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ABSTRACT
Interpretive marine turtle tours in Cyprus yields an alluring ground to
unfold the complex nature of pro-environmental behavior among travel-
ers in nature-based destinations. Framing on Collins (2004) interaction
ritual concept and the complexity theory, the current study proposes a
configurational model and probes the interactional effect of visitors’
memorable experiences with environmental passion and their demo-
graphics to identify the causal recipes leading to travelers’ sustainable
behaviors. Data was collected from tourists in the marine protected
areas located in Cyprus. Such destinations are highly valuable not only
for their function as an economic source for locals but also as a signifi-
cant habitat for biodiversity preservation. Using fuzzy-set Qualitative
Comparative Analysis (fsQCA), this empirical study revealed that three
recipes predict the high score level of visitors’ environmentally friendly
behavior. Additionally, an adaptive neuro-fuzzy inference system (ANFIS)
method was applied to train and test the patterns of visitors’ pro-
environmental behavior in a machine learning environment to come up
with a model which can best predict the outcome variable. The unpre-
cedented implications on the use of technology to simulate and encour-
age pro-environmental behaviors in sensitive protected areas are
discussed accordingly.
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Introduction

There is a consensus among scholars that optimizing visitors’ experience is the key to destina-
tions’ success and competitiveness (Ellis & Rossman, 2008; Loureiro, 2014, Ramkissoon & Uysal,
2014, 2018: Ramkissoon, 2020). Additionally, a shift in the global economy from service-based to
experienced-based economy has triggered the focus on the creation and delivery of meaningful
and memorable experiences in consumers’ minds by service providers particularly in the tourism
industry (Kelly, 2020; Kim & Chen, 2019; Sthapit et al., 2019). The pivotal role of visitors’
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experience in elucidating their behavioral intentions such as revisiting, positive word of mouth
and recommendation has also exacerbated the attention to the study of memorable tourism
experiences (MTE) recently (Chen & Rahman, 2018; Dewnarain et al., 2019; Gohary et al., 2020;
Kim & Ritchie, 2014; Loureiro, 2014; Triantafillidou & Petala, 2016; Wong et al., 2019). The multidi-
mensional concept of MTE is referred to as an experience that can be recalled and remembered
easily after the event (Kim et al., 2012). Such emotional assessment of real experience during the
travel can impact one’s intention and behavior (e.g., Gohary et al., 2020; Sthapit et al., 2019).

Although literature evidences a range of studies on MTE (e.g., Akhshik et al., 2020; Wong
et al., 2019), more clarification is required for conclusive results. Findings from previous research
reflect that not all dimensions of tourism experience affect travelers in the same way at the
post-experience stage (e.g. Kim & Ritchie, 2014; Triantafillidou & Petala, 2016). This issue high-
lights the necessity of understanding the mechanism through which various dimensions of MTE
may influence visitor behavior.

Additionally, the contribution of MTE to visitors’ behavior in nature-based tourism environ-
ments has comparatively received less attention in spite of scholars’ recommendation for the
exploration of MTE in new and novel contexts (Huang et al., 2019). Further, as indicated in the
study of Kim and Chen (2019), revisit intentions and positive word of mouth have been two
most likely observed outcomes of MTE research in the literature (e.g., Chen & Rahman, 2018;
Gohary et al., 2020; Wong et al., 2019). The study of other significant variables such as travelers’
pro-environmental behavior have received comparatively lesser attention in MTE studies (Lee
et al., 2015).

Furthermore, an understanding of travellers’ behaviours and intentions in protected areas in
non-Western contexts and markets is relatively neglected and thus is highly momentous (Shi
et al., 2019). To legitimatize the bipolarity of tourism development and the protection of nature,
ecological modernization theory encourages a green sacrifice for economic gains in the short-
term, with a vow to justify this paranoia through technological advancement (see Mol, 2006).
Modernization of antiquated service experience with the recent advancement in technology, par-
ticularly artificial intelligence (AI) as an extension of human agency (Bryson & Kime, 2011) may
partly facilitate the ambition to design meaningful experiences per capita that benefit visiting
areas by elevating the user-centered design process to change human collective behavior
(Hassan & Ramkissoon, 2021; Neuhofer et al., 2014). In other words, AI is able to train the data
and generate a powerful ex-ante estimation of visitors’ behavior which can be used to increase
the propensity of pro-environmental behavior at the collective level. Encouraging collective pro-
environmental behaviour has been highly recommended by researchers (e.g., Ramkissoon, 2020;
Ramkissoon et al., 2018) as such adjustment may result in improvement of behaviors not only
during a visit at the protected areas but also promote behavioural change long term. The use of
artificial intelligence in contributing to a sustainable future has been outlined as one of the main
research priorities in tourism. Researchers are invited to work on how AI in general and machine
learning or deep learning in particular, can be utilized to achieve sustainable tourism
(Tussyadiah, 2020).

Drawing on Collins’ (2004) interaction ritual (IR) theory, which is an under-utilized concept in
tourism literature (Sterchele, 2020) together with the tenets of complexity theory the present
study integrates MTE and environmental passion (EP) to predict tourists’ PEB (Figure 1). Although
EP is known as an influential contributor to individuals’ PEB (Afsar et al., 2016; Robertson &
Barling, 2013), observing its interactional effect with MTE in a nature-based context to explain
visitors’ PEB is important and yet insufficiently studied. A series of configural models that simu-
late MTE, EP and visitors’ demographics to predict visitors’ PEB can be derived. This method ena-
bles researchers and practitioners to anticipate or manipulate visitors’ experiences based on the
recipes that achieve accurate prediction of outcomes per capita to produce patterns which are
generalizable to all individuals in the sample (Woodside, 2018).
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The majority of existing studies in the literature have often used structural equation model-
ling, regression analysis and correlation testing to measure the effect of MTE on travellers’ behav-
ioural outcomes (Chen & Rahman, 2018; Coudounaris & Sthapit, 2017; Gohary et al., 2020; Sthapit
et al., 2019; Tsai, 2016; Wong et al., 2019). However, non-linearity, disorder, and instability are
inherent characteristics of systems, including behavioural studies in tourism (Boavida-Portugal
et al., 2017) which mandates the application of deeper insights to reveal non-linearity of the
antecedents and their associations with combination of outcomes. The current study uses an
adaptive neuro-fuzzy inference system (ANFIS) method to train and test the patterns of visitors’
PEB in a machine learning environment to come up with several compelling predictors that pro-
pel travellers’ behavior upward. Although ANFIS modelling “can detect both non-linear and linear
relationship between the variables to predict higher accuracy” (Yadegaridehkordi et al., 2018,
p.370), its application in tourism is scarce. Our study applies machine learning to assist visitor
management in ecologically fragile destinations through manipulation of the design process to
foster long term behavior change. This is considered as ‘the next evolutionary step in technology
use and design’ (Stankov & Gretzel, 2020).

Our study aims to address the following research questions: a) Which aspects of MTE in case
of marine protected areas are more effective to visitors’ PEB? b) Are both types of generated
emotional energy (obsessive environmental passion and harmonious environmental passion)
effective in the prediction of participants’ PEB? c) What are the main characteristics of those par-
ticipants in interpretive marine turtle tours who engage in PEB? and d) In general, which condi-
tions should be met to make tour participants more inclined to be environmentally friendly?
These gaps are going to be elaborated utilizing newly emerged technological analysis techniques
such as adaptive neuro-fuzzy inference system in the case of interpretive tours.

Nowadays, along with the enormous growth in leisure demand, a move from mass to special
interest tourism such as interpretive experiences and education in marine wildlife tours has ele-
vated in recent years where visitors expect more than only entertainment and relaxation (L€uck,
2015; 2016). Interpretive experiences are complex forms of sustainable travel in which education

Figure 1. Asymmetrical and configurational model of the study.
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and interpretation remain substantial segments of (eco) tours (Fennell, 2008). These tours chiefly
aim to educate the significance of wildlife protection to visitors. Previous studies have asserted
the considerable contribution of the learning with enjoyment (edutainment) through marine
wildlife tourism experiences to the intended PEB (e.g., Pratt & Suntikul, 2016).

Theoretical discourse

Interaction ritual concept

Collins’ (2004) interaction ritual (IR) theory has the merit of supporting the link between the
social construction of MTE and the transformative effect (e.g., PEB) it brings to consumers of
place through emotional erosion (e.g., EP) (Sterchele, 2020). Scholars argue that IR theory
through its emphasis on interactions that form meanings, emotions and experiences provides a
suitable ground for the functioning of rituals that have similar features to tourism practices
(Bargeman & Richards, 2020; Sterchele, 2020; Weenink & Spaargaren, 2016). In fact, significant
aspects of people’s lives were treated as organized context-related activities in groups (e.g., inter-
pretive tours) instead of occurring in the individualistic form (Bargeman & Richards, 2020).

The intellectual history of IR theory dates back to Durkheim’s (1912) research on how emo-
tional arousal emerges from religious rituals (Hausmann, Jonason, & Summers-Effler, 2011).
Drawing on IR theory, future behavior and decisions are influenced by rituals (i.e. MTE) trans-
forming individuals’ feelings into longer-term emotional energy (Sterchele, 2020). The generated
emotional energy from the experience of the interaction in rituals, acts as a moral constraint on
individual behavior (Hausmann et al., 2011). Using Goffman’s (1959) main characteristics for an
effective interaction ritual, Collins (2004) delineates that the bodily co-presence of people is the
first key ingredient which makes them become harmonized with each other. The second factor is
the psychological or physical division between people in the group with outsiders. “Mutual focus
of attention” and the “shared mood” are the third and fourth ingredients of a prosperous ritual
interaction that altogether bring about a shared excitement that fills the participants with emo-
tional energy (Simons, 2020). Collins (2004) articulates that these emotions create standards of
morality and group solidarity.

Examining IR theory in case of interpretive marine turtle tours in which groups of travelers
participate in the tours with the initial willingness to experience and acquire more knowledge
about wildlife (L€uck, 2015) could be expedient. These groups of visitors are often so passionate
about nature that they voluntarily engage in releasing turtles into the Mediterranean Sea which
is part of their tours (Olya & Akhshik, 2019). Moreover, promoting visitors’ PEB is vital to protect
the fragile ecosystem particularly in protected areas (Ramkissoon & Mavondo, 2015, 2017).
Predicting the best recipes which can lead to active participation in environmentally friendly
behaviors (Ramkissoon et al., 2013) is one of the major desired outcomes of these tours (Akhshik
et al., 2020).

Memorable tourism experience

Experience is said to have a considerable impact on travellers’ behavioural intention (Sthapit
et al., 2017). On-site tourism experiences bring forth transitory feelings and have a prominent
role in memory generation (Gohary et al., 2020). MTE is composed of several dimensions includ-
ing the experience of interaction with community members (local culture), the experience of
relaxation (refreshment), the experience of pleasure (hedonism), the experience of fulfilment by
tourism (meaningfulness), the experience of novel information (knowledge), the experience of
on-site activities (involvement), and the experience of something phenomenal (novelty) (Kim &
Ritchie, 2014). Evidence in the literature has shown the positive influence of MTE on visitors’
behavioral intentions in various tourism settings such as local food tourism (Tsai, 2016), authentic
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tourism (Coudounaris & Sthapit, 2017), cultural tourism (Chen & Rahman, 2018), ethnic minority
tourism (Wong et al., 2019) and eco-tourism (Gohary et al., 2020).

Environmental passion

Environmental passion is described as a positive emotion which leads to individuals’ willingness
to participate in PEB (Robertson & Barling, 2013). Referring to the dualistic model of passion
(Vallerand et al., 2003), there are two forms of passion that one may develop towards a valued
activity. The first type is harmonious passion (HP) which refers to an autonomous internalisation
of the favourable activity. Such a feeling generates the motivational energy to willingly partici-
pate in the task (Gousse-Lessard et al., 2013). The second one is obsessive passion (OP) that
unlike the former is a controlled internalisation of the desired activity by which one cannot resist
partaking the passionate activity (Vallerand, 2010). Although the empirical studies including
environmental passion are limited in the literature, some evidence suggests a positive relation-
ship between EP and people’s PEB (Afsar et al., 2016; Gilal et al., 2019; Robertson & Barling,
2013). Moreover, the aforementioned previous studies have only investigated the effect of har-
monious passion on the outcome variable. Thus, comprehensive research considering both types
of environmental passion simultaneously will be important.

The complexity of human behaviour (PEB)

The development of interpretive experiences, which involves numerous interacting factors, per
se is a complex phenomenon (Olya & Akhshik, 2019). Additionally, travellers’ environmentally
friendly behaviours in tourism destinations have always been an important discussion for manag-
ers, researchers and policymakers (Akhshik et al., 2020). This is evidenced by numerous studies
on predictors of visitors’ PEB across settings including highly valued ecological areas (Landon
et al., 2018;Lee et al., 2019; Li & Wu, 2019; Li et al., 2020; Wu et al., 2020). Nevertheless, the com-
plexities of tourism and individuals’ environmental behaviours have been relatively neglected in
the literature and need further elaboration (Akhshik et al., 2020; Akhshik et al., 2020; Lezak &
Thibodeau, 2016; Olya & Akhshik, 2019; Ramkissoon et al., 2012). Although, human behaviour is
best predicted when outcomes are extracted from non-linear antecedents that are not necessar-
ily the ‘sum of the separate effects’ (Byrne, 1998, p. 20), often in the extant literature, visitors’
PEB has been treated based on linear relationships (Byrne, 1998; Mackie, 1974; McDonald, 2009)
using regression analysis or structural equation modelling (Nunkoo et al., 2013; Nunkoo &
Ramkissoon, 2012). Correspondingly, the authors aim to address this deficiency and discuss the
complex nature of visitors’ environmentally friendly behavior. In their review paper on respon-
sible behaviour of nature-based tourists, Lee et al. (2013, p. 102) stated that “scholars have
adopted various terms to describe behavior that protects the environment” such as environmen-
tally concerned behaviour, environmentally responsible behaviour or pro-environmental behav-
iour. Based on the literature, this study epitomized nature-based tourists’ PEBs as behaviours that
not only does not harm the environment but also benefit the environment of the destinations
they visited as well. These behaviours can cover a wide range of activities such as the acquisition
of knowledge about environmental protection, purchasing or donations in favour of ecological
protection, picking up litter in the destination, persuading others to protect the nature, changing
one’s lifestyle after visitation to minimise negative impacts on the environment (Higham & Carr,
2002; Smith-Sebasto & D’Costa, 1995; Steg & Vlek, 2009).
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Background, materials and tools

Tourism 4.0, AI and machine learning

Human is undergoing the 4th industrial revolution characterised by the advancement of emerg-
ing technologies such as AI (Schwab, 2016). AI was first presented in the 1950s by John
McCarthy as “the science and engineering of making intelligent machines, especially intelligent
computer programs” (McCarthy, 2007, n.p.). Machine learning (ML) which is known as a subset of
AI, uses computational algorithms that learns (pattern recognition) and improve from experience
of real-world data (training sets) to predict an outcome and to make decisions on its own (Bini,
2018). Such technology-based transformations have influenced the tourism industry by providing
interconnected and phygital systems which are known as Tourism 4.0 (Stankov & Gretzel, 2020).

Adaptive Neuro Fuzzy Inference System (ANFIS) which is known as a machine learning tech-
nique consists of a combination of artificial neural networks and fuzzy inference system
(Karaboga & Kaya, 2020) which has been recently adopted in the tourism and hospitality industry
to predict various variables. For example, Sun et al. (2019) used ML to accurately forecast tourist
arrivals for popular destinations in China. Using ANFIS, Atsalakis et al. (2018) forecasted the suc-
cess of a newly launched service in tourism. Recommender systems in tourism, an example of AI,
have been the focus of research in recent years (Nilashi et al., 2017). Another recent application
of ML models was to forecast hotel room prices in the Gulf Cooperation Council (GCC) countries
(Al Shehhi & Karathanasopoulos, 2020). ML was used as a technique to predict travellers’ choice
preferences of eco-friendly hotels (Nilashi et al., 2019) and as a means for searching query data
for tourism and hospitality forecasting (Li et al., 2020). ML methods were also utilized to predict
potential situations of over-tourism in destinations (Perles-Ribes et al., 2020). In their review
paper, Jiao and Chen (2019) reported that AI-based models are becoming a new trend in tourism
demand forecasting studies. In sum, ML and deep learning have attracted growing interest in
tourism to refine predictions in recent years and especially, ML techniques have been found to
be suitable for long-term and mid-term forecasting (Claveria et al., 2016).

There is also considerable evidence in literature suggesting how ML may contribute to envir-
onmental issues (e.g., Froemelt et al., 2020; Grant et al., 2020). ML creates a mathematical model
to predict or make decisions without human interventions. The application of this approach in
environmental studies has shown that it can accurately predict potential human behaviour and
provide valuable contribution to tackle ecological and conservational challenges. For example,
the exact tracking of the spatial distribution of fisheries’ impacts on remote areas and high seas
has been a difficult task for many years for scientists (de Souza et al., 2016). In order to under-
stand the global behaviour of fisheries, ML was able to locate a large fraction of the likely fishing
events successfully to support the conservational management programs (de Souza et al., 2016).
Within the context of our daily lives, ML can be used to predict households’ consumption behav-
ior by providing a comprehensive information base for policymakers to derive environmental
strategies that may reduce consumers’ ecological footprints accordingly (Froemelt et al., 2020).
Machine learning algorithm was used in several other studies to predict individuals’ various
environmental behaviours such as outdoor water conservation (Grant et al., 2020), electric vehicle
purchase behavior (de Rubens, 2019) and green consumption behaviour of college students
(Tang et al., 2020) among others.

Methodology

Study area

Alagadi Beach in Northern Cyprus is one of the few sites in the Mediterranean where two glo-
bally categorized as endangered turtles namely loggerheads (Caretta caretta) and green
(Chelonia mydas) turtles nest. Sadly, human recreational activities and their consequences are
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among the main anthropogenic threatening factors that affect marine turtle nesting areas
(Cami~nas & De M�alaga, 2004). As the economic resources generated by tourism are inevitable,
the protection of these endangered species at the same time mandates the presence of strict
environmental management. To promote ecological well-being, the conservational plan for the
marine protected area of the study site is administrated by the “society for the protection of
turtles” in Northern Cyprus. The members of the tours whose number do not exceed 20 people
per visit are booked in advance and the visitors participate in a video-based educational pro-
gramme followed by a comprehensive introduction about the area and turtles. The final stage in
the tour is a guided activity of baby turtle release into the sea. These practices as one of the
forms of alternative tourism enhance travelers’ interest in nature which is undoubtedly a signifi-
cant factor in managing protected areas (Kim et al., 2020). Protected areas are generally highly
precious for ecosystem services, tourism, preserving biodiversity, and also generating economic
benefits for indigenous people (Afifi et al., 2017; Maldonado-Or�e & Custodio, 2020) contributing
to sustainable tourism development.

Measurement scales

Well-established scales from the relevant literature feed the data for this study. In this regard,
the dualistic model of passion i.e. obsessive passion (6 items) and harmonious passion (6 items)
was measured based on items adapted from Marsh et al. (2013) and Vallerand et al. (2003). The
multidimensionality of memorable tourism experience (MTE) composed of hedonism (4 items),
refreshment (4 items), local culture (3 items), meaningfulness (3 items), new knowledge (3 items),
involvement (3 items), and novelty (4 items) which was adopted from Kim and Ritchie (2014). In
line with studies of Su et al. (2018) and Thapa (2010), pro-environmental behaviour has been
adapted from Smith-Sebasto and D’Costa (1995). All items were gauged by 5-point Likert scale
ranging from ‘strongly disagree’ (1) to ‘strongly agree’ (5), except PEB, HP and OP that ranged
from ‘strongly disagree’ (1) to ‘strongly agree’ (7).

Reliability, readability, timing and clarity of the items were assessed by conducting a pilot
study (Karatepe et al., 2020a) with 20 participants and 10 academics in the field. No modifica-
tions were required. Table A1 (appendix) presents the measurement tools and items.

Sampling and procedure

After obtaining the necessary permissions from the Society for the protection of turtles, the
research team referred to the site during the hatchling summer season of 2018. The data was
collected in two phases: pre-visit and post-visit. The latter is believed to convey a structural shift
in the behaviour of marine-watching visitors (Forestell & Kaufman, 1990). In the first phase, the
research team contacted the visitors face to face. The visitors who agreed to participate in the
survey were provided with the consent form, purpose of the study and questions about their
demographic information and their email address inquiry. Additionally, the respondents were
assured about their anonymity and informed that they would be contacted via email. In total,
out of 520 visitors who visited Alagadi beach during the study time, 438 people agreed to par-
ticipate in this research. A follow-up questionnaire was sent by email to the participants after
4months to capture their MTE, EP and their PEB. A total 332 (75.79%) filled questionnaires were
returned for the analysis. Moreover, remedies such as temporal, proximal and methodological
separation of measurement items such as counterbalancing question order and reversing coded
items were considered to reduce the potential common method bias (MacKenzie & Podsakoff,
2012). The distribution of gender, age, education, marital status, income and nationality is pre-
sented in Table 1.
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Data analysis

After the assessment of psychometric properties, correlation coefficient of the variables was cal-
culated using cross-tabulation and Cram�er’s V test to determine the extent of the relationship
between the antecedent and the outcome (Olya et al., 2020). Cross-tabulation reveals the exist-
ence of contrarian cases in the data set. Therefore, the associations among antecedents and out-
come of PEB are asymmetrical. As a result, the study pursues configural and non-linear models
to address the inherent heterogeneity of PEB using fsQCA (Ragin, 2014). In this phase, the data
were calibrated to fuzzy membership scores, and then, the fuzzy truth table was crafted using
Boolean algebra by minimization of Boolean function (Quine-McCluskey method). This step pro-
duces a list of all possible conditions resulting in high and low scores of PEB. Finally, to refine
the relatively important recipe from this list, counterfactual analysis was performed. Consistency
and coverage are two probabilistic criteria in this step (Ragin, 2009). The formulas to calculate
these are as follows:

Coverage : ðXi � YiÞ ¼
PfminðXi , YiÞgP

Yi

Consistency : Xi � Yið Þ ¼
Pfmin Xi, Yið Þg

P
Xi

Where Xi, indicates case i’s membership score in set X and Yi, presents case i’s membership
score in set Y in the outcome condition (Ragin, 2008). A threshold value beyond 1 and 8 is com-
monly accepted for coverage and consistency, respectively.

Table 1. Respondents’ profile (n¼ 332).

Characteristics Frequency Percentage

Gender
Male 140 42.2
Female 192 57.5

Age
18–29 26 7.8
30–49 104 31.3
50–64 127 38.3
Over 65 75 22.6

Education level
No schooling completed 36 10.5
Some high school 98 29.5
Associate degree/diploma 95 28.6
Trade/technical/Vocational training 64 19.3
Bachelor’s degree 29 8.7
Graduate and higher degree 10 3

Marital status
Married 206 62
Single 126 38

Income
Less than 1000 USD 72 21.7
1000� 2999 USD 83 24.4
3000� 5999 USD 152 45.8
More than 6000 USD 25 7.5

Nationality
British 115 34.6
Cypriot 30 8.7
German 27 8.1
Swedish 22 6.6
Norwegian 21 6.3
Turkish 18 5.4
Others 99 29.8

Total 332 100%
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The study further investigates predictive validity of the model by fairly dividing the sample
into two sub-samples; a causal recipe from sub-sample 1 was then compared with the holdout
sample (see Gigerenzer & Brighton, 2009). Further, to simulate the behavior of visitors, ANFIS
was used to portray the possibility of the prediction of these behaviors in a machine learning
environment to identify and rank critical factors that contribute to the high PEB of the visitors. In
this phase, the data was split to sub-sample (75% of the total sample), and holdout sample (35%
of the total sample). Then, the subsample was used as an input to train the data while the hold-
out sample was an input for testing data. The in-depth clarification of each step is pre-
sented below.

Results and discussion

Psychometric properties

Table A1 (appendix) reports the descriptive statistics, normality test, and exploratory factor ana-
lysis (EFA) results using the principal components analysis (PCA) and the varimax rotation
method. Skewness and Kurtosis test provides evidence of normality of data distribution that falls
in the commonly accepted values of 63 (Bowen, 2006). EFA reveals the items accurately loaded
under their measuring scales at an acceptable level (k> 0.64). Moreover, the eigenvalue for all of
the scales was higher than 1.00.

The reliability of the constructs was assessed using Cronbach’s alpha (a>.70) (see Table 2).
Internal consistency was validated using composite reliability (CR) which is greater than the com-
monly accepted 0.70 cut-off level (Bagozzi & Yi, 1988). Table 2 provides evidence of convergent
validity by illustrating the average variance extracted (AVE) > .50 and greater than maximum
shared squared variance (MSV) for each construct (Fornell & Larcker, 1981). A CFA has been
performed with acceptable loadings of items under desired factors (standardized factor loading
> .50; p < .001) (see Table 2). Table A3 (appendix) provides evidence of discriminant validity by
comparing the factor correlations with square roots of the AVEs (Fornell & Larcker, 1981).

Results of Cross-Tabulation analyses

To further pursue the most appropriate approach to study PEB, cross-tabulation of an antecedent
(OP) and the outcome (PEB) was conducted to reveal the existence of contrarian cases in the
dataset. Consequently, linear approaches may not adequately explain the behavior of these indi-
viduals that runs counter to the main effect (Woodside, 2014, 2018). As an example, the results
in Table 3 reveal that 70 individuals (21% of the sample) were not passionate about the environ-
ment but behaved pro-environmentally. Moreover, the negation of these relations presents 15
individuals (4.5% of the sample) who were passionate about the environment but failed to
behave pro-environmentally. Consequently, despite the positive correlation between OP and PEB,
there is a heterogeneity in the relationships that is hidden in the data not accurately addressed
by conventional methods. Therefore, the study of PEB as a complex phenomenon demands fur-
ther exploration (Ramkissoon et al., 2013c) which needs to consider the complex relationships
using configural and non-linear modelling (Woodside, 2018).

Results of model testing

To further pursue the asymmetrical and configural model of the study (Figure 1), fsQCA was
applied to provide unprecedented results to determine high/low scores of PEB. Arrow A in
Figure 1 indicates that the confluence of MTE and demographics on PEB [peb¼ f(hed, kno, inv,
loc, mng, nov, ref, gen,mar,age,inc,edu] results in four unique recipes (A: M1-M4; solution
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coverage: .23, Solution consistency: .98) (see Table 4). To clarify the recipes, an example of A: M1
(age�gen�mar�inc��edu�hed�mng�loc��nov�kno�ref) reveals that older married females with
high incomes and less education who scored high on hedonism, meaningfulness, local culture,
knowledge and refreshment, but lacked novelty achieved a high pro-environmental behavior
score. This is in line with the studies of Olya and Akhshik (2019) and Olya and Gavilyan (2017)
who found that these characteristics result in higher intention to behave pro-environmentally
and support sustainable tourism development, respectively. The study further investigates the
negation of PEB (Table 4. �A: M1-M4). To clarify with an example, �A:M1
(age��gen�mar�inc��edu�hed�mng�loc�nov�inv��kno�ref), reveals a recipe towards a low
score of pro-environmental behavior of visitors through older married and uneducated males
with higher incomes who score high on hedonism, meaningfulness, local culture, novelty,
involvement and refreshment, but didn’t have sufficient knowledge of the area. Therefore, con-
trary to the assumption of the conventional and symmetrical approaches, a low score of PEB is
not the mirror opposite of a high score in PEB. However, fsQCA facilitates crafting different rec-
ipes for the negation of the same outcome. More recipes regarding Arrow B [peb¼ f(hp, op,
gen,mar,age,inc,edu)] and� B are illustrated in Table 4.

Table 5 presents the configural models of high and low scores of PEB (Arrow C in Figure 1)
with all the antecedents [peb and�peb: f(hed, kno, inv, loc, mng, nov, ref, hp, op, gen, mar,

Table 3. Cross-Tabulation Analysis of Obsessive Passion� Pro-environmental Behaviour.

Peb

Total1 2 3 4 5 6 7

Op 1 Count 0 0 0 2 2 0 0 4
% within op 0.0% 0.0% 0.0% 50.0% 50.0% 0.0% 0.0% 100.0%
% within peb 0.0% 0.0% 0.0% 3.3% 1.6% 0.0% 0.0% 1.2%
% of Total 0.0% 0.0% 0.0% 0.6% 0.6% 0.0% 0.0% 1.2%

2 Count 0 2 9 6 12 6 1 36
% within op 0.0% 5.6% 25.0% 16.7% 33.3% 16.7% 2.8% 100.0%
% within peb 0.0% 15.4% 17.6% 10.0% 9.7% 7.4% 100.0% 10.8%
% of Total 0.0% 0.6% 2.7% 1.8% 3.6% 1.8% 0.3% 10.8%

3 Count 1 3 15 18 37 12 0 86
% within op 1.2% 3.5% 17.4% 20.9% 43.0% 14.0% 0.0% 100.0%
% within peb 50.0% 23.1% 29.4% 30.0% 29.8% 14.8% 0.0% 25.9%
% of Total 0.3% 0.9% 4.5% 5.4% 11.1% 3.6% 0.0% 25.9%

4 Count 1 3 17 23 44 22 0 110
% within op 0.9% 2.7% 15.5% 20.9% 40.0% 20.0% 0.0% 100.0%
% within peb 50.0% 23.1% 33.3% 38.3% 35.5% 27.2% 0.0% 33.1%
% of Total 0.3% 0.9% 5.1% 6.9% 13.3% 6.6% 0.0% 33.1%

5 Count 0 3 7 11 24 26 0 71
% within op 0.0% 4.2% 9.9% 15.5% 33.8% 36.6% 0.0% 100.0%
% within peb 0.0% 23.1% 13.7% 18.3% 19.4% 32.1% 0.0% 21.4%
% of Total 0.0% 0.9% 2.1% 3.3% 7.2% 7.8% 0.0% 21.4%

6 Count 0 2 2 0 5 14 0 23
% within op 0.0% 8.7% 8.7% 0.0% 21.7% 60.9% 0.0% 100.0%
% within peb 0.0% 15.4% 3.9% 0.0% 4.0% 17.3% 0.0% 6.9%
% of Total 0.0% 0.6% 0.6% 0.0% 1.5% 4.2% 0.0% 6.9%

7 Count 0 0 1 0 0 1 0 2
% within op 0.0% 0.0% 50.0% 0.0% 0.0% 50.0% 0.0% 100.0%
% within peb 0.0% 0.0% 2.0% 0.0% 0.0% 1.2% 0.0% 0.6%
% of Total 0.0% 0.0% 0.3% 0.0% 0.0% 0.3% 0.0% 0.6%

Total Count 2 13 51 60 124 81 1 332
% within op 0.6% 3.9% 15.4% 18.1% 37.3% 24.4% 0.3% 100.0%
% within peb 100.0% 100.0% 100.0% 100.0% 100.0% 100.0% 100.0% 100.0%
% of Total 0.6% 3.9% 15.4% 18.1% 37.3% 24.4% 0.3% 100.0%

Note: peb¼ pro-environmental behavior, op¼ obsessive passion; Cramer’s V ¼ .354, phi ¼ 1.938, p< 0.000 indicating associ-
ation between variables; Bold marks indicates 70 cases for�Obssessive Passion ! pro-environmental behavior and 15 cases
for Obssessive Passion ! �pro-environmental behavior; 1 represent Strongly disagree, 7 represents agree.
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age, inc, edu)]. Accordingly, three recipes for high score peb and two recipes for low score PEB
sufficiently describe PEB and its negation (Table 5). As an example, Table 5. C: M1.
(age��gen�mar�inc��edu�hed�mng�loc�nov�inv��kno�ref��op��hp) reveals that older,
uneducated, married and wealthy males who scored high on memorable tourism experience
dimensions except for knowledge but lacked obsessive and harmonious passion achieved high
score of PEB. This finding is contrary to results of previous studies dominated by findings on pas-
sion having a positive effect on PEB. This is majorly due to the misinterpretations of symmetric
models based on conventional methods (e.g. Afsar et al., 2016). However, in line with the results
of the current study, Junot et al. (2017) report that obsessive passion negatively correlates with
environmental behaviors. What is evident, however, is that passion may not be sufficient or
necessary to adjust PEB. It means that people who lack obsessive passion are not necessarily
opposed to behaving pro-environmentally.

Tenets of complexity theory

Woodside (2017) proposes 6 tenets to evaluate complexity theory based on the empirical data.
Accordingly, a single antecedent rarely suffices to predict the desired outcome (tenet 1).
Moreover, a complex interaction of the antecedents describes high/low scores of the outcome.
As seen in Table 5. C: M1. (age��gen�mar�inc��edu�hed�mng�loc�nov�inv�
�kno�ref��op��hp), a complex interaction of memorable tourism experience and passion pre-
dict the high score in PEB.

Tenet 3, known as Equifinality principle proposes that a recipe that sufficiently predicts the
outcome, is not necessary by itself, as there are other paths to predict the same result.
Accordingly, in this study, a number of recipes described the high/low scores in PEB.

Tenet 4, known as the causal asymmetry principle, proposes that the rejected outcome is
unique. In this study the negation of PEB is not the mirror opposite of the high score PEB
(Tables 4, 5).

Tenet 5 propose that a single antecedent can contribute positively or negatively to predict
the outcome, that depends on the other ingredients in the model. The results of the study on
the other side revealed that the dualistic dimension of passion contributed to the high PEB
scores both positively and negatively (Table 5).

Tenet 6 proposes that a given recipe is relevant for some, but not all cases and the coverage
is less than 1. This is evident in Table 6 illustrated by the fuzzy XY plot. Therefore, as predicted

Table 5. Configural models of high and low scores of Peb with all the antecedents (model C and its negation).

C. peb : f(hed, kno, inv, loc, mng, nov, ref, hp, op, gen, mar, age, inc, edu) RC UC C

Models for predicting high scores Peb
M1. age��gen�mar�inc��edu�hed�mng�loc�nov�inv��kno�ref��op��hp .09 .01 1
M2. age��gen�mar�inc�edu�hed�mng�loc�nov�inv�kno��ref�op�hp .10 .02 .98
M3. age�gen�mar�inc��edu�hed�mng�loc��nov�inv�kno�ref�op�hp .14 .07 .99
solution coverage: 0.19
solution consistency: 0.98

~C. � peb : f(hed, kno, inv, loc, mng, nov, ref, hp, op, gen, mar, age, inc, edu) RC UC C

Models for predicting low scores Peb
M1. age��gen�mar�inc��edu�hed�mng�loc�nov�inv��kno�ref��op��hp 0.21 0.01 0.92
M2. age��gen�mar�inc�edu�hed�mng�loc�nov�inv�kno��ref�op�hp 0.22 0.02 0.87
solution coverage: 0.24
solution consistency: 0.84

Note: RC : raw coverage; C : consistency; UC: unique coverage; � : negation; Peb: Pro-environmental behaviour; age:
respondents’ age; gen: gender; mar: marital status; inc: income; edu: education; hed: Hedonism; kno: Knowledge; inv:
Involvement; loc: Local culture, mng: Meaningfulness; nov: Novelty; ref: Refreshment; hp: harmonious passion; op: obses-
sive passion; marital status and gender are dummy variables: 0 indicates: single and men, while 1 indicates: married,
women respectively.
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by Kollmuss and Agyeman (2002), PEB is extremely complex and overly simplistic models may
not fully predict the PEB of the visitors (Ramkissoon et al., 2012; Siegel et al., 2018).

Predictive validity

The result of the predictive validity provides further insights on the ex-ante power of the proposed
model and configurations. As illustrated in Table 6, we have divided the sample to a sub-sample and
holdout sample. Drawing on an instance from the result of fsQCA (Table 5), a fuzzy XY plot has been
portrayed with the recipes on X-axis and PEB on Y-axis with the sub-sample (Consistency: 1;
Coverage: 0.09). Later, the same configural model was portrayed using the holdout sample
(Consistency: 1; Coverage: 0.10). The comparisons of the models on different samples provide evi-
dence for predictive validity of the proposed configural model (Olya et. al., 2020).

Table 7. ANFIS sensitivity analysis results

Model Absent Input Output RMSE

Model 1 – Hed, Mng, Loc, Nov, Inv, Kno, Ref, Hp, Op Peb 2.0922
Model 2 Hed Mng, Loc, Nov, Inv, Kno, Ref, Hp, Op Peb 5.5279
Model 3 Mng Hed, Loc, Nov, Inv, Kno, Ref, Hp, Op Peb 6.6864
Model 4 Loc Hed, Mng, Nov, Inv, Kno, Ref, Hp, Op Peb 5.0278
Model 5 Nov Hed, Mng, Loc, Inv, Kno, Ref, Hp, Op Peb 3.3427
Model 6 Inv Hed, Mng, Loc, Nov, Kno, Ref, Hp, Op Peb 5.7577
Model 7 Kno Hed, Mng, Loc, Nov, Inv, Ref, Hp, Op Peb 2.9652
Model 8 Ref Hed, Mng, Loc, Nov, Inv, Kno, Hp, Op Peb 3.7893
Model 9 Op Hed, Mng, Loc, Nov, Inv, Kno, Ref, Hp Peb 3.4022
Model 10 Hp Hed, Mng, Loc, Nov, Inv, Kno, Ref, Op Peb 3.4223

Note: RMSE¼ root mean square error.

Figure 2. ANFIS model structure.
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Simulation analysis with ANFIS

Conventional methods may oversimplify the human agency process (Yadegaridehkordi et al.,
2018); many researchers have thus recommended soft computing techniques ( Ahani et al., 2017;
Li�ebana-Cabanillas et al., 2017, Yadegaridehkordi et al., 2018 ). ANFIS integrates the cognitive
dimension of human intelligence and the mechanism of reasoning with the empirical examin-
ation of the collected evidence, which allows the in-depth prediction of the future outcome.
However, ANFIS was used as a complementary method in this study as it is not designed for cas-
ual relationships or conventional hypothesis testing due to its ‘Black Box’ operations (Li�ebana-
Cabanillas et al., 2017). In the current study, ANFIS is performed in two ways. First, it is used to
determine the most critical factor contributing to PEB. ANFIS is capable of identifying the rela-
tionships between optimal input and the output; therefore, a sensitivity analysis can identify the
most relevant and critical antecedents to predict PEB (see Table 7). Second, it is used to simulate
and forecast pro-environmental behavior with the sufficient antecedents retrieved from fsQCA. In
this regard, the output from fsQCA was input for ANFIS further analysis.

As an information processing system ANFIS combines the power of artificial network and
fuzzy inference system with a multilayer feed-forward network. The fundamental building block
of the ANFIS is a single neuron known as a ‘Perceptron’. Forward propagation of a perceptron in
a neural network is illustrated in Figure 2.

Each input (xm) has a corresponding weight (wm), and the inputs have an error (e) tolerance
(w0) as well. Multiplication of each of the inputs proceeds by membership functions that provide
a sum (

P
), then Fuzzy If-Then rules formulate the conditional statements that contain fuzzy

logic. Then, through a normalization layer ANFIS defuzzifies (L) the weights and estimated errors
and the final output (ŷ) is produced. By comparing the errors from the actual output, the testing
data predicts the best possible solution from training data in a process called “back-propagation”
where the network feed backwards in each perceptron by calculating root mean square error
(RMSE). To test the performance criteria, the RMSE of predicted values of ANFIS output are com-
pared (Karaboga & Kaya, 2019).

Therefore, the operation of ANFIS is based on nodes that are arranged in different layers. The
first layer is usually the input. Then, these inputs are merged in other nodes and layers based on
the membership functions. Each node is regarded as a mathematical function that performs
operations on its incoming input and processes it into and generates a corresponding output.
This technique facilitates various fuzzy membership function categories. To obtain the optimal
category, we generated the variables with different FIS in different categories (see Table A2,
appendix). Gaussian curve membership function (gaussmf) with three categories (low, medium,
and high) was deemed adequate among the existing FIS to further pursue the process (RMSE ¼
2.0922). In the next step, the data was split into 75:25 ratios for training and testing, respectively
(Abubakar et al., 2019). Ten epochs with the error tolerance of 0.05 for all the 9 inputs and one
output were defined. Figure 3a illustrates the data set index for training data (O) and FIS output
(�) of PEB and all antecedents.

Moreover, by excluding variables from the equation, ANFIS sensitivity analysis (Table 7)
revealed that by eliminating meaningfulness (Model 2) from the equation, RMSE is significantly
increasing. It indicates the importance of meaningfulness in predicting PEB. On the other hand,
the model that lacks knowledge (Model 7) has the minimum change on RMSE. This means that
knowledge contributes less to the overall prediction of PEB. The surface view of the highest and
lowest contributor to PEB is displayed in Figure 3b.

Moreover, our comparison of different models that were extracted from fsQCA outputs dem-
onstrates the ex-ante power of ANFIS to adequately train and predict the behaviors of visitors. It,
therefore facilitates the selection of models with the best performance derived from the real-life
experience in a machine learning area. To explain further, the ANFIS was tuned and run for each
model derived from Table 5. The first model (C: M1) has the smallest training and testing RMSE
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compared to other models and overall performs better (training RMSE ¼ 0.72415, testing
RMSE ¼ 1.5536) (See Table 7).

Conclusion and implications

The management of human impacts on fragile and sensitive ecological resources needs a com-
prehensive understanding of behaviours and their influential antecedents. Meanwhile, the study
of individuals’ discretionary environmentally friendly behaviours or pro-environmental behaviours
continue to attract considerable attention in tourism and hospitality and other disciplines (e.g.,
Ari et al., 2020; Karatepe et al., 2020b; Ramkissoon, 2020; Rezapouraghdam et al., 2018).
However, the majority of the studies in the tourism and hospitality literature did not use ML
approach which creates a mathematical model to predict the future behavior of individuals. The
trained data prepared by ML, provides a valuable information base for destination managers and
policymakers to derive appropriate context-based environmental strategies that may mitigate
the future environmental hazards to the environment.

Using ML to identify the combination of factors that can lead to visitors’ pro-environmentally
friendly behaviours in a tourism destination, the present study brings forth several methodo-
logical, theoretical and practical implications in the context of marine protected areas.
Theoretically, our proposed model was designed based on the interaction ritual concept and
confirmed by tenets of complexity theory. Complexity theory asserts that the interaction of tour
members’ MTE, EP and their demographics revive their PEB. This finding may further contribute
to the body of knowledge. Although the interaction ritual (IR) concept along with its emotional
energy notion provides a worthwhile tool to analyze and understand visitors’ behaviors affected
by their travel experiences and interactions during tours, it is an underutilized framework in tour-
ism literature. Our study advances the application of this theory by explicating tourists’ environ-
mentally friendly behaviors in destinations and thus contributing to sustainable development
goals (Ramkissoon, 2020; Ramkissoon et al., 2020). Secondly, the affirmation of our proposed

Figure 3b. Surface view of the highest and lowest scored antecedents with Peb.

Figure 3a. Plot representing training data (O) and FIS output (*) of outcome (Peb) and all the antecedents.
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conceptual model by complexity theory is an attempt to focus on the complexities of visitors’
behavior in relation with environmental phenomena which have been extensively neglected in
the literature because of treating such complexities through linear approaches. Our study con-
cludes that relying on the IR concept, the interaction of members during the interpretive marine
turtle tours are effective in fostering environmental passion which may promote their responsible
behavior toward the environment. However, as asserted by complexity theory, the level of such
environmentally friendly behaviors varies (e.g. high, low, and medium) among the members due
to the interaction between their demographics and other two variables (EP & MTE).

Our study may also contribute to the application of artificial intelligence which has been identi-
fied as one of the research priorities in sustainable tourism field (Tussyadiah, 2020). Our research
has attempted to advance the knowledge in the field by using AI, specifically ML techniques to
predict, interpret and analyze the complexity of tourists’ behaviors. Although it has been long
since these technologies have been introduced (McCarthy, 2007), their application in the tourism
and hospitality industry is still in its infancy and scholars have only recently started to utilize them
for various predictive purposes (e.g. Al Shehhi & Karathanasopoulos, 2020; Li et al., 2020; Nilashi
et al., 2019; Sun et al., 2019). Instead of fencing off visitors from ecologically valuable sites, alterna-
tive tourism with the aid of technology provides insights to manage visitors accordingly.

Destination managers can benefit from our findings in several ways. Our findings suggest the
importance of optimizing the quality of tourists’ experiences and make them memorable. This can
be achieved through increasing the meaningfulness of their travel by emphasizing their presence
as a helping factor for saving the lives of baby turtles. Professional tour guides can provide further
information and enhance participants’ knowledge which is an important factor in creating a mem-
orable tourism experience. Arranging tours is a way through which tourists may experience the
local culture and unique local food will be beneficial for hedonism and novelty. Moreover, the IR
concept used in this study also provides implications for managers. In order to achieve a successful
ritual interaction, the destination managers can increase the time participants spend together on
site. Besides, the participants can be given some unique symbols such as badges, shirts or hats so
that they can identify themselves as being different from other visitors. Finally, to enhance the
mutual focus of attention and the shared mood the professional tour guides can be trained with a
number of meditation techniques to share with the tour members before starting their turtle res-
cuing activities. These practices together can help the members experience more excitement and
fill them with the desired emotional energy that creates standards of morality (Collins, 2004).

The technology-based prediction has the potential to reform the experience design through
the information gathered from the visitors. This technique can record different aspects of an
experience to offer potential benefits to managing bodies, visitors, and visiting areas.
Practitioners can use ML-empowered software at destinations to predict and provide services in
a way that desired and expected outcomes may best be achieved.

In other words, AI could address the heterogeneity nature of service experiences per capita to
encourage predictable outcomes. Planners can produce AI-based apps to predict or calibrate
pro-environmental behaviors on site. On the other hand, PEB itself is a complex phenomenon
that could be reached through the interaction of different antecedents. Nevertheless, the com-
bination of these antecedents may not be the same for different demographics. Inclusion of
demographic data in the prediction of PEB unfolds unprecedented implications for managerial
bodies in order to design possible personas. Moreover, an experience design with the aim of ele-
vating PEB of visitors may be achieved through different combination of antecedents, and unless
these combinations reach a certain tipping point level, self-transformation may not occur
(Gladwell, 2006). This study addresses this issue by applying a state-of-the-art method i.e. fsQCA
and ANFIS. Our study found three unique recipes (Table 5. C. M1-M3) addressing significant gaps
in theory and practice. It is of the highest concern for tourism stakeholders to understand the
underlying patterns shaping the high/low pro-environmental behavior of visitors, particularly at
sensitive ecological sites. Additionally, the combination of memorable tourism experience and
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passion for the environment provides a unique solution to provoke tourists’ PEB which has rarely
been investigated in the tourism literature.

Limitations and future research

The study was limited to self-report data collected from visitors; future studies may use other
psychophysical approaches in managing visitors’ experience. The majority of the travellers to
North Cyprus were from Britain and Germany at the time of data collection (Atao�glu, 2019).
Considering the importance of cultural backgrounds in shaping attitudes and behaviours, future
research can consider including the influence of culture in promoting PEB.

Also, since the study site in the present study was limited to Alagadi beach, different study
settings may provide a better understanding of managing tourism in protected areas. The equi-
finality principle emphasizes the existence of various recipes towards the desired outcome. Our
study, however, was limited to two constructs (i.e. passion and memorable experiences). A com-
bination of different antecedents provides more recipes to predict PEB. Future studies may
include different antecedents of PEB. Moreover, measuring PEB using actual consumption pat-
terns, or dividing the outcome to high-effort, low-effort PEB may add unprecedented value to
future research. Our study was limited to data collected from visitors. Future studies would bene-
fit from integrating other stakeholders. Finally, the limited spatio-temporal data used in this
study opens an avenue to future studies to replicate the findings of our research.
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Appendix

Table A.1. Results of EFA, and descriptive statistics of scale items (n¼ 332)

Factor k Mean Std. Deviation
Skewness Kurtosis

Eigenvalues % of Variance Statistic Std. Error Statistic Std. Error

5.865 13.963
OP3 .792 3.98 1.767 .004 .134 �1.056 .267
OP4 .822 4.05 1.763 .006 .134 �1.055 .267
OP6 .841 4.11 1.825 �.014 .134 �1.110 .267
OP2 .795 4.03 1.798 .003 .134 �1.067 .267
OP1 .682 3.95 1.832 .051 .134 �1.128 .267
OP5 .832 4.11 1.691 .009 .134 �.890 .267

4.213 10.030
HP2 .810 4.24 1.310 �.058 .134 �.269 .267
HP6 .812 4.37 1.362 �.143 .134 �.241 .267
HP4 .769 4.29 1.369 �.063 .134 �.386 .267
HP3 .815 4.27 1.422 .045 .134 �.563 .267
HP5 .869 4.31 1.406 .078 .134 �.350 .267
HP1 .938 4.29 1.384 �.029 .134 �.316 .267

3.588 8.543
PEB3 .906 4.98 1.288 �.533 .134 �.020 .267
PEB5 .909 4.99 1.424 �.540 .134 �.239 .267
PEB4 .931 5.04 1.339 �.423 .134 �.546 .267
PEB2 .909 4.86 1.569 �.321 .134 �.937 .267
PEB1 .875 5.07 1.284 �.432 .134 �.224 .267
PEB6 .863 5.23 1.541 �.788 .134 �.200 .267

3.387 8.063
Hed3 .923 4.02 .851 �.951 .134 1.198 .267
Hed2 .791 3.71 .986 �.485 .134 �.288 .267
Hed4 .839 3.81 1.012 �.615 .134 �.253 .267
Hed1 .701 3.76 .997 �.791 .134 .291 .267

2.973 7.079
Kno2 .744 3.49 1.070 �.408 .134 �.581 .267
Kno1 .838 3.42 1.047 �.323 .134 �.566 .267
Kno3 .824 2.90 1.027 .076 .134 �.450 .267

2.813 6.698
Nov2 .775 3.91 1.052 �.878 .134 .252 .267
Nov3 .813 3.56 1.209 �.443 .134 �.746 .267
Nov4 .824 3.85 1.093 �.768 .134 �.152 .267
Nov1 .850 3.24 .817 �.035 .134 .210 .267

2.247 5.350
Ref2 .848 3.26 .800 .141 .134 .241 .267
Ref1 .788 3.31 .878 .107 .134 .015 .267
Ref3 .838 3.29 .952 �.016 .134 �.379 .267
Ref4 .759 3.59 1.408 �.623 .134 �.996 .267

2.114 5.034
Inv2 .771 3.55 1.432 �.589 .134 �1.060 .267
Inv3 .826 3.58 1.358 �.605 .134 �.945 .267
Inv1 .798 3.76 1.383 �.989 .134 �.329 .267

1.801 4.289
Loc3 .804 3.80 1.286 �.999 .134 �.119 .267
Loc1 .735 3.87 1.304 �1.146 .134 .161 .267
Loc2 .818 3.36 .924 �1.380 .134 .891 .267

1.139 2.713
Mng2 .837 3.45 .910 �1.000 .134 .250 .267
Mng1 .816 3.57 1.065 �.824 .134 .119 .267
Mng3 .649 3.34 .907 �.303 .134 �.225 .267

Note: k is factor loading coefficient; Std. Deviation is standard deviation. pebi¼ Pro-environmental behaviour intention;
hp¼Harmonious passion; op¼Obsessive passion; hed¼Hedonism; kno¼ Knowledge; inv¼ Involvement; loc¼ Local cul-
ture, mng¼Meaningfulness; nov¼Novelty; ref¼ Refreshment; All items gauged by 5-point Likert scale ranging from
strongly disagree (1) to strongly agree (5) except peb, hp and op that are ranging from Strongly disagree (1) to Strongly
agree (7). Kaiser-Meyer-Olkin (KMO): .793; Bartlett’s Test of Sphericity: Approx. Chi-Square: 8169.053, df: 861; Sig.: 0.000;
All Eigen-values > 1; Skewness and Kurtosis provide evidence for normality.
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Table A3. Result of discriminant validity analysis.

1 2 3 4 5 6 7 8 9 10

(1) Obsessive passion 0.800
(2) Harmonious passion 0.260��� 0.755
(3) Pro-environmental Behaviour 0.163�� 0.209�� 0.741
(4) Hedonism 0.123� 0.183�� 0.076 0.809
(5) Knowledge 0.080 0.027 �0.041 0.125� 0.895
(6) Novelty 0.022 0.000 0.018 0.041 �0.122 0.726
(7) Refreshment �0.060 �0.065 �0.135� 0.048 �0.184�� �0.159� 0.723
(8) Involvement 0.043 �0.084 �0.012 �0.037 0.174�� 0.022 �0.139� 0.873
(9) Local culture �0.002 0.027 0.041 0.294��� 0.014 0.042 �0.119 0.022 0.857
(10) Meaningfulness �0.012 0.082 0.061 0.625��� 0.009 0.046 0.043 0.111 0.201�� 0.764

Note: The non-diagonal elements are the correlations of the constructs along with their p-value indication while the diag-
onal elements (in bold) are the square roots of the Average Variance Extracted (AVE);.���p< 0.001.��p< 0.010.�p< 0.050.

Table A2. ANFIS best configuration for Peb according to membership function type and its category.

Category of Membership Function

Member Function 2 3

RMSE Values trimf 5.5107 2.2728
trapmf 11.2922 9.4735
gbellmf 7.3679 2.1002
gussmf 5.2425 2.0922
guss2mf 17.0251 3.0516
pimf 39.6398 11.6474
desigmf 47.9745 3.9697
psigmf 47.9745 3.9697

Note: Abbreviations of member functions: Difference between two sigmoid functions membership function (dsigmf); gaussian
combination membership function (gauss2mf); Gaussian curve membership function (gaussmf); generalized bell membership
function (gbellmf); p-shaped membership function (pimf); product of two sigmoidal membership function (psigmf); trapezoidal
membership function (trapmf); triangular membership function (trimf).
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