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Spin network states are a powerful tool for constructing the SU(2) gauge theories on a graph. In
loop quantum gravity (LQG), they have yielded many promising predictions, although progress has
been limited by the computational challenge of dealing with high-dimensional Hilbert spaces. To
explore more general configurations, quantum computing methods can be applied by representing
spin network states as quantum circuits. In this article, we introduce an improved method for
constructing quantum circuits for 4-valent Ising spin networks, which utilizes a smaller number of
qubits than previous approaches. This has practical implications for the implementation of quantum
circuits. We also demonstrate the procedure with various examples, including the construction of
a 10-node Ising spin network state. The key ingredient of the method is the variational transfer of
partial states, which we illustrate through numerous examples. Our improved construction provides
a promising avenue for further exploring the potential of quantum computing methods in quantum
gravity research.

I. INTRODUCTION

Quantum circuit representation of gravitational states
is a crucial area of research for several reasons. Firstly, it
provides a framework for quantum simulations of quan-
tum gravitational processes. Secondly, it offers a power-
ful tool to investigate the holographic properties of grav-
itational interactions. Thirdly, the quantum circuit rep-
resentation can provide an upper bound on the quantum
complexity of gravitational processes. Overall, the de-
velopment of quantum circuit representations of gravi-
tational states has the potential to advance our under-
standing of fundamental physics and also contribute to
the development of quantum technologies.

In this study, we address the issue of the quantum cir-
cuit representation of the Ising spin network states within
the context of loop quantum gravity (LQG) [1, 2]. These
states offer an intermediary level of complexity between
the symmetry-reduced and general configurations, mak-
ing them a valuable tool for investigating quantum col-
lective phenomena in the realm of quantum gravity.

The Ising spin network states [3] are represented by
graphs built out of the 4-valent nodes only. Furthermore,
the links (holonomies) are associated with the fundamen-
tal (j = 1/2) representations of the SU(2) group. In con-
sequence, at the nodes, four spin-1/2 Hilbert spaces H 1

2
,

associated with the holonomies, meet.
The invariance with respect to the local gauge symme-

try (imposed by the Gauss law) implies that the states
|I〉 at the nodes are spanned by the invariant, so-called
intertwiner, spaces:

|I〉 ∈ InvSU(2)

(
H 1

2
⊗H 1

2
⊗H 1

2
⊗H 1

2

)
. (1)

Here, the invariant Hilbert space is two-dimension, justi-
fying the reason for using the Ising spin network termi-
nology.
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FIG. 1. An exemplary Ising spin network with tetrahedra
being dual to the 4-valent nodes.

The general state of a spin network can be represented
as a product of intertwiner states at each node, i.e.,
⊗n |In〉. However, it is also possible to consider a super-
position of spin network base states, especially when the
spin networks are constructed using entanglement carried
by the holonomies. Such a state would be a superposi-
tion of different spin network states. However, the Gauss
constraint can be used to project the state onto a par-
ticular spin network state. Thus, while a general spin
network state can be represented as a product of inter-
twiner states, it can also be described as a superposition
of spin network base states, which can be projected onto
a specific spin network state by enforcing the Gauss con-
straint.

Within LQG, the geometric operators (e.g., area or
volume) have a clear geometric interpretation in terms
of the spin network states. Specifically, 4-valent nodes
are associated with non-zero quanta of volume, and the
links describe their relative adjacency. For Ising spin
networks, the nodes are dual to tetrahedra, as depicted
in Fig. 1. The links, or holonomies, encode the adjacency
of the faces of the tetrahedra.

The application of quantum computing methods to
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simulate spin networks was first explored in Ref. [4].
In this article, the Ising spin network was considered, al-
lowing for the introduction of the notion of qubits. The
model was implemented on a molecular NMR quantum
simulator, enabling some initial quantum computations
to be performed, specifically in the context of spin foam
vertex amplitudes. Shortly after, another article on a
similar subject was released [5], which used the same con-
cept of the “intertwiner qubit”. However, these studies
were not conducted in the context of universal quantum
computing, but instead focused on adiabatic quantum
computers (quantum annealers). Overall, these pioneer-
ing works pave the way for future developments in the
field.

Ref. [6] represents a further advancement in the study
of quantum simulations of spin networks in LQG. This
article describes the first-ever quantum simulations of
nodes in the spin network using a superconducting quan-
tum processor. A five-qubit superconducting quantum
chip provided by IBM’s cloud services has been used for
this purpose. In addition, a method for evaluating tran-
sition amplitudes and the spin foam vertex amplitudes
have been developed. Building on this work, Ref. [7]
introduces a quantum circuit that enables the prepara-
tion of a general intertwiner qubit state of the Ising spin
network node.

Ref. [8] proposes the use of photonic circuits to simu-
late spin foam amplitudes, which employs the intertwiner
qubits introduced previously. This approach offers sev-
eral advantages, including its applicability to spin-foam
amplitudes with spin labels j � 1/2, which is difficult to
determine using classical computations [9, 10]. Recently,
Ref. [11] reported the first experimental demonstration
of the photonic approach applied to evaluating the spin-
foam vertex amplitude.

In Ref. [12], a significant step towards more advanced
simulations of spin foam amplitudes was taken using a 10-
qubit superconducting quantum processor. This marks
the most sophisticated simulation of this kind to date.
The implementation of intertwiner qubits directly al-
lowed for the achievement of results, with only a single
logical qubit needed to encode a node of a spin network
and five for computing a spin foam vertex amplitude in
Ooguri’s model [13]. However, the construction of rel-
evant states is not straightforward and requires the ap-
plication of optimization techniques. Nonetheless, the
approach shows promise since it can potentially simu-
late spin networks with four times more nodes with the
same quantum computing resources. Additionally, this
approach has the potential to extend beyond the j = 1/2
case, making it an exciting avenue for further exploration.

In this article, we present a novel extension of exist-
ing methods to the case of spin networks with an arbi-
trary number of nodes and an arbitrary network struc-
ture, although we limit our analysis to 4-valent nodes and
links with 1/2 spins. Specifically, we focus on spin net-
works corresponding to vector geometries [14], although
our method can be easily extended to other types of net-

works. Our main objective is to develop a methodology
to represent any Ising spin network as a quantum circuit,
to be executed on a quantum processor, and to measure
relevant physical quantities.

This article is organized as follows. In Section II, we
introduce a new quantum circuit for the node of the Ising
spin network, which will play a crucial role in the over-
all procedure described in this article. In Section III, we
discuss the general procedure for constructing a spin net-
work from entangled states of the links. Drawing on the
results of the previous sections, we propose a new pro-
jection scheme in Section IV and illustrate it using the
example of the dipole spin network. Section V describes
the variational technique used to transfer the spin net-
work states onto an ansatz circuit, which is crucial for
our optimized method of constructing quantum circuits
for arbitrary Ising spin networks. The method is pre-
sented in Section VI, where numerous examples can also
be found. Finally, in Section VII, we provide further de-
tails of the computations, including the use of quantum
hardware. We summarize our results and suggest further
research directions in the discussed area in Section VIII.

II. A SINGLE NODE CIRCUIT

In our previous article [7], we presented a quantum
circuit that can create an arbitrary state for a single node
in the Ising spin network. This state can be expressed in
the following form:

|I〉 = cos(θ/2)|ι0〉+ eiφ sin(θ/2)|ι1〉

=
c1√

2
(|0011〉+ |1100〉)

+
c2√

2
(|0101〉+ |1010〉)

+
c3√

2
(|0110〉+ |1001〉),

(2)

where θ and φ are angles on the Bloch sphere and
{|ι0〉, |ι1〉} form an orthonormal basis of the invariant
subspace. The coefficients c1, c2 and c3 are certain func-
tions of θ and φ (see Ref. [7] for details), satisfying the
two conditions:

3∑
i=1

|ci|2 = 1, and

3∑
i=1

ci = 0. (3)

In Ref. [7], a quantum circuit is proposed to generate
the state (2). The circuit’s structure is depicted in Fig.
2.

Here, the gates V and U are given by the following
unitary matrices:

V =

 − c2√
|c2|2+|c3|2

c∗3√
|c2|2+|c3|2

− c3√
|c2|2+|c3|2

− c∗2√
|c2|2+|c3|2

 , (4)
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|0〉 H • • •

|0〉 U •

|0〉 V

|0〉

FIG. 2. A quantum circuit generating a state of a single node
of the Ising spin network, introduced in Ref. [7].

U =

(
c1

√
|c2|2 + |c3|2

−
√
|c2|2 + |c3|2 c∗1

)
. (5)

A new version of the circuit is proposed in this article,
which involves defining the operator Ŵ . This operator
can transform a single-qubit state (α |0〉+ β |1〉) into the
four-qubit intertwiner state.

Ŵ (α|0〉+ β|1〉) |000〉 = |I(α, β)〉 = α|ι0〉+ β|ι1〉. (6)

The construction is made such that the coefficients α
and β of the single-qubit state (in the {|0〉 , |1〉} basis)
map one-to-one onto the coefficients of the intertwiner
qubit in the {|ι0〉 , |ι1〉} basis. Therefore, in order to
obtain an intertwiner state represented on 4 qubits, we
need to create the corresponding 1-qubit state and sub-
sequently apply the operator Ŵ . The property will play
an essential role in our further considerations.

The quantum circuit representation of the Eq. 6 is
shown in Fig. 3. In the definition of the operator Ŵ , one
applies the rotation operator Ry(θ), where the rotation
angle is fixed to be θ = 2 arccos 1√

3
. Furthermore, the

square root of the SWAP gate has the following matrix
representation:

√
SWAP =


1 0 0 0
0 1+i

2
1−i

2 0
0 1−i

2
1+i
2 0

0 0 1

 . (7)

In the Appendix, one can find an explicit circuit for
the
√
SWAP gate. This circuit is expressed in terms of

elementary single- and two-qubit gates, which makes it
useful for practical implementations. Furthermore, the
Appendix provides an alternative circuit for the Ŵ cir-
cuit, with employed variational ansatz.

III. GLUING TETRAHEDRA

Spin network states can be constructed by first defining
the states of the links, and then projecting each node onto
the intertwiner basis states. We can denote the state of
a link l as |α(l)〉. With this notation, the spin network
state can be expressed as follows:

|Γ, αl〉 = P̂Γ

⊗
l

|αl〉 , (8)

where P̂Γ is the projection operator (satisfying P̂ 2
Γ = P̂Γ),

associated with the Gauss constraint, which can be ex-
pressed as follows:

P̂Γ :=
∑
jl,In

|Γ, jl, In〉 〈Γ, jl, In| . (9)

The classical phase-space structure that arises from
spin networks is called twisted geometry [15]. A typi-
cal configuration of this geometry corresponds to a col-
lection of uncorrelated tetrahedra (or, in the case of net-
works with higher valency, polyhedra). This uncorrelated
structure of the twisted geometry is reflected by the un-
correlated structure of the spin network basis states:

|Γ, jl, In〉 =
⊗
n

|In〉, (10)

which is a product state, not exhibiting entanglement
between the nodes.

In this article, we will focus on vector geometries,
which have a more rigid structure compared to other ge-
ometries. Specifically, in vector geometries, the normals
to adjacent faces in neighboring tetrahedra are oriented
back-to-back. Despite this specific focus, it is important
to note that the method presented in this article is com-
pletely general and applicable to arbitrary types of links.

It has been justified in Ref. [16] that the vector geom-
etry can be obtained by using the squeezed states on the
links:

|B, λl〉 =
(

1− |λl|2
)∑

j

√
2j + 1λ2j

l |B, j〉 , (11)

where λl ∈ C is a free parameter of the state. The |B, j〉
is a singlet state of spin j, which is maximally entangled

|B, j〉 =
1√

2j + 1

j∑
m=−j

(−1)
j−m |j,m〉s |j,−m〉t . (12)

Subsequently, projection on a spin-network basis states
is performed, leading to:

|Γ,B, λl〉 = P̂Γ

⊗
l

|B, λl〉 . (13)

Specifically, for the case of the Ising spin networks (j =
1/2) we obtain:

|B, j〉 =
1√
2

(∣∣∣∣12 , 1

2

〉 ∣∣∣∣12 ,−1

2

〉
−
∣∣∣∣12 ,−1

2

〉 ∣∣∣∣12 , 1

2

〉)
(14)

or, equivalently, in the qubit notation:∣∣∣∣B, 1

2

〉
=

1√
2

(|01〉 − |10〉) . (15)

Previous studies have focused on spin networks con-
structed from the singlet state 15. In particular, Refs.
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|0〉 Uα,β X • Ry (θ) √
SWAP

S T • H •

|0〉 S† T † •

|0〉 H •

|0〉
Operator Ŵ

︸ ︸
FIG. 3. Quantum circuit for the operator Ŵ which turns the state (α|0〉+ β|1〉) |000〉 to |I(α, β)〉 = α|ι0〉 + β|ι1〉. Here, the

gate Ûα,β acts as follows: Û |0〉 = α |0〉+β |1〉. The rotation angle of the rotation gate Ry(θ) is fixed to be θ = 2 arccos 1√
3
. The

√
SWAP is a squared SWAP gate, the matrix representation of which is given in Eq. 7. Furthermore, S =

√
Z and T = 4

√
Z,

where Z denotes Pauli Z gate, X is the Pauli X gate and H is the Hadamard gate.

[4, 7] conducted quantum simulations of simple spin net-
works (dipole and pentagram) using this singlet state.
Notably, it has been observed that the states of these
spin networks correspond to the PEPS tensor networks
[7] implying the area law for entanglement entropy [17–
19].

One potential drawback of this approach is that the
number of qubits involved in the computation can quickly
become quite large. Specifically, since each link in the
Ising spin network state corresponds to a 2-qubit state,
a network with l links requires 2l qubits to be initially
involved. For example, the pentagram spin network has
l = 10, which means that 20 qubits are required initially.
While applying the Gauss projection at the nodes can
reduce the Hilbert space to just 5 intertwiner qubits, this
still means that the majority of the initial quantum re-
sources are not used by the final state. This inefficiency
becomes even more pronounced when dealing with more
complicated spin networks.

To address this issue, a method for constructing Ising
spin networks that uses far fewer quantum resources is
needed. In the subsequent sections, we propose a con-
crete procedure for achieving this goal.

IV. PROJECTION ONTO THE INTERTWINER
SUBSPACE

This section outlines the initial stage of constructing
Ising spin networks, which involves reducing the number
of qubits required for the process.

For this purpose, let us consider the states of the links,
in accordance with the discussion presented in the previ-
ous section. For the Bell states (15) of the links, the cor-
responding quantum circuit, employing elementary gates,
is shown in Fig. 4.

|0〉 X H •

|0〉 X

FIG. 4. Quantum circuit for the Bell state (15) .

In our previous studies in Refs. [6, 7], the states of the

links were projected onto the spin network basis states,
generated by the sequence of the quantum circuits shown
in Fig. 2. In this way the quantum amplitudes of the
entangled links in the spin network basis were recon-
structed. However, the approach does not lead to the
final state directly.

Here, we observe that the Ŵ operator, introduced
in Fig. 3, can be used to define projection operator,
equipped with the mapping onto a single-qubit state. For
this purpose, we apply Ŵ † and then project some of the
qubits (see Fig. 5) onto the |0〉 states.

W †
|0〉〈0|

|0〉〈0|

|0〉〈0|

FIG. 5. Projection operator on the intertwiner subspace, ex-
pressed in one-qubit representation.

To achieve the desired projection, measurements are
conducted, and only those returning |0〉 for the last three
qubits are accepted. In the chosen outcomes, the first
qubit stores the intertwiner state.

Although vector geometries are utilized in this work,
the proposed method can be adapted to other types of
spin networks. To achieve this, alternative states, rather
than Bell pairs, must be prepared and subsequently pro-
jected. Notably, the operator Ŵ described in this study
is specific to Ising spin networks. Nevertheless, its ex-
tension to higher dimensions of the intertwiner space is
likely feasible.

A. Dipole

To demonstrate the newly introduced projection tech-
nique, we analyze its application to the dipole spin net-
work, which is presented in Fig. 6.

As shown in Fig. 7, using the maximally entangled
pairs

∣∣B, 1
2

〉
(generated by the circuit shown in Fig. 4),

the states of the links are created first. Then the pro-
jection operator (generated by the circuit shown in Fig.
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FIG. 6. The dipole spin network.

5) is applied for the two nodes. The unmeasured qubits
(0th and 4th from the top) carry the state of the dipole
spin network.

|0〉 X H •

W †
|0〉 X H • |0〉〈0|

|0〉 X H • |0〉〈0|

|0〉 X H • |0〉〈0|

|0〉 X

W †
|0〉 X |0〉〈0|

|0〉 X |0〉〈0|

|0〉 X |0〉〈0|

FIG. 7. Quantum circuit representing projection of state⊗
l∈Γ2

∣∣B, 1
2

〉
.

By conducting quantum tomography on the 0th and
4th qubits and discarding any measurement results with
non-zero values on qubits 1, 2, 3, 5, 6, and 7, we can ex-
tract the dipole state. This method enables us to obtain
the density matrix of the dipole state, which comprises
only two logical qubits, as anticipated for the two inter-
twiner qubits of the Ising dipole spin network.

On the other hand, the dipole state can easily be com-
puted by the following contraction of the Wigner 4j-
symbols ιm1m2m3m4

k :∣∣∣∣Γ2,B,
1

2

〉
= P̂Γ

⊗
l∈Γ2

∣∣∣∣B, 1

2

〉
=
∑
k,l

ιm1m2m3m4

(k) ι(l)m1m2m3m4
|ιkιl〉

=
1√
2

(|ι0ι0〉+ |ι1ι1〉) .

(16)

Furthermore, the 4j-symbols can be expressed in terms

of the 3j-symbols:

ιm1m2m3m4

k =
√

2k + 1

(
m1 m2 m
j1 j2 k

)
·

· gmm′
(
m′ m3 m4

k j3 j4

) (17)

where

gmm′ = δm,−m′(−1)j−m. (18)

The indices of Wigner 4j-symbols can be lowered and
raised using the gmm′ tensor.

As observed, the dipole spin network’s final state can
be encoded using only two of the original eight qubits
utilized in its construction. Although the final 2-qubit
state can be reconstructed using quantum tomography,
it is essential to find its reduced circuit representation
afterward. To avoid the need for quantum tomography,
we present a variational method in the following section
to construct the circuit.

V. VARIATIONAL TRANSFERRING OF
QUANTUM STATE

Quantum circuit for some unknown state can be ap-
proximated (or even given exactly) by employing a quan-
tum circuit ansatz. In particular, the projected state of
the spin network can be transferred into an ansatz cir-
cuit, without knowing the explicit form of the state, by
fixing the parameters of the circuit. The obtained cir-
cuit is characterised by smaller number of qubits that
the original (unprojected) state, which is convenient for
the quantum computing purposes.

Here, we use the so-called Simplified-Two-Design
ansatz, which consists of layers of Pauli-Y rotations and
controlled-Z entanglers proposed in Ref. [20]. The quan-
tum circuit for the ansatz is shown in Fig. 8, for the case
with 5 quibts.

Ry (θ0) • Ry (θ5)

Ry (θ1) • Ry (θ6) • Ry (θ9)

Ry (θ2) • Ry (θ7) • Ry (θ10)

Ry (θ3) • Ry (θ8) • Ry (θ11)

Ry (θ4) • Ry (θ12)

Initial layer 1st layer
︸ ︸ ︸ ︸

FIG. 8. Quantum circuit for the simplified-two-design ansatz
with one layer.

In what follows, fidelities are used to quantify the quan-
tum states generated by the ansatz circuits. Both the
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classical fidelity:

F (p, q) :=
∑
i

√
piqi, (19)

where p and q are probabilities of basis states, and the
quantum fidelity:

F (ρ̂1, ρ̂2) :=

(
tr

√√
ρ̂1ρ̂2

√
ρ̂1

)2

, (20)

where ρ̂1 and ρ̂2 are density matrices of two states will
be used.

A. Dipole

Applying the quantum circuit shown in Fig. 7, the re-
sulting 0th and 4th qubit state can be projected onto the
ansatz circuit shown in Fig. 8. This results in the quan-
tum circuit presented in Fig. 9, which allows transferring
the dipole state.

The transfer is performed variationally by minimizing
the following cost function:

cost
(
~θ
)

= 1− Prob(q0q4 = 00), (21)

where the parameter vector ~θ = (θ1, θ2, θ3, θ4), contains
the four angles to be fixed. We use classical optimizers,
gradient descent optimizers, and Adam optimizers. Tech-
nical details and parameters can be found in our GitHub
repository [21].

By taking the conjugation of the ansatz with the pa-
rameters obtained from minimizing the cost function, we
can prepare the dipole state using the quantum circuit
depicted in Fig.10. This circuit is designed to transform
the initial state into the desired dipole state, utilizing the
parameters obtained from the optimization process.

The transferred dipole circuit (Fig. 10) has been there-
after executed on the superconducting Manila IBM quan-
tum processor, resulting in the fidelities shown in Tab. I.

without correction with correction

classical 0.96 0.9968

quantum 0.89 0.99

TABLE I. Fidelities for dipole spin network.

In our work, we utilized measurement error mitigation
as a means of correction. For the dipole state, the pro-
posed ansatz can accurately express the state, leading to
a fidelity that can be made arbitrarily close to 1. To delve
into the technical details and results of our research, as
well as the opportunity to experiment with our simula-
tions, please refer to our GitHub repository [21].

The table with the found parameters of the ansatz for
the dipole is presented in Tab. II.

-1.06 3.65

4.72 1.57

TABLE II. Determined parameters for dipole ansatz. The
structure of the table corresponds to the structure of ansatz
Fig. 8, with one layer.

B. Pentagram

In the case of the pentagram spin network shown in
Fig. 24 the projected state has the form:

P̂Γ |ψ〉 =
∑
ιki

{15j} |ιk1ιk2ιk3ιk4ιk5〉 , (22)

where the 15j symbol can be expressed in terms of the
4j symbols as follows:

{15j} =ιm12m13m14m15
1 ι m13m14m15

2;m12
ι m14m15
3;m12m13

ι m15
4;m12m13m14

ι5;m12m13m14m15
.

(23)

For the Ising spin network case, the state can be ob-
tained using the quantum circuits presented in Fig. 12.

Here, the state |ψ〉 = Ûψ|0〉⊗20 =
⊗

l∈Γ5

∣∣B, 1
2

〉
is a

product of the singlet pairs, i.e. multiple time use of the
circuit shown in Fig. 4. Employing similar techniques as
in the case of a dipole, we can transfer the pentagram
state on the ansatz of the type shown in Fig. 8, with 3
layers.

Ansatz for the pentagram state with four layers and
five qubits is shown in Fig. 8. The explicit form of the
ansatz and the found parameters can be found at the
GitHub repository [21].

In order to emphasize the complexity of the quantum
circuit for the variational transfer of the pentagram Ising
spin network state, we show its explicit form in Fig. 13.

The obtained ansatz has been executed on the IBM
quantum computer Manila and the measured fidelities
are shown in Tab. III.

without correction with correction

classical 0.87 0.93

quantum 0.6 0.77

TABLE III. Fidelities for the pentagram spin network.

The determined parameters of the ansatz for the pen-
tagram are shown in Tab. V.

VI. GLUING NETWORKS

Generating the Ising spin networks in the way pre-
sented so far requires the number of qubits to be four
times greater than the number of nodes. This is becom-
ing problematic while attempting to simulate higher va-
lence spin networks, which are relevant e.g. to study
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|0〉 X H •

W †

Ry (θ0) • Ry (θ2)

|0〉 X H • |0〉〈0|

|0〉 X H • |0〉〈0|

|0〉 X H • |0〉〈0|

|0〉 X

W †

Ry (θ1) • Ry (θ3)

|0〉 X |0〉〈0|

|0〉 X |0〉〈0|

|0〉 X |0〉〈0|

FIG. 9. Projection of state
⊗

l∈Γ2

∣∣B, 1
2

〉
and transferring on simplified-two-design two-qubits ansatz.

|0〉 Ry (−θ2) • Ry (−θ0)

|0〉 Ry (−θ3) • Ry (−θ1)

FIG. 10. Transferred projection of the state
⊗

l∈Γ2

∣∣B, 1
2

〉
, i.e.

adjoint ansatz.

FIG. 11. The pentagram spin network.

3.51 1.88 1.21 2.29

3.80 0.77 1.09 -0.15 4.99 4.96 4.78

0.33 2.35 1.27 2.69 1.73 0.82 1.08

5.04 0.02 4.82 4.90 4.65 6.10 1.96

3.43 3.33 4.26 5.48

TABLE IV. Found parameters for pentagram ansatz. The
structure of the table corresponds to the structure of ansatz
Fig. 8, with three layers.

collective properties in quantum gravity. However, as we
have shown in the previous section, states of the Ising
spin networks can eventually be transferred to the quan-
tum circuit employing the number of logical qubits equal
to the number of nodes.

Here we propose an approach for constructing large
Ising spin networks by utilizing smaller, pre-existing open
spin networks. This method involves transferring the
quantum states in advance to reduce the number of
qubits needed. To achieve this, we consider a “brick”

|0〉

Uψ

W †
|0〉 |0〉〈0|

|0〉 |0〉〈0|

|0〉 |0〉〈0|

|0〉

W †
|0〉 |0〉〈0|

|0〉 |0〉〈0|

|0〉 |0〉〈0|

|0〉

W †
|0〉 |0〉〈0|

|0〉 |0〉〈0|

|0〉 |0〉〈0|

|0〉

W †
|0〉 |0〉〈0|

|0〉 |0〉〈0|

|0〉 |0〉〈0|

|0〉

W †
|0〉 |0〉〈0|

|0〉 |0〉〈0|

|0〉 |0〉〈0|

FIG. 12. Quantum circuit representing projection of the state
|ψ〉 =

⊗
l∈Γ5

∣∣B, 1
2

〉
.

spin network with certain links left open, allowing for
further connections to be made. For instance, in the case
of the pentagram spin network, we can obtain the cor-
responding “brick” spin network by removing one of the
nodes and leaving the four adjacent links open, as de-
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FIG. 13. Quantum circuit used for the variational transfer
of the pentagram Ising-type spin network state (see from the
left side).

picted in Fig. 14. By utilizing this technique, we can
construct large-scale Ising spin networks more efficiently
and with fewer qubits than previously possible.

It must be emphasized that our definition of an open
spin network is a little different than some other used in

FIG. 14. A brick-type pentagram network with four open
links.

the literature [22]. For example, in the case of an open
single node, its state is equal to the state of a dipole with
only one projection, i.e. contraction of four spin pairs
with one intertwiner:

ιm12m13m14m15

k αm12m2
αm13m3

αm14m4
αm15m5

, (24)

where one spin from each pair (which is not contracted
within the intertwiner) forms a boundary. So, in the
definition applied here, boundary spins live at the ends
of free links. Following the other definition it would be
just that the intertwiner forming the boundary, i.e.:

ιm12m13m14m15

k . (25)

So, in other definition, the boundary is defined at the
open node, which is not connected to other nodes.

The quantum circuit corresponding to the brick-type
(open) pentagram spin network is shown in Fig. 15.

The pentagram spin network, with one removed node,
can be accurately represented by an ansatz that utilizes
only 8 qubits. This is a significant reduction compared
to the unprojected case, which requires 20 qubits. In
general, an n-node Ising spin network with one removed
node can be represented by n+ 3 qubits. By connecting
two networks, one with n nodes and the other with m
nodes, we can obtain a network with n+m nodes using
n+m+6 qubits. In contrast, constructing the same net-
work from individual singlet pairs would require 4(n+m)
qubits. This represents a significant saving of quantum
resources, with the amount saved being 3(n+m)−6, par-
ticularly for larger networks. Importantly, this procedure
can be iteratively applied to construct arbitrarily large
networks by attaching the basis brick-type spin networks
in succession. To illustrate this procedure, we provide an
example using a 10-node spin network.

The use of partially projected states to construct a
larger Ising spin network is possible because the projec-
tors act on different nodes and therefore commute. For
the case of a 10-node Ising spin network we can prepare
20 links and then, apply 10 projections at once, or pre-
pare, twice, 10 links for the pentagram, there apply four
projections, and then apply the last two projections dur-
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|0〉

Uψ

W †
|0〉 |0〉〈0|

|0〉 |0〉〈0|

|0〉 |0〉〈0|

|0〉

W †
|0〉 |0〉〈0|

|0〉 |0〉〈0|

|0〉 |0〉〈0|

|0〉

W †
|0〉 |0〉〈0|

|0〉 |0〉〈0|

|0〉 |0〉〈0|

|0〉

W †
|0〉 |0〉〈0|

|0〉 |0〉〈0|

|0〉 |0〉〈0|

|0〉

|0〉

|0〉

|0〉

FIG. 15. Partially projected state |ψ〉 =
⊗

l∈Γ5

∣∣B, 1
2

〉
, i.e.

pentagram with one open node

ing the gluing:

P̂ 10⊗
Γ = Î4⊗ ⊗ P̂ 2⊗

Γ ⊗ Î4⊗ ·
[(
P̂ 4⊗

Γ ⊗ Î
)
⊗
(
P̂ 4⊗

Γ ⊗ Î
)]

=
[(
P̂ 4⊗

Γ ⊗ Î
)
⊗
(
P̂ 4⊗

Γ ⊗ Î
)]
· Î4⊗ ⊗ P̂ 2⊗

Γ ⊗ Î4⊗.
(26)

A. Gluing two pentagrams into a 10-node Ising
spin network

Constructing a 10-node Ising spin network directly
from the singlets at the links would require 40 logical
qubits. This is already at the edge of the current ca-
pabilities of NISQ-type quantum technologies. However,
by using the partial projection technique and gluing two
brick-type pentagrams, we can generate the 10-node Ising
spin network using only 16 qubits (8 qubits for each open
pentagram). The procedure is illustrated in Fig. 16. This
significantly reduces the quantum resources required for
constructing larger spin networks and makes it feasible
with current quantum technologies.

The quantum circuit associated with the gluing of two
open pentagrams into the 10-node network is shown in

FIG. 16. A 10-node spin network obtained by gluing two open
pentagrams.

Fig. 17.

|0〉

Γ′5

|0〉

|0〉

|0〉

|0〉

W †

|0〉 |0〉〈0|

|0〉

W †

|0〉 |0〉〈0|

|0〉

Γ′5

|0〉

|0〉

|0〉

|0〉 |0〉〈0|

|0〉 |0〉〈0|

|0〉 |0〉〈0|

|0〉 |0〉〈0|

FIG. 17. Quantum circuit for gluing two open pentagrams.

In the case of the 10-node Ising spin network, Fig. 16,
the projected state has the form:

P̂Γ |ψ〉 =
∑
ιki

cιk1ιk2ιk3ιk4ιk5
|ιk1ιk2ιk3ιk4ιk5〉 , (27)
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where

cιk1ιk2ιk3ιk4ιk5
=

ιm12m13m14m15
1 ι m23m24m25

2;m12

ι m34m35
3;m13m23

ι m45
4;m14m24m34

ι5;m15m25m610m710
ι6;m35m45m810m910

ιm67m68m69m610
7 ι m78m79m710

8;m67

ι m89m810
9;m68m78

ι m910
10;m69m79m89

.

(28)

The ansatz for the 10-node Ising spin network state is
shown Fig. 8, which has 5 layers and 10 qubits.

2.52 2.15 0.11 0.78 2.86 1.75

3.39 1.32 6.21 1.27 5.38 3.26 6.54 4.78 -0.19 0.04 5.21

1.28 4.34 4.11 6.43 1.81 0.24 1.59 2.04 3.74 2.02 4.37

4.76 2.00 6.28 3.14 1.20 0.83 -0.13 3.88 2.50 3.13 0.60

5.65 4.71 3.14 3.14 5.34 3.14 4.72 1.57 6.28 1.57 1.78

3.14 3.14 6.28 0.00 4.62 4.80 3.21 1.57 6.28 0.97 4.92

0.27 5.03 5.92 3.80 5.89 1.71 0.57 0.73 -0.02 2.21 4.57

5.64 5.07 1.78 1.68 1.39 5.72 5.20 3.37 5.95 -0.36 6.70

-0.31 5.73 2.36 5.08 3.53 0.81 0.84 3.07 1.44 5.06 0.33

4.08 3.35 1.32 2.12 0.68 4.56

TABLE V. The parameters found for the 10-node network
ansatz. The structure of table corresponds to structure of
ansatz Fig. 8, with 5 layers and 10 qubits.

The fidelity between the states obtained from the quan-
tum algorithm running on the classical simulator with-
out noise and the states obtained from Eq. 28 is ap-
proximately 0.9975. It is reasonable to assume that the
fidelity is essentially 1, up to numerical errors.

B. Gluing single nodes into an arbitrary network

Another possibility in construction of the Ising spin
networks is to prepare an ansatz circuit of a single node
with four open links, depicted Fig. 18.

FIG. 18. One node with four open links.

The corresponding state can be expressed as follows:

|Γ′2〉 =
∑
ιk

ιm12m13m14m15

k

αm12m2αm13m3αm14m4αm15m5

|ιk〉
∣∣∣∣12 ,m2

〉 ∣∣∣∣12 ,m3

〉 ∣∣∣∣12 ,m4

〉 ∣∣∣∣12 ,m5

〉
.

(29)

Based on the 8-qubit circuit shown in Fig. 19 the 5-
qubit ansatz circuit can be constructed, which saves 3
qubits with respect to the original approach.

|0〉

Uψ

W †
|0〉 |0〉〈0|

|0〉 |0〉〈0|

|0〉 |0〉〈0|

|0〉

|0〉

|0〉

|0〉

FIG. 19. Quantum circuit of a single node with four open
links.

Gluing nodes together can result in an arbitrary Ising
spin network state. However, it may not always be the
most optimal way to construct the network. For instance,
gluing two open nodes together to form a dipole network
would require 10 qubits instead of the 8 qubits needed for
the basic method, which does not provide an advantage.
However, in cases where a larger network has already
been constructed using the open pentagram networks,
adding a single node may prove to be advantageous.

To illustrate this, let us consider the hexagram net-
work, which consists of 6 nodes. The construction scheme
of the network is depicted in Fig. 20, where two nodes
and four free links are involved.

The construction utilizes 2·5+4·2 = 18 qubits, which is
a bit smaller than for the basic method, involving 10 ·2 =
20 qubits. The corresponding 18-qubit quantum circuit
is shown in Fig. 21.

It is important to note that to minimize the quantum
resources needed to construct an arbitrary Ising spin net-
work, one should consider the optimal combination of
pre-existing open spin networks and free links. This re-
quires careful consideration of the available resources and
the desired network topology. However, determining the
optimal sequence of gluing is a separate task that must
be addressed individually, and depends on the specific
details of the network being constructed. Finding the
optimal strategy for constructing an Ising spin network
with minimal quantum resources is an ongoing research
challenge.
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FIG. 20. Hexagram network obtained from two nodes each
with four free links and from four additional links.

VII. RESULTS

A. Dipole

We employed the circuit illustrated in Fig. 9 to opti-
mize a quantum device simulator, which was subject to
statistical noise due to a finite number of shots, but not
quantum noise. We used the PennyLane library for the
simulations, which were run on an eight-qubit quantum
device with 20,000 shots per circuit execution. To com-
pute the gradient of the cost function, we utilized the
parameter shift rule, while the classical Adam optimizer
with a step size of 0.1 was chosen as the optimizer. Each
optimization was halted after achieving convergence be-
low 10−6 or after 100 steps. Fig. 22 displays the history
of the cost function for ten independent simulations with
randomly initialized parameters.

After each minimization, we obtained the precise state
described by the optimized parameter ansatz and cal-
culated its fidelity with the expected theoretical state.
Fig. 23 presents the mean fidelities and corresponding
standard deviations obtained from ten independent sim-
ulations of the dipole.

B. Pentagram

Here, we utilized the pentagram construction scheme
illustrated in Fig. 24. The state corresponding to the
open node utilized in the procedure was obtained us-
ing an exact simulator devoid of statistical noise. The
simulations were executed on a 17-qubit quantum device
simulator with 200,000 shots per circuit execution. To
calculate the gradient of the cost function, we used the
parameter shift rule, and we chose the classical Adam
optimizer with a step size of 0.1 as the optimizer. Each
minimization was terminated after achieving convergence
below 10−6 or after 100 steps. Fig. 25 displays the cost
function’s optimization history for ten independent sim-
ulations with randomly initialized parameters.

Fig. 26 shows the mean fidelities and standard devia-
tions computed from ten independent simulations of the
dipole problem.

C. Hexagram

For this problem, we adopted the scheme depicted in
Fig. 20. The state corresponding to the open node,
which we employed in this procedure, was obtained us-
ing an exact simulator without statistical noise. The
simulations were executed on a quantum device simula-
tor with 18 qubits, and each circuit execution comprised
200,000 shots. To compute the cost function’s gradient,
we employed the parameter shift rule, while we chose the
classical Adam optimizer with a step size of 0.1 as the
optimizer. Each minimization was halted after achiev-
ing convergence below 10−6 or after 100 steps. Fig. 27
presents the history of the cost function’s optimization
for ten independent simulations with randomly initial-
ized parameters.

Fig. 28 illustrates the mean fidelities and correspond-
ing standard deviations obtained from ten independent
simulations of the hexagram problem.

D. A 10-node graph

For this problem, we employed the scheme shown in
Fig. 16. The state corresponding to the open penta-
gram, which we used in this procedure, was obtained
using an exact simulator without statistical noise. The
simulations were executed on a quantum device simula-
tor with 16 qubits, and each circuit execution comprised
20,000 shots. To compute the cost function’s gradient,
we employed the parameter shift rule, and we used the
classical Adam optimizer with a step size of 0.1 as the
optimizer. Each minimization was halted after achiev-
ing convergence below 10−6 or after 500 steps. Fig. 29
presents the history of the cost function’s optimization
for ten independent simulations with randomly initial-
ized parameters.
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|0〉

Γ′2

|0〉

W †

|0〉

W †

|0〉

W †

|0〉

W †

|0〉

Γ′2

|0〉 |0〉〈0|

|0〉 |0〉〈0|

|0〉 |0〉〈0|

|0〉 |0〉〈0|

|0〉 X H • |0〉〈0|

|0〉 X H • |0〉〈0|

|0〉 X H • |0〉〈0|

|0〉 X H • |0〉〈0|

|0〉 X |0〉〈0|

|0〉 X |0〉〈0|

|0〉 X |0〉〈0|

|0〉 X |0〉〈0|

FIG. 21. Hexagram network obtained from two nodes, each with four free links (Γ′2) and from four additional links.

FIG. 22. The cost function for the dipole transfer with sta-
tistical noise for ten independent simulations with randomly
initialized parameters.

Fig. 30 displays the mean fidelities and correspond-
ing standard deviations obtained from ten independent
simulations of the 10-node problem.

FIG. 23. Histogram of fidelities of dipole states obtained,
at the last step (orange, dashed line), or at the step we the
minimal cost value (blue, solid line).

VIII. SUMMARY

This article presents an optimized procedure for con-
structing quantum circuits that generate Ising spin net-
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FIG. 24. Pentagram network obtained from a node with four
free links and from six additional links.

FIG. 25. The cost function for the pentagram transfer with
statistical noise for ten independent simulations with ran-
domly initialized parameters.

work states. These states are characterized by four-valent
nodes with qubit degrees of freedom attached to them.
Although other types of spin networks are more general,
Ising spin network states are sufficient to model some im-
portant properties of quantum space, particularly with
respect to the structure of quantum correlations, entan-
glement entropy, and the quantum thermodynamic limit.

The investigation was primarily motivated by the po-
tential application of quantum computers in simulating

FIG. 26. Histogram of fidelities of pentagram states obtained,
at the last step (orange, dashed line), or at the step we the
minimal cost value (blue, solid line).

FIG. 27. The cost function for the hexagram transfer with sta-
tistical noise for ten independent simulations with randomly
initialized parameters.

complex spin network states, which are currently beyond
the capabilities of even the most powerful classical super-
computers. However, a key challenge in this field is the
need to better understand the computational complexity
of the relevant quantum amplitudes associated with spin
network states. To determine the exact computational
cost of such simulations, we must investigate the quan-
tum circuit representation of these networks. By doing
so, we can establish an upper constraint on the quantum
complexity of these simulations and potentially even de-
termine their exact value in certain cases.

An inefficient method for generating Ising spin network
states involves using 4n qubits to project link states and
create a spin network with n nodes. In contrast, the
method we introduce significantly reduces the number
of required qubits, leading to practical benefits. Addi-
tionally, the introduced projection operator enables the
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FIG. 28. Histogram of fidelities of hexagram states obtained,
at the last step (orange, dashed line), or at the step we the
minimal cost value (blue, solid line). In this case both lines
overlap.

FIG. 29. The cost function for 10-node Ising spin network
state transfer with statistical noise for ten independent simu-
lations with randomly initialized parameters.

transfer of the final state onto an n-qubit ansatz circuit,
allowing for further operations without the need for re-
dundant qubits. This ansatz has numerous applications,
including analyzing the quantum complexity of quantum-
gravitational transition amplitudes and studying the fate
of quantum fluctuations in geometric quantities and the
scaling of quantum entropy. Our future studies will delve
deeper into these topics.

In addition to the issues discussed so far, an impor-
tant future direction of investigation is the study of par-
tially projected states within the developed framework.
In these states, the degrees of freedom at open links can
be interpreted as boundary values, while the remain-
ing network corresponds to the bulk. This approach
has promising implications for understanding the possi-
ble holographic nature of gravitational interactions, and

FIG. 30. Histogram of fidelities of 10-node spin network states
obtained at the last step (orange, dashed line), or at the step
we the minimal cost value (blue, solid line). In this case both
lines overlap.

can help address related problems.

Generalizations of the spin network state construction
presented here to higher valence cases, beyond the Ising
approximation, are also worth exploring. Additionally,
future improvements in the methods of generating these
states may benefit from utilizing the tensor network ap-
proach [17, 23].
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APPENDIX

Decomposition of
√
SWAP gate

In Fig. 31 we present an explicit form of a circuit for
the
√
SWAP gate, expressed in terms of the elementary

single- and two-qubit gates.

• H T T † H • S†

T † • S

FIG. 31. Decomposition of
√
SWAP gate.
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Simplified circuit for the operator Ŵ

Due to its complexity, applying operator Ŵ (see Fig.
3) on current noisy quantum processors may lead to nu-
merous errors. To overcome this issue, a simpler circuit
that performs Ŵ can be found using variational meth-
ods [24]. Fig. 32 illustrates the most intricate part of the
circuit that needs to be simplified.

To simplify the circuit and reduce the likelihood of er-

rors on noisy quantum processors, we can substitute the
intricate section with an ansatz circuit. By minimizing
the cost function, we can determine the parameters that
allow the new circuit to perform similarly to the operator
Ŵ , although it does not need to be an identical operator.
The primary goal is to rotate one-qubit states into the
intertwiner subspace of four qubits. The resulting circuit
has the form depicted in Fig. VIII.
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|0〉 X • Ry(θ) √
SWAP

S S† • H •

|0〉 T T † •

|0〉 H •

|0〉

FIG. 32. Quantum circuit for the operator Ŵ with the indication of the part being a subject of variational approximation.

|0〉 Ry (θ) • Ry (θ) • Ry (θ) • H •

|0〉 Ry (θ) • Ry (θ) • Ry (θ) •

|0〉 H •

|0〉

FIG. 33. Quantum circuit for the operator Ŵ with the em-
ployed variational ansatz circuit.
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