (“-”) indicate that the
model failed to generate 250 molecules that satisfy drug-like filters (see text for details).
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Optimization of Docking Objectives. Tables 2 and 3
summarize the results on all three tasks. Recall that we
generally consider a given task solved if the generated
molecules exceed the top 1% score found in the ZINC
database, while achieving at least the same diversity as in the
training set. Below we make several observations.

DOCKING SCORE FUNCTION Task. The key task in the benchmark
is DOCKING SCORE FUNCTION. We observe that CVAE and
GVAE models fail to generate compounds that achieve a
higher docking score compared to the mean docking score in
the ZINC data set (−8.785 for 5-HT1B compared to −4.647
and −4.955 achieved by CVAE and GVAE, respectively). The

Table 3. Results on the Three Molecule Generation Tasks for the Four Additional Drug Targetsa

ADRB1 MOR A2A D2

(a) DOCKING SCORE FUNCTION (↓)
CVAE −4.581 (0.920) −4.962 (0.911) −4.545 (0.917) −5.151 (0.913)
GVAE - - - - - - - -
REINVENT -8.164 (0.831) -7.326 (0.821) -7.372 (0.821) -8.265 (0.815)
Train (50%) −12.084 (0.712) −8.340 (0.837) −7.725 (0.846) −10.118 (0.829)
Train (10%) −13.246 (0.534) −9.174 (0.843) −8.617 (0.858) −11.451 (0.828)
Train (1%) −13.929 (0.400) −9.959 (0.828) −9.839 (0.853) −12.416 (0.769)
ZINC (50%) −9.189 (0.866) −8.046 (0.870) −7.755 (0.874) −9.094 (0.869)
ZINC (10%) −10.361 (0.852) −8.959 (0.863) −8.807 (0.869) −10.341 (0.859)
ZINC (1%) −11.299 (0.844) −9.808 (0.857) −9.778 (0.869) −11.424 (0.847)

(b) REPULSION (↓)
CVAE 1.188 (0.916) 1.704 (0.912) 0.898 (0.911) 1.648 (0.914)
GVAE 1.433 (0.931) - - - - - -
REINVENT 2.370 (0.867) 2.163 (0.876) 2.355 (0.839) 2.225 (0.858)
Train (50%) 2.906 (0.834) 2.175 (0.851) 1.028 (0.826) 1.842 (0.850)
Train (10%) 1.656 (0.857) 1.301 (0.859) 0.804 (0.826) 1.214 (0.856)
Train (1%) 0.855 (0.829) 0.837 (0.856) 0.623 (0.817) 0.802 (0.832)
ZINC (50%) 2.111 (0.882) 1.874 (0.885) 1.174 (0.878) 1.661 (0.883)
ZINC (10%) 1.290 (0.890) 1.227 (0.896) 0.738 (0.876) 1.193 (0.892)
ZINC (1%) 0.765 (0.852) 0.845 (0.902) 0.530 (0.889) 0.807 (0.903)

(c) HYDROGEN BONDING (↑)
CVAE 1.574 (0.918) 0.819 (0.907) 0.240 (0.909) 0.567 (0.909)
GVAE 4.930 (0.902) 3.412 (0.901) 2.114 (0.901) 2.489 (0.935)
REINVENT 2.906 (0.829) 1.915 (0.831) 1.155 (0.843) 1.964 (0.833)
Train (50%) 3.904 (0.727) 1.153 (0.848) 0.283 (0.852) 1.203 (0.849)
Train (10%) 5.071 (0.736) 1.883 (0.860) 0.928 (0.870) 2.061 (0.863)
Train (1%) 6.157 (0.734) 2.967 (0.843) 1.962 (0.852) 3.213 (0.784)
ZINC (50%) 1.888 (0.880) 1.609 (0.882) 0.750 (0.883) 1.780 (0.881)
ZINC (10%) 2.985 (0.882) 2.538 (0.886) 1.589 (0.884) 2.699 (0.885)
ZINC (1%) 4.407 (0.890) 3.815 (0.891) 2.621 (0.894) 3.817 (0.889)

aThe experimental setup is the same as in Table 2.

Figure 3. Best scoring molecules generated by REINVENT in each of the three tasks composing the benchmark.
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REINVENT model achieves much better performance
(−9.774 for 5-HT1B). However, while docking scores attained
by the molecules generated by REINVENT generally outper-
form the mean docking in the ZINC data set and the training
set, they fall short of outperforming the top 10% molecules
found in ZINC (−9.894 for 5-HT1B, with the exception of
ACM2). We also draw attention to the fact that the generated
molecules by REINVENT are markedly less diverse than the
diversity of the training set (0.506 mean Tanimoto distance
compared to 0.787 in the training set).
These results suggest that generative models applied to de

novo drug discovery might require substantial more data to
generate well-binding compounds than is typically available for
training. In the key DOCKING SCORE FUNCTION task, models
generally fail to outperform the top 10% from the ZINC
database. It should worry us that optimizing for the docking
score, which seems to be a simpler optimization target than
true biological binding affinity, is already challenging given
realistically sized training sets (between 1,193 and 10,225
molecules).
REPULSION Task. Interestingly, REINVENT performs signifi-

cantly worse than GVAE and CVAE on the REPULSION task. All
models fail to outperform the top 10% found in the ZINC data

set. We observe markedly lower diversity of molecules
generated by REINVENT compared to the training set.
HYDROGEN BONDING Task. The HYDROGEN BONDING task is the

simplest, and both GVAE and REINVENT generate molecules
that almost match the top 1% molecules found in the ZINC
database and the training set. We again observe relatively low
diversity of molecules generated by REINVENT.
Generated Molecules. Figure 3 shows the best scoring

molecules generated by REINVENT. We observe that
optimizing each objective promotes different structural motifs.
For example, the best scoring molecules in the REPULSION task
are small, which intuitively enables them to easily fit into the
binding pocket, achieving lower repulsion values than the top
1% molecules in the training set.
Similarly, there are clear patterns visible in the top molecules

of CVAE and GVAE (Figures 4 and 5). For example, CVAE
generates macrocycles in the task of docking score
optimization, while GVAE generates long chains with no
cycles when optimizing the same objective. These models also
create oxygen or nitrogen chains when optimizing HYDROGEN
BONDING, and very small molecules (often less than 3 heavy
atoms) for the REPULSION task.

Figure 4. Best scoring molecules generated by CVAE in each of the three tasks composing the benchmark. Missing compounds correspond to the
failed optimizations.

Figure 5. Best scoring molecules generated by GVAE in each of the three tasks composing the benchmark. Missing compounds correspond to the
failed optimizations.
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We noticed a moderately strong correlation between
docking scores and the number of rotatable bonds or
molecular weight. Figures 6 and 7 show that, with the
increasing number of rotatable bonds or molecular weight, the
docking scores improve. For the number of rotatable bonds,
the generated compounds are well mixed with the training data
marginal distribution. On the other hand, the distribution of
generated compounds is shifted toward better docking scores
and smaller molecular weights in the case of the weight-to-
docking-score relation. In other words, molecules achieve
better docking scores at the same molecular weight after the
optimization. The correlations are weaker for CYP2D6, which
may be caused by a bigger binding site of this enzyme.
However, the last observation about molecular weights holds.
From the chemical point of view, REINVENT produced the

most consistent ligands with the highest possibility of desired
biological activity. When different optimization approaches are
considered, the best results were produced during the docking
score optimization. Nondir h-bond optimization produced
compounds with sometimes a high number of moieties able to
produce a hydrogen bond. In the repulsion task, the produced
compounds are correct from the chemical point of view. The
drug-likeliness of compounds produced by CVAE and GVAE
is lower (although they still meet criteria included in the
Lipiski Rule of Five), but they still can be used in the docking
benchmark task. The poor quality of the generated compounds
is not surprising, as this issue was previously observed for other
unrestricted de novo generative models.35

■ CONCLUSION
As concluded by Coley et al.,9 “the current evaluations for
generative models do not reflect the complexity of real
discovery problems”. Motivated by this, we proposed a new,
more realistic, benchmark tailored to de novo drug design,
using docking score as the optimization target. Code to
evaluate new models is available at https://github.com/
cieplinski-tobiasz/smina-docking-benchmark.
Our results suggest that generative models applied to de novo

drug discovery pipelines might require substantially more data

to generate realistic compounds than is typically available for
training. Despite using over 1,000 compounds for training
(between 1,074 and 3,780), the best docking scores generally
do not outperform the top 10% docking scores in the ZINC
data set. The docking score is only a simple proxy of the actual
binding affinity, and as such, it should worry us that it is
already challenging to optimize.
On a more optimistic note, the tested models achieved much

better performance on the simplest task in the benchmark,
which is to optimize a single term in the SMINA scoring
function involving the number of hydrogen bonds to the
binding site. This suggests that producing compounds that
optimize the docking score based on the provided data set is an
attainable, albeit challenging, task. We hope our benchmark
better reflects the complexity of real discovery problems and
will serve as a stepping stone toward developing better de novo
models for drug discovery.

■ ASSOCIATED CONTENT
Data Availability Statement
The data and code used in this project are available at https://
github.com/cieplinski-tobiasz/smina-docking-benchmark.
*sı Supporting Information
The Supporting Information is available free of charge at
https://pubs.acs.org/doi/10.1021/acs.jcim.2c01355.

Default SMINA scoring function, Vinardo scoring
function, model details (including VAE and RF
hyperparameters), and data set details (PDF)

■ AUTHOR INFORMATION
Corresponding Authors

Stanisław Jastrzeb̧ski − Molecule.one, 00-807 Warsaw,
Poland; Faculty of Mathematics and Computer Science,
Jagiellonian University, 30-348 Kraków, Poland;
orcid.org/0000-0003-4138-1818; Email: stan@
molecule.one

Tomasz Danel − Faculty of Mathematics and Computer
Science, Jagiellonian University, 30-348 Kraków, Poland;

Figure 6. Correlation between docking score and molecular weight. The training set is marked with red dots, and the compounds generated by
REINVENT by enhancing different optimization targets are colored in blue (DOCKING SCORE FUNCTION), orange (HYDROGEN BONDING), and green
(REPULSION).

Figure 7. Correlation between docking score and the number of rotatable bonds. The training set is marked with red dots, and the compounds
generated by REINVENT by enhancing different optimization targets are colored in blue (DOCKING SCORE FUNCTION), orange (HYDROGEN
BONDING), and green (REPULSION).

Journal of Chemical Information and Modeling pubs.acs.org/jcim Article

https://doi.org/10.1021/acs.jcim.2c01355
J. Chem. Inf. Model. 2023, 63, 3238−3247

3245

https://github.com/cieplinski-tobiasz/smina-docking-benchmark
https://github.com/cieplinski-tobiasz/smina-docking-benchmark
https://github.com/cieplinski-tobiasz/smina-docking-benchmark
https://github.com/cieplinski-tobiasz/smina-docking-benchmark
https://pubs.acs.org/doi/10.1021/acs.jcim.2c01355?goto=supporting-info
https://pubs.acs.org/doi/suppl/10.1021/acs.jcim.2c01355/suppl_file/ci2c01355_si_001.pdf
https://pubs.acs.org/action/doSearch?field1=Contrib&text1="Stanis%C5%82aw+Jastrze%CC%A7bski"&field2=AllField&text2=&publication=&accessType=allContent&Earliest=&ref=pdf
https://orcid.org/0000-0003-4138-1818
https://orcid.org/0000-0003-4138-1818
mailto:stan@molecule.one
mailto:stan@molecule.one
https://pubs.acs.org/action/doSearch?field1=Contrib&text1="Tomasz+Danel"&field2=AllField&text2=&publication=&accessType=allContent&Earliest=&ref=pdf
https://orcid.org/0000-0001-6053-0028
https://pubs.acs.org/doi/10.1021/acs.jcim.2c01355?fig=fig6&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.jcim.2c01355?fig=fig6&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.jcim.2c01355?fig=fig6&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.jcim.2c01355?fig=fig6&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.jcim.2c01355?fig=fig7&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.jcim.2c01355?fig=fig7&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.jcim.2c01355?fig=fig7&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.jcim.2c01355?fig=fig7&ref=pdf
pubs.acs.org/jcim?ref=pdf
https://doi.org/10.1021/acs.jcim.2c01355?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as


orcid.org/0000-0001-6053-0028; Email: tomasz.danel@
ii.uj.edu.pl

Authors
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