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Abstract

Deep learning models have provided huge interpretation power for image-like data. Specifically,
convolutional neural networks (CNNs) have demonstrated incredible acuity for tasks such as
feature extraction or parameter estimation. Here we test CNNs on strong-field ionization
photoelectron spectra, training on theoretical data sets to ‘invert’ experimental data. Pulse
characterization is used as a ‘testing ground’, specifically we retrieve the laser intensity, where
‘traditional’ measurements typically lead to 20% uncertainty. We report on crucial data
augmentation techniques required to successfully train on theoretical data and return consistent
results from experiments, including accounting for detector saturation. The same procedure can be
repeated to apply CNNs in a range of scenarios for strong-field ionization. Using a predictive
uncertainty estimation, reliable laser intensity uncertainties of a few percent can be extracted,
which are consistently lower than those given by traditional techniques. Using interpretability
methods can reveal parts of the distribution that are most sensitive to laser intensity, which can be
directly associated with holographic interferences. The CNNs employed provide an accurate and
convenient ways to extract parameters, and represent a novel interpretational tool for strong-field
ionization spectra.

1. Introduction

Machine learning (ML) has been transformative for science over the last two decades, providing a huge range
of new analytical tools. This has affected nearly every avenue of research, with major use across the physical
sciences, particularly in particle physics [1], astrophysics [2], and condensed matter physics [3, 4].
Convolutional neural networks (CNNs) have enabled major leaps in computer vision and language
processing [5, 6]. This makes CNNs well-suited for pattern recognition and parameter estimation in
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scientific data. For example, CNNs have been used for determining crystal symmetries in electron diffraction
[7], and estimating parameters related to gravitational lensing [8]. However, in the field of strong field
physics and attoscience the high interpretability power of CNNs has not been fully explored.

Strong-field physics and attoscience exploit recent advances for producing intense and short laser pulses
to image and control matter over attosecond (10~'%s) timescales [9-12]. These capabilities have led to a wide
range of atomic and molecular imaging procedures, e.g. high-order harmonic spectroscopy [13],
laser-induced electron diffraction [14], photoelectron holography [15, 16], attosecond streaking [17, 18],
and reconstruction of attosecond harmonic beating by interference of two-photon transitions [19, 20].
However, despite ever more accuracy from experiment and theory, due to the nonlinear nature of the
interactions, interpretation of the data is often very challenging. This provides an opportunity for ML
methods to be used to extract parameters and physical trends from experimental data sets.

A growing number of studies have begun to use ML techniques for strong-field physics. For example,
studies using neural networks to classify semi-classical trajectories [21], deep learning to predict in spectra of
high-harmonic generation [22], and optimization of ‘quantum pathways’ in enhanced ionization of diatomic
molecules [23]. In terms of parameter estimation, in a recent theoretical study, CNNs were used to extract
internuclear distances and laser intensities, using data generated solving the time-dependent Schrédinger
equation (TDSE) [24, 25]. The power of CNNs to extract useful information from experimental images has
big implications for strong-field physics and attoscience. Most studies, however, focus on a proof of
principle, using only theoretical data. Notable exceptions are, reference [26], where CNNs were used to
extract molecular structure parameters from experimental laser-induced electron diffraction images, and
reference [27], where deep neural networks were applied to streaking traces for parameter extraction and
prediction of uncertainties. Unfortunately, the analytical power of ML-assisted imaging is limited if the laser
pulse parameters cannot be accurately measured.

The characterization of laser pulses in strong-field and attosecond physics has posed a persistent
problem. The high intensity of the laser pulse means that a direct measurement (see e.g. [28, 29]) of the
intensity leads to significant uncertainties, in the range of 10%—-20% for the strong-field regime [29, 30]. An
alternative approach is to use the high sensitivity of the non-linear phenomena in question, to estimate the
laser pulse parameters, known as an in situ measurement. Using this approach, laser intensity uncertainties as
low as 1% have been reached, by matching experimental results to TDSE theory, under highly controlled
experimental conditions for atomic hydrogen [29, 30]. Despite this success, such low uncertainties are not
common, and would be more difficult to achieve routinely in standard experimental conditions. Simply
fitting photoelectron spectra is less effective and more advanced methods, using all the available information
in photoelectron momentum distributions (PMDs), are called for. Recent results, using quantum metrology
tools, suggest the uncertainty from in situ measurements could be significantly reduced by exploring
quantum interferences present in the PMDs in strong-field ionization [31]. There is a variety of in situ
methods for determining laser parameters that are implemented by hand, whose performances vary across
parameter regimes. The most consistent and powerful method is to use the whole PMD, matching it to that
obtained with accurate theoretical methods. As such, ML schemes, and in particular CNNss, are an ideal tool
for in situ extraction of laser parameters from experimental data.

The task of using ML for laser pulse characterization has been addressed in the relativistic regime where, a
theoretical study used CNNs to predict laser intensities by using proton dynamics [32]. In free electron lasers
(FELs), neural networks have been used to accurately reconstruct pulses, by training a model on a small set
of fully diagnosed pulses [33]. CNNs were also used to characterize the FEL pulses by training on simulated
data [34]. CNNs have also been used in all optical measurement schemes, employing interferometric
cross-correlation between pulses to characterize one of the pulses [35]. Recently, ML tools have been used for
pulse characterization for strong-field ionization [36] using purely theoretical data. Here, the autocorrelation
function of the ionization yield from two identical pulse was used to extract the pulse duration, spectral
width and relative carrier-envelope phase (CEP), but the method was insensitive to laser intensity.

In this work, we investigate the power of a CNN as an analysis tool for strong-field physics. We use laser
pulse characterization in strong-field ionization as a testing ground, retrieving parameters from PMDs. We
train the CNNs on a TDSE model, and test this on large experimental datasets, focusing on retrieving laser
intensities, over a larger parameter regime than has previously been considered, for an argon target. The
CNNess trained may be used on any experimental data within the parameter range, without special
requirements, and the CNN models are available online for testing. Important modifications to theoretical
training data, are presented, that ensure the CNN models are insensitive to common experimental
imperfections. We also include predictive uncertainty estimation, which goes beyond previous methods to
extract uncertainty in strong-field studies. We produce so-called ‘explainability’ figures that are able to
highlight regions of the PMD that contribute the most to a laser intensity prediction, and connect these to
the physical interference process that are most sensitive to changes in laser intensity. As such, CNNs represent
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the easiest way to extract laser parameters in strong-field ionization, making a key step towards producing a
general tool for parameters estimation, while also providing more interpretational power. Atomic units are
used unless otherwise stated.

2. Datasets

2.1. QProp

The main workhorse for generating our theoretical data set is the single-active-electron (SAE) TDSE solver
Qprop. The latest version of QProP [37], implements a fast and accurate method for the calculation of PMDs.
QpROP is a velocity gauge three-dimensional TDSE solver in the dipole approximation that allows studies
within the SAE approximation using model pseudopotentials'’. For our SAE model of the Ar atom, we have
employed the model potential of [38], which has the form

V4
v = - 20 (1)
with
flr) =aie” ™ +azre” ™" +ase” " (2)

where Z = 1. For argon the coefficients a; are a; = 16.039, a, = 2.007, a3 = —25.543, a, = 4.525, as = 0.961
and a5 = 0.443 [38], which gives the correct ionization potential of I, = 0.579 a.u. In this computation, we
considered angular momenta up to I = 55. Total data set consists of 15712 PMDs with ponderomotive
potentials ranging from U, = 0.0075 to U, = 0.95, laser cycles number N =2 up to N = 61. The number of
CEP values depends on the pulse length, i.e. for under N = 13 cycles we cover an interval of length 7 with 10
values of CEP, and for longer cycles, we have 5 values of CEP spanning a shifted interval of the same length.

2.2. Strong field approximation (SFA)
An extensive review of the SFA can be found in [39]. Here, we use the transition amplitude for direct ATI
from an initial bound state |1),) to a final Volkov state with drift momentum p given by [31, 40-44]

t
M(p) = —i lim &/5®? / dt'd(p,t')eS®1"), (3)

t—o0

where d(p,t') = (p+ A(¢')|r - E(¢)|¥y) is the dipole prefactor, which in this study we will neglect as we
retain only terms correct to exponential accuracy. The action is given by

S(p,t) = It + %/ dt’(p+A(t")%. (4)

Here, I, is the ionization potential of our target. We employ the saddle point approximation, seeking the
stationary action for the integration variable ¢/, 2I, + (p + A())? = 0. Now the probability distribution can
be computed from equation (3) as

M(p) =D c(p, t,)d(p, t,)e' S, (5)

S

where the prefactor ¢(p, t;, t), derived from the application of the saddle point approximation, includes the ¢/
independent phase from equation (3), is given by

; / 27mi
— lS(Pvt) -
C(p7t57t) 1e 825(p7ts)/8t§ (6)

In both QProP and SFA calculations we use the vector potential:

A(t) = 2,/U,sin’ (;T\t]) cos(wt+ @), (7)

where N is the number of laser cycles, while U, is the ponderomotive energy or quiver energy of a free
electron in the laser field, which is proportional to the peak laser intensity Iy = 2U,ceow?, where €, and ¢ are

13 There is also an implementation of many-electron systems via the solution of the time-dependent Kohn—Sham equations.
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the vacuum permittivity and the speed of light, respectively. The angular frequency is given by w and the CEP
is given by ¢. We also perform focal (FA) and CEP averaging (CA), to account for variations of the intensity
across the focal volume and CEP fluctuations between laser pulses, respectively. CEP-averaged Qprop
datasets contain 3071 PMDs. Details are given in the supplemental material.

2.3. Experimental methods

Our experimental data sets consist of PMDs of argon gas photoionized by intense, linearly polarized, 800 nm
laser pulses generated by a 1 kHz commercial Ti:sapphire laser system. These laser pulses are focused in
ultra-high vacuum and intersect a pulsed beam of argon gas delivered by an Even—Lavie valve [45].
Photoelectrons are collected in a velocity map imaging spectrometer, and impact a microchannel plate and a
fast phosphor detector system. A camera records the intensified phosphor, and on-the-fly peak finding is
applied to the live camera feed to extract individual electron impacts.

Six experimental data sets with 125 PMDs in total are analyzed here. Four of these sets, labeled E1-E4,
were collected using an experimental schema in which the ionizing pulse energy was the variable parameter.
The pulse energy is controlled using a motorized rotation mount which manipulates a half-wave plate to
rotate the pulse polarization. It then passes through a polarizing beamsplitter cube, which transmits only the
component of the laser pulse polarized parallel to the optical table. Another data set, ‘E HS’, was collected for
intensities over a larger range and include the highest values of intensity. The final set, labeled E (single), is a
single-intensity PMD, which is included as it has the highest signal-to-noise ratio. Each dataset was collected
on the timescale of approximately two days, and contains in total O(10?) electron counts, distributed
between their intensity slices.

The data sets presented have all been Abel inverted using the standard technique of polar onion peeling
[46, 47] to extract their cylindrical momentum cross sections. The ponderomotive potential, U, of the laser
fields generating each slice of each data set is computed in a two-step process. First, it is roughly calculated by
examining the direct electrons, which form a disk of radius 2U,. Then, that rough value is refined by
comparing nodes found along the ‘spider-leg’ holographic feature to those predicted by the Coulomb
quantum orbit SFA, see [16, 48-50], at nearby intensities. This procedure is described in more detail in [47].
This has an error of approximately +10%.

3. Deep neural network approach

Our task is the following: given an experimental PMD X, find a physical parameter y, for example, the
intensity of the laser pulse, that has been used to produce such PMD. We assume an underlying theoretical
model of the strong-field process that allows us to generate PMDs expected at given physical parameters. The
richness of the features present in the PMDs makes the task very challenging. Moreover, various
imperfections are present in the experimental data, complicating the comparison with theory further, cf
histograms in figure 1(g) showing a dramatic quantitative difference between the PMD values in both
datasets.

To address this demanding work, we then use a deep learning approach. By generating a dataset of PMDs
labeled by many different physical parameters, we reformulate the problem as a standard supervised
regression task. In section 3.1, we describe our choice of deep neural network architecture.

3.1. CNNs and transfer learning

CNNs [51] are designed to work with data incorporating spatial correlations such as pictures. The main
building block of CNN is a convolution matrix with trainable parameters that slides over the input image
and produces its filtered representation. The composition of many such filters gives a feature map of the
image, ready to be used for further processing in the final fully connected part of the network.

Although deep CNN s achieve state-of-the-art in image recognition [52—-54], sometimes this requires the
use of prohibitively large training datasets and computing power. However, one can train deep models
through the transfer learning paradigm [55, 56]: one takes a pre-trained deep model and fine-tunes it on a
smaller dataset. The first few layers of the network extract general features such as edges, so often retraining
only the last few layers of the model may be sufficient to achieve good performance on the new dataset. In
this work we benchmark four pre-trained architectures called VGG16 [57], Xception [58], EfficientNetB7
[59], and EfficientNetV2L [60] that achieved state-of-the-art accuracy in classification tasks on the Imagenet
dataset [53]. Models are ordered from least to most sophisticated. We do not describe the substantial
innovations introduced in each of them but concentrate on the comparison of their general performance.
Because the models were originally designed for classification and not regression, we remove the last
classification layer, and replace it with a fully connected layer with a linear (identity) activation function, see
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Figure 1. Example PMDs (upper halves in the first row and lower halves in the second row) in the initially preprocessed

(a) QprOP, (b) SFA (N =40 cycles and U, = 0.3575) and (f) experimental E (single) (U, = 0.35) datasets. Color scale
corresponds to rescaled and shifted log-probability density and includes the leading 6 orders of magnitude of the original
calculated/measured PMD. Panel (c) shows the focal-averaged QpPrOP PMD—minor features are smeared out, panel (d) the focal-
and CEP-averaged Qprop PMD that does not show qualitative differences from (c). Panel (e) shows data from (d) as seen during
training of the model, i.e. at a random detector saturation level SL = 0.4 (see text for details), contrast 0.8, brightness —0.2.
Histograms of pixel brightnesses in panel (g) are calculated over a range of pulse ponderomotive potentials 0.15 < U, < 0.5.
Clearly, direct comparison between theoretical and experimental PMDs is a hard task, as the distributions differ substantially due
to experimental limitations.

—— Pretrained Model ————

>

Al 7 GlobalAvgPooling
S 1 Convolution+ReLU (ffl Dense+Softplus
@ MaxPooling [ Dense

Figure 2. Schematic representation of the deep convolutional neural network regression problem. For given input X network
predicts the value of the parameter 1(X) and its uncertainty o' (X). Reproduced from [62]. CC BY 4.0.

figure 2. Models are implemented using Keras library [61] and are available in our code repository https://
github.com/tszoldra/attoDNN.

3.2. Predictive uncertainty estimation

Along with the predicted label, we aim to provide an estimate of the model uncertainty for a given input [63,
64]. We slightly modify the model and the loss function [65, 66]: instead of predicting a single value of the
label ypred (X), we assume the label comes from a normal distribution p(yirue|X) = N (1£(X), (X)) and the
model predicts its parameters 1(X),o?(X) for a given input X. o?(X) is the output of an additional fully
connected layer with a Softplus(x) = In(exp(x) + 1) activation function, see figure 2. The loss function to
minimize is the negative log-likelihood,

1 2 (J/true_,u(X))z
NLL:—(lnp(ytme|X)> = E<1HO' (X)—FW s (8)
where (.) denotes the mean over the training dataset. To further improve the reliability of the predictions and
predictive uncertainties, we combine M models trained on random subsets of the training dataset into a deep
ensemble [66, 67]. Further assuming that the ensemble prediction is a Gaussian, the ensemble mean and
variance read

pa(X) = = pu(X), 9)
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D (00 + ) — 1), (10)

m=1

o2 (xX) =

where p,,(X), 0,,(X) are the mean and variance predicted by the mth model in the ensemble [66]. This goes
beyond studies such as [27], where an ensemble of predictions is used to produce the uncertainty.

3.3. Data preprocessing and augmentation

In this section, we describe a few technical steps that were necessary to preprocess the PMDs to form a viable
image input for the CNNs. As a first step, we identified a common range of momenta accessible in all datasets
to form a rectangle with p; € [0.001 a.u.,1.15a.u.], p; € [~1.15a.u.,1.15 a.u.], where the discretization is
given by the resolution of the experimental dataset E1 Ap; = Ap|; = 0.0049 a.u. Then, we interpolated the
theoretical data on the same 2-dimensional momentum grid.

The natural scale for features contained in the PMD is logarithmic and the signal has to be transformed
accordingly, see e.g. [68] for CNNs applied to diffraction images with similar properties. Thus, we take the
logarithm of the PMDs, rescale and apply an offset to the pixel values so that in the end they fill the interval
[—1,1]. Thus, the pixel value 1 represents the largest peak probability density in each PMD and —1 is the
value smaller by a factor of 10~°. Each pixel is clipped according to X;; — max(—1,Xj;). Six orders of
magnitude are selected based on heuristics that will capture all features in the experimental data, at the same
time not misguiding the network by showing extremely precise, low values in the theoretical data. All images
are then resized to 224 by 224 pixels with 3 (repeated) color channels to match the standard of the Imagenet
dataset expected by the pre-trained models.

We split the theoretical datasets, see section 2, into training (80%), validation (10%), and test (10%)
subsets. For each model in the ensemble, the training/validation split is different and random, while the test
dataset is constructed once by a random selection from the full dataset.

During the training phase, we perform image augmentation [69]. Each input image is randomly reflected
in the up-down and left-right axes, and its contrast and brightness are randomly set from the interval
(0.1,1.0) and (—1,1), respectively, using the built in Keras [61] functionalities, see figure 1(e). The final
image is clipped to a fixed range [—1, 1]. While the testing data does not include reflected images, during
training we apply reflections to help the network learn the same ‘shapes’ in four different settings with the
aim of reducing overfitting. On the other hand, the testing data has inherently varying levels of contrast and
background signal (‘brightness’) and we deliberately make the network insensitive to them.

In our efforts to make the models useful for experimentalists, we encountered an obstacle: while the
models performed well on theoretical data (see next section 4), they failed for experiments. We fixed it by
adding a single extra step in the augmentation pipeline, motivated by the histogram in figure 1(g), that
shows significant differences between distributions of pixel values in theory and experiment, especially for
the brightest pixels. This suggests there was some uncontrolled detector saturation effect in the experiment,
at a level not necessarily fixed between experiments. Thus, prior to all augmentations described earlier, we
simulate a random detector saturation level. For each sample PMD, we draw a random ‘saturation’ value x
from the interval [SL, 1] and transform each pixel according to Xj; — min(X; j,x) + 1 — x. The lower bound
on the random saturation value SL is a parameter that has to be found by checking the performance of the
model on part of the experimental data. By making the saturation level random, we increase the training
difficulty, but at the same time make the model insensitive to detector saturation that occurs in a real
experiment'?,

3.4. Training

We train an ensemble of size M =5 of pretrained models VGG16, Xception, EfficientNetB7, EfficientNetV2L
on four datasets: QProp, QProp+CA, QProp+FA, QProp+CA+FA, for a set of random detector saturation
level lower bounds SL € {—1,—0.5,0,0.5,1}, yielding 400 models in total. We choose the Adam

optimizer [70] and a batch size of 32. During the first 50 training epochs, the base model has fixed weights
and only the added, two randomly initialized dense layers each with 1-dimensional output x(X) and o (X)
are being updated at a learning rate of 10>, This roughly sets up the last layer while not destroying
pretrained filters. In the next 150 iterations the model is fine-tuned: all weights are updated at a learning rate
10~%, which decreases by a factor of 0.5 every 50 iterations. We stop the training if the loss on the evaluation

14 Since pixel brightness values are limited to the range [—1, 1], SL = —1 corresponds to a fully random saturation level, whereas SL = 1
to no detector saturation effect present at all (case of a ‘perfect detector’).
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Table 1. Loss metrics for the training dataset QProp+FA+CA. For each CNN architecture, we show only saturation level SL used in the
image augmentation for which NLL on dataset E4 is the lowest. On E4, the best accuracy is obtained for EfficientNetV2L which
simultaneously gives acceptable errors for other experimental data. Error metrics are similar on test/train subsets of QProp+FA+CA
(first two rows) which is a signature of good model generalization. The lowest values of MAPE for each dataset are in bold.

VGG16 @ SL = 0.0 Xception @ SL = —0.5 EfficientNetB7 @ SL = 0.0 EfficientNetV2L @ SL = —0.5

Dataset ~ NLL RMSE (c.) MAPE NLL RMSE (c.) MAPE NLL RMSE (s,) MAPE NLL RMSE (o.) MAPE

train —4.2 0.0042 0.018 0.77 —2.0 0.11 0.12  14. —4.4 0.0098 0.0097 1.3 —4.1 0.015 0.012 1.7
test —4.1 0.0051 0.019 0.87 —1.9 0.12 0.12  14. —4.4 0.011 0.010 1.4 —4.1 0.016 0.013 1.9
El —2.2 0.039 0.020 15. —1.9 0.083 0.11 33. 1.7 0.038 0.010 15. —0.99 0.040 0.016 17.
E2 —0.93 0.046 0.020 15. —2.5 0.0099 0.083 3.1 59 0.032 0.0077 12. —0.70 0.034 0.012 12.
E3 0.61 0.12 0.050 29. —2.5 0.035 0.077 7.2 —0.89 0.037 0.021 8.5 —2.3  0.043 0.029 9.8
E4 —34 0.021 0.015 6.2 —2.2 0.061 0.089 22. —3.4 0.014 0.0075 4.0 —4.1 0.0091 0.014 2.9
E (single) —3.8 0.010 0.020 2.9 —2.4 0.0072 0.087 2.0 —=3.1 0.015 0.0083 4.3 —4.3 0.00067 0.014 0.19
EHS 0.70 0.11 0.041 19. —19 0.11 0.11 15. —2.1 0.035 0.023 4.5 —3.1  0.025 0.025 4.5

dataset does not decrease for more than 100 epochs to save on computing time. All models can be trained in
parallel”.

We were unable to train any models if they were initialized with random weights. It demonstrates the
power of transfer learning from real-world images to physical experiments. The models are already capable
of extracting basic shapes from images and need fine-tuning only.

4. Results

The quality of all 400 trained models is measured in terms of the NLL (see equation (8)), root mean squared
error (RMSE) and the mean absolute percentage error (MAPE) achieved on the test datasets. For theoretical
data sets, the ‘true’ intensity is known exactly, so RMSE and MAPE give the error on model prediction. For
experimental data sets, the ‘true’ intensity carries 10% uncertainty, so the MAPE only needs to be within this
bound. The mean predictive uncertainty o, (X) is the models’ prediction of the uncertainty. This can be
compared with the RMSE to assess if the models ‘know when they are wrong’. All these values are fully
tabulated in the supplemental material. Here we give a general overview of these results and describe a
method of model post-selection that allows us to find the best model candidates for experimental data
presented in table 1.

As a standard practice, no augmentation techniques are applied in the testing phase unless explicitly
noted. While this can decrease performance of some models on theoretical testing data due to input
distribution shifts, we concentrate more on the performance of experimental data which naturally includes
imperfections. In the ‘perfect detector’ augmentation scenario, SL = 1, all models are trainable on all
theoretical Qprop datasets with a testing MAPE <1% (except for the VGG16 model and QProp+CA dataset
where MAPE = 4.9%).

Testing on experimental data, we notice that including focal averaging and CEP-averaging in the training
results in a smaller error. This is supported by a visual inspection of the PMDs in figures 1(a), (d) and (f),
which unveils a greater resemblance between experimental and QProp-+FA+CA rather than QProp data with
more small-sized features. Thus, we restrict our further discussion to the QProp+FA+CA training dataset.
Moreover, we observe that the quality of the prediction is always improved if detector saturation effects are
included (SL < 0.5) than if they are not (SL=1).

Aiming for the highest-quality models for experiments, we post-select the saturation level based on the
best NLL on a single evaluation dataset E4. Obtained metrics are presented in table 1. We find that the fittest
model is the most sophisticated EfficientNetV2L trained with a saturation level SL = —0.5, reaching a MAPE
of 2.9% on E4, which is well below the experimental error. The predictive uncertainty is o, (X) = 0.014 a.u.,
corresponding to 6 x 10'> W cm™? in typical intensity units. This is close to the reported RMSE, signaling a
good calibration of the model confidence. Almost all errors on other datasets for this model also fall within
the error bars of the experimental label. In figure 3, we plot the predicted value of ponderomotive energy U,
proportional to the laser intensity, as a function of the true U, for experimental and theoretical (QproP and
SFA) inputs. All predictions are presented with uncertainties computed using equation (10), given by the
vertical error bars in figure 3 (upper panel) and as a percentage (lower panel).

Predictions on the test/train QProp+FA+CA dataset in figure 3 lie within the uncertainty estimate
around the true value up to U, ~ 0.5. For larger U, the model slightly deviates, finishing with an error of

15 The training effectiveness may be improved by a recent training scheme [71] not applied here: in the first few iterations one should
optimize the mean, while keeping the variance fixed.
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Figure 3. Performance of the EfficientNetV2L model for training dataset QProp+FA+CA, saturation level SL = —0.5, for
different test datasets. Top plot shows the value of U, predicted by the model as a function of the true value. Perfect predictions
would lie on the black diagonal line. Including focal- and CEP-averaging in the training dataset was necessary to achieve results in
agreement with the experimental value, up to the estimated experimental uncertainty level of 10%, as shown in the middle plot
where most experimental points lie below 10% absolute error line. The bottom plot shows a measure of the model confidence,
standard deviation o« (U,), as a percentage of the true U, value.

around 7% at U, = 0.95. We expect this drop in performance is associated with a limited range of momenta
present in the training dataset. The p = 2, /U, peak, used for labeling PMDs manually, is located at the
border of accessible momenta at around U,, ~ 0.66. Thus, some other, possibly less expressed features in the
PMD have to be used by the CNN.

Before we proceed to experimental data, we quickly cross-check the output of the model on the SFA
dataset. Looking at the strong qualitative difference between sample images in figures 1(a) and (b), not to
mention the dramatic dissimilarity of the histograms of both datasets in figure 1(g), it is surprising that the
model finds any structure at all in the SFA+FA+CA data, i.e. there is a significant positive correlation
coefficient between the true value and the prediction. However, the uncertainty of SFA+FA+CA is strongly
underestimated, particularly for the largest values. This is a warning that on the strongly out-of-distribution
data'®, the model may fail to predict the true value and report a relatively high confidence.

Testing the same model on experimental datasets we notice that errors generally stay equal or lower than
the experimental uncertainty of 10% (middle panel). Note that the model was selected based on its
performance on evaluation dataset E4, yet its predictions are consistent for other datasets. Overall, there is
good agreement with the vast majority of intensity predictions carrying an uncertainty below that of
attainable through traditional methods, getting as low as 4% in a number of cases. In particular, the
high-statistic dataset E HS gives a very good agreement over a wide range of intensities. It was crucial to
consider focal averaging here, otherwise, the ‘true’ labels deviated from the predicted value, with an absolute
percentage error up to ~50% for large intensities. Notably, a large relative error is observed for a few points
of the dataset E1 at low intensities. We believe this is primarily caused by a low contrast in the input image
due to a lower number of electron counts in this setting, see supplemental material for an example image,
since this deviation can be manually removed by increasing the contrast of the input images.

16 Qut-of-distribution data describes data that is far from the kind of data that was used for training, where the model is likely to give
unpredictable results.
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5. Explanations

5.1. Methods

The high accuracy of the models presented above makes them a readily useful tool for parameter estimation.
On the other hand, due to a rather complex flow of information in image regression, the understanding of
why a certain output is produced, is lacking, i.e. we deal with a ‘black box’. This hinders progress in the
development of new, more accurate models, and, more importantly, does not give any insight into the
underlying physical reasoning. These issues are addressed in the following section using so-called
explainability techniques that quantify how certain features of the input contribute to the output, see recent
review [72, 73] for a more general survey.

The most popular explainability techniques were designed for classifiers, and special care needs to be
taken when using them for regression, see [74]. Here we adopt the simple yet powerful strategy of [75],
where explanations of deep regression models are obtained directly using methods for classification.

Three basic approaches to explainable regression have been developed to date and a variety of algorithms
can be found in each category [74]. The most straightforward are removal-based explanations [76],
measuring the importance of a given subset of input features by hiding it from the model. Because there is an
exponential number of subsets to check, usually these methods are limited to at most 15-20 features before
the analysis of images becomes infeasible. Another set of methods are gradient-based explanations that rely
on the computation of the gradient of the input in a single forward/backward propagation of the signal. They
are built on the intuition that if some region of the image is important for the prediction, a small change in
this region will noticeably change the output. Finally, propagation-based explanations aim to leverage the
neural network structure to produce the feature attribution map. In particular, the layer-wise relevance
propagation (LRP) algorithm [77] assigns a relevance score R; to each neuron 7 based on the activations of
the neurons in the next layer. Scores in a single layer are conserved, i.e. sum up to the final prediction. The
relevance scores are calculated layer by layer in the backward pass from the output, until the input is reached.

We apply 10 different explainability algorithms available in the iNNvestigate toolbox [78]. Our analysis is
restricted to the VGG16 model at SL = 0.0 instead of the ‘best performing’ EfficientNetV2L at SL = —0.5,
presented in figure 3, due to the large size of the latter, making most methods intractable due to memory
requirements, and a ‘swish’ activation function which is not compatible with many algorithms. Out of all
tested algorithms, for presentation, we post-select the four most relevant ones by scoring them following [75,
79]. Each explanation image is divided into 8 by 8 regions and perturbed one region at a time, from most to
least important, according to the output of a given explanation algorithm. If the regions marked by the
algorithm are indeed relevant for predictions, the accuracy of the model drops faster than when the
perturbations are applied in random order. In our case, 9 out of 10 tested methods perform better than a
random one, and the four presented in figure 4 are noticeably better than the rest, see supplemental material
for further details.

5.2. What the model learns

In figure 4, we used four explainability techniques: two variants of the LRP [77], guided backpropagation
[80], and DeepTaylor [81] to highlight regions on the PMD that have the most effect on the predicted value.
This can also be interpreted as highlighting the features that are the most sensitive to changes in the
ponderomotive energy, and thus it is a unique way to extract physical meaning. The highlighted regions can
be identified as known interference features that are used in photoelectron holography. The guided
backpropagation technique picks out two regions. The first region is at the end of the ‘legs’ of the so-called
spider-like structure [15, 82], see green dashed rectangles in figure 4. This is formed via the interference
between pairs of electronic wavepackets that are forward scattered/deflected off by the residual ion and have a
differing degree of interaction with the core.

The explainability diagrams specifically pick out modulations along the spider legs above the direct
boundary (p = 2\/71, ). These modulations were discussed in [47], where their sensitivity to the
ponderomotive energy was already exploited for determining the laser intensity. Crucially, these modulations
have been shown previously [48] to be described approximately by circles with their centers determined by
Up. Thus, explaining the sensitivity to the ponderomotive energy.

Another region highlighted, with high perpendicular momentum, is the so-called carpet-like [83, 84] or
spiral-like [85] structure, see blue dotted lines in figure 4. Around p|| = 0, the interference maxima can be
described by I, + U, + E = 2nw (with n € Z), which clearly encodes the ponderomotive energy. Away from
pj| = 0, in the DeepTaylor method, we see the strongest contribution. Here, the above equation will not hold
exactly, but the fringes will be dependent on the interplay of two rescattered wavepackets, that undergo
different rescattering angles, which will be heavily dependent on the laser intensity/ponderomotive energy, as
it determines the tunnel exit and initial scattering velocity.
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Figure 4. Explanations for the VGG16 model, obtained with 4 most informative methods (upper labels), from left (best) to right
(worst). For QProp+FA+-CA, true U, = 0.3535 and predicted U, = 0.3550, for experiment true U, = 0.351 and predicted
U, = 0.3344. Red/white/blue colors correspond to positive/neutral/negative attribution in each explainability method.

Across many regions, and particularly in the DeepTaylor method, we can see the above-threshold
ionization rings, which are ring-shaped interferences due to nearly identical wavepackets released at an
integer number of laser cycles apart, see black dot-dashed circles in figure 4. The maxima may be described
by a similar equation to the carpet-like structure I, + U, 4 E = nw, which is clearly sensitive to the
ponderomotive energy. In previous work, this has been shown to provide important sensitivity for
determining laser intensity [31].

6. Conclusions

We have proposed and tested deep learning models, powerful enough to detect objects in real world images,
as a versatile analysis tool for strong-field ionization processes, adopting deep CNN’s as our main workhorse.
We have found they are capable of extracting physical parameters of interest—the laser peak intensity—and
connect the parameter back to a specific feature, such as the interferences observed in the PMDs. We have
overcome key difficulties using theoretically-trained CNNs with experimental data, which paves the way for
CNNs s to be used in a variety of settings for strong-field ionization, particularly when characterizing the laser
field or target. The CNNs have been tested via pulse characterization, in particular determining the laser field
intensity, on a large experimental data set, consistently yielding lower uncertainties than are achievable in
traditional methods. For the prediction of uncertainty, we have used a reliable predictive uncertainty
approach, that provides additional evaluation of the experimental conditions. We have also verified that
other laser field parameters such as the pulse length could easily be extracted.

Deep CNNs can utilize information present in the picture to its full extent, while a human expert would
typically be limited to using only a small subset of physical effects that are most sensitive to a change in the
parameters. As such, we have developed a novel tool that can be applied to strong-field ionization
photoelectron momentum spectra without any special requirements from the experimental data. We
achieved this generalizability from our CNN by using state-of-the art pretrained models. Training such
models from scratch, to work well with experimental data, was not possible with our data set. Instead using
the concept of transfer learning, we found the pretrained networks to work exceptionally well. This approach
is easily repeatable as these model are freely available and it significantly reduces size of the required training
data. The idea of transfer learning may be exploited in future work in order to expand the parameter range of
the model, without having to use as much training data. Here, the exceptional capability and large capacity of
the CNN models that we use could help make them more generalizable.

We show-cased the ‘explainability’ capability of CNNs, which highlighted the most relevant features in
the PMDs, which could be associated directly with holographic interferences that display considerable
sensitivity to changes in the ponderomotive energy. Thus, directly connecting the CNNs predictions to
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fundamental physical processes. Explainability methods takeaway some of the black box nature of CNNs and
can to be used to highlight new physics, providing a powerful way to connect experiment and theory.

This study paves the way for further exploitation of CNNs to analyze strong-field ionization data,
yielding new physical insights or confirming existing understanding. The recipe we developed, training the
neural networks to be insensitive to various types of imperfections through the use of data augmentation
techniques, made them ideal candidates for robust parameter extraction. We emphasize that the same
procedure can be repeated and used to develop a range of analysis tools, which, for instance, could be highly
useful for extracting atomic targets and/or pulse shapes, or further developing photoelectron holographic
imaging, where inversion of experimental data is very difficult. Using these techniques, universal extraction
of physical parameters is possible from existing and future experimental data, regardless of whether all details
of the physical processes at play are fully understood.
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The data that support the findings of this study are openly available at the following URL/DOI: https://chaos.
if.uj.edu.pl/ZOA/index.php?which=opendata&dataset=/2303.13940.
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