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Zusammenfassung
Einer der Grundpfeiler der Evolutionsbiologie ist die Untersuchung, wie sich Merkmale von
Organismen im Laufe der Zeit verändern. Technologische Fortschritte in den letzten zwanzig
Jahren haben es uns ermöglicht, die Variation eines wichtigen Merkmals, der Genexpression-
sebene, auf Einzelzellau�ösung zu untersuchen. Eine der Ursachen für die Variation des Gen-
expressionsniveaus ist Genexpressionsrauschen, ein Ergebnis der angeborenen Stochastizität
des Genexpressionsprozesses. Genexpressionsrauschen ist genspezi�sch und kann durch Se-
lektion eingestellt werden, aber was die Entwicklung des genspezi�schen Expressionsrauschens
antreibt, bleibt eine o�ene Frage.

In dieser Dissertation untersuche ich den selektiven Druck und die Evolvierbarkeit von
genspezi�schem Expressionsrauschen in Genregulationsnetzwerken. Ich verwende Evolu-
tionssimulationen, indem ich Mutations-, Rekombinations- und Reproduktionsrunden auf Pop-
ulationen von Modellnetzwerken zur Genregulation in verschiedenen Selektionsszenarien an-
wende.

Im ersten Kapitel untersuche ich die Reaktion von genspezi�schem Expressionsrauschen
in Genregulationsnetzwerken in konstanten Umgebungen, die eine stabilisierende Selektion
auf der Genexpressionsebene erfordern. In diesen Simulationen konnte sich das Ausdruck-
srauschen über Tausende von Generationen hinweg weiterentwickeln. Die Wahrscheinlichkeit,
auf die Auswahl zu reagieren, und die Stärke der selektiven Reaktion wurden durch lokale Net-
zwerkzentralitätsmetriken beein�usst. Gene mit höheren Zentralitätsmetriken hatten näm-
lich eine höhere Wahrscheinlichkeit, auf die Selektion zu reagieren, und eine stärkere Re-
duzierung des genspezi�schen Expressionsrauschens als Reaktion auf die stabilisierende Se-
lektion. Darüber hinaus beein�ussten globale Netzwerkmerkmale wie Netzwerkdurchmesser,
Zentralisierung und durchschnittlicher Grad die durchschnittliche Expressionsvarianz und
den durchschnittlichen Selektionsdruck, der auf konstituierende Gene wirkt.

Im zweiten Kapitel untersuche ich die Reaktion des mittleren Genexpressionsniveaus und
des genspezi�schen Expressionsrauschens in isolierten Genen und Genen in Genregulation-
snetzwerken in sich verändernden Umgebungen. In diesen Simulationen konnten sich sowohl
das Genexpressionsniveau als auch das genspezi�sche Expressionsrauschen über Tausende
von Generationen unter gerichteter oder schwankender Selektion entwickeln. Das genspez-
i�sche Expressionsrauschen von Genen nahm bei schwankender Selektion zu, was auf die
Entwicklung einer Bet-Hedging-Strategie hinweist. Unter direktionaler Selektion nahm das
genspezi�sche Expressionsrauschen vorübergehend zu, was zeigt, dass Expressionsrauschen
eine Rolle im Anpassungsprozess hin zu einem neuen mittleren Expressionsoptimum spielt. In
beiden selektiven Szenarien reagierten Zielgene, also Gene, die von anderen Genen reguliert
werden, eher als Regulatorgene.

Diese Ergebnisse zeigen, dass die Selektion auf Netzwerkebene zu einem unterschiedlichen
Selektionsdruck auf Genebene führt und dass lokale und globale Netzwerkeigenschaften von
Genregulationsnetzwerken ein wesentlicher Bestandteil der genspezi�schen Expressionsrauschen-
twicklung sind. Sie zeigen weiterhin, dass erhöhtes Expressionsrauschen als adaptive Strategie
genutzt werden kann und dass der Hintergrund des Gennetzwerks evolutionäre Einschränkun-
gen für die Entwicklung des mittleren Expressionsniveaus und des genspezi�schen Expres-
sionsrauschens mit sich bringt. Diese Ergebnisse stellen einen Fortschritt beim Verständnis
der Entwicklung des Genexpressionsrauschens in Gennetzwerken dar.
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Summary
One of the keystones of evolutionary biology is the study of how organismal traits change in
time. Technological advancements in the past twenty years have enabled us to study the vari-
ation of an important trait, gene expression level, at single cell resolution. One of the sources
of gene expression level variation is gene expression noise, a result of the innate stochasticity
of the gene expression process. Gene expression noise is gene-speci�c and can be tuned by
selection, but what drives the evolution of gene-speci�c expression noise remains an open
question.

In this thesis, I explore the selective pressure and evolvability of gene-speci�c expression
noise in gene regulatory networks. I use evolutionary simulations by applying rounds of mu-
tation, recombination and reproduction to populations of model gene regulatory networks in
di�erent selection scenarios.

In the �rst chapter, I investigate the response of gene-speci�c expression noise in gene
regulatory networks in constant environments, which imposes stabilizing selection on gene
expression level. In these simulations, the expression noise was allowed to evolve over thou-
sands of generations. The probability of responding to selection and the strength of the se-
lective response was a�ected by local network centrality metrics. Namely, genes with higher
centrality metrics had higher probability of responding to selection and a higher reduction
in gene-speci�c expression noise in response to stabilizing selection. Furthermore, global
network features, such as network diameter, centralization and average degree a�ected the
average expression variance and average selective pressure acting on constituent genes.

In the second chapter, I investigate the response of mean gene expression level and gene-
speci�c expression noise in isolated genes and genes in gene regulatory networks in changing
environments. In these simulations, both gene expression level and gene-speci�c expression
noise were allowed to evolve over thousands of generations under directional or �uctuating
selection. Gene-speci�c expression noise of genes increased under �uctuating selection, in-
dicating the evolution of a bet-hedging strategy. Under directional selection gene-speci�c
expression noise transiently increased, showing that expression noise plays a role in the adap-
tation process towards a new mean expression optimum. In both selective scenarios, target
genes, genes regulated by other genes, were more likely to respond than regulator genes.

These results show that selection at the network level leads to di�erential selective pressure
at the gene level, and local and global network characteristics of gene regulatory networks are
an essential component of gene-speci�c expression noise evolution. They further demonstrate
that increased expression noise can be utilized as an adaptive strategy and that the gene net-
work background imposes evolutionary constraints on the evolution of mean expression level
and gene-speci�c expression noise. These �ndings represent a step forward in understanding
the evolution of gene expression noise in gene networks.
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“I would like to see anyone, prophet, king or God, convince a thousand cats to do the same
thing at the same time.”

- Neil Gaiman, A Dream of a Thousand Cats (1990)



Foreword

The richness of macroscopic life on Earth is apparent to anyone who has spent any time out in
nature. Take a walk in a forest and you will see a palette of living creatures: dozens of species of
trees and shrubs, bees pollinating �owers, di�erently colored beetles roaming around, squirrels
scattering up the tree trunks, birds perched atop the branches, paw prints of weasels and
martens, and perhaps a well-hidden badger sett if you have a keen eye. Invisibly, below the
ground, there will be hundreds of fungi and bacteria eating away at the soil. In all likelihood,
in your neighbourhood there will be hundreds of species of plants and animals and even more
prokaryotes and fungi, all coexisting together. If we consider the neighbourhood at it’s largest
scale, the planet, it is estimated that there are around eight million species on Earth, of which
only around one million are described. It is easy to be awestruck by the sheer amount of visible
diversity of species on Earth.

However, the limitations of our naked eyes make us overlook an equally impressive as-
sortment - the same amount of richness and diversity we can see at the macroscopic level can
be found at the microscopic level within living creatures. Living beings consist of cells, which
harbor a fascinating abundance of diversity of their own kind. Namely, in each cell there are
thousands of di�erent molecules that orchestrate its life, molecules big and small, which shuf-
�e and bump into each other and create products useful to the cell. These molecules, just like
living creatures in the forest, come in all shapes and sizes. If we could shrink ourselves into
a homunculus and take a walk through a cell, we would be struck by diversity just like in the
forest. Structural proteins will be the beams holding the cell components together, thousands
of enzymes will be catalyzing metabolic reactions such as digestion and respiration, tube-like
ion channels will be shuttling ions between the cell and its environment, motor proteins will
be transporting their cargo up and down the microtubule �laments to distribute it to di�erent
areas of the cell. Proteasomes, protein complexes that look and function like garbage cans, will
be �oating around suspended in cytoplasm, waiting to recycle any incorrectly made proteins.
Inside the center of the cell, there will be a two meter long chain of nucleotides, holding the
genetic information of the cell and tightly bound around barrel-like proteins called histones.
The way in and out of the center of the cell, the nucleus, will be gated by nuclear pores, in-
tricate molecular structures consisting of over thirty di�erent kinds of proteins, which have
three rings and the outer ring has �laments jutting outside, while the inner ring resembles an
actual basket. Altogether, in the landscape of a cell there are dozens of thousands of distinct
proteins, over a thousand distinct lipids, an unknown number of distinct carbohydrates and
nucleic acids. Micromolecules included, the total number of molecular species in a cell can
easily yield over a hundred thousand distinct species. Most of these species are undescribed,
much like in the macroscopic world. Surely, the inner world of the cell is a rich and mysterious
tapestry, which we have begun to unravel only a couple of decades ago.

What is perhaps most interesting in this picture of the inner functioning of the cell is
the lack of a central command unit. Even though so many processes need to be tightly con-
trolled for the cell to survive, there is no central mainframe controlling the behaviour of each
molecule in the cell. Instead, the cell is a self-organized structure, in which molecules di�use
freely inside the cell body and within the cell compartments. Naturally, this means that there
is an inevitable randomness within the cell, a randomness that is a feature of all life. Proteins,
and molecules in general, are constantly synthesized with small di�erences, or in too low or
too high amounts. Other molecules might take long to �nd their targets, or bind by mistake
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to wrong targets. Keeping in mind the set of tens of thousands of molecular species working
together to keep the cell alive, it is tempting to think of a cell as a perfectly organized machine,
in which every molecular behaviour is intentional and controlled. In fact, it is the opposite.
The orchestra of tens of thousands of molecular species has no conductor, and more closely
resembles a chaotic jungle in which, on average, the necessary is carried out, and many mis-
takes are made along the way. One might think then - how on Earth do cells, and living beings
in general, survive like this? One might even stumble into a PhD thinking about it.

How do we go about answering this question? There are multiple ways to tackle a scien-
ti�c question. A good start is to observe what is present in nature and make inferences based
on our observations. Sometimes, it is di�cult or impossible to manipulate a biological sample
to direct an experimental study. In that case, scienti�c modelling comes in. Scienti�c mod-
els are simpli�ed representations of natural phenomena that capture some key aspect of their
behaviour, which we can use to explore the behaviour in di�erent conditions. As simpli�ed
representations, all models are wrong (following George Box’s aphorism), in the sense they
do not perfectly recreate every behavior of the real phenomena. They are, nonetheless, useful.
Models help us save time and resources that would otherwise be spent on experiments, or en-
able us to study what is impossible by experimental means. For example, an aircraft engineer
will come up with di�erent wing prototypes and test their aerodynamics using computational
models by simulating the movement of air across it, instead of physically building the proto-
types and putting it in an air chamber. Pharmacists use molecular and pharmacokinetic models
to come up with new drugs and test their e�ciency, before actually synthesizing them in the
lab. The behavior of the model gives us an implication of the real system would have behaved,
or it might suggest that there is something in nature we have not noticed so far. The existence
of Neptune was predicted based on the mathematical model of Sir Isaac Newton’s law of grav-
ity, and the existence of the Higgs boson was predicted based on a theoretical model about
�fty years before it was experimentally observed. The modelling and simulation approach is
used in this thesis. A simple model of interacting molecules in the cell is used to study how
randomness in cells evolves and a�ects the evolution of the molecular components.
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Chapter 1

Background: The inherent randomness
of living beings

“Each cell is, within certain limits, an Individual, an independent Whole.”
– Theodor Schwann, Microscopical Researches (1839)

In this thesis, I study the evolution of an aspect of biological randomness, gene expression
noise, in the context of gene networks. I will �rst introduce the concept of gene expression,
then the concept of gene networks, and lastly, list reasons to investigate noise in biological
systems.

1.1 Gene expression

1.1.1 History of studying genes and gene expression

The fact that o�spring resemble their parents has been known since before empirical science,
but what exactly determines the traits of an organism and how it is propagated into the next
generation remained a mystery. The basic concepts of inheritance were set in 1886 by Gregor
Mendel using pea experiments, which showed that o�spring inherit single units of inheri-
tance which determine some phenotypic traits from their parents (Mendel, 1865). Mendel’s
principles of inheritance were largely unnoticed until they were rediscovered in 1900 by Hugo
de Vries, Carl Correns, and Erich von Tschermak, who have reported to had reached similar
conclusions. Around the same time, the term gene was introduced by Wilhelm Johannsen
to denote the basic physical unit of inheritance. He also introduced the terms genotype and
phenotype, albeit in a slightly di�erent meaning than they are used today, to distinguish be-
tween the hereditary genetic material and the observable traits of an organism. However, the
molecular nature of genes was unknown and for a long time it was hypothesized that the
genetic material is chemically a protein. The molecular nature of genes was not discovered
until the work of Oswald Avery, Colin MacLeod and Maclyn McCarty in 1944 (Avery et al.,
1944) and Alfred Hershey and Martha Chase in 1952 (Hershey and Chase, 1952), which showed
that the genetic material is a deoxyribonucleic acid, or DNA. A year later, in 1953, the dou-
ble helix chain-like structure of DNA is published, which solved the problem of encoding a
large amount of genetic material in a molecule using only four nucleotides (Watson and Crick,
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Chapter 1. Background: The inherent randomness of living beings

1953). Finally, it was accepted that organisms carry genes, encoded in their DNA, which fully,
or to some extent, determine their phenotypic traits.

How the genetic information stored in genes is realized into phenotypic traits has been ex-
plained by the central dogma of molecular biology, �rst formulated by Francis Crick in 1958,
which posits that genetic information �ows from DNA through RNA to proteins (Crick, 1958).
The multi-step process by which information in a gene is used to synthesize a gene product
is called gene expression. Gene products can be proteins or non-coding RNA, and usually, the
measure of gene expression is the amount of gene product in the population or individual cell.
The process of gene expression is comprised of many reactions in which speci�c molecules
must bind to each other to facilitate a reaction and intracellular molecules mostly move by
di�usion, making the binding event, more or less, a random process. Also, these molecules are
present in low amount, increasing the susceptibility to random �uctuations. In other words,
the biochemical reactions that constitute the gene expression process are inherently noisy,
yielding a nondeterministic outcome in terms of expression level. The variation in the ex-
pression level resulting from the randomness of gene expression, which persists even among
genetically identical cells living in an identical environment, has been termed expression noise
(Elowitz, 2002). When looking at single cells, the genome can be considered the cell’s genotype
and the expression levels of all genes the cell’s phenotype.

In classical biology, genetically identically cells living in an identical environment are as-
sumed to have identical phenotypes, disregarding inherent randomness. On the other hand,
intracellular randomness has been predicted from basic physical principles since the 1940s
(Schrödinger, 1944) and phenotypic heterogeneity reported (Delbrück, 1945; Novick and Weiner,
1957; Maloney and Rotman, 1973; Spudich and Koshland, 1976). However, even though the
dogma of a completely deterministic phenotype played a role in disregarding phenotypic ran-
domness, there were obstacles in studying noise due to the scarcity of experimental tools avail-
able to study cell individuality. Gene expression was usually measured qualitatively (whether
a gene is expressed or silenced) or quantitatively (as average protein level).

A decisive pivot happened in 2002, with the study of the variation of E. coli cells growing
in the same environment by Michael Elowitz and coauthors (Elowitz, 2002). They presented
experimental evidence of inherent stochasticity of gene expression creating phenotypic het-
erogeneity, as well as a way to disentangle the intrinsic and intrinsic sources of gene expres-
sion noise. This study highlighted the non-negligible e�ect expression noise has on pheno-
typic variation and brought the topic of expression noise to the limelight. Still, experimental
methodology at the time allowed the measurement of noise on only few genes at the time, and
even though some experimental datasets were reported (Newman et al., 2006; Bar-Even et al.,
2006), genome-wide noise measurements were largely unavailable.

Recent technological advancements in the form of single-cell sequencing have opened the
possibility of deeply exploring cells at the individual level. First single-cell RNA sequencing
was reported in 2009 (Tang et al., 2009), opening the door to genome-wide measurements of
expression levels at the resolution of single cells. Single-cell sequencing (single-cell transcrip-
tomics and genomics) was named “Method of the Year for 2013” by Nature Methods for its
potential to study heterogeneity of cells at the individual level (Nature, 2014). Since then,
numerous studies working on unravelling the factors shaping the expression level mean and
expression noise in single cells have been published.
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1.1. Gene expression

1.1.2 What shapes expression noise levels (molecular and evolution-
ary causes)?

There are several reported molecular factors that in�uence expression noise levels, at di�er-
ent stages of the gene expression process. At the epigenetic level, certain chromatin features,
such as presence of chromatin remodelling complexes (Newman et al., 2006) and gene prox-
imity resulting in common chromatin dynamics (Sun and Zhang, 2019) have been reported
to in�uence expression noise. At the transcriptional level, presence of a TATA box (Newman
et al., 2006), the promoter shape (Sigalova et al., 2020), presence and number of transcription
factor binding sites (Sharon et al., 2014), transcription factor binding dynamics (Azpeitia and
Wagner, 2020), presence of transcription factor decoy binding sites (Dey et al., 2020), and tran-
scription rate have been reported to a�ect noise. At the translational level, miRNA targetting
(Schmiedel et al., 2015), mRNA lifetime, and translation rate. At the posttranslational level,
the protein degradation rate and compartmentalization of proteins by phase separation have
also been shown to in�uence noise (Klosin et al., 2020).

At evolutionary time scales, some factors shaping expression noise have been identi�ed.
Evidence of selection on expression noise was �rst seen in the fact that dosage-sensitive genes
(Lehner, 2008) and essential genes exhibit lower levels of expression noise (Fraser et al., 2004;
Wang and Zhang, 2011). Intrinsic noise was also reported to correlate with the strength of se-
lection acting on the encoded protein. Namely, proteins with a lower ratio of non-synonymous
over synonymous substitution rate (Ka/Ks) have a lower level of expression noise (Barroso
et al., 2018). Sequence conservation is one proxy for evolutionary constraints, and it is one of
the predictive features of low expression variation. Conserved genes between Drosophila and
human are signi�cantly less variable, and are highly enriched for broad promoters (Sigalova
et al., 2020). Changes in the expression noise of a single gene may be either bene�cial or delete-
rious, depending on how far its mean expression is from the optimal expression level (Duveau
et al., 2018). Expression noise is deleterious if the mean expression level is close to the optimal,
as higher variation, in this case, generates a larger number of less �t individuals, reducing the
population �tness. Conversely, expression noise can be bene�cial if the mean expression level
is far from the optimum, as noisy genes are more likely to generate cells with an expression
level closer to the optimum. Noisy gene expression can thus be part of a bet-hedging strategy
and was observed in genes involved in immune and environmental response (Beaumont et al.,
2009; Bódi et al., 2017; Farquhar et al., 2019; Nevozhay et al., 2012). On the other hand, low-
variability genes are enriched for housekeeping and developmental functions in Drosophila
(Sigalova et al., 2020). The �tness cost of changes in the level of expression noise in the �tness
landscapes of ≈ 30 yeast genes have been shown to be on the same order as �tness costs of
changes in mean expression level (Schmiedel et al., 2019). Since the �tness e�ect of di�erent
levels of expression noise can be as detrimental as di�erent mean expression levels, which are
thought to be extensively under selection (Gilad et al., 2006), it can be assumed that expression
noise is extensively under selection genome-wide. Prevalent selection on expression noise has
been demonstrated in naturally segregating promoter variants of E. coli (Vlková and Silander,
2022).
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1.1.3 From genotypes to phenotypes through networks

How do genes constituting the genotype translate into the actual organism, the phenotype?
Inspired by Mendelian genetics, early population genetics assumed genes to be independent
and equivalent entities shaping the phenotype, and that evolution happens by changing the
frequency of gene variants. This framing has been jokingly termed ‘beanbag genetics’ by Ernst
Mayr (Mayr, 1963), where the population of organisms is described as a bag full of beans and
mutations represent an exchange of one bean for another, and famously led to a public dis-
pute with J. B. S. Haldane (Haldane, 1964). This view also assumes a deterministic relationship
between genotype and phenotype, in which the genetic material of the individual fully deter-
mines the phenotypic traits, and by extension, the gene pool determines the phenotypic traits
of the population. Mayr criticized the assumption for its disregard of the complexities of organ-
ismal development, underlying that selection acts on phenotypes, whose development cannot
be disregarded by assuming a simple additive e�ect of each gene. The interactions between
genes have since started to be taken into consideration, and a commonly used concept when
studying the relationship between the genotype and phenotype is the ‘genotype-phenotype
map’, introduced by Pere Alberch in 1991 (Alberch, 1991). The relationship between the geno-
type and phenotype in this case is understood not as a one-to-one mapping, but through a
mapping function which maps parameter space to a phenotypic space. Investigating the re-
lationship between the genotype and phenotype requires a more nuanced approach in which
the complexities of development have been more accurately modelled by biological networks,
i.e. a shift from focusing on genes to focusing on gene networks (Pigliucci, 2010).

1.2 Biological networks

Biological networks are representations of relationships between biological entities, such as
proteins, genes, species in the food web, and others. Most commonly studied networks are
protein-protein interaction networks, DNA-protein interaction networks (gene regulatory net-
works), food webs and neuronal networks. Computational models allow us to investigate the
behaviour of biological systems which may be di�cult or impossible to do by experimental
means. The models used to study each network type di�er, so here I present a brief overview of
the models used to study gene regulatory networks (GRNs), which are the focus of this thesis.
Gene regulatory networks are representations of the regulatory interactions between genes,
i.e. a directed graph that de�nes which gene in�uences the expression level of the genes it is
connected to.

1.2.1 Models of gene regulatory networks

Numerous models and methodologies for reconstructing GRNs from single-cell RNA-seq data
have been reported (e.g. Oubounyt et al. (2023); Mao et al. (2022); Shu et al. (2021); Jackson
et al. (2020); Huang et al. (2017)), even some that take phylogenetic information into account
for increased accuracy (Mignone et al., 2020; Koch et al., 2017). Nonetheless, the reconstructed
GRNs are far from being complete (Röttger et al., 2012) and being consistent with gene ex-
pression data (Larsen et al., 2019). The models used for simulating the behaviour of GRNs are,
however, di�erent from the models used in reconstructing them from real data, apart from
one recent study reports a model that can be used simultaneously for reconstruction and sim-
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ulation of GRNs (Ventre et al., 2023). Common models used to simulate GRNs can be roughly
classi�ed into qualitative and quantitative models (Barbuti et al., 2020).

Qualitative models used to simulate GRNs include logical models, such as Boolean net-
works or Petri nets, in which the expression levels are represented as binary states (on or o�).
For example, Boolean networks have been used to study the cell-cycle regulatory network in
Saccharomyces cerevisiae (Li et al., 2004), and Petri nets have been used to study the sporulation
regulatory network of Bacillus subtilis (Steggles et al., 2007). These models are computation-
ally and parametrically undemanding, but simplistic, and have been used less often in the past
decade.

Quantitative models used to simulate GRNs include di�erential equations and the stochas-
tic simulation algorithm. These models represent expression levels as continuous values, such
as the concentrations of molecular species or their absolute number. Most commonly used
di�erential equation models are ordinary di�erential equation (ODE) models. For example,
the regulatory network response of yeast to hyperosmotic shock was implemented as an ODE
model (Klipp et al., 2005). The values for ODE parameters are rarely known, so due to the
number of parameters that need to be estimated di�erential equation models are suitable for
modeling only small-scale networks. They also assume a deterministic gene expression pro-
cess, making them unable to represent stochasticity in gene expression. Gillespie’s stochastic
simulation algorithm (SSA) (Gillespie, 1977) models the randomness of reactions in molec-
ular networks by implementing molecular reactions as probabilistic events. It is computa-
tionally demanding, so approximations to SSA which exchange accuracy for speed have been
developed, such as tau-leaping (Gillespie, 2001) and the chemical Langevin equation (Gillespie,
2000).

Both di�erential equation and Gillespie algorithm models require a large amount of para-
metric information, which is often unavailable, and have low-scalability to larger network
sizes. To study the evolution of gene expression noise using evolutionary simulations, in which
millions of individual networks are to be realized over thousands of generations, a gene regu-
latory network model that is computationally fast and represents the stochastic behaviour of
real networks is needed.

1.2.2 Wagner’s gene regulatory network model

One of the commonly used gene regulatory network models is the Wagner gene network
model, �rst published in 1996 (Wagner, 1996). It was used to study evolutionary plasticity, and
many alterations to the model have been made since, but the original model is outlined here.

The gene network of N genes is represented by a dynamical system whose state variables
S⃗(t) denote the expression states of the genes in the network. The expression levels of each
gene are updated at each time step during the developmental process and can have only two
values, +1 and -1. The relationships of all genes in the network are de�ned by a N × N size
regulatory matrix W = (wij)1≤i≤n, 1≤j≤n. The values of the entries of the regulatory matrix wij
de�ne the strength of the regulatory interaction between gene j and gene i. Diagonal elements
can have non-zero values, de�ning autoregulation of the gene by its own product.

The network development process is modelled as a succession of gene expression states,
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and given by a set of di�erential equations:

Si(t + � ) = �[
N
∑
j−1

wij ⋅ Sj(t)] = �[ ℎi(t) ] (1.1)

The expression level state of gene i at time t + � , Si(t + � ) is given by the function ℎi(t),
which is a weighted sum of the expression states of all genes in the network at time t and
represents the sum of the e�ects all regulatory genes have on gene i.

In the original model from 1996, a �lter step function was applied on gene expression states
to discretize them:

� (x) =

⎧⎪⎪⎪
⎨⎪⎪⎪⎩

−1, if x < 0
1, if x > 0
0, if x = 0

(1.2)

In later modi�cations to the model, a sigmoidal function was used to make expression level
states a continuous distribution.

Evolutionary simulations were performed as cycles of reproduction, mutation and selec-
tion steps. A genotype is considered viable if its gene expression level pattern can reach a
stable pattern. Fitness was determined based on expression level stability: stable expression
patterns had a �tness of 1, unstable expression patterns had a �tness of 0.

Wagner’s gene regulatory network model has been used for studying the evolution of
gene networks, epistasis, robustness, canalization of development (Bergman and Siegal, 2003;
Azevedo et al., 2006; Huerta-Sanchez and Durrett, 2007; Espinosa-Soto and Wagner, 2010;
Rhoné et al., 2011; Odorico et al., 2018; Espinosa-Soto, 2018), neutral networks (Ciliberti et al.,
2007), as well as evolvability of gene networks with noisy gene expression level states (Pinho
et al., 2015).

1.3 Why should a biologist care about expression noise?
Understanding phenotypic variation is one of the central questions in biology. Traditionally,
studies of phenotypic variation are framed as a question of the contribution of genetic and
environmental factors to the focal phenotype, colloquially known as the nature vs. nurture
debate. This framing imposes a deterministic view of the genotype-phenotype map, i.e. it as-
sumes that the phenotype is fully determined by the genetic information and environmental
conditions. In many cases, a large portion of the phenotypic variation cannot be ascribed to
either genetic variation or environmental e�ects. For example, 35% to 40% of the behavioral
individuality in orientation towards a visual object in fruit �ies can be ascribed to stochastic
variation in the brain wiring, which originates from non-heritable noise during brain devel-
opment (Linneweber et al., 2020).

Expression noise was shown to be a selectable trait that a�ects �tness and the numerous
evidence was outlined in section 1.1.2. Furthermore, the nongenetic variation created in a
population can favor the �xation of bene�cial mutations (Schmutzer and Wagner, 2020), in-
creasing the speed of evolution. Expression noise is also a mechanism of creating phenotypic
noise which leads to division of labor among cooperating individuals. In some cases, individual
cells in the population independently and randomly specialize into distinct roles by increas-
ing stochastic �uctuations in biochemical reactions of each cell (Liu et al., 2021). For example,
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it was shown that the production and secretion of extracellular proteases in a population of
Bacillus subtilis are determined randomly (Veening et al., 2008). The extracellular proteases
released by the altruistic cells degrade complex proteins in the medium into freely dispersed
smaller peptides, which can be taken up by any cell in the population, indicating cooperative
or altruistic behaviour. Furthermore, the phenotypic noise responsible for the random activa-
tion of the production pathway was demonstrated to be a result of increased expression noise
of the transcriptional regulator controlling the pathway.
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1.4 Thesis scope
The objectives of this thesis are:

i) Introduce a model of gene regulatory networks which includes stochastic gene expres-
sion and allows distinction of extrinsic and intrinsic gene expression noise. The model must
also represent noise propagation between connected genes in the network and be computa-
tionally feasible to implement within a forward-in-time simulation procedure.

ii) Investigate how gene expression noise responds to stabilizing selection on gene expres-
sion levels in gene regulatory networks through in silico evolutionary experiments.

iii) Investigate how gene expression mean and noise responds to directional and �uctuat-
ing selection on gene expression levels in gene regulatory networks through in silico evolu-
tionary experiments.
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Chapter 2

Evolution of gene-speci�c expression
noise under stabilizing selection

Noman is an island, entire of itself; Each is a piece of the continent, a part of the main; if
a clod be washed away by the sea, Europe is the less, as well as if a promontory were, as
well as if a manor of thine own, or of thine friend’s were; Each man’s death diminishes
me, for I am involved in mankind; Therefore, send not to know for whom the bell tolls,
it tolls for thee.

– John Donne, Devotions Upon Emergent Occasions (1624)

2.1 Abstract

Expression noise, the variability of the amount of gene product among isogenic cells grown
in identical conditions, originates from the inherent stochasticity of di�usion and binding of
the molecular players involved in transcription and translation. It has been shown that ex-
pression noise is an evolvable trait and that central genes exhibit less noise than peripheral
genes in gene networks. A possible explanation for this pattern is increased selective pres-
sure on central genes since they propagate their noise to downstream targets, leading to noise
ampli�cation. To test this hypothesis, we developed a new gene regulatory network model
with inheritable stochastic gene expression and simulated the evolution of gene-speci�c ex-
pression noise under constraint at the network level. Stabilizing selection was imposed on
the expression level of all genes in the network and rounds of mutation, selection, replica-
tion and recombination were performed. We observed that local network features a�ect both
the probability to respond to selection, and the strength of the selective pressure acting on
individual genes. In particular, the reduction of gene-speci�c expression noise as a response
to stabilizing selection on the gene expression level is higher in genes with higher centrality
metrics. Furthermore, global topological structures such as network diameter, centralization
and average degree a�ect the average expression variance and average selective pressure act-
ing on constituent genes. Our results demonstrate that selection at the network level leads to
di�erential selective pressure at the gene level, and local and global network characteristics
are an essential component of gene-speci�c expression noise evolution.
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2.2 Introduction

Living beings are complex systems constituted of many genes that interact with each other
and the environment to create an organism. From prokaryotes with a few hundred essential
genes, to eukaryotes with possibly several thousands, cells require many gene products to
work together to perform housekeeping functions and to replicate. Fine-tuned molecular pro-
cesses, generally referred to as gene expression, ensure how, where and when these products
are generated. However, gene expression is an inherently noisy process (Elowitz, 2002; Raser
and O’Shea, 2005), which involves many steps where molecules participating in the expres-
sion machinery di�use and bind to target molecules. Additionally, these molecules are often
present in small copy numbers, increasing the susceptibility of gene expression to stochastic
events. Consequently, there is a variation in gene expression levels among cells, even if they
are isogenic and grown in a homogeneous environment, and this inevitable variation has been
termed gene expression noise. Organisms have to express hundreds of genes, each one of which
is noisy – raising the question of how they evolved to cope with this inevitable noise.

The expression noise level of a particular gene may be decomposed into two components,
called extrinsic and intrinsic. Extrinsic noise a�ects all genes equally and results from the shar-
ing of key molecules, such as RNA polymerases and ribosomes, by all genes in the expression
process, as well as, for instance, di�erences in cell size and phase in the cell cycle. Intrin-
sic noise is gene-speci�c and results from di�erent chromatin states, cis-regulatory elements
and kinetic parameters of transcription and translation of each gene (Chalancon et al., 2012).
Minor sequence mutations can have a signi�cant e�ect on the level of expression noise. For
example, a small number of single-nucleotide changes in a transcription factor binding site
were reported to have a large e�ect on the expression noise level (Sharon et al., 2014). Since
(i) there is variation in the level of intrinsic noise of genes, and (ii) intrinsic noise is geneti-
cally determined – and, therefore, heritable – gene expression noise can be shaped by natural
selection.

Evidence of selection on expression noise was �rst seen in the fact that dosage-sensitive
genes (Lehner, 2008) and essential genes exhibit lower levels of expression noise (Fraser et al.,
2004; Wang and Zhang, 2011). Intrinsic noise was also reported to correlate with the strength
of selection acting on the encoded protein. Namely, proteins with a lower ratio of non-
synonymous over synonymous substitution rate (Ka/Ks) have a lower level of expression noise
(Barroso et al., 2018). Changes in the expression noise of a single gene may be either bene�cial
or deleterious, depending on how far its mean expression is from the optimal expression level
(Duveau et al., 2018). Expression noise is deleterious if the mean expression level is close to
the optimal, as higher variation, in this case, generates a larger number of less �t individuals,
reducing the population �tness. Conversely, expression noise can be bene�cial if the mean
expression level is far from the optimum, as noisy genes are more likely to generate cells with
an expression level closer to the optimum. Noisy gene expression can thus be part of a bet-
hedging strategy and was observed in genes involved in immune and environmental response
(Beaumont et al., 2009; Bódi et al., 2017; Farquhar et al., 2019; Nevozhay et al., 2012). The �t-
ness cost of changes in the level of expression noise in the �tness landscapes of ≈ 30 yeast
genes have been shown to be on the same order as �tness costs of changes in mean expression
level (Schmiedel et al., 2019). Since the �tness e�ect of di�erent levels of expression noise
can be as detrimental as di�erent mean expression levels, which are thought to be extensively
under selection (Gilad et al., 2006), it can be assumed that expression noise is extensively un-
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der selection genome-wide. Prevalent selection on expression noise has been demonstrated in
naturally segregating promoter variants of E. coli (Vlková and Silander, 2022).

The phenotype (and, therefore, the �tness) of an organism depends on the interaction of
many genes. As a result, genes do not evolve independently, and the selective pressure acting
on a gene’s intrinsic noise depends on its interactions with other genes. Understanding the
evolution of gene expression noise requires accounting for such gene-to-gene interactions,
commonly depicted by a gene network. The propagation of noise from gene to gene in the
network was established both theoretically and experimentally (Pedraza, 2005; Blake et al.,
2003). Genes with many connections propagate their noise to a more substantial extent than
genes with fewer connections and, therefore, contribute more to the global noise levels of
the network. Gene networks are robust to variation in the expression level of their system
components to some degree, but at a critical point the global noise of the network becomes too
high and leads to network collapse. Selection against noise at the network level was, therefore,
hypothesized to result in stronger constraints on the intrinsic noise of highly connected genes
(Barroso et al., 2018). Moreover, the topological structure of the network has been shown to
a�ect the pattern of noise propagation (Hens et al., 2019), suggesting that the topology of the
network might impose additional selective constraints on the constituent genes.

Here, we test the hypothesis that expression noise of highly connected genes in gene net-
works is under stronger selective pressure than expression noise in peripheral genes using
an in silico evolutionary experiment. We introduce a new gene regulatory network evolution
model, which includes an evolvable component of stochastic gene expression, and use it to
evolve thousands of network topology samples over 10,000 generations. These simulations
showed that highly connected genes have a more constrained intrinsic expression noise. They
further revealed that not all genes might evolve in response to network-level selection, and
the probability that they do so depends on local network properties. Lastly, the average selec-
tive pressure acting on genes in a network is a�ected by topological features such as network
diameter, centralization and average degree.

2.3 Materials and methods

We introduce a new gene regulatory network model that incorporates intrinsic expression
noise. We then use this model within a forward simulation framework to simulate the evo-
lution of populations of networks with mutable levels of intrinsic expression noise. These
simulations allow us to study how the selective pressure acting on expression noise varies
within the regulatory network.

2.3.1 A gene regulatory network model with stochastic gene expres-
sion

To investigate the evolution of stochastic gene expression in gene regulatory networks, we �rst
extend Wagner’s gene network model (Wagner, 1996) to integrate gene-speci�c expression
noise.

We model a network of n genes (n = 40 in this study) de�ned by a regulatory matrix
W = (wij)1≤i≤n, 1≤j≤n, and a vector of intrinsic, gene-speci�c noise {�inti }1≤i≤n. Each element wij
of the regulatory matrix W de�nes the regulatory e�ect of gene j on gene i. The value of wij
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is a real number and is referred to as regulatory strength of gene j on gene i. In case wij > 0,
gene j is an activator of gene i and increases its expression level. Conversely, when wij < 0,
gene j is a repressor of gene i and decreases its expression level. Lastly, if wij = 0, gene i is not
regulated by gene j and gene j has no e�ect on expression level of gene i. Two genes i and j
are connected by an edge in the network if at least one of wij and wji is non-null. The intrinsic
noise vector {�inti }1≤i≤n de�nes the gene-speci�c expression noise of each gene in the network.
The regulatory matrix and the intrinsic noise vector together constitute a unique genotype in
this modeling framework (Fig 2.1A).

The phenotype (the expression level of each gene) in the model is represented by a state
vector {Si}1≤i≤n = {s1, s2,… , sn}, which describes the expression level of each gene. The state
vector at t0 is set to an arbitrary basal expression level value ({S0i }1≤i≤n = {Sbasali }1≤i≤n =
{20, ..., 20} in this study). In every time step t (1 ≤ t ≤ Tr , with Tr = 50 in this study), the
expression level of each gene is recomputed. The cumulative e�ect of all transcription factors
in the expression level of each gene is for simplicity considered to be additive, i.e. we assume
there is no cooperative or competitive binding of transcription factors to transcription factor
binding sites. This assumption removes the small degree of non-linearity in the response of
the regulated gene to transcription factor concentrations, which is present in real transcrip-
tion factor regulation dynamics. The activation rate ai(t) is de�ned as the sum of all e�ects
the regulators of gene i have on its expression level at time step t :

ai(t) =
n
∑
j=1

wij ⋅ sj(t), (2.1)

in which case the dynamic equation for the expression level of each gene in the following time
step is:

si(t + 1) ∼ (sbasali + ai(t), �inti ) . (2.2)

In every time step the expression level of a gene is drawn from a random distribution. We
implemented a simple Gaussian noise, where the mean of the normal distribution equals the
sum of basal expression level (sbasali ) and activation rate (ai(t)), and the variance equals the
gene noise genotype (�inti ). If the expression level value drawn from the normal distribution
is below the minimal (smin = 0) or above the maximal expression level (smax = 100), it is set to
the minimal or maximal expression level, respectively. We note that the shape and variance
of the distribution is constant in realization time in our model, but that the expression levels
of each individual is the product of the trajectory of the expression levels during the realiza-
tion process, during which expression levels can exhibit phenotypic switching between stable
states. Consequently, there can be a non-normal expression level distribution of a certain gene
in the clonal population, even though the expression levels in each time step are drawn from
a normal distribution.

The expression levels of all genes are synchronously updated in each time step. The steady
state expression levels are invariant to whether the expression levels of each gene are updated
synchronously or asynchronously (Appendix A.1.2). Similarly, mean expression level, expres-
sion variance, CV, noise and Fano factor are invariant to the updating mode (Appendix A.1.2).
The model may be realized as stochastic or deterministic, depending on the noise parameter
values (Fig 2.1B). The deterministic realization has been used to benchmark the model and to
set up the mean expression levels for the starting populations, and the stochastic realization
has been used in the main bulk of the simulations, in which intrinsic noise is evolved.
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Figure 2.1: The evolution of gene-speci�c expression noise was simulated using pop-
ulations of model gene regulatory networks with mutable levels of gene-speci�c ex-
pression noise under selective and non-selective conditions. A - Gene regulatory net-
work model. The genotype consists of the intrinsic noise vector �int and regulatory matrix
W . The intrinsic noise vector de�nes the gene-speci�c expression variance of each gene in
the network. The regulatory matrix de�nes the regulatory interactions in the network. The
genotype is realized into the phenotype using the dynamical equation described in the main
text. The phenotype is given by the state vector S, which represents the expression level of
each gene in the network. B - Deterministic (left) and stochastic (right) realizations of the
model. C - Steps of the evolutionary simulation process. Each established network con�gura-
tion was used as a founding network for the network populations used in the noise evolution
simulation. In every generation, genotypes are realized and phenotypes (expression levels) are
sampled from the last time step. Fitness is calculated from the expression levels. If the popu-
lations are evolved under selection, �tness is calculated as the distance of the expression level
of each gene from the optimal expression level. Genotypes are reproduced based on their rela-
tive �tness and mutations in the intrinsic noise vectors are introduced. Noise genotype vectors
are recombined by randomly choosing individuals for recombination and shu�ing their noise
vectors. The process is repeated for 10,000 generations. D - Algorithm overview.
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2.3.2 Forward-in-time simulation of expression noise evolution
To investigate how gene-speci�c expression noise of constituent genes responds to stabilizing
selection at the network level, we used the newly introduced model to perform forward-in-
time evolutionary simulations in which we allow the gene-speci�c noise levels to mutate. An
in silico evolutionary process consisting of rounds of mutation, selection, recombination and
replication events of a population of N (N = 1, 000 in this study) individuals was performed
for T (T = 10, 000) generations (Fig 2.1C).

We �rst generated network topologies that would serve as the founding network for the
populations in our simulations. We generated 2,000 random (Erdős–Rényi model) network
topologies of 40 nodes with regulatory strength values drawn from a uniform distribution
 (−3, 3). The network density was d = 0.05. Only connected network graphs were used,
meaning there is only one component and there are no disconnected subgraphs. Autoregula-
tion is not present, because it a�ects gene-speci�c noise levels and would be a confounding
factor in the analysis. In order to assess the e�ect of the topology structure on the evolution of
expression noise, we also generated an additional 1,000 scale-free (Barabási–Albert model) and
1,000 small-world (Watts–Strogatz model) network topologies with the same size and density.
Both random and small-world networks are characterized by a Poisson degree distribution and
short mean shortest path length, but random networks have a low clustering coe�cient, while
small-world networks have a high clustering coe�cient. Scale-free networks are character-
ized by a degree distribution that follows a power law. Real-world networks exhibit degree
distributions similar to power-law distributions, high clustering and short path lengths. As
such, real-world networks have features of both scale-free and small-world networks (New-
man, 2010).

In the simulation of expression noise evolution the regulatory interactions were immutable
and the values of the noise genotype vectors were allowed to mutate. Stabilizing selection, the
selection scenario in which individuals with extreme phenotypic values have a lower �tness,
was imposed on all constituent genes by setting the value of optimal expression level as the
mean equilibrium expression level of each gene. The �tness F (s) of a phenotype s was cal-
culated as in Laarits et al. (Laarits et al., 2016), where �tness is de�ned as the distance from
the optimal expression state vector {sopti }1≤i≤n, weighted by the �tness contribution given by
{�i}1≤i≤n:

F (s) = e−
n
∑
i=1

|sopti −si |/(n�i ) (2.3)

The �tness contribution parameters {�i}1≤i≤n de�ne the contribution of each gene to the
�tness of the phenotype, i.e. it is a scaling factor of the decrease of �tness as a function of
the distance of the expression level from the optimal expression level for each gene. In this
study, the strength of the imposed selective pressure is set to be identical for all constituent
genes (∀i �i = 1). The assumption of all genes having identical �tness contribution is biologi-
cally unrealistic, so we have also performed simulations in which we impose unequal �tness
contributions among genes in the same network. We found consistent conclusions (Appendix
A.5), and, for simplicity, we report the results with equal �tness contributions here. Since
the �tness contribution of all genes is identical, any di�erences in the evolutionary outcome
we observe after removing the e�ect of drift will be due to gene di�erences in their network
interactions. Individuals were reproduced into the next generation with a probability equal
to their relative phenotype �tness. The �tness of all phenotypes in populations evolved un-
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der non-selective conditions was set to an equal constant value, regardless of gene expression
levels. Mutations were introduced at a rate �� (�� = 0.01) per gene per replication event.
The values for noise genotype mutations were drawn from a normal distribution  (100, 40).
There is no experimental evidence for the shape of the distribution of the expression noise and
regulatory strength mutations. We chose a normal distribution because: 1) it de�nes equally
frequent bene�cial and deleterious mutations and 2) most mutations would have a small e�ect,
which re�ects the characteristic of many studied distributions of �tness e�ects in model organ-
isms. Recombination was implemented by choosing a random o�spring individual at a rate r
(r = 0.05) and introducing a random break point in the linear genome. The genotype values in
the genome segment de�ned by the break point were then exchanged with another randomly
chosen individual from the o�spring population. A constant population size N (N = 1, 000)
was maintained. To account for the e�ect of genetic drift, the noise evolution simulations
of each founding network population were replicated 10 times under selection and 10 times
under neutrality.

We found that the expression level of most genes in networks with random con�gura-
tions converge to either smin or smax under a deterministic realization. The measurement of
variance of genes that are either not expressed at all or expressed at the maximal level would
be impaired since their expression range is constrained by the lower and upper expression
level boundary. Since the study of expression variance is our main focus, we added a network
establishment step before the noise evolution simulations, in which we subject the network
regulatory matrix to mutation and selection for intermediate expression levels. During the
network establishment step networks are realized deterministically, i.e. the intrinsic noise
genotype of all genes is 0. Networks with intermediate steady state expression levels were
established through the evolutionary process by imposing a target expression level {sopti }1≤i≤n
({sopti }1≤i≤n = { smax2 , ..., smax2 }) for all genes and allowing the strength of regulatory interactions
to mutate. Mutations were introduced at a rate �w (�w = 0.1) in non-zero entries in the reg-
ulatory matrix, preserving the network topology structure (Erdős–Rényi, Barabási–Albert, or
Watts–Strogatz model). The values for regulatory strength mutations were drawn from a nor-
mal distribution  (0, 2). Recombination was not implemented at this stage. Fitness of each
individual was computed as the distance of the phenotype to the optimal expression state vec-
tor using Eq.1. Individuals were reproduced with a probability equal to the relative �tness and
the population size kept constant. Network regulatory con�gurations in which the expres-
sion level of all genes would not converge to a �xed point and would oscillate were discarded,
as in previous studies (Laarits et al., 2016). Oscillating gene expression level patterns create
population-level heterogeneity generated by the system oscillations and not by stochastic gene
expression. Since we are studying the evolution of gene-speci�c expression noise, expression
noise generated by oscillations would be a confounding factor in our analysis. We note, how-
ever, that oscillatory networks can be frequent in simulations (Pinho et al., 2012) and biological
systems (Zhang et al., 2014), and the role of expression noise in their behavior is an interest-
ing perspective for follow-up studies. Expression level dynamics were termed oscillating if the
sum of the di�erences between expression level in the last time step and previous � time steps
(� = 10) was higher than � (� = 10−6). A stable, i.e. non-oscillating, expression level dynamics
satis�ed the following criterion (Laarits et al., 2016):

Φ(S(t)) = 1
�

t
∑
�=t−�

D(S(�), S(t)) < � (2.4)

29



Chapter 2. Evolution of gene-speci�c expression noise under stabilizing selection

where D is the distance between two vectors D(S1, S2) =
n
∑
i=1

|S1i − S2i |/n.
The network establishment process consisting of rounds of mutation, selection and re-

production of a population of N (N = 1, 000) individuals was performed for T (T = 10, 000)
generations, for each network topology. At the end of the network establishment process, 68%
(54333/80000) of genes had intermediate expression levels (Appendix A.1.3). The reason why a
minority of the genes do not reach close to optimum expression levels could be potential net-
work con�guration constraints or a non-extensive optimization/�tting algorithm. Genes that
had an expression level of 0 or smax were �ltered out from the dataset used in the �nal analysis.
The network regulatory con�guration with the highest �tness was chosen from the evolved
population and this network con�guration was used to generate the starting population for
the noise evolution simulations.

The gene network model and evolutionary simulations were implemented in C++ and the
source code is available at https://gitlab.gwdg.de/molsysevol/supplementarydata_
expressionnoise/cpp.

2.3.3 Analysis of simulation results: expression noise and network
centrality measures

The evolutionary outcomes (i.e. the change of phenotypes and genotypes) were measured as
change of expression noise and selective pressure for each network, respectively. Expression
noise in the �rst and last generation in each evolved population was measured as the variance
of the population expression level states for each gene. The change of expression noise (phe-
notypic evolution) between the �rst and last generation was measured as the relative change
of expression noise, calculated as the di�erence of expression variance between the �rst and
last generation divided by their sum (� 2gen1 − � 2gen10k)/(� 2gen1 + � 2gen10k).

The selective pressure (genotypic evolution) acting on each gene was measured as the
average change of noise genotype in every second generation relative to the starting level
(Fig 2.1C). To compare the e�ect of node centrality on the selective pressure acting on con-
stituent genes, we computed node-level network centrality measures for each node in the
networks. We focused our analysis on two local network centrality measures, node instrength
and outstrength, but over 30 network centrality measures were analyzed (Appendix A.2). In-
strength of node i is measure of the strength and number of in-going links, i.e. how strongly
a gene is being regulated:

Instrength(i) =
n
∑
j
|wij |. (2.5)

Conversely, the outstrength of node j is a measure of the strength and number of outgoing
links, i.e. how strongly a gene regulates other genes downstream:

Outstrength(j) =
n
∑
i
|wij |. (2.6)

Further, we computed global graph-level metrics, such as mean graph distance and performed
a principal component analysis to reduce the dimensionality (Appendix A.2). The results were
analysed in R 3.6.3 (Team, 2021). Network analyses were performed using the igraph
1.2.4.2 Csardi and Nepusz (2006) and statnet 2019.6 (Hunter et al., 2008) packages.
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2.3. Materials and methods

Principal component analysis was performed using the ade4 1.7.15 (Dray and Dufour,
2007) package.

2.3.4 Analysis of simulation results: linear modeling

We �tted linear mixed-e�ects models using network centrality measures as �xed e�ect vari-
ables and the network topology sample as a random e�ect variable, allowing for control of
intra-network correlation in the response variable. We tested di�erent transformations of the
response and explanatory variables in order to improve linearity, and variance structures to
account for heteroskedasticity of the residuals. A model where the residual variance was an
exponential function of the node absolute instrength was shown to provide the best �t ac-
cording to the minimal Akaike’s Information criterion and was used for all subsequent mod-
els (Appendix A.3). Two types of models were �tted: a logistic regression where the response
variable was set to whether a gene answered to selection or not, and standard regressions that
used expression variance, relative change of expression variance or selective pressure as re-
sponse variables. Linear mixed-e�ect modelling was performed using the nlme 3.1.144
(Pinheiro et al., 2022) and lme4 1.1.27.1 (Bates et al., 2015) packages. Marginal and
conditional R2 values were computed using the MuMIn 1.43.17 (Bartoń, 2020) package.
Network centrality measures used as explanatory variables in our linear models were corre-
lated (Pearson’s r = −0.17, p-value < 2.2 × 10−16, Appendix A.2), so we computed the variance
in�ation factor (VIF) using the car 3.0.11 (Fox and Weisberg, 2019) package. The VIF of
all linear models was less than 3; therefore, colinearity was considered to have negligible im-
pact on the inferred statistical signi�cance (James et al., 2013). To improve homoskedasticity
of the residuals in the linear models, we also performed each model �t on two �ltered datasets:
one in which genes with zero values of instrength or outstrength were removed, and one in
which only genes with zero values of instrength or outstrength were kept. The same pattern
of e�ects and signi�cance is observed in the �ltered as in the main dataset, so we included the
results of the complete dataset in the main text and reported the results of the reduced dataset
in Appendix A.6.

Finally, since in some cases variable transformation, heterogeneous variance modeling and
data �ltering did not ensure normality and independence of the residuals, we assessed the
amount of resulting bias in the estimation of p-values using a randomization test, in which
we �tted a selected model on 10,000 permuted datasets. We chose the model of relative noise
change (Appendix A.3), as the corresponding residuals were signi�cantly departing normality
(Shapiro-Wilk test, p-value < 2.2 × 10−16) and independence (Box-Ljung test, p-value = 8.9 ×
10−7). For each permutation, we shu�ed the values of the response variable (relative change
of variance) within each network topology, which removes the e�ect of network metrics on
the change of noise, but preserves the distributions of each metric per network, as well as
putative colinearity between explanatory variables. Using � = 0.05 as a signi�cance cuto�
value, we found a false discovery rate (FDR) of 6.0% for the e�ect of instrength and and 6.7%
for the e�ect of outstrength. While these values are above the expected 5%, the FDR in�ation
was found to be relatively low and we concluded that the non-normality of residuals did not
a�ect our conclusions.
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2.3.5 Analysis of simulation results: information-based metrics

Generalized linear mixed-e�ects models make several assumptions that might be violated by
the data in some cases. Namely, they assume a normal distribution and homoskedasticity
of Pearson’s residuals, and a normal distribution of random e�ects. To further validate our
conclusions, we computed the mutual information (MI) between variables, which does not
have any prior assumptions. We calculated mutual information between the expression noise
and centrality metrics using the infotheo 1.2.0 (Meyer, 2014) package. Monte Carlo
permutation tests with 10,000 permutations were used to compute p-values for the signi�cance
of the mutual information between each pair of tested variables.

2.4 Results
We investigate how selection at the gene network level may lead to the evolution of di�erential
gene-speci�c expression noise, as observed in biological systems. To do so, we introduce a new
gene regulatory model with stochastic gene expression, which extends Wagner’s model (Wag-
ner, 1996) by adding node-speci�c intrinsic noise parameters (Fig 2.1A-B). In this framework,
the phenotype is represented by the expression level of each gene, and is the realization of a
random distribution determined by the genotype. The �tness of an individual is further deter-
mined by its distance to an optimal phenotype, therefore, stabilizing selection is implemented
as acting on the expression level. We used this model to simulate the evolution of populations
of gene regulatory networks with mutable levels of gene-speci�c expression noise under se-
lective and non-selective conditions (Fig 2.1C-D), and assessed how node properties a�ect the
evolution of intrinsic noise.

2.4.1 Expression noise propagates along the regulatory network

We �rst investigated how noise propagated in the model gene regulatory networks. It was
shown that noise is additive in biological networks and, therefore, propagates from regulators
to regulated genes (Pedraza, 2005; Blake et al., 2003). To assess whether our model successfully
captured this property, we generated a dataset of 2,000 realized random network topologies,
and tested whether gene expression variance increased with the number of ingoing regula-
tory links. As expected, we found that the absolute instrength of a gene had a signi�cant
positive e�ect on gene expression variance (linear mixed-e�ects model with coe�cient � =
0.28, p-value < 2.2 × 10−16) (Fig 2.2A), indicating that noise propagation was captured in our
model. Furthermore, the mutual information between gene expression variance and absolute
instrength was signi�cant (MI = 0.67, p-value ≤ 10−4, permutation test). High node instrength
increases expression noise, in line with the experimental evidence that the noisiness of pro-
moters increases with the number of regulatory inputs (Urchueguía et al., 2021).

We then looked at �tness costs associated with high expression noise in regulators and
regulated genes. In a dataset of 1,000 random network topologies, we assessed the mean �tness
of the clonal populations of 1,000 individuals under stabilizing selection on the expression
level. Each gene was imposed 5 di�erent levels of intrinsic noise, while the intrinsic noise
of the rest of the network was kept at 0. We found that increasing the level of expression
noise of a single gene decreased the mean �tness of the network (linear mixed-e�ects model
with coe�cient � = -0.002, p-value < 2.2 × 10−16), as expected. However, the strength of this
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Figure 2.2: Noise propagation is captured by the gene regulatory network model. A -
Gene-speci�c expression variance increases with the absolute instrength of the node, indicat-
ing noise propagation is re�ected in the gene regulatory network model. The lines indicate
the 25% (lower dashed line), 50% (solid line), and 75% (upper dashed line) �tted quantiles. B, C
- Gene-speci�c expression variance decreases �tness in gene networks under stabilizing selec-
tion on gene expression level. Increasing the level of gene-speci�c expression noise reduces
the mean �tness of the clonal population. The mean �tness of the population is signi�cantly,
but marginally, increased by noise in genes with higher node instrength (B), and signi�cantly
decreased by noise in genes with higher node outstrength (C). Lines represent the smoothed
conditional means and grey bands represent the 95% con�dence interval bands. Coe�cients,
p-values and partial marginal R2 measures are estimated using linear mixed-e�ects models
with expression variance or mean �tness as the response variable, instrength and outstrength
as �xed e�ect explanatory variables, and the network topology sample as the random e�ect
explanatory variable. Mutual information (MI) p-values were computed with a permutation
test with 10,000 permutations.

e�ect depended on the gene centrality. The reduction of �tness due to gene-speci�c expression
noise was signi�cantly, but marginally, a�ected by instrength (linear model with coe�cient �
= 0.004, p-value < 2.2 × 10−16, Fig 2.2B). The mutual information between mean �tness of the
population and absolute instrength was not signi�cant (MI = 0.22, p-value = 0.18, permutation
test). However, the mean �tness signi�cantly decreased with node outstrength (linear model
with coe�cient � = -0.19, p-value < 2.2 × 10−16, Fig 2.2C). The mutual information between
mean �tness of the population and absolute outstrength was signi�cant (MI = 0.43, p-value
≤ 10−4, permutation test). Higher �tness cost of expression noise in gene with high outstrength
suggests there is a di�erential selective pressure acting on genes based on their centrality in the
gene regulatory network, which we explore in the next section using an in silico evolutionary
experiment.

2.4.2 Gene expression noise is reduced under a stabilizing selection
regime

To investigate how gene-speci�c expression noise responds to stabilizing selection at the
network-level, we simulated the evolution of 2,000 random network topologies with and with-
out selection on the gene expression level. We observed that gene expression variance de-
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Figure 2.3: Gene-speci�c expression noise evolves in a model with selection. A - The
distribution of expression levels of an example gene throughout evolution in populations
evolved under stabilizing selection on gene expression level and under neutrality. The vari-
ance of gene expression level is reduced under selection, but not under neutrality. B - The
distribution of intrinsic noise parameters of an example gene throughout evolution in popu-
lations evolved under selection and under neutrality. The median intrinsic noise parameter
skews to lower values under stabilizing selection, but not under neutrality. C, D - Replicates
of the simulations with the same input network and parameters. Replicates have di�erent
dynamics, but reach similar outcomes in terms of expression variance (C) and median intrin-
sic noise parameter (D) in the evolved populations. The evolution of each network topology
sample was replicated 10 times under selection and 10 times under neutrality.

creased throughout evolution under selective conditions (Fig 2.3A), and the distribution of
intrinsic noise parameters in the population shifted towards lower noise genotype values
(Fig 2.3B), indicating that low-noise alleles conferred a �tness increase to the network. Con-
versely, gene expression variance remained constant throughout evolution under neutral con-
ditions, and the distribution of noise genotypes re�ected only the distribution of random muta-
tions. Replicating the simulations for each network topology sample yielded similar reduction
of gene expression variance (Fig 2.3C) and median noise parameter in the population (Fig 2.3D).
As the initial networks were at their optimal expression level, the mean expression level did
not change during evolution and was highly correlated between the �rst and last generations
(Pearson’s r = 0.99, p-value < 2.2 × 10−16, Appendix A.1.5), con�rming that selection acted
only on the gene expression variance. Population size had a positive e�ect on the selective
pressure acting on genes, as expected, selection being more e�cient in large populations (Ap-
pendix A.1.4). A population size of 1,000 individuals was chosen for the main simulations as
the optimal population size in the trade-o� between selecting mutations with small e�ects and
reducing computational speed.

Next, we investigated how individual nodes within a network respond to selection, based
on their centrality properties.

2.4.3 Evolutionary change in phenotypes: regulators reduce their ex-
pression noise to a higher degree

We �rst analysed the phenotype change, i.e. the relative change in gene-speci�c expression
variance after evolution. The variance of gene expression depends both on the intrinsic noise
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of the genes (that is, its genotype in our model) and the number and noise of the genes it is
connected with.

We �tted linear models to assess the impact of the absolute instrength and outstrength
measures on the relative change in expression variance for each node in each network. Un-
der selection, both absolute instrength and absolute outstrength had a signi�cant negative
e�ect (linear mixed-e�ects model with coe�cients �instrength = -0.003, p-value = 2.9 × 10−10,
Fig 2.4A; �outstrength = -0.046, p-value < 2.2 × 10−16, Fig 2.4B), meaning that genes with more
and stronger connections reduced their expression variance to a larger extent than less con-
nected genes. The e�ect was notably stronger for outstrength (marginal R2 = 0.15) than for
instrength (marginal R2 = 5.2×10−4). Similarly, the mutual information was signi�cant between
the relative change in gene expression variance under selection and absolute instrength (MI
= 0.09, p-value ≤ 10−4, permutation test) and absolute outstrength (MI = 0.14, p-value ≤ 10−4,
permutation test). Genes with high outstrength are strong regulators and their reduction of
expression variance to a larger extent indicates that high expression noise is more detrimental
in regulators than in regulated genes. Under neutrality, absolute instrength had a signi�cantly
positive e�ect (linear mixed-e�ects model with coe�cient � = 8.3 × 10−4, p-value < 2.2 × 10−16,
Fig 2.4C) and absolute outstrength did not have a signi�cant e�ect on the relative change in
gene expression variance (linear mixed-e�ects model with coe�cient � = 7.1 × 105, p-value =
0.26, Fig 2.4D). The mutual information was signi�cant between the relative change in gene
expression variance under neutrality and absolute instrength (MI = 0.03, p-value ≤ 10−4, per-
mutation test) and absolute outstrength (MI = 0.01, p-value ≤ 10−4, permutation test). These
e�ects are much smaller and of opposite direction than the ones measured in selective condi-
tions, indicating that genetic drift did not cause the e�ect of centrality measures on expression
variance observed in selected populations.
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Figure 2.4: Node-level network centrality measures a�ect the relative change of gene-
speci�c expression variance under network-level selection. For each gene, the relative
change of expression variance before and after evolution (Rel. Δ expr. variance) was averaged
over all replicates. A, B - Absolute instrength (A) and absolute outstrength (B) have a signi�-
cant negative e�ect on the relative change in gene expression variance in populations evolved
under selection. A lower value of relative change of expression variance indicates a bigger re-
duction in expression variance between the �rst and last generation and a stronger response
to selection. The lines indicate the 25% (lower dashed line), 50% (solid line), and 75% (upper
dashed line) �tted quantiles. C, D - Absolute instrength (C) and absolute outstrength (D) have
a signi�cant, but negligible, negative e�ect on the relative change in gene expression variance
in the populations evolved under neutrality. The dataset consists of 74,443 genes from 2,000
populations with unique 40-gene random network topology samples, which were indepen-
dently evolved 10 times under selection and 10 times under neutrality. Coe�cients, p-values
and partial marginal R2 measures were estimated using linear mixed-e�ects models with rel-
ative change of gene-speci�c variance as the response variable, instrength and outstrength
as �xed e�ect explanatory variables, and the network topology sample as the random e�ect
explanatory variable. Mutual information (MI) p-values were computed using 10,000 permu-
tations.
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2.4.4 Evolutionary change in genotypes: regulators aremore likely to
respond – and display a stronger response – to selection

To investigate di�erential selective pressure acting on gene-speci�c expression noise, we anal-
ysed the change of intrinsic noise parameters in populations of gene regulatory networks
evolved with or without stabilizing selection on the expression level. We measured the se-
lective pressure acting on individual genes as the average reduction in the intrinsic noise pa-
rameter relative to the beginning of the evolutionary simulation (see Methods). The selective
pressure on genes was found to be close to 0 in neutrally evolving populations, as expected
(Fig 2.5B). In the presence of selection, however, the distribution of selective pressures was
found to be bimodal (Fig 2.5A). Therefore, we binned genes in two categories according to
whether they responded to selection (selective pressure > 0.5) or not (selective pressure ≤ 0.5).
We then separately analysed the probability to respond to selection and the strength of the
response.

Absolute instrength had a signi�cant and strongly negative e�ect (logistic regression with
coe�cient � = -1.87, p-value < 2.2 × 10−16, Fig 2.5C) on the probability of a gene to respond
to selection, that is, genes with more and stronger incoming links are less likely to respond
to selection. Absolute outstrength also had a signi�cant e�ect on the probability of a gene to
respond to selection (logistic regression with coe�cient � = -0.08, p-value = 6.7×10−7, Fig 2.5D).
However, this e�ect was small and was lost when the interaction terms between instrength
and outstrength were included in the model (SI).

For a qualitative analysis of the e�ect of network centrality on the selective pressure acting
on individual genes, we �tted linear-mixed e�ects models on the set of genes that responded
to selection, with selective pressure as the response variable. In the genes that responded to
selection from the selected populations, absolute instrength had a signi�cant negative e�ect
(linear mixed-e�ects model with coe�cient � = -0.04, p-value < 2.2 × 10−16, Fig 2.5E). Con-
versely, absolute outstrength had a signi�cant positive e�ect (linear mixed-e�ects model with
coe�cient � = 0.03, p-value < 2.2 × 10−16, Fig 2.5F) on the selective pressure. In the selected
populations, the mutual information was signi�cant between the selective pressure and abso-
lute instrength (MI = 0.19, p-value ≤ 10−4, permutation test) and absolute outstrength (MI =
0.31, p-value ≤ 10−4, permutation test). In the neutral populations, neither absolute instrength
nor absolute outstrength had a signi�cant e�ect (linear mixed-e�ects model with coe�cient
�instrength = 2.4 × 10−8, p-value = 0.99, Fig 2.5G; �outstrength = −1.2 × 10−5, p-value = 0.49, Fig 2.5H)
on the selective pressure. Similarly, the mutual information was not signi�cant between the
selective pressure and absolute instrength (MI = 0.005, p-value = 0.34, permutation test), nor
absolute outstrength (MI = 0.005, p-value = 0.45, permutation test).

The increased selective pressure in genes with high outstrength (strong regulators) can be
explained by noise propagation to downstream elements. Namely, expression noise in regula-
tors propagates to the genes they regulate, increasing the overall expression noise in the gene
regulatory network. If gene expression levels in the network are under stabilizing selection,
expression noise is deleterious. Therefore, regulator genes experience a comparatively higher
selective pressure to reduce expression noise than regulated genes. In a genome-wide expres-
sion noise screen in Drosophila melanogaster, transcription factors were found to have lower
expression variation (Sigalova et al., 2020). Suppression of expression noise can be attained
through negative autoregulation (Becskei and Serrano, 2000; Dublanche et al., 2006; Grönlund
et al., 2013), whereby a regulator acts as its own repressor. Incidentally, 40% of transcription
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factors in E. coli (Rosenfeld et al., 2002) and many eukaryotic transcription factors (Alon, 2007)
have negative autoregulation, indicating a wide-spread control of expression noise in natural
regulatory networks.

In contrast to regulator genes, we found that regulated genes, i.e. genes with high node
instrength, are less likely to respond to selection and the selective pressure decreases with
node instrength. Since the expression noise of genes is a sum of their intrinsic noise and noise
propagated from upstream elements, the contribution of intrinsic noise to the total noise of
the gene will be comparatively smaller in strongly regulated genes. The network can thus
respond to selection either by reducing the intrinsic noise of the focal gene, or by reducing
the intrinsic noise of any of the upstream elements, which would reduce propagated noise. As
a result, there is a relaxation of selective pressure in regulated genes, which is distributed on
upstream genes. On the other hand, the same mechanism increases the selective pressure on
upstream genes, i.e. regulators.

To check the robustness of our results, we performed the node-level network centrality
analysis on two additional datasets with di�erent topology structures: scale-free (BarabásiAl-
bert) and small-world (Watts–Strogatz) topology models. We �nd consistent e�ects (direction
and signi�cance) of local network centrality metrics on the selective pressure acting on gene-
speci�c noise across topology models, showing that our �ndings are robust to the topology
model used (Appendix A.4). However, the e�ect size of network centrality metrics di�ered be-
tween the topology models, pointing at an e�ect of the topology model on noise propagation
and the evolution of gene-speci�c expression noise, which we investigate in the next section.
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Figure 2.5: Di�erential selective pressure is acting on genes based on their centrality.
A, B - Distributions of the measured selective pressure in selected (A) and neutral (B) popula-
tions. Genes with a selective pressure above 0.5 were categorized as responsive to selection.
C, D - High instrength genes are less likely to respond to selection. Absolute instrength (C)
has a strong signi�cant negative e�ect on the probability of selection response. Absolute out-
strength (D) has a weak signi�cant negative e�ect on the probability of selection response. E, F
- In the subset of genes that responded to selection, high instrength (E) decreases the selective
pressure, while high outstrength (F) increases the selective pressure acting on individual genes.
The lines indicate the 25% (lower dashed line), 50% (solid line), and 75% (upper dashed line)
�tted quantiles. G, H - Absolute instrength (G) and outstrength (H) have no signi�cant e�ect
on the selective pressure in the non-selected populations. The dataset consists of 74,443 genes
from 2,000 populations with unique 40-gene random network topology samples, which were
independently evolved 10 times under selection and 10 times under neutrality. The selective
pressure on each gene is calculated as the average normalized reduction of the intrinsic noise
parameter during the evolutionary simulation and summarized as the mean over all replicates
in each scenario. Coe�cients, p-values and partial marginal R2 measures are estimated using
logistic regression and linear mixed-e�ects models with selection responsiveness or selective
pressure as the response variable, instrength and outstrength as �xed e�ect explanatory vari-
ables, and the network topology sample as the random e�ect explanatory variable. Mutual
information (MI) p-values were using 10,000 permutations.
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2.4.5 Global network properties a�ect the evolvability of expression
noise and selective pressure on constituent genes

Lastly, we analysed how topological structures and graph-level network properties a�ect the
expression noise response of constituent genes to selection on a joint dataset of random (Erdős-
Rényi), scale-free (Barabási–Albert) and small-world (Watts–Strogatz) network topologies.
Jointly analysing genes from all three topology types with linear models, we observed sta-
tistically signi�cant interactions between instrength and outstrength and network topology
types on both the probability to respond to selection and the selective pressure acting on
gene-speci�c expression noise (Table 2.1). We found that genes in scale-free networks have
a signi�cantly higher probability of responding to selection than genes in random networks.
These results are in agreement with previous studies reporting a higher evolvability of scale-
free networks (Oikonomou and Cluzel, 2006; Greenbury et al., 2010). Conversely, genes in
small-world networks have a signi�cantly lower probability of responding to selection than
genes in random networks. Furthermore, there are signi�cant e�ects of interactions between
instrength and outstrength with the topology type on the selective pressure on constituent
genes.

To investigate which global topological features of the three network models a�ect expres-
sion noise evolution, we performed a principal component analysis (PCA) on 12 graph-level
measures. The �rst two dimensions of the PCA expressed 85.4% of the total dataset inertia
(Appendix A.2), so we used the �rst two principal components (PCs) as synthetic explanatory
variables in linear mixed-e�ects models. The loading of the �rst synthetic variable (PC1) is
dominated by negative loadings of diameter and mean path distance, and the centralization
measures, namely positive loadings of outdegree and closeness centralization and negative
loadings of indegree and betweenness centralization. The diameter of a network is de�ned as
the longest shortest path between any two nodes. Centralization is a measure of the extent to
which a network is centered around a single node and can be computed from di�erent central-
ity metrics. The loading of the second synthetic variable (PC2) is dominated by the negative
loading of the average degree, average indegree and average outdegree measures (Appendix
A.2). For a more intuitive interpretation, the signs of both PCs have been switched in the
statistical analysis. Therefore, PC1 shown in the results is dominated by positive loadings of
diameter, mean path distance, indegree centralization and negative loadings of outdegree cen-
tralization, and PC2 is dominated by positive loadings of average degree. We refer to PC1 and
PC2 as synthetic network diameter and centralization and synthetic average degree, respec-
tively.

The average expression variance per network is signi�cantly negatively a�ected by syn-
thetic network diameter and centralization (linear model with synthetic network diameter and
centralization coe�cient � = -6.19, p-value < 2.2×10−16) and signi�cantly positively a�ected by
the synthetic average degree (linear model with synthetic average degree coe�cient � = 13.26,
p-value < 2.2×10−16). The mutual information was signi�cant between the average expression
variance per network and synthetic network diameter and centralization (MI = 0.21, p-value
≤ 10−4, permutation test) and synthetic average degree (MI = 0.21, p-value ≤ 10−4, permuta-
tion test). This �nding means that global network properties a�ect the ampli�cation of noise
through noise propagation between the genes. Speci�cally, networks with a lower diameter,
mean path distance, indegree centralization, and higher outdegree centralization and average
degree, had higher average gene expression variance. In the selected populations, the average
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Figure 2.6: Global network properties a�ect the average selective pressure acting on
gene expression noise under stabilizing selection on gene expression level. A, B -
Principal component variables consisting of the diameter and network centralization (A) and
average degree (B) have a signi�cant negative e�ect on the average selective pressure per
network. The two synthetic variables were constructed by performing a principal component
analysis on 12 graph-level network metrics. The lines indicate the 25% (lower dashed line), 50%
(solid line), and 75% (upper dashed line) �tted quantiles. The dataset consisted of 3,000 pop-
ulations with unique 40-gene random, scale-free and small-world network topology samples,
which were independently evolved 10 times under selection and 10 times under neutrality. The
selective pressure on each gene is calculated as the average normalized reduction of the in-
trinsic noise parameter during the evolutionary simulation and summarized over all replicates
in each scenario. Coe�cients and p-values are estimated using a linear model with average
selective pressure as the response variable, and PC1 and PC2 as explanatory variables. Mutual
information (MI) p-values were computed with permutation test with 10,000 permutations.

selective pressure per network was signi�cantly negatively a�ected by both synthetic network
diameter and centralization and the synthetic average degree (linear model with synthetic net-
work diameter and centralization coe�cient � = -0.003, p-value = 4.9×10−11, Fig 2.6A; synthetic
average degree coe�cient � = -0.009, p-value < 2.2 × 10−16, Fig 2.6B). The mutual information
was signi�cant between the average selective pressure per network and synthetic network
diameter and centralization (MI = 0.27, p-value ≤ 10−4, permutation test) and synthetic aver-
age degree (MI = 0.26, p-value ≤ 10−4, permutation test). This result shows that the average
selective pressure acting on gene-speci�c expression noise in networks decreases with an in-
crease of network diameter, mean path distance, indegree centralization and average degree
per network. Conversely, the average selective pressure increases with an increase of outde-
gree centralization (Fig 2.6A-B). In the populations evolved under neutrality, neither synthetic
network diameter and centralization, nor synthetic average degree, had a signi�cant e�ect on
the average selective pressure per network (linear model with synthetic network diameter and
centralization coe�cient � = −2.8 × 10−7, p-value = 0.95; synthetic average degree coe�cient
� = −1 × 10−7, p-value = 0.99, Fig 2.6C-D). Similarly, the mutual information was insigni�cant
between the average selective pressure per network and synthetic network diameter and cen-
tralization (MI = 0.15, p-value = 0.72, permutation test) and synthetic average degree (MI =
0.15, p-value = 0.59, permutation test).

41



Chapter 2. Evolution of gene-speci�c expression noise under stabilizing selection

Table 2.1: Network topology type a�ects the probability of responding to selection
and selective pressure on gene-speci�c expression noise under stabilizing selection
on gene expression level.
Response Explanatory variable Beta SE p-value1

Probability of
responding to selection

Instrength -1.9270 0.0284 < 2.2 × 10−16 ****
Outstrength -0.0829 0.0226 < 2.6 × 10−4 ***
Scale-free (BA) topology2 0.9209 0.1075 < 2.2 × 10−16 ****
Small-world (WS) topology3 -0.2684 0.0945 0.0045 **
Instrength:BA4 0.0120 0.0516 0.8159 n.s.
Instrength:WS 0.0006 0.0401 0.9873 n.s.
Outstrength:BA -0.2947 0.0252 < 2.2 × 10−16 ****
Outstrength:WS -0.0728 0.0333 0.0287 *

Gene-speci�c selective
pressure

Instrength -0.0377 0.0004 < 2.2 × 10−16 ****
Outstrength 0.0347 0.0003 < 2.2 × 10−16 ****
Scale-free (BA) topology 0.0019 0.0012 0.1404 n.s.
Small-world (WS) topology 0.0222 0.0013 < 2.2 × 10−16 ****
Instrength:BA 0.0143 0.0007 < 2.2 × 10−16 ****
Instrength:WS -0.0055 0.0006 < 2.2 × 10−16 ****
Outstrength:BA -0.0151 0.0003 < 2.2 × 10−16 ****
Outstrength:WS -0.0075 0.0005 < 2.2 × 10−16 ****

1 Coe�cients and their signi�cance were computed using linear mixed-e�ects models (see
Methods). The dataset consisted of 3,000 populations with unique 40-gene random, scale-free
and small-world network topology samples, which were independently evolved 10 times
under selection and 10 times under neutrality. The selective pressure on each gene was
calculated as the average normalized reduction of the intrinsic noise parameter during the
evolutionary simulation and summarized as the mean over all replicates in each scenario.
Genes were termed responsive to selection if their selective pressure was above 0.5. Asterisks
indicate statistical signi�cance: n.s. - p-value > 0.05; * - p-value ≤ 0.05; ** - p-value ≤ 0.01; ***
- p-value ≤ 0.001; **** - p-value ≤ 0.0001.
2 Barabási–Albert network model.
3 Watts–Strogatz network model.
4 Colons (‘:’) indicate variable interactions.
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2.5 Discussion

In this work, we aimed at understanding how natural selection shaped the distribution of ex-
pression noise levels between genes in the genome. We hypothesized that selection for low
noise at the network level translates into di�erential selective pressures at the gene level. To
test this hypothesis, we developed a new gene regulatory network evolution model that in-
corporates stochastic gene expression, where the gene expression mean and variance are both
heritable and, therefore, potentially subject to natural selection. We simulated the evolution
of gene-speci�c expression noise in populations of model gene regulatory networks under
selective and non-selective conditions. In agreement with our hypothesis, we observed that
individual genes respond di�erently to the global selective pressure and that this response de-
pends on the local and global network properties. In particular, we found that genes of high
centrality exhibit a stronger selective pressure to reduce gene-speci�c expression noise under
stabilizing selection on the expression level and that the genetic network structure a�ects the
propagation and evolvability of gene-speci�c expression noise. In the following, we further
discuss the implications of di�erential selective pressure acting on constituent genes in gene
networks.

2.5.1 Mechanisms of intrinsic noise reduction

In this study we abstracted and summarized the many determinants of intrinsic expression
noise into a single parameter, which can be viewed as a modi�er locus that can directly change
the intrinsic noise of a given gene. This simpli�cation permitted us to investigate the evolu-
tion of expression noise in gene networks with computationally feasible evolutionary simu-
lations. In reality, multiple factors that a�ect gene expression variance in biological systems
have been reported. These include epigenetic factors, such as chromatic dynamics (Sun and
Zhang, 2019) and presence of chromatin remodelling complexes (Newman et al., 2006). Other
factors a�ect transcription directly and can, therefore, control expression noise: the promoter
shape (Sigalova et al., 2020), presence of a TATA box (Newman et al., 2006), presence and num-
ber (Sharon et al., 2014) of TF binding sites, TF binding dynamics (Azpeitia and Wagner, 2020),
presence of TF decoy binding sites (Dey et al., 2020), and transcription rate. Factors a�ect-
ing translation have also been shown to play a role in controlling noise: miRNA targetting
(Schmiedel et al., 2015), mRNA lifetime, translation rate, and post-translational modi�cations
such as the protein degradation rate. Compartmentalization of proteins by phase separation
has also been shown to reduce noise (Klosin et al., 2020). Lastly, gene expression costs can also
a�ect the gene expression level distributions, and thereby expression level noise (Charlebois,
2015). We have demonstrated the existence of a general selective pressure acting on gene ex-
pression noise. Biological organisms may di�er in the mechanisms used to respond to this
selective pressure, calling for further, data-driven, investigations.

2.5.2 Global network structure impacts noise propagation and evolu-
tion

By simulating thousands of networks with distinct structures, we were further able to assess
the impact of global network characteristics on gene-speci�c selective pressure. Given that
there is a trade-o� between the �tness advantage of reducing gene-speci�c expression noise
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at the gene level and its mechanistic cost (for instance, in terms of mRNA processing (Hausser
et al., 2019)), evolving the global network structure may o�er an alternative way to reduce
network-level noise. Several motifs recurrently found in regulatory networks have an im-
pact on expression noise, such as negative (Becskei and Serrano, 2000; Dublanche et al., 2006;
Grönlund et al., 2013) and positive autoregulation (Alon, 2007), feed-forward loops (Alon, 2007;
Charlebois et al., 2014; Camellato et al., 2019) and interlinked feed-forward loops (Chepyala
et al., 2016).

It is important, however, to distinguish two aspects when considering the e�ect of the
network structure on the expression dynamics of constituent genes: the network structure,
i.e. the topology of the graph, and the strength of each of the regulatory interactions, both
of which impact expression noise. The same network topology, but with di�erent regulatory
interactions strengths, can give rise to markedly di�erent network behaviours. In the gap gene
system, for example, it was shown that multiple subcircuits share the same regulatory struc-
ture, but yield di�erent expression patterns because of their di�erences in active components
and strength of regulatory interactions (Verd et al., 2019). It results that network models of
gene expression noise must incorporate both graph topology and interaction strength between
all constituent genes. The Wagner model constitutes a simple framework that ful�lls these two
conditions. However, it has its limitations. Namely, it is not �ne-grained enough to capture
the complex dynamics of real regulatory networks. Models that incorporate higher molecular
detail, such as large systems of di�erential equations, are necessary to precisely capture in �ne
detail the expression dynamics of a real biological network, but they come with a cost in terms
of high computation time (preventing their use in evolutionary simulations), low tractability
and, often, the inability to model noise.

2.5.3 Implications of selection on expression noise on the evolution
of genomes and gene regulatory networks

One mechanism by which networks and genomes evolve is gene duplication. Gene duplica-
tions are a major source of new genes and thought to be a primary source of evolutionary
novelties. It has been long proposed that new functionality arises from duplicated genes by
allowing the other gene copy to acquire new functions (neofunctionalization) or improve exist-
ing functions (subfunctionalization) by relaxing the selective pressure acting on a single gene
through an additional redundant copy (Ohno, 1970). However, most of the time the redundant
copy is lost before new functionality can arise (Lynch and Conery, 2000), either by genetic
drift alone or because having the extra copy is deleterious. The redundant copy has a chance
to evolve a new function or improve an existing one while it is evolving neutrally or reaches
�xation in the population, or alternatively, if there is some �tness bene�t of the additional copy
that increases its frequency in the population. Some bene�ts of having additional gene copies
have been shown, such as increased expression level for genes whose pre-duplication expres-
sion level was far from the optimum (Riehle et al., 2001). Moreover, duplicating a gene reduces
its expression noise (Rodrigo and Fares, 2018; Chapal et al., 2019), averaging the stochastic
events over the two gene copies. The reduction of expression noise may, therefore, constitute
another bene�t of a gene duplication, increasing its chance of �xation in the population. As
the gene number increases in bacterial genomes, the number of regulatory genes increases
4-fold (Molina and van Nimwegen, 2008), indicating a gene duplication is more likely to stay
if the gene is a regulatory gene. We hypothesize that selection on expression noise, particu-
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larly on regulatory genes, could, therefore, be one of the forces driving the maintenance of
duplicated genes.

2.5.4 Applications of themodel framework to study complex systems
In this study, we developed a new regulatory and evolutionary model to study expression noise
in gene regulatory networks. The model represents key features of evolving gene regulatory
networks, namely the non-independence of gene expression levels and �tness determined by
the expression level of many or all genes in the network. Our results revealed that di�erential
selective pressure acts on intrinsic expression noise of constituent genes and that network-
level topological properties a�ect noise propagation within the network.

Although our study focused on gene regulatory networks, our conclusions potentially ap-
ply to a broader range of systems. In particular, we posit that any system that ful�lls two
essential properties will exhibit a similar behavior: (i) the amount of product of each system
component (here called “expression level”) is not independent and (ii) the performance (here
termed “�tness”) is determined by the product level of one or several of the components of the
system. There are many other complex systems that ful�ll these criteria, such as biological
metabolic networks, ecological food webs, neural networks, economies, transportation and
other infrastructure networks, and social networks. We expect that the same constraints act
on noise in elements of these systems, and that some of the conclusions from gene regulatory
networks could be carefully applied to other complex systems.

2.6 Conclusion
Our results show that selection for low expression noise acting on a system (the gene net-
work) resulted in di�erential selective pressures on its individual components (the genes). We
demonstrated that the position of the gene in the network and the global network structure
act as important drivers of the evolution of intrinsic expression noise. Investigating how gene
networks evolve to cope with expression noise will reveal mechanisms of how complex bi-
ological systems adapt to function with an inevitable molecular noise in their components.
A better comprehension of these mechanisms is a prerequisite to understand the evolution
of complexity in biological systems, from the �rst self-replicating RNA systems to modern
eukaryotic cells expressing tens of thousands of genes.
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Chapter 3

The evolution of gene expression level
and noise in changing environments

“A simple change of scenery can bring about powerful shifts in the �ow of time and
emotions.”

– Haruki Murakami, South of the Border, West of the Sun (1992)

3.1 Abstract
The variability of gene expression levels, also known as gene expression noise, is an evolvable
phenotypic trait subject to selection. Gene expression noise is detrimental under stabilizing
selection on gene expression level. On the other hand, in changing environments, where genes
are subject to directional or �uctuating selection, expression noise may be bene�cial. How-
ever, expression noise propagates along the gene network, making the evolution of connected
genes interdependent. Here, we explore how their position in the gene network constrains the
evolution of genes under selection using an in silico evolution experiment. We simulate the
evolution of populations of model gene regulatory networks under directional and �uctuating
selection on the gene expression level while allowing the basal expression level and expression
noise level to mutate. We �nd that target genes, regulated by other genes, were more likely to
respond to directional selection by changing the mean expression level than regulator genes.
Moreover, the intrinsic expression noise of genes under directional selection transiently in-
creased, showing that expression noise may play a role in the adaptation process towards a
new mean expression optimum. Similarly, target genes under �uctuating selection were more
likely to increase their gene-speci�c expression noise than regulator genes. These �ndings
suggest that both the mean and variance of gene expression levels respond to selection due to
changing environments – and do so in a network-dependent manner.
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3.2 Introduction

Gene expression levels directly a�ect the viability and �tness of the organism. An important
component of the gene expression pro�le, in addition to the mean gene expression level, is
the variability of this level around the mean, i.e. gene expression noise. Gene expression noise
is the inevitable variability of gene expression levels due to the stochasticity of the process of
gene expression itself. It has been shown to be an evolvable trait independent of expression
mean. For example, stabilizing selection on gene expression level reduces gene expression
noise (Lehner, 2008). However, the response of expression noise to other selection scenarios,
such as directional and �uctuating selection, has not yet been su�ciently explored.

Expression noise has been suggested to be bene�cial during the adaptation of the mean ex-
pression level to a new expression level optimum in genes under directional selection (Duveau
et al., 2018). Increasing expression noise as a bet-hedging strategy of adapting to �uctuating
environments was experimentally demonstrated in previous studies. Expression noise can
create phenotypic heterogeneity in clonal population and improve its survivability in chang-
ing environments. For instance, the increased cell-to-cell variability of a signal transduction
system in E. coli permits growth in case of rapid oxygen availability �uctuations (Carey et al.,
2018). It was shown that expression noise of the transcription factor comK drives cell fate de-
termination in Bacillus subtilis and enables competency in a proportion of the cell population
(Maamar et al., 2007), and increasing the noise increases the response range of the compe-
tency circuit (Mugler et al., 2016). Furthermore, several observed properties of gene regulatory
networks have been attributed to �uctuating selection in gene networks (Tsuda and Kawata,
2010).

The response of expression noise to di�erent selection scenarios has been studied in sin-
gular genes, but not in context of genetic networks. Since expression noise has been demon-
strated to propagate in gene networks (Pedraza, 2005), it is important to take into account the
network background of a gene under selection when investigating the evolution of expression
noise. Changing the expression noise of a gene changes the expression noise of downstream
elements, because expression noise propagates between genes in the network. It has been ar-
gued that most genes are under stabilizing selection on expression level and, consequently, it
can be assumed that low expression noise will be maintained. Increasing expression noise in
some part of the network as a response to �uctuating or directional selection would increase
noise in neighbouring parts of the network, which might con�ict with stabilizing selection
acting on other genes and decrease the e�ciency of selection. Therefore, the adaptation to
directional or �uctuating selection on gene expression level of individual genes might be con-
strained by their position in the gene network.

In this study, we used a computational gene regulatory network model to simulate the evo-
lution of populations of model gene regulatory networks in two di�erent selection scenarios,
directional and �uctuating selection acting on gene expression levels, in order to investigate
the adaptability constraints imposed on individual genes by their gene network background.
We �nd that regulator genes are less likely to adapt to directional selection that non-regulator
genes, because the change to their mean expression level changes the mean expression level
of downstream genes. Regulators are also less likely to adapt to �uctuating selection by in-
creasing their expression noise as part of a bet-hedging strategy.

48



3.3. Material and Methods

3.3 Material and Methods

To study the evolution of gene expression noise and mean expression level in gene regulatory
networks in changing environments, we simulated the evolution of populations of model gene
regulatory networks under directional and �uctuating selection.

3.3.1 Gene regulatory networkmodel with evolvable gene expression
mean and noise level

The noisy gene regulatory network model introduced in Chapter 1 is modi�ed and summa-
rized here. An individual is represented by a genotype, which is realized into the phenotype
through a set of di�erence equations. The genotype consists of the regulatory network ma-
trix W = (wij)1≤i≤n, 1≤j≤n, intrinsic noise vector {�inti }1≤i≤n, and the basal expression level vector
{sbasali }1≤i≤n. The regulatory network matrix W determines the presence, strength and sign of
the regulatory interactions between each pair of genes. The sign of the elements of the reg-
ulatory network matrix wij determines whether the interaction is activation or repression of
downstream expression level, and the value determines the strength of the interaction. The
intrinsic noise vector {�inti }1≤i≤n determines the intrinsic expression variance of each gene in
the network. The basal expression level vector {sbasali }1≤i≤n determines the constitutive expres-
sion level of each gene, which is present regardless of the input from regulatory genes. The
genotype is realized by updating the expression level of each gene in every time step using
the following rule:

si(t + 1) ∼ (sbasali + ai(t), �inti ) . (3.1)

The expression level of each gene in each time step is drawn from a normal distribution,
which has a mean of the sum of the activation rate in the previous time step and the basal
expression level, and a variance of the intrinsic noise genotype. The activation rate is de�ned
as the sum of the e�ects of all regulators:

ai(t) =
n
∑
j=1

wij ⋅ sj(t), (3.2)

The expression levels of each gene are synchronously updated in every time step t for
Tr (Tr = 50) timesteps. The expression level vector at the �nal time step t50 is taken as the
phenotype of each genotype.

3.3.2 Forward-in-time simulation of expression mean and noise evo-
lution

Populations of model gene regulatory networks were evolved for 10,000 generations using an
evolutionary algorithm consisting of repeated cycles of phenotype realization, reproduction,
mutation and recombination. Firstly, all individuals in the population had their genotype re-
alized into a phenotype. Next, �tness of each individual was calculated as a function of the
distance of gene expression levels from an optimal gene expression level vector, weighted by
�tness contribution given by �:
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Figure 3.1: The evolution of gene-speci�c expression noise was simulated using pop-
ulations of model gene regulatory networks with mutable levels of gene-speci�c ex-
pression noise under selective and non-selective conditions. A - Gene regulatory net-
work model. The genotype consists of the intrinsic noise vector �int , basal expression level
vector sbasal and regulatory matrix W . The intrinsic noise vector de�nes the gene-speci�c ex-
pression variance of each gene in the network. The basal expression level vector determines
the constitutive expression level of each gene, which is present regardless of the input from
regulatory genes. The regulatory matrix de�nes the regulatory interactions in the network.
The genotype is realized into the phenotype using the dynamical equation described in the
main text. The phenotype is given by the state vector S, which represents the expression level
of each gene in the network. B - Steps of the evolutionary simulation process. Each estab-
lished network con�guration was used as a founding network for the network populations
used in the noise evolution simulation. In every generation, genotypes are realized and phe-
notypes (expression levels) are sampled from the last time step. Fitness is calculated from the
expression levels. If the populations are evolved under selection, �tness is calculated as the
distance of the expression level of each gene from the optimal expression level. Genotypes
are reproduced based on their relative �tness and mutations in the intrinsic noise vectors are
introduced. Noise genotype vectors are recombined by randomly choosing individuals for re-
combination and shu�ing their noise vectors. The process is repeated for 10,000 generations.
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F (s) = e−
n
∑
i=1

|sopti −si |/(n�i ). (3.3)

The �tness contribution � de�nes the magnitude of the �tness cost resulting from the de-
viance from the optimum expression level and was set to 1 for all genes, de�ning an equally
strong selective pressure on all genes. Individuals were reproduced into the next generation
by taking the �tness value as the probability of reproducing in this generation and drawing
the genotypes with replacement until the population size is reached. A constant population
size was maintained. Mutations were introduced in the intrinsic noise vector and the basal
expression level vectors with a probability of �� (�� = 0.005) and �sb (�sb = 0.005) per gene, re-
spectively. The mutation values for intrinsic noise mutations were drawn from an uniform dis-
tribution  (0, 200) and the mutation values for basal expression level mutations were drawn
from an uniform distribution  (0, 100). Recombination was implemented by drawing a re-
combining individual with a probability r = 0.05, randomly drawing two genome breakpoints,
and exchanging the recombinant fragments with another randomly drawn individual in the
population. The network topology was immutable.

3.3.3 Pipeline

We generated 2,000 unique 40-gene network topology samples using the igraph package (Csardi
and Nepusz, 2006) in R. Each network topology sample was used to simulate the evolution of
one population of networks. The regulatory interaction values that yield random gene ex-
pression levels were established in the network establishment process, as described in section
2.3.2. To have a neutral starting point before applying directional or �uctuating selection for
the main experiment, stabilizing selection was applied on all genes in each network popula-
tion for 5,000 generations, until mutation-selection-drift balance was reached (burn-in phase).
During this phase, the intrinsic noise and basal expression levels were allowed to mutate. The
burn-in phase ensured that all 40 genes in each network had already been evolving under sta-
bilizing selection for long enough that mutation-selection-drift balance had been reached, and
any selection response observed after an environmental shift would be due to directional or
�uctuating instead of stabilizing selection. The heterogeneous population of genotypes at the
end of the burn-in phase was the starting point for the main simulation, the expression noise
and mean evolution under an environmental shift. One gene in each network was randomly
chosen to undergo an environmental shift, in which its optimum expression level sopti was
increased or decreased by 20% of smax relative to its previous value. The remaining 39 genes
remained under stabilizing selection, with their respective optimum expression level values
unchanged. Three selective scenarios were simulated: positive and negative directional selec-
tion, in which the optimum expression level was increased or decreased by by 20% of smax ,
respectively, and one �uctuating selection, in which optimum expression level was oscillat-
ing between an increase and a decrease of 20% of smax every other generation. The intrinsic
noise and basal expression levels were mutable, and the network topology was immutable.
The populations were evolved for 10,000 generations.

To distinguish the e�ect the network topology had on the evolvability of gene expression
in changing environments, we also simulated the evolution of single, isolated genes under di-
rectional and �uctuating selection. A dataset of 1,000 genes with a random basal expression
level value drawn from  (20, 80) was used to generate populations of 1,000 individuals and
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their evolution was simulated using the previously described pipeline. Each population was
evolved for 5,000 generations under stabilizing selection, after which directional or �uctuating
selection was applied, or stabilizing selection maintained, for an additional 30,000 generations.
Directional selection was applied by setting the optimum expression level to its basal expres-
sion level value sbasal + 20%smax , and �uctuating selection was applied by setting the optimum
expression level to alternate between basal expression level sbasal +20%smax and sbasal −20%smax
every other generation. To distinguish the response of the mean expression level and intrinsic
noise, and their co-evolutionary dynamics, three scenarios were simulated: 1) with immutable
basal expression level and mutable intrinsic noise; 2) with both basal expression level and
intrinsic noise mutable; 3) with mutable basal expression level and immutable intrinsic noise.

The gene regulatory network model and evolutionary framework was implemented in
C++ and the simulations results analysed in R 3.6.3 (Team, 2021).

3.4 Results

To study the evolution of gene expression noise and mean expression level under directional
and �uctuating selection, we simulated the evolution of single, isolated genes and genes con-
nected in model gene regulatory networks with unique network topologies. In each network,
one gene was randomly chosen to be under directional or �uctuating selection, while the rest
remained under stabilizing selection. The populations of model networks were evolved with
mutable gene intrinsic noise and basal expression level, and a �xed network topology. We
�rst present the results of the single genes and genes in regulatory networks in populations
evolved under directional selection.

3.4.1 Gene expression noise is transiently increased as a response to
directional selection

We studied the response of intrinsic expression noise and mean expression level of genes under
directional selection on gene expression level in single genes by simulating the evolution of
1,000 genes with random basal expression level values. To distinguish the response of the
mean expression level and intrinsic noise, and their co-evolutionary dynamics, we simulated
three scenarios: �rst, in which the intrinsic noise was mutable, but the basal expression level
was not (Fig. 3.2A-F); second, in which both intrinsic noise and basal expression level were
mutable (Fig. 3.2G-L); third, in which the basal expression level was mutable, but intrinsic
noise was not (Fig. 3.2M-R).

In the �rst scenario, in which only the intrinsic noise was mutable, but basal expression
level was not, we found an increase in expression variance and intrinsic noise after directional
selection was applied. An example of the evolutionary dynamics is shown in Fig. 3.2A-D.
The mean expression level did not change after directional selection was applied, as basal
expression level was immutable (Fig. 3.2 A, D). However, the expression variance and intrinsic
noise increase (Fig. 3.2B, C), indicating that noise was bene�cial in genes whose expression
level was far from the optimum. In the dataset of 1,000 simulated genes, the average increase
of the intrinsic noise was signi�cantly higher in genes under directional selection than genes
which remained under stabilizing selection (p-value < 2.2 × 10−16, Wilcoxon’s test, Fig. 3.2E).

In the second scenario, in which both basal expression level and intrinsic noise were
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mutable, two distinct evolutionary phases were observed: the adaptive phase, during which
the basal expression level was evolving towards the new optimum expression level; and the
postadaptive phase, after the basal expression level has reached the optimum expression level.
An example of the evolutionary dynamics is shown in Fig. 3.2G-L. A co-evolutionary pattern
was observed - expression level variance, determined by the intrinsic noise, was elevated while
the basal expression level was evolving towards the new optimum. Expression noise, and in-
trinsic noise, was reduced once the mean expression level reaches the optimum expression
level. The average increase of the intrinsic noise during the adaptive phase was signi�cantly
higher in genes under directional selection than genes which remained under stabilizing se-
lection (p-value = 1.25 × 10−10, Wilcoxon’s test) or genes under directional selection in the
postadaptive phase (p-value = 8.19 × 1007, Wilcoxon’s test, Fig. 3.2K).

In the third scenario, in which the basal expression was mutable, but the intrinsic noise
was not, we again observe the adaptive and postadaptive phase of expression mean evolution.
An example of the evolutionary dynamics is shown in Fig. 3.2M-R. However, since the intrinsic
noise could not evolve, there is no elevation of expression level variance during the adaptive
phase (Fig. 3.2N). Importantly, there is signi�cant increase in expression level variance during
the adaptive phase when the noise cannot evolve, indicating that the basal expression level
variants segregating in the population did not cause the elevated expression variance signal
in the scenario in which both mean and noise could evolve (Fig. 3.2H).

These results showed that gene expression noise has a �tness bene�t if the mean expression
level is not near the optimal level, i.e. the gene is under directional selection. We observed
that expression noise remains elevated if the mean expression level cannot change due to
constraints. However, if the mean expression level can evolve towards a new optimum, once
it has reached the new optimum a selection switch happens - the expression level is under
stabilizing selection again, and expression noise is deleterious. Therefore, expression noise
is bene�cial transiently while the expression mean is evolving towards a new optimum, but
becomes deleterious once it has reached the new peak. In case the expression mean cannot
evolve, expression noise has a constant �tness bene�t. The evolution of the expression mean
may be constrained by the position of the gene in the gene regulatory network, which is what
we explore in the next section.
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Figure 3.2: Expression noise is bene�cial under directional selection if the mean ex-
pression level is �xed, or transiently while the mean is evolving to a new optimum.
A-D - Evolutionary dynamics of an example gene evolving under directional selection with
mutable noise levels (A - mean expression level, B - expression level variance, C - intrin-
sic noise, D - basal expression level). E-F Average change of intrinsic noise (E) and average
change of basal expression levels (F) relative to the average pre-selection levels in genes with
mutable noise that undergo directional selection or remain under stabilizing selection. G-J -
Evolutionary dynamics of an example gene evolving under directional selection with mutable
noise and mean expression levels (G - mean expression level, H - expression level variance, I -
intrinsic noise, J - basal expression level). K-L Average change of intrinsic noise (K) and aver-
age change of basal expression levels (L) relative to the average pre-selection levels in genes
with mutable noise and mean expression levels that undergo directional selection or remain
under stabilizing selection. M-P - Evolutionary dynamics of an example gene evolving under
directional selection with mutable noise levels (M - mean expression level, N - expression level
variance, O - intrinsic noise, P - basal expression level). Q-R Average change of intrinsic noise
(Q) and average change of basal expression levels (R) relative to the average pre-selection lev-
els in genes with mutable noise that undergo directional selection or remain under stabilizing
selection. Dataset consists of 1,000 genes evolved for 30,000 generations. Asterisks indicate
statistical signi�cance of Wilcoxon’s tests: n.s. - p-value > 0.05; * - p-value ≤ 0.05; ** - p-value
≤ 0.01; *** - p-value ≤ 0.001; **** - p-value ≤ 0.0001.
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3.4.2 Regulator genes in gene regulatory networks are less adaptable
to directional selection than non-regulator genes

Next, we studied the response of intrinsic expression noise and mean expression level of genes
under directional selection in gene regulatory networks to investigate whether the network
background has an e�ect on the evolvability of genes connected in gene networks. The evo-
lutionary trajectory of a gene under directional selection from an example 40-gene network is
shown in (Fig 3.3A-D). Before directional selection is applied, in the mutation-selection-drift
balance phase, the expression level of the focal gene is under stabilizing selection and, conse-
quently, the population-wide mean expression level shows little variation (Fig 3.3A). After the
optimal expression level is increased, the population mean expression starts increasing until
it reaches the new optimum. We categorized genes as adapted if their mean expression level
reached sopt ± 10%smax . For genes whose expression level adapted to directional selection, we
distinguish two evolutionary phases: i) adaptation, during which the expression mean is evolv-
ing towards the new optimum, and ii) postadaptation, after the expression mean has reached
the new optimum. During these two phases, we track the changes in the phenotypic noise
(Fig 3.3B), the intrinsic noise genotypes (Fig 3.3C) and the basal expression level genotypes
(Fig 3.3D). In this example (gene G16, network 1765), the gene expression level managed to
adapt to a new optimum and during the adaptation phase, the phenotypic and intrinsic noise
was increased. In the postadaptation phase, the phenotypic and intrinsic noise decrease to
their average values before the optimum shift.

Figure 3.3 (next page): Adaptation to directional selection on gene expression level is
constrained by regulatory interactions in the gene regulatory network. A-D - Evolu-
tionary dynamics of an example gene evolved under directional selection (A - mean expression
level, B - expression level variance, C - intrinsic noise, D - basal expression level). Black vertical
lines indicate the initiation of the environmental shift, i.e. directional selection, and the ending
of the adaptive phase, respectively. Dashed horizontal lines indicate the optimal expression
levels under directional selection. E Proportion of genes in each regulatory category that re-
sponded or did not respond to directional selection. F Time to adaptation of adapted genes
in each regulatory category. G-I Evolutionary metrics of genes in each regulatory category
that underwent directional selection or remained under stabilizing selection after the envi-
ronmental shift. Relative change of expression variance, phenotypic noise (G), relative change
of intrinsic noise (H), relative change of basal expression level (I) show di�erent pattern in
adaptive and postadaptive phases. Expression noise was increased during the adaptive phase,
but was reduced after adaptation. The dataset consists of 2,000 40-gene networks evolved for
10,000 generations. Acronyms: MSD balance - Mutation-selection-drift balance. Asterisks in-
dicate statistical signi�cance of Wilcoxon’s tests against a default value of � = 0: n.s. - p-value
> 0.05; * - p-value ≤ 0.05; ** - p-value ≤ 0.01; *** - p-value ≤ 0.001; **** - p-value ≤ 0.0001.
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Figure 3.3: see previous page.

Out of 2000 genes under directional selection, 899 (44%) adapted after 10,000 generations.
The regulatory category had a signi�cant e�ect on the adaptivity and the time to adapt. We
categorized genes into three categories: i) master transcription factors, which regulate one or
more downstream genes, but are not regulated by any upstream gene; ii) intermediate tran-
scription factors, which are both regulated and regulate one or more genes; and iii) target
genes, which are regulated by one or more upstream genes, but do not regulate any down-
stream gene themselves. Target genes are more likely to adapt to directional selection than in-
termediate transcription factors and master transcription factors (Fig 3.3E). The time to adapta-
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tion, de�ned as the number of generations until the new optimum expression level is reached,
is longer in master transcription factors (p-value < 2.2 × 10−16, Wilcoxon’s test) and interme-
diate transcription factors (p-value < 2.2 × 10−16, Wilcoxon’s test) than target genes (Fig 3.3F).

We then investigated the response of the expression variance (phenotypic noise), intrinsic
expression noise and basal expression level during adaptation and postadaptation phase. Dur-
ing the adaptation phase, genes under directional selection had signi�cantly increased their
expression variance relative to the average expression variance before the optimum shift, un-
der mutation-selection balance (Fig 3.3G). After adaptation, the expression variance returned
to the average expression variance values before the optimum shift. Genes that remained
under stabilizing selection did not change their expression variance. The same pattern was
observed for intrinsic noise (Fig 3.3H), where genes under directional selection increased their
intrinsic noise during adaptation, but returned to preadaptive values after adaptation. Genes
that remained under stabilizing selection did not change their intrinsic noise. Lastly, as ex-
pected, genes under directional selection increased their basal expression level (Fig 3.3I), as
opposed to genes under stabilizing selection.

Next, we looked at the e�ect the gene’s position in the regulatory network had on the
propensity of the gene to adapt to directional selection and the strength of its response. Tar-
get genes had a signi�cantly higher probability of responding to directional selection than
master transcription factors (logistic regression model with coe�cient �TG = 3.159, p-value
< 2.2 × 10−16). Intermediate transcription factors did not have a signi�cantly higher probabil-
ity of responding to directional selection than master transcription factors (logistic regression
model with coe�cient �iTF = 0.039, p-value = 0.79). Node-level network metrics, absolute
instrength and absolute outstrength, had a signi�cant e�ect on the adaptation probability.
Absolute instrength, a metric of how strongly a gene is being regulated by other genes, had
a signi�cant positive e�ect on the adaptation probability (logistic regression with coe�cients
�instrength = 0.0936, p-value = 2.01 × 10−6; �outstrength = -0.5970, p-value < 2.2 × 10−16). The time to
adaptation, de�ned as the number of generations it took to reach the new optimal expression
level, was signi�cantly lower in target genes (logistic regression model with coe�cient �TG =
-1632.0, p-value = 9.72×10−14) and intermediate transcription factors (logistic regression model
with coe�cient �iTF = 0.039, p-value = 0.79).

3.4.3 Gene expression noise is increased as a response to �uctuating
selection

To investigate the e�ect the gene network has on the evolvability of gene expression in chang-
ing environments, we simulated the evolution of single genes and genes in regulatory net-
works under �uctuating selection on gene expression level. The �uctuating selection was
implemented by imposing an alternating optimum expression level that switches between an
increased and decreased optimum expression level every other generation. We �rst report
results from the simulations of single, isolated genes.

As with directional selection, we simulated three scenarios to disentangle the response of
expression mean and expression noise levels: �rst, in which the intrinsic noise was mutable,
but the basal expression level was not (Fig. 3.4A-F); second, in which both intrinsic noise and
basal expression level were mutable (Fig. 3.4G-L); third, in which the basal expression level
was mutable, but intrinsic noise was not (Fig. 3.4M-R).

In the �rst scenario, in which the intrinsic noise is mutable, but the basal expression level

57



Chapter 3. The evolution of gene expression level and noise in changing environments

Figure 3.4: Expression noise is bene�cial under �uctuating selection, because the
mean expression level is under constraint. A-D - Evolutionary dynamics of an exam-
ple gene evolving under �uctuating selection with mutable noise levels (A - mean expression
level, B - expression level variance, C - intrinsic noise, D - basal expression level). E-F Aver-
age change of intrinsic noise (E) and average change of basal expression levels (F) relative to
the average pre-selection levels in genes with mutable noise that undergo �uctuating selec-
tion or remain under stabilizing selection. G-J - Evolutionary dynamics of an example gene
evolving under �uctuating selection with mutable noise and mean expression levels (G - mean
expression level, H - expression level variance, I - intrinsic noise, J - basal expression level).
K-L Average change of intrinsic noise (K) and average change of basal expression levels (L)
relative to the average pre-selection levels in genes with mutable noise and mean expression
levels that undergo �uctuating selection or remain under stabilizing selection. M-P - Evolu-
tionary dynamics of an example gene evolving under �uctuating selection with mutable noise
levels (M - mean expression level, N - expression level variance, O - intrinsic noise, P - basal
expression level). Q-R Average change of intrinsic noise (Q) and average change of basal ex-
pression levels (R) relative to the average pre-selection levels in genes with mutable noise that
undergo directional selection or remain under stabilizing selection. Dataset consists of 1,000
genes evolved for 30,000 generations. Asterisks indicate statistical signi�cance of Wilcoxon’s
tests: n.s. - p-value > 0.05; * - p-value ≤ 0.05; ** - p-value ≤ 0.01; *** - p-value ≤ 0.001; **** -
p-value ≤ 0.0001.

is not, the mean expression level and basal expression levels expectedly did not signi�cantly
change under �uctuating selection (Fig. 3.4A, D). However, expression variance and intrinsic
noise were increased (Fig. 3.4B, C). In the dataset of 1,000 genes, the average change of intrinsic
noise relative to pre-selection values was signi�cantly higher in genes under �uctuating selec-
tion than in genes that remained under stabilizing selection (p-value < 2.2 × 10−16, Wilcoxon’s
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test, Fig. 3.4E). Since the optimum expression level alternates every other generation, there is
no distinct time point of reaching adaptation under �uctuating selection, unlike directional
selection.

In the second scenario, in which both intrinsic noise and basal expression levels are muta-
ble, the same pattern is observed as in the �rst scenario. The mean expression level and basal
expression levels did not signi�cantly change under �uctuating selection (Fig. 3.4G, J), even
though the basal expression level was mutable in this scenario. Since �uctuating selection im-
poses a new optimal expression level every other generation, it is, assumingly, not bene�cial
for the population to evolve towards any single optimum. However, this likely depends on
the frequency of environmental shifts, i.e. the amount of time the population spends under
selection in each optimum. If instead of changing the environment every second generation,
the environment changed less frequently, the population would have more time to adapt to
the new optimum and a series of adaptations would be likely. In this scenario, however, the
environment shifts very often, and therefore the mean expression level cannot evolve. Since
the evolution of mean expression level is constrained, the increased expression noise as a re-
sponse to �uctuating selection is maintained, as in the case of single genes under directional
selection with immutable mean expression level (Fig. 3.2E). In the dataset of 1,000 genes, the
average change of intrinsic noise relative to pre-selection values was signi�cantly higher in
genes under �uctuating selection than in genes that remained under stabilizing selection (p-
value < 2.2 × 10−16, Wilcoxon’s test, Fig. 3.4E).

In the third scenario, in which the basal expression level was mutable, but the intrinsic
noise was not, the mean expression level and basal expression level showed large �uctuations
between the two expression level optima (Fig. 3.4M, P). However, the expression variance was
not increased as in the second scenario, in which the mean and noise could evolve, indicating
that the observed increase in expression variance as a response to �uctuating selection in the
second scenario was not due to the heterogeneity of basal expression level genotypes while
the population was evolving towards a new peak. Instead, the increase of expression variance
in the second scenario re�ects the increase of intrinsic noise as a �tness bene�t in response to
�uctuating selection on gene expression level.

3.4.4 Target genes in gene regulatorynetworks respondmore strongly
to �uctuating selection than non-target genes

Lastly, we studied the response of intrinsic expression noise and mean expression level of
genes under �uctuating selection in gene regulatory networks to investigate whether the net-
work background has an e�ect on the evolvability of genes connected in gene networks. The
evolutionary trajectory of a gene under �uctuating selection from an example 40-gene net-
work (gene G37, network 2) is shown in (Fig 3.5A-D). In the mutation-selection-drift balance
phase, before �uctuating selection was applied, the expression level of the focal gene is under
stabilizing selection. Consequently, the population-wide mean expression level shows little
variation (Fig 3.5A), which persisted after �uctuating selection was applied and the optimal
expression level started changing every second generation. However, the phenotypic noise
(Fig 3.5B) and the intrinsic noise (Fig 3.5C) increased as a response to �uctuating selection.

The strength of the response to �uctuating selection by increasing intrinsic noise may be
a�ected by the position of the gene in the gene regulatory network. In the entire dataset, con-
sisting of 80,000 genes from 2,000 40-gene network topologies, target genes had a signi�cantly
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higher increase in relative expression variance and intrinsic noise under �uctuating selection
than genes under stabilizing selection in the rest of the network (p-value < 2.2 × 10−16 and p-
value < 2.2 × 10−16, respectively, Wilcoxon’s test, Fig 3.5E, F). The relative expression variance
and intrinsic noise in intermediate transcription factors and master transcription factors un-
der directional selection was also signi�cantly higher than rest of the genes under stabilizing
selection in their respective networks (p-value < 2.2×10−16 and p-value = 1.68×10−7 for relative
expression variance, p-value < 2.2 × 10−16 and p-value = 0.0001 for intrinsic noise, Wilcoxon’s
test), but the di�erence was smaller than for target genes. This e�ect can be explained by noise
propagation within the gene regulatory networks. Namely, genes in gene regulatory networks
propagate their expression noise downstream, and increasing the intrinsic noise of one gene
would increase noise propagated to downstream elements in the network, which would be
deleterious in case the rest of the network is under stabilizing selection. Since intermediate
and master transcription factors activate or repress the expression level of downstream genes
and propagate their expression noise, the increase of their intrinsic noise is constrained by
stabilizing selection acting on the downstream genes. Therefore, the adaptability of transcrip-
tion factors to �uctuating selection is constrained by their regulatory function. Target genes
do not have the same constraint, as they do not have downstream elements, and are free to
adapt to �uctuating selection by increasing their intrinsic expression noise.

Figure 3.5 (next page): Fluctuating selection. A-D - Evolutionary dynamics of an exam-
ple gene evolved under �uctuating selection (A - mean expression level, B - expression level
variance, C - intrinsic noise, D - basal expression level). Black vertical lines indicate the ini-
tiation of the environmental shift, i.e. �uctuating selection. Dashed horizontal lines indicate
the optimal expression levels in the two alternating environments. E-G Evolutionary metrics
of genes in each regulatory category that underwent �uctuating selection or remained un-
der stabilizing selection after the environmental shift. Relative change of expression variance,
phenotypic noise (E), relative change of intrinsic noise (F), relative change of basal expression
level (G) show di�erent response strength to �uctuating selection depending on the gene reg-
ulatory category. Target genes increase intrinsic noise as a response to �uctuating selection to
a higher degree than non-target genes. Dataset consists of 2,000 40-gene networks evolved for
10,000 generations. Acronyms: MSD balance - Mutation-selection-drift balance. Asterisks in-
dicate statistical signi�cance of Wilcoxon’s tests against a default value of � = 0: n.s. - p-value
> 0.05; * - p-value ≤ 0.05; ** - p-value ≤ 0.01; *** - p-value ≤ 0.001; **** - p-value ≤ 0.0001.
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Figure 3.5: see previous page.
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3.5 Discussion

In this work, we aimed to investigate how natural selection in changing environments af-
fects the gene expression mean and noise levels in the context of gene regulatory networks.
We hypothesized that selection might favor an increase of expression noise as a mechanism
of increasing population heterogeneity after an environmental shift, and that there might be
di�erences in adaptability between constituent genes in the gene network. To test this hy-
pothesis, we modi�ed the gene regulatory network model introduced in Chapter 2 to include
an evolvable mean expression level as well as expression noise level. We then simulated the
evolution of gene expression mean and noise in populations of isolated genes and genes in
gene regulatory networks under directional and �uctuating selection, and used genes evolved
under stabilizing selection as a control. We found that expression noise was increased during
the adaptive phase under directional selection, and was reduced after adaptation to the new
mean expression had been reached. Under �uctuating selection, expression noise was consis-
tently increased after selection had been applied. Lastly, in both cases, regulator genes had a
lower probability of responding to selection, and responded less strongly than non-regulator
genes, indicating a constraining e�ect of the gene regulatory network on the adaptability of
constituent genes.

3.5.1 Limitations of the model

In the simulation framework in this study the population size is kept constant, i.e. the indi-
viduals are reproduced into the next generation by sampling until the �xed population size
is reached. Consequently, the population will never go extinct, even if the individuals have
extremely low �tness, and the population will have time to accumulate potentially bene�cial
mutations and, potentially, adapt. This is not biologically realistic, as dramatic environmental
shifts can drive species extinct and survival is not guaranteed if the population is far away
from its environmental range. Bet-hedging, the increase of the phenotypic heterogeneity in
the population, is a strategy of ensuring that some proportion of the population has a �t phe-
notype whichever the environmental conditions it �nds itself in. Observing the evolution of
bet-hedging might be more apparent if the populations who did not adapt through bet-hedging
went extinct, instead of being propagated to a constant population size in every generation.
The simulation framework used here can be modi�ed to include the possibility of extinction
events by adding a non-�xed population size and a viability threshold. Including the possibil-
ity of extinction events would enable the simulation of evolutionary rescue, where a declining
population manages to survive an environmental shift and recover.

3.5.2 Epistasis slows down adaptation and is a�ected by network ar-
chitecture

Adaptation, the process by which organisms adjust to their environment, has often been anal-
ysed using the framework of adaptive landscapes, �rst introduced by Sewall Wright in 1932
(Wright, 1931, 1932). In the adaptive landscape framework, adaptation is depicted as a popula-
tion of genotypes climbing a landscape consisting of �tness peaks and valleys, corresponding
to genotype con�gurations that are more or less �t to the given environment. The adaptabil-
ity of a population, in terms of speed of adaptation and the possibility of reaching a �tness
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peak, depends on many factors, such as population genetics parameters (e.g. e�ective popu-
lation size), initial frequency of adaptive alleles, and the genetic architecture of the selected
trait (Olson-Manning et al., 2012). A known factor that slows down adaptation is epistasis.
The non-independence of gene expression levels of genes connected in a gene regulatory net-
work can be seen as a form of epistasis. Here, we report evidence of selection at the network
level limiting the adaptability of genes in gene regulatory networks, speci�cally, the gene ex-
pression level of transcription factors in changing environments. Reducing the number and
strength of interactions between genes, i.e. reducing the connectivity of the gene regulatory
network, would reduce epistasis and thereby increase adaptability to potential selective pres-
sure in the future. Real biological gene regulatory networks are, indeed, sparse (Leclerc, 2008),
and network sparsity was shown to be an emergent property resulting from optimising the
explorability of new phenotypes (Busiello et al., 2017).

3.6 Conclusion
Our results showed that intrinsic gene expression noise is bene�cial when the gene expres-
sion level is under directional or �uctuating selection, such as after an environmental shift.
Under directional selection, increased gene expression noise confers a �tness bene�t while the
mean expression level is evolving towards the new optimal expression level, and it becomes
detrimental after the new optimum is reached. Under �uctuating selection, expression noise
confers a �tness bene�t as a bet-hedging strategy in unpredictable environments. Further-
more, the regulatory function of the gene in the gene regulatory network had a constraining
e�ect on adaptability to directional or �uctuating selection. Transcription factors were less
likely to adapt than target genes, because changes in their gene expression levels had direct
downstream e�ects in the network. These results suggest that peripheral genes (target genes)
in gene regulatory networks are more adaptable to changing environments than central genes
(transcription factors). They further indicate that the gene network background must be taken
into consideration when studying the adaptability of gene expression level of individual genes,
because the gene network might impose constraints on constituent genes, which would be in-
visible if genes were considered as isolated components.

63



Chapter 3. The evolution of gene expression level and noise in changing environments

64



Chapter 4

General Discussion

“As biologists, we must grapple with, and reconcile, two very di�erent views of cellular behaviour.
On the one hand, we frequently think of cellular functions as being determined by ‘circuits’ of in-
teracting genes and proteins. In a loosely analogous way to electronic circuits, these chemical cir-
cuits encode genetic programmes that underlie di�erentiation, the cell cycle and other behaviours.
They accurately respond to stimuli and generate precise behavioural programmes in individual
cells. On the other hand, there is the ‘noisy’ view of the cell we get when we actually look at cells :
they exist in squishy, dynamic and heterogeneous populations, the morphologies, gene expression
patterns and di�erentiated states of which di�er from one another, even when environment and
genotype are �xed.”

– James Locke and Michael Elowitz (Locke and Elowitz, 2009)

In this thesis I have studied the evolution of gene expression noise in gene networks and
have found that the evolution of gene expression noise is a�ected by the gene network back-
ground and that expression noise may be deleterious or adaptive. These results have implica-
tions on our understanding of the cell, the fundamental unit of organisms. In the following,
I would like to discuss the most common conceptualization of the organism, which does not
account for noise, as well as some advantages of investigating noise in biological systems.

4.1 Organism as a machine, and why it isn’t

4.1.1 History of the organism as a machine concept

“What is the nature of organisms?" is one of the oldest questions in biology, and one of the
most pervasive notions is the concept of the organism as an organic machine. The concept
of the organism as a machine dates back to the natural philosophy of Descartes in the 17th
century. Analogies between man-made tools and organisms have been made since antiquity,
but Descartes’ metaphysics makes the assumption that organisms are not just similar to ma-
chines, but are, in fact, organic machines designed by a divine being (Descartes, 1972). He
argued that the only fundamental di�erence between a human being, or any living being, and
a clockwork machine is the degree of complexity. This view has grounded the tone of re-
ductionism in natural sciences in general, and particularly in�uenced biology to frame living
beings as complicated contraptions with specialized parts intentionally assembled to serve a
speci�c purpose. Over the ages the analogies have changed - after the industrial revolution
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Figure 4.1: Illustrations of organisms as machines. From left to right: Schematic of Le
Canard digérateur (The Digesting Duck), an automaton created by Jacques de Vaucanson in
1764; Der Mensch als Industriepalast (Man as Industrial Palace) by Fritz Kahn (1926). National
Library of Medicine, Stuttgart; Cell as a factory, cover of Cell Feb 23, 2017 Volume 168 Issue 5
p743-946. Credit: Sigrid Knemeyer.

organisms have been compared to steam engines, miniature factories, electric circuits, and it
seems the latest analogy is of living beings as organic computers. Interestingly, the mechanical
devices organisms have been likened to over the ages have always been updated to the most
complicated contraption of the time.

The conceptualization of organisms as machines is one of the most ubiquitous ideas in
modern biology, particularly prevalent in developmental and molecular biology, but not miss-
ing from evolutionary biology. Molecular biology is �lled with terms such as protein machines,
ATP pumps, gene circuits, molecular motors. In developmental biology we have developmen-
tal programs; in neuroscience the brain as a computer ; in systems biology the pathway as an
electronic circuit; in evolutionary biology the phenomenon of hidden variation as evolutionary
capacitance. Example illustrations of organisms framed as machines can be found in Fig 4.1.

4.1.2 How adequate is framing organisms as organic machines?
Similarities between man-made machines and living beings can be found, but there are many
dissimilarities, which is concerning for such an widespread concept in modern biology and
can lead to careless assumptions. Multiple criticisms of the machine concept of the organism
have been raised (Rosen, 1991). The thermodynamical argument focuses on the thermody-
namical states of living beings and machines. Organisms exist in a far-from-equilibrium state,
as opposed to machines. Another argument is based on scale. The world at a microscopic scale
is vastly di�erent than at macroscopic scale, because physical forces scale di�erently with the
object size. For example, at the molecular scale at which proteins operate, the forces of gravity
are relatively minor, but thermal noise and viscous forces from the cytoplasm are signi�cant.
At such scales, moving through a solution has been described as “swimming through molasses”
or “walking in a hurricane” (Astumian, 2007). There is also the teleological argument, which
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posits that the purpose of the machine is de�ned extrinsically, while organisms do not have an
outside purpose and their activity serves only to maintain themselves (Nicholson, 2019). Also,
machines are designed to deterministically perform their functions, while organisms display
a heterogeneity in their responses to environmental stimuli and due to their stochastic nature.
Gene expression, arguably the most important process in the cell, is a probabilistic process,
resulting in phenotypic heterogeneity even among isogenic cells in identical environments.

What are the �aws of the machinistic description of organisms? Assuming living beings
are machines consciously or unconsciously imparts a bias of intentional design and purpose
of each part of the organism. Consequently, it can lead to reasoning that most, if not every,
phenotypic trait are the way they are because they serve a speci�c purpose, and therefore, have
been selected for at some point in evolutionary history. This view is known as adaptationism
in evolutionary biology, and has been criticized for many decades (Gould and Lewontin, 1979)
and fueling exhausting selectionist vs. neutralist debates.

The machine metaphor of the organism does have utility, however. Three categories of
usefulness of scienti�c metaphor can be distinguished: theoretical, heuristic, and rhetorical
functions (Bradie, 1999). Metaphors with a theoretical function are useful to help conceptual-
ize, represent and explain the natural phenomenon. Metaphors with a rhetorical function are
useful for science communication to non-scientists, and metaphors with a heuristic function
are methodological tools used to frame an empirical investigation. Dan Nicholson argues that
the machine concept of the organism is an inadequate theoretical and rhetorical metaphor,
but has heuristic value (Nicholson, 2013). Namely, for reasons mentioned above, the machine
is not an apt representation of real biological organisms, and therefore cannot function as a
theoretical metaphor, nor as a rhetorical one. However, bearing in mind that organisms are
not truly machines, like Descartes envisioned, the machine concept can be used when study-
ing their parts. The key to the heuristic usefulness is that while organisms are not machines,
their parts approximately behave like ones. Parts of organisms, such as organs or organelles,
cannot self-organize and self-replicate like whole organisms can, and are dependent on out-
side in�uence to maintain themselves, just like machines. Parts also have speci�c functions
in the larger whole, as machines do, as opposed to the entire organism, which doesn’t have a
purpose. When studying organismal parts, it is convenient to use the machinistic framework
to downscale the complexity of the entire organism. Echoing George Box (“All models are
wrong, but some are useful”) – metaphors can be wrong, but useful. They can be harmful, as
well, so they must be employed consciously and cautiously.

4.1.3 A better metaphor for organisms

If the machine metaphor of the organism is incorrect and potentially harmful, what would be
a more adequate metaphor for organisms? Several authors have called for looking to physics,
instead of engineering, for more �tting analogies. Rather than using human-designed devices
as templates for organisms, we should look for thermodynamically open systems operating far
from equilibrium with their environment, with which they exchange energy and matter. Such
systems are known as dissipative systems in physics. Dissipative systems, particularly dissi-
pative structures, have been proposed as metaphors better suited for explaining living beings
(Goldbeter, 2018). Dissipative structures are dissipative systems, so thermodynamically open
systems operating far-from-equilibrium, which also have a self-reproducible steady state. Ex-
amples of dissipatives structures include a �ame, a stream, a tornado, or a hurricane. These
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natural phenomena exchange energy and matter with their environment, maintain their exis-
tence and steady state through some internal reactions, and can self-reproduce. As such, they
have much more in common with a bacteria than a machine does. Perhaps it would be more
useful to think of organisms as �ame-like or hurricane-like structures instead of MacBook-like
structures.

4.1.4 What not being blind to randomness in organisms reveals

Cells are complex systems in which many genes are expressed and interact with each other in
what is often represented as gene networks. Gene networks are also very often represented
as electric circuits, whether it’s a metabolic network, gene regulatory network, or a signalling
pathway, and analyzed from the framework of the organism as a machine. This framework
implies a deterministic, machine-like behaviour of gene networks. However, gene expression
noise is inevitable, making the entire system noisy and a�ecting its function. This, in turn,
imposes di�erential selective pressure on the constituent genes based on their position in the
network. Adapting to noise can a�ect the structure of the gene network, as well, as shown
in Chapter 2. Global network features a�ect the average noise level of genes in the network.
Features of the network architecture can be changed to lower or increase average expression
noise in the network, showcasing that the higher level of organization (gene network) has a
distinct e�ect on the lower level of organization (the genes).

Noise can also be exploited by organisms to their bene�t, as was shown in Chapter 3,
indicating that noise is not just an unavoidable nuisance, but a helpful and adaptive trait, as
well.

In this thesis, I have presented evidence of selection on expression noise on a system level
shaping the evolution of gene expression. These e�ects would not have been found had the
system not been studied as a complex system using network models, and had the inherent
randomness of gene expression not been modelled. Often, biological systems are studied from
a reductionist perspective and the complexities of real biological systems are overlooked. Sys-
tems biology as a �eld aims to avoid this simpli�cation and instead integrate di�erent levels
of organization of biological systems, and it has made signi�cant progress in the past two to
three decades. However, it is still a fairly young �eld, being established as a �eld of science at
the turn of the millennium.

4.2 Why should anon-biologist care about expressionnoise?

Biology is the scienti�c study of living beings. Living beings, such as bacteria, rats, or humans,
are challenging to study because many factors shape them. Whether a bacterium can eat a
certain food or not, what color a rat’s fur is, or how tall a child grows up to be, depends
on many factors. It is common knowledge that some of these factors are inherent to each
organism, such as the genetic material they inherited from their parents, while some factors
are inherent to the environment the organism is living in, such as food availability or the
surrounding climate. Apart from these factors, there is an inescapable randomness to how
organisms turn out, which stems from their internal chemistry and not from any genetic or
environmental factor. The internal noise yields di�erences in organisms, which a�ects their
body and behaviour.
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Evolutionary biology is the scienti�c study of how living beings change in time. There are
sources of randomness in the evolutionary process itself. Living beings exist as populations in
the wild which have a �nite number of individuals and because of it their evolution is subject
to random process called genetic drift. Mutations in the genetic material are innately random.
Even if organisms themselves wouldn’t be noisy, their evolution would be.

The development of the organism, and it’s evolutionary past and future, are, therefore,
subject to noise and randomness. If we want to understand how organisms are shaped in
short or longer timescales, we have to study the e�ect the inherent randomness of living beings
has on their evolution. This inherent randomness is often viewed as a nuisance, but can be
exploited for the organism’s bene�t, as well. In this thesis, I have studied an aspect of the
inherent randomness of organisms, expression noise, and investigated in which scenarios it is
unfavourable or favourable, and the constraints on its evolvability.

Expression noise is, simply put, a phenomenon that makes di�erences between organisms,
even when they are genetically identical and sharing an identical environment. How does
discovering anything about expression noise a�ect the life of an ordinary, law-abiding, tax-
paying citizen, who is �nancing this research in the �rst place?

The most obvious bene�ts are seen in medical applications. Expression noise was shown
to be an actor in bacterial drug-resistance (Sánchez-Romero and Casadesús, 2014; Sun et al.,
2020), an increasingly worrying problem in medicine. Elevated levels of expression noise have
also been found in human cancer cells (Han et al., 2016), indicating a link between deregulation
of gene expression noise and cancer development. Less obvious long-term bene�ts would be
in wildlife conservation e�orts, as phenotypic variation, which is created by expression noise,
has been shown to help species adapt to a wider ecological niche by making them ecological
generalists (Draghi, 2020).

Importantly, noise is a basic aspect of all life on Earth, and studying it brings deeper un-
derstanding of the fundamental principles of life. Accounting for noise brings us closer to
having a better idea of how organisms function and what they are. It shows that noise can be
suppressed or elevated for the bene�t of the organism.

Lastly, even if there are no imaginable bene�ts to studying a natural phenomenon, it should
not be discarded. Often, the biggest breakthroughs in technology came from “useless” funda-
mental research, which by de�nition has no foreseeable application. For example, a long time
ago, some curious people have studied rocks that had happened to stick to each other, which
set the baseline for some other people in the 17th century to study magnetism for no good
reason, which ended up with the harnessing of electricity and yielded all electronic devices
we have today, including the computer I am writing this thesis on. A lack of obvious appli-
cations of a scienti�c investigation today does not mean a lack of applications tomorrow, or
in the next decade or century. Unfortunately, we cannot predict which research �ndings will
end up having a practical application down the line, which is why it is important to recognize,
as Abraham Flexner puts it, the usefulness of useless knowledge (as well as fund it!).
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Supplementary information

A.1 Gene regulatorynetworkmodel and evolutionarymodel

A.1.1 Parameters
The parameter values used for the gene regulatory network model and evolutionary simula-
tions and their descriptions are shown in Table A.1.

Table A.1: Parameters used in the simulations.
Parameter Symbol Value Description
Number of nodes in the network n 40 Number of genes in the gene regulatory network
Network density d 0.05 Proportion of potential connections in the network
Regulatory matrix W = (wij)1≤i≤n, 1≤j≤n see Supp. Data Regulatory relationships in the gene regulatory network
Intrinsic noise {�inti }1≤i≤n 100 Gene-speci�c noise of each gene
Basal expression levels {Sbasali }1≤i≤n {20, ..., 20} Constitutive expression level
Number of timesteps for genotype realization Tr 50 Number of timesteps the expression levels are updated
Minimal expression level smin 0 Minimal expression level
Maximal expression level smax 100 Minimal expression level
Number of timesteps to check oscillatory dynamics � 10 Time window to apply oscillation criterion
Maximal allowed �uctuation in gene expression levels � 1e−06 Criterion to check oscillatory dynamics
Population size N 1,000 Number of individuals in a population
Number of generations T 10,000 Length of the evolutionary simulation in generations
Optimal expression levels (for network establishment) {sopti }1≤i≤n {50, ..., 50} Expression levels that correspond to maximum �tness
Mutation rate (regulatory interactions) �w 0.05 Mutation probability of a regulatory interaction, per interaction, per repl. event
Mutation value mean (regulatory interactions) mw 0 Mean of normal distribution from which mutation values are drawn
Mutation value variance (regulatory interactions) vw 2 Variance of normal distribution from which mutation values are drawn
Selective pressures {�i}1≤i≤n {1, ..., 1} Contribution of expression level to �tness
Mutation rate (intrinsic noise) �� 0.01 Mutation probability of intrinsic noise, per gene, per repl. event
Mutation value mean (intrinsic noise) m� 100 Mean of normal distribution from which mutation values are drawn
Mutation value variance (intrinsic noise) v� 40 Variance of normal distribution from which mutation values are drawn
Recombination rate r 0.05 Probability of o�spring entering the recombination process

A.1.2 Robustness of network realization
In the simulations performed in this study the gene regulatory network model was realized
into the phenotype by synchronously updating the expression levels of all genes in every time
step. To test whether the time of updating changes the steady state expression levels, we
compared steady state expression levels of 200 samples of 20-gene random networks realized
without noise synchronously and asynchronously. Synchronous updating was performed by
updating the expression level of all genes in the network at every time step for Tr time steps
(Tr = 50). Asynchronous updating was performed by randomly choosing a gene in every time
step and updating only its expression levels, for n × Tr = 1000 time steps. We realized each
network topology 1000 times synchronously and asynchronously and measured the Hamming
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distance between the expression level vectors in the last time step. Two expression level values
were deemed identical if their di�erence was less than 0.001. In 92% of cases the synchronous
and asynchronous realizations of the same network con�guration had a Hamming distance
of 0 (Fig A.1A). The mean expression level, expression variance, CV, noise and Fano factor
were highly correlated between the synchronous and asynchronous realizations (Fig A.1B-
F). Examples of expression level dynamics of deterministic and stochastic realizations with
synchronous and asynchronous updating schemes in one network are shown in Fig A.2.

Figure A.1: Network realization is robust to synchronous or asynchronous expres-
sion level updating mode during network realization. A - Hamming distance between
the steady states of synchronously and asynchronously realized networks. Expression level
values between synchronous and asynchronous realizations were deemed identical if their dif-
ference was less than 0.001. B - Mean expression level of populations of synchronously and
asynchronously realized networks. C-F - Expression level variance, CV, noise and Fano factor
of genes from populations of synchronously and asynchronously realized networks.
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Figure A.2: Examples of expression level dynamics in realizations of the samenetwork
with di�erent expression level updating modes and noise levels. A-E Five non-noisy
realizations with synchronous expression level updating. Since there is no random compo-
nent in the realization, there are no di�erences between the realizations. F-J Five non-noisy
realizations with asynchronous expression level updating. The expression level of a randomly
chosen gene is updated in each timestep. Consequently, even though there is no intrinsic
expression noise, the dynamics di�er between the �ve realizations, but they reach the same
steady state as in the synchronously updated realizations. K-O Five noisy realizations with
synchronous expression level updating. The mean of the gene expression levels equals the
steady state expression levels of the realizations without noise. P-T Five noisy realizations
with asynchronous expression level updating.
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A.1.3 Convergence of expression levels duringnetwork establishment
An optimal expression level of sopt = 50 is imposed on all genes during network establishment
to �nd network con�gurations which have intermediate expression levels. At the end of the
network establishment process, 68% (54333/80000) of genes in the �ttest networks had a steady
state expression level in the range of sopt ± sopt

2 (Fig. A.3).

Figure A.3: Most genes have intermediate steady state expression level after the net-
work establishment process. Histogram of steady state expression levels after the network
establishment process. Dataset consists of 80,000 genes from 2000 random 40-gene network
topologies. The peak at s = 20 indicates genes which are not activated by other genes and are
expressed only at the basal level of {Sbasali }1≤i≤n = {20, ..., 20}. Red dashed line indicates the
optimal expression level.

A.1.4 Population size
We tested the e�ect of the population size on selective pressure by simulating the evolution
of a dataset of 500 network topologies with di�erent population sizes. We �nd that increasing
the population size increases the selective pressure acting on constituent genes (Fig A.4). A
population size of 1000 was chosen for the main simulations in this study.

A.1.5 Stability of mean expression level
We imposed stabilizing selection on gene expression levels and observed a repeatable pattern
of reduction of gene expression variance. The mean expression level was stable (Fig A.5A)
throughout evolution, meaning that the adapted populations had a higher �tness due to a
reduction of gene expression variance, not changes in expression mean.
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Figure A.4: Increasing the population size increases the selective pressure on genes
under stabilizing selection on gene expression level. Dataset consists of 20,000 genes
from 500 random 40-gene network topologies.

Figure A.5: Mean expression level does not change after noise evolution under stabi-
lizing selection on gene expression levels. A, B - Mean expression level in the �rst and
last generation of populations evolved under selection (A) and neutrality (B). C, D - Expres-
sion variance in the �rst and last generation of populations evolved under selection (C) and
neutrality (D). Red lines indicate lines with a slope of 1.
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A.2 Network centrality metrics
To measure the centrality of nodes in the gene networks, we computed 19 node-level centrality
measures. These centrality measures are: degree, indegree, outdegree, closeness, betweenness,
eigenvector centrality, node strength, instrength, outstrength, hub score, authority including
weights, authority excluding weights, absolute node strength, absolute instrength, and abso-
lute outstrength, �ow betweenness, load centrality, information centrality, and stress central-
ity. These measures were heavily intercorrelated and correlated with the expression noise
metrics - expression noise, change of expression noise after selection, and selective pressure
(Fig A.6). We also computed 12 graph-level centrality measures to study the e�ects of the global
topology on the average selective pressure. These measures are: diameter, mean path distance,
degree assortativity, degree centralization, indegree centralization, outdegree centalization,
closeness centralization, betweenness centralization, average degree, average indegree, and
average outdegree. The global network metrics were intercorrelated, as well (Fig A.7). In the
study of the e�ects of network centrality on evolvability of gene-speci�c expression noise we
focused on instrength and outstrength as node-level centrality measures, and summarized the
12 graph-level measures into two synthetic independent variables using principal component
analysis.
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Figure A.6: Correlation matrix of node-level network centrality metrics and expres-
sion noise metrics. Spearman’s rank correlation coe�cients shown in the cells. Empty
cells indicate a non-signi�cant p-value (p-value > 0.05). Abbreviations: varP_1 - expression
variance in the �rst generation; relDeltaVar_10000 - relative change of expression variance
between the �rst and generation 10,000; s_g_area_abs - selective pressure on each node;
k_all_inclps - degree; k_in_inclps - indegree; k_out_inclps - outdegree; clo_all - closeness;
betw - betweenness; eigen_centr - eigenvector centrality; str_all_inclps - node strength;
str_in_inclps - instrength; str_out_inclps - outstrength; hub_score - hub score; auth_incwght -
authority including weights; auth_excwght - authority excluding weights; absstr_all_inclps -
absolute strength; absInStr - absolute instrength; absOutStr - absolute outstrength; �ow - �ow
betweenness; load - load centrality; info - information centrality; stress - stress centrality.
Dataset consists of 148,886 genes from 2,000 random network topologes.
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Figure A.7: Correlation matrix of graph-level network centrality metrics and expres-
sion noise metrics. Spearman’s rank correlation coe�cients shown in the cells. Empty
cells indicate a non-signi�cant p-value (p-value > 0.05). Abbreviations: varP_1 - expression
variance in the �rst generation; relDeltaVar_10000 - relative change of expression variance
between the �rst and generation 10,000; s_g_area_abs - selective pressure on each node;
diam - diameter; meandst - mean path distance; assort - degree assortativity; cntr_degr_all
- degree centralization; cntr_indegr - indegree centralization; cntr_outdegr - outdegree cen-
tralization; cntr_clo_all - closeness centralization; cntr_betw - betweenness centralization;
ave_k_all_inclps - average degree; ave_k_in_inclps - average indegree; ave_k_out_inclps -
average outdegree. Dataset consists of 148,886 genes from 2,000 random network topologes..
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A.2.1 Colinearity between instrength and outstrength
The predictor variables used in statistical modelling in the main results, node instrength and
outstrength, were correlated (Spearman’s � = -0.17, p-value < 2.2 × 10−16, Fig A.8A-B). This
correlation is due to the distributions of in and out nodes being non independent: the more
in-connections has, the less out-connections. We also observed that a part of the residuals
non-normality may be due to points with a value of zero in one of the two predictor variables.
As a control, we rerun the entire analysis on two additional �ltered datasets. In the �rst one,
we kept only genes with zero values of either instrength or outstrength, i.e. this dataset con-
sisted of only regulators and target genes. Instrength and outstrength were more correlated
in the �rst �ltered dataset (Spearman’s � = -0.86, p-value < 2.2 × 10−16, Fig A.8C) than in the
un�ltered dataset. In the second �ltered dataset, we removed all genes that had a zero value
of either instrength or outstrength, i.e. this dataset consisted of genes that are both regulators
and regulated. Instrength and outstrength were less correlated in the second �ltered dataset
(Spearman’s � = -0.03, p-value < 2.2 × 10−16, Fig A.8C) than in the un�ltered dataset, and this
�ltering somewhat reduced the heteroskedasticity of the Pearson’s residuals in the statisti-
cal models. The same pattern of e�ects and signi�cance of instrength and outstrength was
observed in the �ltered datasets as in the main dataset, indicating that our conclusions are ro-
bust to the heteroskedasticity of Pearson’s residuals and collinearity between the explanatory
variables. The results of all statistical models are summarized in Table A.7 in Section 5.

A.2.2 PCA of global network metrics
To investigate the e�ects of the intercorrelated graph-level network centrality metrics on noise
propagation and noise evolution, we performed a principal component analysis (PCA) to con-
struct independent summary variables representing graph-level network centrality metrics.
The �rst two dimensions of the PCA expressed 85.4% of the total data inertia (Fig A.9A), so
we chose the �rst two principal components (PCs) as synthetic explanatory variables in lin-
ear mixed-e�ects models in the main results. The loadings of the �rst two PCs are shown in
Fig A.9B. The loading of the �rst synthetic variable (PC1) is dominated by negative loadings of
diameter and mean path distance, and the centralization measures, namely positive loadings
of outdegree and closeness centralization and negative loadings of indegree and betweenness
centralization. The loading of the second synthetic variable (PC2) is dominated by the neg-
ative loading of the average degree, average indegree and average outdegree measures. For
easier interpretation, the sign of the PCs has been switched in the statistical modelling shown
in the main text.
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Figure A.8: Correlations between node instrength and outstrength in un�ltered and
�ltered datasets. A - Correlation between instrength and outstrength in the un�ltered
dataset. Dataset consists of 148,886 genes from 2,000 random network topologies. B - Corre-
lation between square-root transformed instrength and outstrength in the un�ltered dataset.
C - Correlation between square-root transformed instrength and outstrength in the �ltered
dataset. Dataset consists of 43,214 genes from 2,000 random network topologies. D - Correla-
tion between square-root transformed instrength and outstrength in the �ltered dataset. The
dataset consists of 105,672 genes from 2,000 random network topologies.
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Figure A.9: Principal component analysis of the graph-level network centrality met-
rics. A - Scree plot depicting the percentage of total variance explained by each principal
component. The �rst two principal components express 85.4% of the total inertia. B - Corre-
lation circle showing the loadings of the �rst two principal components.
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A.3 Diagnostics of statistical models

A.3.1 GLMM: Noise propagation
To investigate whether noise propagation is captured by our gene regulatory network model,
we �tted a linear mixed-e�ects model with the following formula:

y = X� + Zu + �, (A.1)

where the outcome variable, y , is a column vector of the expression variance of each node;
X is a matrix of two explanatory �xed-e�ects variables, node instrength and node outstrength,
� is a column vector of the two �xed-e�ects coe�cients; Z is the column vector for the design
of the random e�ect variable, network topology sample, and the number of groups equivalent
to the number of network topology samples; u is a column vector with the random-e�ects
coe�cient for each group (network topology sample); � is a column vector with the residuals.
When �tting a model with the assumption of constant variance, the Pearson’s residuals were
heteroskedastic (Fig A.10A). We �tted models with di�erent variance structures and based on
Akaike’s Information Criterion chose the model with the exponential function of the node in-
strength as the variance structure. Pearson’s residuals of the chosen and all other �tted models
are shown in Fig A.10B-E. Changing the variance structure did not change the signi�cance or
the e�ect of the �xed variables (Table A.2). The variance in�ation factor (VIF), a measure of
collinearity of explanatory variables, was 1.08. A VIF value lower than 3 indicates that the
statistical signi�cance of the inferred e�ects is reliable in spite of collinearity (James et al.,
2013).

A.3.2 GLMM: Relative change of expression variance
To investigate whether local network centrality measures a�ect the evolution of expression
variance, we �tted a linear mixed-e�ects model with the same formula as Eq. 1. with the nor-
malized change of expression variance as the outcome variable. When �tting a model with the
assumption of constant variance, the Pearson’s residuals were heteroskedastic (Fig A.11A). We
�tted models with di�erent variance structures and based on Akaike’s Information Criterion
chose the model with the exponential function of the node abstrength as the variance struc-
ture. Pearson’s residuals of the chosen and all other �tted models are shown in Fig A.11B-E.
Changing the variance structure did not change the signi�cance or the e�ect of the �xed vari-
ables (Table A.3). The variance in�ation factor (VIF), a measure of collinearity of explanatory
variables, was 1.06. A VIF value lower than 3 indicates that the statistical signi�cance of the
inferred e�ects is reliable in spite of collinearity.
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Figure A.10: Diagnostics of linear mixed-e�ects models with expression variance as a
response variable and di�erent variance structures.
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Figure A.10: Continued. A-C Plot of Pearson’s residuals vs. �tted values (A), Q-Q plot of
Pearson’s residuals (B), Q-Q plot of random e�ects (C) of a model with no variance structure.
D-F Pearson’s residuals vs. �tted values (D), Q-Q plot of standardized Pearson’s residuals
(E), Q-Q plot of random e�ects (C) of a model with a variance structure modelled as a power
function of instrength and outstrength. G-I Pearson’s residuals vs. �tted values (G), Q-Q
plot of standardized Pearson’s residuals (H), Q-Q plot of random e�ects (I) of a model with a
variance structure modelled as an exponential function of instrength. J-L Pearson’s residuals
vs. �tted values (J), Q-Q plot of standardized Pearson’s residuals (K), Q-Q plot of random e�ects
(L) of a model with a variance structure modelled as an exponential function of outstrength.
M-O Pearson’s residuals vs. �tted values (M), Q-Q plot of standardized Pearson’s residuals (N),
Q-Q plot of random e�ects (O) of a model with a variance structure modelled as an exponential
function of instrength and outstrength. P-R Pearson’s residuals vs. �tted values (P), Q-Q
plot of standardized Pearson’s residuals (Q), Q-Q plot of random e�ects (R) of a model with
a variance structure modelled as an exponential function of instrength and outstrength and
with the explanatory variables transformed with the Box-Cox transform.

Table A.2: Di�erent variance structures do not a�ect the sign of the e�ect and signi�-
cance in linearmixed-e�ects models with expression variance as a response variable.
The results of models with di�erent variance structures are shown in the table. The e�ect size
di�ers by a small margin, but the sign and signi�cance remain the same regardless of variance
structure. The model with the variance structure as an exponential function of instrength had
the lowest Akaike’s Information Criterion and was chosen as the best model. Abbreviations:
const. var. - constant variance; power var., in + out; variance as a power function of instrength;
exp. var., in - variance as an exponential function of instrength; exp. var., out - variance as an
exponential function of outstrength; exp. var., in + out - variance as an exponential function
of instrength and outstrength; absInStrT_sqrt - absolute instrength, square-root transformed;
absOutStrT_sqrt - absolute outstrength, square-root transformed.
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Figure A.11: Diagnostics of linearmixed-e�ectsmodelswith relative change of expres-
sion variance after selection as a response variable and di�erent variance structures.
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Figure A.11: Continued. A-C Plot of Pearson’s residuals vs. �tted values (A), Q-Q plot of
Pearson’s residuals (B), Q-Q plot of random e�ects (C) of a model with no variance structure.
D-F Pearson’s residuals vs. �tted values (D), Q-Q plot of standardized Pearson’s residuals
(E), Q-Q plot of random e�ects (C) of a model with a variance structure modelled as a power
function of instrength and outstrength. G-I Pearson’s residuals vs. �tted values (G), Q-Q
plot of standardized Pearson’s residuals (H), Q-Q plot of random e�ects (I) of a model with a
variance structure modelled as an exponential function of instrength. J-L Pearson’s residuals
vs. �tted values (J), Q-Q plot of standardized Pearson’s residuals (K), Q-Q plot of random e�ects
(L) of a model with a variance structure modelled as an exponential function of outstrength.
M-O Pearson’s residuals vs. �tted values (M), Q-Q plot of standardized Pearson’s residuals (N),
Q-Q plot of random e�ects (O) of a model with a variance structure modelled as an exponential
function of instrength and outstrength. P-R Pearson’s residuals vs. �tted values (P), Q-Q
plot of standardized Pearson’s residuals (Q), Q-Q plot of random e�ects (R) of a model with a
variance structure modelled as an exponential function of instrength and outstrength and with
the explanatory variables transformed with the Box-Cox transform. S-U Pearson’s residuals
vs. �tted values (M), Q-Q plot of standardized Pearson’s residuals (N), Q-Q plot of random
e�ects (O) of a model with constant variance structure �tted on the dataset of populations
evolved under neutrality.
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Table A.3: Di�erent variance structures do not a�ect the sign of the e�ect and signi�-
cance in linear mixed-e�ects models with relative change of expression variance af-
ter selection as a response variable. The results of models with di�erent variance structures
are shown in the table. The e�ect size di�ers by a small margin, but the sign and signi�cance
remain the same regardless of variance structure. The model with the variance structure as
an exponential function of instrength had the lowest Akaike’s Information Criterion and was
chosen as the best model. Abbreviations: const. var. - constant variance; power var., in + out;
variance as a power function of instrength; exp. var., in - variance as an exponential function
of instrength; exp. var., out - variance as an exponential function of outstrength; exp. var., in +
out - variance as an exponential function of instrength and outstrength; absInStrT_sqrt - abso-
lute instrength, square-root transformed; absOutStrT_sqrt - absolute outstrength, square-root
transformed.
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A.3.3 GLMM: Selective pressure
To investigate whether local network centrality measures a�ect the strength of selective pres-
sure acting on genes, we �tted a linear mixed-e�ects model with the same formula as Eq. 1.
with the selective pressure as the outcome variable. When �tting a model with the assumption
of constant variance, the Pearson’s residuals were heteroskedastic (Fig A.12A). We �tted mod-
els with di�erent variance structures and based on Akaike’s Information Criterion chose the
model with the exponential function of the node abstrength as the variance structure. Pear-
son’s residuals of the chosen and all other �tted models are shown in Fig A.12B-E. Changing
the variance structure did not change the signi�cance or the e�ect of the �xed variables (Ta-
ble A.4). The variance in�ation factor (VIF), a measure of collinearity of explanatory variables,
was 1.03. A VIF value lower than 3 indicates that the statistical signi�cance of the inferred
e�ects is reliable in spite of collinearity.
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Figure A.12: Diagnostics of linear mixed-e�ects models with selective pressure as a
response variable and di�erent variance structures.
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Figure A.12: Continued. A-C Plot of Pearson’s residuals vs. �tted values (A), Q-Q plot of
Pearson’s residuals (B), Q-Q plot of random e�ects (C) of a model with no variance structure.
D-F Pearson’s residuals vs. �tted values (D), Q-Q plot of standardized Pearson’s residuals
(E), Q-Q plot of random e�ects (C) of a model with a variance structure modelled as a power
function of instrength and outstrength. G-I Pearson’s residuals vs. �tted values (G), Q-Q
plot of standardized Pearson’s residuals (H), Q-Q plot of random e�ects (I) of a model with a
variance structure modelled as an exponential function of instrength. J-L Pearson’s residuals
vs. �tted values (J), Q-Q plot of standardized Pearson’s residuals (K), Q-Q plot of random e�ects
(L) of a model with a variance structure modelled as an exponential function of outstrength.
M-O Pearson’s residuals vs. �tted values (M), Q-Q plot of standardized Pearson’s residuals (N),
Q-Q plot of random e�ects (O) of a model with a variance structure modelled as an exponential
function of instrength and outstrength. P-R Pearson’s residuals vs. �tted values (P), Q-Q
plot of standardized Pearson’s residuals (Q), Q-Q plot of random e�ects (R) of a model with a
variance structure modelled as an exponential function of instrength and outstrength and with
the explanatory variables transformed with the Box-Cox transform. S-U Pearson’s residuals
vs. �tted values (M), Q-Q plot of standardized Pearson’s residuals (N), Q-Q plot of random
e�ects (O) of a model with constant variance structure �tted on the dataset of populations
evolved under neutrality.
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Table A.4: Di�erent variance structures do not a�ect the sign of the e�ect and signif-
icance in linear mixed-e�ects models with selective pressure as a response variable.
The results of models with di�erent variance structures are shown in the table. The e�ect size
di�ers by a small margin, but the sign and signi�cance remain the same regardless of variance
structure. The model with the variance structure as an exponential function of instrength had
the lowest Akaike’s Information Criterion and was chosen as the best model. Abbreviations:
const. var. - constant variance; power var., in + out; variance as a power function of instrength;
exp. var., in - variance as an exponential function of instrength; exp. var., out - variance as an
exponential function of outstrength; exp. var., in + out - variance as an exponential function
of instrength and outstrength; absInStrT_sqrt - absolute instrength, square-root transformed;
absOutStrT_sqrt - absolute outstrength, square-root transformed.
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A.3.4 GLM: Average selective pressure
To investigate whether global network centrality measures a�ect the average selective pres-
sure acting on genes in networks, we �tted a linear model with the average selective pressure
per network as the outcome variable, and the �rst two principal components as explanatory
variables, after performing a principal component analysis on 12 graph-level centrality met-
rics. Diagnostical plots are shown in Fig A.13.

Figure A.13: Diagnostics of linear model with average selective pressure per network
as a response variable. A, B - Pearson’s residuals vs. �tted values (A) and Q-Q plot of stan-
dardized Pearson’s residuals (B) in the model �tted on selected populations. C, D - Pearson’s
residuals vs. �tted values (C) and Q-Q plot of standardized Pearson’s residuals (D) in the model
�tted on neutral populations.
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A.4 Robustness of results in di�erent topology structures
The analysis of the e�ects of local network metrics on the evolution of expression noise
was performed on a dataset of 2,000 random (Erdős–Rényi) network topologies. To check
whether our results hold for other network topology types, we performed the same analysis
of two additional datasets: 1,000 scale-free (Barabási–Albert) networks, and 1,000 small-world
(Watts–Strogatz model) networks. The results of all generalized linear mixed-e�ects models
and mutual information tests are consistent and summarized in Table A.5.

Table A.5: The e�ects and signi�cance of local network centrality metrics are con-
sistent across di�erent topological structures. The e�ect size di�ers by a small margin,
but the sign and signi�cance remain the same across di�erent topological structures. Dataset
consists of 113,274 genes from 3,000 network topologies.

Response Topology Expl. var. Beta p-value (GLMM)1 MI p-value (MI)2

ER Instrength 0.28 < 2.2 × 10−16 *** 0.67 10−4 ***
Outstrength -0.02 < 2.2 × 10−16 *** 0.05 10−4 ***

Expression
variance BA Instrength 0.21 < 2.2 × 10−16 *** 0.34 10−4 ***

Outstrength -0.06 < 2.2 × 10−16 *** 0.11 10−4 ***

WS Instrength 0.25 < 2.2 × 10−16 *** 0.43 10−4 ***
Outstrength -0.05 < 2.2 × 10−16 *** 0.05 10−4 ***

ER Instrength -0.003 2.9 × 10−10 *** 0.09 10−4 ***
Outstrength -0.046 < 2.2 × 10−16 *** 0.14 10−4 ***

Rel. change of
expr. variance BA Instrength -0.041 < 2.2 × 10−16 *** 0.19 10−4 ***

Outstrength -0.027 < 2.2 × 10−16 *** 0.26 10−4 ***

WS Instrength 0.004 < 2.6 × 10−7 *** 0.09 10−4 ***
Outstrength -0.039 < 2.2 × 10−16 *** 0.08 10−4 ***

ER Instrength -1.87 < 2.2 × 10−16 *** — —
Outstrength -0.08 < 2.2 × 10−16 *** — —

Probability of
responding to
selection

BA Instrength -2.01 < 2.2 × 10−16 *** — —
Outstrength -0.4 < 2.2 × 10−16 *** — —

WS Instrength -1.88 < 2.2 × 10−16 *** — —
Outstrength -0.16 3.9 × 10−11 *** — —

ER Instrength -0.04 < 2.2 × 10−16 *** 0.19 10−4 ***
Outstrength 0.03 < 2.2 × 10−16 *** 0.31 10−4 ***

Gene-speci�c
selective
pressure

BA Instrength -0.02 < 2.2 × 10−16 *** 0.14 10−4 ***
Outstrength 0.02 < 2.2 × 10−16 *** 0.54 10−4 ***

WS Instrength -0.04 < 2.2 × 10−16 *** 0.17 10−4 ***
Outstrength 0.03 < 2.2 × 10−16 *** 0.2 10−4 ***

1 Coe�cients and their signi�cance were computed using linear mixed-e�ects model (see
Methods). 2 Mutual information p-values were computed using a Monte Carlo permutation
test with 10,000 permutations. Asterisks indicate statistical signi�cance: n.s. - p-value > 0.05;
* - p-value ≤ 0.05; ** - p-value ≤ 0.01; *** - p-value ≤ 0.001; **** - p-value ≤ 0.0001.
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A.5 Robustness of results to unequal �tness contribution
of genes

In most simulations performed in this study we assumed for simplicity an equal �tness contri-
bution of all genes, which is not biologically realistic. To check whether our results are robust
with di�erent parametrization of �tness contribution, we performed the same analysis of an
additional dataset: 500 of the same (Erdős–Rényi) networks used in the main results, but with
the values of �tness contribution of all genes {�i}1≤i≤n drawn from an uniform distribution
 (0, 2). The results of all generalized linear mixed-e�ects models and mutual information
tests are consistent and summarized in Table A.6.

Table A.6: The e�ects and signi�cance of local network centrality metrics are consis-
tent between assumptions of equal and unequal �tness contributions of genes. The
e�ect size di�ers by a small margin, but the sign and signi�cance remain between the two
parametrizations of �tness contribution.

Response FC2 Expl. var. Beta p-value (GLMM)1 MI p-value (MI)2

equal Instrength 0.28 < 2.2 × 10−16 *** 0.67 10−4 ***
Outstrength -0.02 < 2.2 × 10−16 *** 0.05 10−4 ***

Expression
variance unequal Instrength 0.26 < 2.2 × 10−16 *** 0.67 10−4 ***

Outstrength -0.02 < 2.2 × 10−16 *** 0.05 10−4 ***

equal Instrength -0.003 2.9 × 10−10 *** 0.09 10−4 ***
Outstrength -0.046 < 2.2 × 10−16 *** 0.14 10−4 ***

Rel. change of expr.
variance unequal Instrength -0.006 < 2.2 × 10−16 *** 0.02 10−4 ***

Outstrength -0.018 < 2.2 × 10−16 *** 0.03 10−4 ***

equal Instrength -1.87 < 2.2 × 10−16 *** — —
Outstrength -0.08 < 6.67 × 10−7 *** — —

Probability of
responding to selection unequal Instrength -1.96 < 2.2 × 10−16 *** — —

Outstrength -0.13 < 2.2 × 10−16 *** — —

equal Instrength -0.04 < 2.2 × 10−16 *** 0.19 10−4 ***
Outstrength 0.03 < 2.2 × 10−16 *** 0.31 10−4 ***

Gene-speci�c
selective
pressure

unequal Instrength -0.06 < 2.2 × 10−16 *** 0.07 10−4 ***
Outstrength 0.05 < 2.2 × 10−16 *** 0.06 10−4 ***

1 Coe�cients and their signi�cance were computed using linear mixed-e�ects model (see
Methods). 2 Mutual information p-values were computed using a Monte Carlo permutation
test with 10,000 permutations. Asterisks indicate statistical signi�cance: n.s. - p-value > 0.05;
* - p-value ≤ 0.05; ** - p-value ≤ 0.01; *** - p-value ≤ 0.001; **** - p-value ≤ 0.0001. 2 Fitness
contribution.
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Figure A.14: Di�erential selective pressure is acting on genes based on their central-
ity, regardless of the �tness contribution parametrization. A, B - Distributions of the
measured selective pressure in selected (A) and neutral (B) populations. Genes with a selec-
tive pressure above 0.25 were categorized as responsive to selection. C, D - High instrength
genes are less likely to respond to selection. Absolute instrength (C) has a strong signi�cant
negative e�ect on the probability of selection response. Absolute outstrength (D) has a weak
signi�cant negative e�ect on the probability of selection response. E, F - In the subset of genes
that responded to selection, high instrength (E) decreases the selective pressure, while high
outstrength (F) increases the selective pressure acting on individual genes. The lines indicate
the 25% (lower dashed line), 50% (solid line), and 75% (upper dashed line) �tted quantiles. G,
H - Absolute instrength (G) and outstrength (H) have no signi�cant e�ect on the selective
pressure in the non-selected populations. The dataset consists of 74,443 genes from 2,000 pop-
ulations with unique 40-gene random network topology samples, which were independently
evolved 10 times under selection and 10 times under neutrality. The selective pressure on
each gene is calculated as the average normalized reduction of the intrinsic noise parameter
during the evolutionary simulation and summarized as the mean over all replicates in each
scenario. Coe�cients, p-values and partial marginal R2 measures are estimated using logistic
regression and linear mixed-e�ects models with selection responsiveness or selective pressure
as the response variable, instrength and outstrength as �xed e�ect explanatory variables, and
the network topology sample as the random e�ect explanatory variable. Mutual information
(MI) p-values were computed using 10,000 permutations.
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A.6 Filtered datasets
We performed the analyses on two additional datasets to get a clearer picture of the e�ects
of instrength and outstrength on the expression noise metrics. The �rst �ltered dataset is a
dataset in which genes that are both regulators and regulated were removed, i.e. it consists ex-
clusively of pure regulators (genes that regulate others and are not being regulated) and purely
regulated genes (genes that are being regulated and do not regulate other genes). The second
�ltered dataset is a dataset that consists exclusively of genes that are both regulators and reg-
ulated, i.e. in this dataset pure regulators and purely regulated genes have been removed. The
e�ects and signi�cance of the two local centrality metrics are consistent in analyses of ex-
pression variance, relative change of expression variance and gene-speci�c selective pressure
(Table A.7). In the un�ltered and second �ltered dataset we found a signi�cant small nega-
tive e�ect of outstrength on the probability of responding to selection. However, the negative
e�ect is lost when we analysed only the genes that are either regulators or regulated genes
(Filtered 1 dataset), and we observed a signi�cant strong positive e�ect of outstrength on the
probability of responding to selection. We concluded that instrength in genes that are both
regulators and regulated in�uences the e�ect of outstrength on the probability of responding
to selection and that there are complex interactions between the two centrality metrics. How-
ever, when there are no genes that have both instrength and outstrength the e�ects are clear
and instrength has a strongly negative e�ect, while outstrength has a strongly positive e�ect
on the probability of a gene to respond to selection.
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Table A.7: Filtered and un�ltered datasets. Filtered 1 dataset is dataset in which genes that
are both regulators and regulated were removed, i.e. it consists exclusively of pure regulators
(genes that regulate others and are not being regulated) and purely regulated genes (genes
that are being regulated and do not regulate other genes). Filtered 1 dataset consists of 43,214
genes from 2,000 random network topologes. Un�ltered dataset consists of 148,886 genes
from 2,000 random network topologes. Filtered 2 dataset consists exclusively of genes that are
both regulators and regulated, i.e. in this dataset pure regulators and purely regulated genes
have been removed. Filtered 2 dataset consists of 105,672 genes from 2,000 random network
topologes.
Response Dataset Expl. var. Beta p-value (GLMM)1 MI p-value (MI)2

Filtered 1 Instrength 0.29 < 2.2 × 10−16 *** 0.8 10−4 ***
Outstrength 7.8 × 10−4 < 2.6 × 10−9 *** 0.61 10−4 ***

Expression
variance Un�ltered Instrength 0.28 < 2.2 × 10−16 *** 0.67 10−4 ***

Outstrength -0.022 < 2.2 × 10−16 *** 0.05 10−4 ***

Filtered 2 Instrength 0.24 < 2.2 × 10−16 *** 0.43 10−4 ***
Outstrength -0.08 < 2.2 × 10−16 *** 0.02 10−4 ***

Filtered 1 Instrength -0.033 < 2.2 × 10−16 *** 0.29 10−4 ***
Outstrength -0.073 < 2.2 × 10−16 *** 0.34 10−4 ***

Rel. change of
expr. variance Un�ltered Instrength -0.003 2.9 × 10−10 *** 0.09 10−4 ***

Outstrength -0.046 < 2.2 × 10−16 *** 0.14 10−4 ***

Filtered 2 Instrength -0.017 < 2.2 × 10−16 *** 0.07 10−4 ***
Outstrength -0.035 < 2.2 × 10−16 *** 0.08 10−4 ***

Filtered 1 Instrength -1.94 < 2.2 × 10−16 *** — —
Outstrength 1.55 < 9.79 × 10−11 *** — —

Probability of
responding to
selection

Un�ltered Instrength -1.87 < 2.2 × 10−16 *** — —
Outstrength -0.08 < 6.67 × 10−7 *** — —

Filtered 2 Instrength -1.79 < 2.2 × 10−16 *** — —
Outstrength -0.25 < 2.2 × 10−16 *** — —

Filtered 1 Instrength -0.05 < 2.2 × 10−16 *** 0.63 10−4 ***
Outstrength 0.03 < 2.2 × 10−16 *** 0.72 10−4 ***

Gene-speci�c
selective
pressure

Un�ltered Instrength -0.04 < 2.2 × 10−16 *** 0.1 10−4 ***
Outstrength 0.03 < 2.2 × 10−16 *** 0.05 10−4 ***

Filtered 2 Instrength -0.04 < 2.2 × 10−16 *** 0.1 10−4 ***
Outstrength 0.03 < 2.2 × 10−16 *** 0.17 10−4 ***

1 Coe�cients and their signi�cance were computed using linear mixed-e�ects model (see
Methods). 2 Mutual information p-values were computed using a Monte Carlo permutation
test with 10,000 permutations. Asterisks indicate statistical signi�cance: n.s. - p-value > 0.05;
* - p-value ≤ 0.05; ** - p-value ≤ 0.01; *** - p-value ≤ 0.001; **** - p-value ≤ 0.0001.
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Abstract

Expression noise, the variability of the amount of gene product among isogenic cells grown

in identical conditions, originates from the inherent stochasticity of diffusion and binding of

the molecular players involved in transcription and translation. It has been shown that

expression noise is an evolvable trait and that central genes exhibit less noise than periph-

eral genes in gene networks. A possible explanation for this pattern is increased selective

pressure on central genes since they propagate their noise to downstream targets, leading

to noise amplification. To test this hypothesis, we developed a new gene regulatory network

model with inheritable stochastic gene expression and simulated the evolution of gene-

specific expression noise under constraint at the network level. Stabilizing selection was

imposed on the expression level of all genes in the network and rounds of mutation, selec-

tion, replication and recombination were performed. We observed that local network fea-

tures affect both the probability to respond to selection, and the strength of the selective

pressure acting on individual genes. In particular, the reduction of gene-specific expression

noise as a response to stabilizing selection on the gene expression level is higher in genes

with higher centrality metrics. Furthermore, global topological structures such as network

diameter, centralization and average degree affect the average expression variance and

average selective pressure acting on constituent genes. Our results demonstrate that selec-

tion at the network level leads to differential selective pressure at the gene level, and local

and global network characteristics are an essential component of gene-specific expression

noise evolution.

Author summary

“No man is an island, entire of itself. Each is a piece of the continent, a part of the main.”

declares John Donne in his poem For Whom the Bell Tolls, emphasizing that no individual

human is entirely separate from humanity as a whole interconnected system. Organisms

are biological systems constituted of many interacting components that also interact with

each other and the environment. Understanding the evolution of single components such
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as individual cells or genes can only be fully achieved by considering the interactions with

other components. Here, we study the evolution of the cell-to-cell variability of gene

expression, the so-called expression noise. To understand the evolution of gene-specific

expression noise, we develop a model of gene network evolution with selection at the gene

regulatory network level. We find that selection at the gene network level has different

repercussions for individual genes based on their position in the network and that gene

expression noise is more constrained in genes that are central in the network. Further-

more, the topological structure of the background network affects the propagation and

evolvability of gene expression noise. These findings indicate that selection on a given

system results in differential selective pressures at the level of subsystems. Our results

further suggest that selection to mitigate inherent noise plays a role in network and gene

evolution.

Introduction

Living beings are complex systems constituted of many genes that interact with each other and

the environment to create an organism. From prokaryotes with a few hundred essential genes,

to eukaryotes with possibly several thousands, cells require many gene products to work

together to perform housekeeping functions and to replicate. Fine-tuned molecular processes,

generally referred to as gene expression, ensure how, where and when these products are gener-

ated. However, gene expression is an inherently noisy process [1, 2], which involves many

steps where molecules participating in the expression machinery diffuse and bind to target

molecules. Additionally, these molecules are often present in small copy numbers, increasing

the susceptibility of gene expression to stochastic events. Consequently, there is a variation in

gene expression levels among cells, even if they are isogenic and grown in a homogeneous

environment, and this inevitable variation has been termed gene expression noise. Organisms

have to express hundreds of genes, each one of which is noisy—raising the question of how

they evolved to cope with this inevitable noise.

The expression noise level of a particular gene may be decomposed into two components,

called extrinsic and intrinsic. Extrinsic noise affects all genes equally and results from the shar-

ing of key molecules, such as RNA polymerases and ribosomes, by all genes in the expression

process, as well as, for instance, differences in cell size and phase in the cell cycle. Intrinsic

noise is gene-specific and results from different chromatin states, cis-regulatory elements and

kinetic parameters of transcription and translation of each gene [3]. Minor sequence muta-

tions can have a significant effect on the level of expression noise. For example, a small number

of single-nucleotide changes in a transcription factor binding site were reported to have a large

effect on the expression noise level [4]. Since (i) there is variation in the level of intrinsic noise

of genes, and (ii) intrinsic noise is genetically determined—and, therefore, heritable—gene

expression noise can be shaped by natural selection.

Evidence of selection on expression noise was first seen in the fact that dosage-sensitive

genes [5] and essential genes exhibit lower levels of expression noise [6, 7]. Intrinsic noise was

also reported to correlate with the strength of selection acting on the encoded protein. Namely,

proteins with a lower ratio of non-synonymous over synonymous substitution rate (Ka/Ks)

have a lower level of expression noise [8]. Changes in the expression noise of a single gene may

be either beneficial or deleterious, depending on how far its mean expression is from the opti-

mal expression level [9]. Expression noise is deleterious if the mean expression level is close to

the optimal, as higher variation, in this case, generates a larger number of less fit individuals,
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reducing the population fitness. Conversely, expression noise can be beneficial if the mean

expression level is far from the optimum, as noisy genes are more likely to generate cells with

an expression level closer to the optimum. Noisy gene expression can thus be part of a bet-

hedging strategy and was observed in genes involved in immune and environmental response

[10–13]. The fitness cost of changes in the level of expression noise in the fitness landscapes of

� 30 yeast genes have been shown to be on the same order as fitness costs of changes in mean

expression level [14]. Since the fitness effect of different levels of expression noise can be as

detrimental as different mean expression levels, which are thought to be extensively under

selection [15], it can be assumed that expression noise is extensively under selection genome-

wide. Prevalent selection on expression noise has been demonstrated in naturally segregating

promoter variants of E. coli [16].

The phenotype (and, therefore, the fitness) of an organism depends on the interaction of

many genes. As a result, genes do not evolve independently, and the selective pressure acting

on a gene’s intrinsic noise depends on its interactions with other genes. Understanding the evo-

lution of gene expression noise requires accounting for such gene-to-gene interactions, com-

monly depicted by a gene network. The propagation of noise from gene to gene in the network

was established both theoretically and experimentally [17, 18]. Genes with many connections

propagate their noise to a more substantial extent than genes with fewer connections and,

therefore, contribute more to the global noise levels of the network. Gene networks are robust

to variation in the expression level of their system components to some degree, but at a critical

point the global noise of the network becomes too high and leads to network collapse. Selection

against noise at the network level was, therefore, hypothesized to result in stronger constraints

on the intrinsic noise of highly connected genes [8]. Moreover, the topological structure of the

network has been shown to affect the pattern of noise propagation [19], suggesting that the

topology of the network might impose additional selective constraints on the constituent genes.

Here, we test the hypothesis that expression noise of highly connected genes in gene net-

works is under stronger selective pressure than expression noise in peripheral genes using an

in silico evolutionary experiment. We introduce a new gene regulatory network evolution

model, which includes an evolvable component of stochastic gene expression, and use it to

evolve thousands of network topology samples over 10,000 generations. These simulations

showed that highly connected genes have a more constrained intrinsic expression noise. They

further revealed that not all genes might evolve in response to network-level selection, and the

probability that they do so depends on local network properties. Lastly, the average selective

pressure acting on genes in a network is affected by topological features such as network diam-

eter, centralization and average degree.

Materials and methods

We introduce a new gene regulatory network model that incorporates intrinsic expression

noise. We then use this model within a forward simulation framework to simulate the evolu-

tion of populations of networks with mutable levels of intrinsic expression noise. These simu-

lations allow us to study how the selective pressure acting on expression noise varies within the

regulatory network.

A gene regulatory network model with stochastic gene expression

To investigate the evolution of stochastic gene expression in gene regulatory networks, we

first extend Wagner’s gene network model [20] to integrate gene-specific expression noise.

We model a network of n genes (n = 40 in this study) defined by a regulatory matrix W =

(wij)1�i�n, 1�j�n, and a vector of intrinsic, gene-specific noise fZinti g1�i�n. Each element wij of
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the regulatory matrix W defines the regulatory effect of gene j on gene i. The value of wij is a

real number and is referred to as regulatory strength of gene j on gene i. In case wij> 0, gene j
is an activator of gene i and increases its expression level. Conversely, when wij< 0, gene j is a

repressor of gene i and decreases its expression level. Lastly, if wij = 0, gene i is not regulated

by gene j and gene j has no effect on expression level of gene i. Two genes i and j are connected

by an edge in the network if at least one of wij and wji is non-null. The intrinsic noise vector

fZinti g1�i�n defines the gene-specific expression noise of each gene in the network. The regula-

tory matrix and the intrinsic noise vector together constitute a unique genotype in this model-

ing framework (Fig 1A).

The phenotype (the expression level of each gene) in the model is represented by a state vec-

tor {Si}1�i�n = {s1, s2, . . ., sn}, which describes the expression level of each gene. The state vector

at t0 is set to an arbitrary basal expression level value (fS0
i g1�i�n ¼ fSbasali g1�i�n ¼ f20; . . . ; 20g

Fig 1. The evolution of gene-specific expression noise was simulated using populations of model gene regulatory networks with

mutable levels of gene-specific expression noise under selective and non-selective conditions. A—Gene regulatory network

model. The genotype consists of the intrinsic noise vector ηint and regulatory matrix W. The intrinsic noise vector defines the gene-

specific expression variance of each gene in the network. The regulatory matrix defines the regulatory interactions in the network.

The genotype is realized into the phenotype using the dynamical equation described in the main text. The phenotype is given by the

state vector S, which represents the expression level of each gene in the network. B—Deterministic (left) and stochastic (right)

realizations of the model. C—Steps of the evolutionary simulation process. Each established network configuration was used as a

founding network for the network populations used in the noise evolution simulation. In every generation, genotypes are realized

and phenotypes (expression levels) are sampled from the last time step. Fitness is calculated from the expression levels. If the

populations are evolved under selection, fitness is calculated as the distance of the expression level of each gene from the optimal

expression level. Genotypes are reproduced based on their relative fitness and mutations in the intrinsic noise vectors are introduced.

Noise genotype vectors are recombined by randomly choosing individuals for recombination and shuffling their noise vectors. The

process is repeated for 10,000 generations. D—Algorithm overview.

https://doi.org/10.1371/journal.pcbi.1010982.g001
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in this study). In every time step t (1� t� Tr, with Tr = 50 in this study), the expression level

of each gene is recomputed. The cumulative effect of all transcription factors in the expression

level of each gene is for simplicity considered to be additive, i.e. we assume there is no coopera-

tive or competitive binding of transcription factors to transcription factor binding sites. This

assumption removes the small degree of non-linearity in the response of the regulated gene to

transcription factor concentrations, which is present in real transcription factor regulation

dynamics. The activation rate ai(t) is defined as the sum of all effects the regulators of gene i
have on its expression level at time step t:

aiðtÞ ¼
Xn

j¼1

wij � sjðtÞ; ð1Þ

in which case the dynamic equation for the expression level of each gene in the following time

step is:

siðt þ 1Þ � N ðsbasali þ aiðtÞ; Zinti Þ: ð2Þ

In every time step the expression level of a gene is drawn from a random distribution. We

implemented a simple Gaussian noise, where the mean of the normal distribution equals the

sum of basal expression level (sbasali ) and activation rate (ai(t)), and the variance equals the gene

noise genotype (Zinti ). If the expression level value drawn from the normal distribution is below

the minimal (smin = 0) or above the maximal expression level (smax = 100), it is set to the mini-

mal or maximal expression level, respectively. We note that the shape and variance of the dis-

tribution is constant in realization time in our model, but that the expression levels of each

individual is the product of the trajectory of the expression levels during the realization pro-

cess, during which expression levels can exhibit phenotypic switching between stable states.

Consequently, there can be a non-normal expression level distribution of a certain gene in the

clonal population, even though the expression levels in each time step are drawn from a nor-

mal distribution.

The expression levels of all genes are synchronously updated in each time step. The steady

state expression levels are invariant to whether the expression levels of each gene are updated

synchronously or asynchronously (S1 Text). Similarly, mean expression level, expression vari-

ance, CV, noise and Fano factor are invariant to the updating mode (S1 Text). The model may

be realized as stochastic or deterministic, depending on the noise parameter values (Fig 1B).

The deterministic realization has been used to benchmark the model and to set up the mean

expression levels for the starting populations, and the stochastic realization has been used in

the main bulk of the simulations, in which intrinsic noise is evolved.

Forward-in-time simulation of expression noise evolution

To investigate how gene-specific expression noise of constituent genes responds to stabilizing

selection at the network level, we used the newly introduced model to perform forward-in-

time evolutionary simulations in which we allow the gene-specific noise levels to mutate. An in
silico evolutionary process consisting of rounds of mutation, selection, recombination and rep-

lication events of a population of N (N = 1, 000 in this study) individuals was performed for

T (T = 10, 000) generations (Fig 1C).

We first generated network topologies that would serve as the founding network for the

populations in our simulations. We generated 2,000 random (Erdős–Rényi model) network

topologies of 40 nodes with regulatory strength values drawn from a uniform distribution

Uð� 3; 3Þ. The network density was d = 0.05. Only connected network graphs were used,

meaning there is only one component and there are no disconnected subgraphs.
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Autoregulation is not present, because it affects gene-specific noise levels and would be a con-

founding factor in the analysis. In order to assess the effect of the topology structure on the

evolution of expression noise, we also generated an additional 1,000 scale-free (Barabási–

Albert model) and 1,000 small-world (Watts–Strogatz model) network topologies with the

same size and density. Both random and small-world networks are characterized by a Poisson

degree distribution and short mean shortest path length, but random networks have a low

clustering coefficient, while small-world networks have a high clustering coefficient. Scale-free

networks are characterized by a degree distribution that follows a power law. Real-world net-

works exhibit degree distributions similar to power-law distributions, high clustering and

short path lengths. As such, real-world networks have features of both scale-free and small-

world networks [21].

In the simulation of expression noise evolution the regulatory interactions were immutable

and the values of the noise genotype vectors were allowed to mutate. Stabilizing selection, the

selection scenario in which individuals with extreme phenotypic values have a lower fitness,

was imposed on all constituent genes by setting the value of optimal expression level as the

mean equilibrium expression level of each gene. The fitness F(s) of a phenotype s was calcu-

lated as in Laarits et al. [22], where fitness is defined as the distance from the optimal expres-

sion state vector fsopti g1�i�n, weighted by the fitness contribution given by {ρi}1�i�n:

FðsÞ ¼ e
�
Pn

i¼1

jsopti � sij=nri ð3Þ

The fitness contribution parameters {ρi}1�i�n define the contribution of each gene to the fit-

ness of the phenotype, i.e. it is a scaling factor of the decrease of fitness as a function of the dis-

tance of the expression level from the optimal expression level for each gene. In this study, the

strength of the imposed selective pressure is set to be identical for all constituent genes (8i ρi =

1). The assumption of all genes having identical fitness contribution is biologically unrealistic,

so we have also performed simulations in which we impose unequal fitness contributions

among genes in the same network. We found consistent conclusions (S5 Text), and, for sim-

plicity, we report the results with equal fitness contributions here. Since the fitness contribu-

tion of all genes is identical, any differences in the evolutionary outcome we observe after

removing the effect of drift will be due to gene differences in their network interactions. Indi-

viduals were reproduced into the next generation with a probability equal to their relative

phenotype fitness. The fitness of all phenotypes in populations evolved under non-selective

conditions was set to an equal constant value, regardless of gene expression levels. Mutations

were introduced at a rate μη (μη = 0.01) per gene per replication event. The values for noise

genotype mutations were drawn from a normal distribution N ð100; 40Þ. There is no experi-

mental evidence for the shape of the distribution of the expression noise and regulatory

strength mutations. We chose a normal distribution because: 1) it defines equally frequent

beneficial and deleterious mutations and 2) most mutations would have a small effect, which

reflects the characteristic of many studied distributions of fitness effects in model organisms.

Recombination was implemented by choosing a random offspring individual at a rate r
(r = 0.05) and introducing a random break point in the linear genome. The genotype values in

the genome segment defined by the break point were then exchanged with another randomly

chosen individual from the offspring population. A constant population size N (N = 1, 000)

was maintained. To account for the effect of genetic drift, the noise evolution simulations of

each founding network population were replicated 10 times under selection and 10 times

under neutrality.
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We found that the expression level of most genes in networks with random configurations

converge to either smin or smax under a deterministic realization. The measurement of vari-

ance of genes that are either not expressed at all or expressed at the maximal level would be

impaired since their expression range is constrained by the lower and upper expression

level boundary. Since the study of expression variance is our main focus, we added a network

establishment step before the noise evolution simulations, in which we subject the network

regulatory matrix to mutation and selection for intermediate expression levels. During the

network establishment step networks are realized deterministically, i.e. the intrinsic noise

genotype of all genes is 0. Networks with intermediate steady state expression levels were

established through the evolutionary process by imposing a target expression level fsopti g1�i�n

(fsopti g1�i�n ¼ f
smax

2
; . . . ;

smax
2
g) for all genes and allowing the strength of regulatory interac-

tions to mutate. Mutations were introduced at a rate μw (μw = 0.1) in non-zero entries in

the regulatory matrix, preserving the network topology structure (Erdős–Rényi, Barabási–

Albert, or Watts–Strogatz model). The values for regulatory strength mutations were drawn

from a normal distribution N ð0; 2Þ. Recombination was not implemented at this stage. Fit-

ness of each individual was computed as the distance of the phenotype to the optimal expres-

sion state vector using Eq 1. Individuals were reproduced with a probability equal to the

relative fitness and the population size kept constant. Network regulatory configurations in

which the expression level of all genes would not converge to a fixed point and would oscil-

late were discarded, as in previous studies [22]. Oscillating gene expression level patterns

create population-level heterogeneity generated by the system oscillations and not by sto-

chastic gene expression. Since we are studying the evolution of gene-specific expression

noise, expression noise generated by oscillations would be a confounding factor in our analy-

sis. We note, however, that oscillatory networks can be frequent in simulations [23] and

biological systems [24], and the role of expression noise in their behavior is an interesting

perspective for follow-up studies. Expression level dynamics were termed oscillating if the

sum of the differences between expression level in the last time step and previous τ time

steps (τ = 10) was higher than � (� = 10−6). A stable, i.e. non-oscillating, expression level

dynamics satisfied the following criterion [22]:

FðSðtÞÞ ¼
1

t

Xt

y¼t� t

DðSðyÞ; SðtÞÞ < � ð4Þ

where D is the distance between two vectors DðS1; S2Þ ¼
Pn

i¼1

jS1
i � S2

i j=n.

The network establishment process consisting of rounds of mutation, selection and repro-

duction of a population of N (N = 1, 000) individuals was performed for T (T = 10, 000) gener-

ations, for each network topology. At the end of the network establishment process, 68%

(54333/80000) of genes had intermediate expression levels (S1 Text). The reason why a minor-

ity of the genes do not reach close to optimum expression levels could be potential network

configuration constraints or a non-extensive optimization/fitting algorithm. Genes that had an

expression level of 0 or smax were filtered out from the dataset used in the final analysis. The

network regulatory configuration with the highest fitness was chosen from the evolved popula-

tion and this network configuration was used to generate the starting population for the noise

evolution simulations.

The gene network model and evolutionary simulations were implemented in C++ and

the source code is available at https://gitlab.gwdg.de/molsysevol/supplementarydata_

expressionnoise/cpp.
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Analysis of simulation results: Expression noise and network centrality

measures

The evolutionary outcomes (i.e. the change of phenotypes and genotypes) were measured as

change of expression noise and selective pressure for each network, respectively. Expression

noise in the first and last generation in each evolved population was measured as the variance

of the population expression level states for each gene. The change of expression noise (pheno-

typic evolution) between the first and last generation was measured as the relative change of

expression noise, calculated as the difference of expression variance between the first and last

generation divided by their sum (s2
gen1
� s2

gen10kÞ=ðs
2
gen1
þ s2

gen10k).

The selective pressure (genotypic evolution) acting on each gene was measured as the aver-

age change of noise genotype in every second generation relative to the starting level (Fig 1C).

To compare the effect of node centrality on the selective pressure acting on constituent genes,

we computed node-level network centrality measures for each node in the networks. We

focused our analysis on two local network centrality measures, node instrength and out-

strength, but over 30 network centrality measures were analyzed (S2 Text). Instrength of node

i is measure of the strength and number of in-going links, i.e. how strongly a gene is being reg-

ulated:

InstrengthðiÞ ¼
Xn

j

jwijj: ð5Þ

Conversely, the outstrength of node j is a measure of the strength and number of outgoing

links, i.e. how strongly a gene regulates other genes downstream:

OutstrengthðjÞ ¼
Xn

i

jwijj: ð6Þ

Further, we computed global graph-level metrics, such as mean graph distance and performed

a principal component analysis to reduce the dimensionality (S2 Text). The results were ana-

lysed in R 3.6.3 [25]. Network analyses were performed using the igraph 1.2.4.2 [26]

and statnet 2019.6 [27] packages. Principal component analysis was performed using

the ade4 1.7.15 [28] package.

Analysis of simulation results: Linear modeling

We fitted linear mixed-effects models using network centrality measures as fixed effect vari-

ables and the network topology sample as a random effect variable, allowing for control of

intra-network correlation in the response variable. We tested different transformations of the

response and explanatory variables in order to improve linearity, and variance structures to

account for heteroskedasticity of the residuals. A model where the residual variance was an

exponential function of the node absolute instrength was shown to provide the best fit accord-

ing to the minimal Akaike’s Information criterion and was used for all subsequent models

(S3 Text). Two types of models were fitted: a logistic regression where the response variable

was set to whether a gene answered to selection or not, and standard regressions that used

expression variance, relative change of expression variance or selective pressure as response

variables. Linear mixed-effect modelling was performed using the nlme 3.1.144 [29]

and lme4 1.1.27.1 [30] packages. Marginal and conditional R2 values were computed

using the MuMIn 1.43.17 [31] package. Network centrality measures used as explanatory

variables in our linear models were correlated (Pearson’s r = −0.17, p-value < 2.2 × 10−16,

S2 Text), so we computed the variance inflation factor (VIF) using the car 3.0.11 [32]
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package. The VIF of all linear models was less than 3; therefore, colinearity was considered to

have negligible impact on the inferred statistical significance [33]. To improve homoskedasti-

city of the residuals in the linear models, we also performed each model fit on two filtered data-

sets: one in which genes with zero values of instrength or outstrength were removed, and one

in which only genes with zero values of instrength or outstrength were kept. The same pattern

of effects and significance is observed in the filtered as in the main dataset, so we included the

results of the complete dataset in the main text and reported the results of the reduced dataset

in the supplementary information (S6 Text).

Finally, since in some cases variable transformation, heterogeneous variance modeling and

data filtering did not ensure normality and independence of the residuals, we assessed the

amount of resulting bias in the estimation of p-values using a randomization test, in which we

fitted a selected model on 10,000 permuted datasets. We chose the model of relative noise

change (S3 Text), as the corresponding residuals were significantly departing normality (Sha-

piro-Wilk test, p-value< 2.2 × 10−16) and independence (Box-Ljung test, p-value = 8.9 × 10−7).

For each permutation, we shuffled the values of the response variable (relative change of vari-

ance) within each network topology, which removes the effect of network metrics on the change

of noise, but preserves the distributions of each metric per network, as well as putative colinear-

ity between explanatory variables. Using α = 0.05 as a significance cutoff value, we found a false

discovery rate (FDR) of 6.0% for the effect of instrength and and 6.7% for the effect of out-

strength. While these values are above the expected 5%, the FDR inflation was found to be rela-

tively low and we concluded that the non-normality of residuals did not affect our conclusions.

Analysis of simulation results: Information-based metrics

Generalized linear mixed-effects models make several assumptions that might be violated by

the data in some cases. Namely, they assume a normal distribution and homoskedasticity of

Pearson’s residuals, and a normal distribution of random effects. To further validate our con-

clusions, we computed the mutual information (MI) between variables, which does not have

any prior assumptions. We calculated mutual information between the expression noise and

centrality metrics using the infotheo 1.2.0 [34] package. Monte Carlo permutation tests

with 10,000 permutations were used to compute p-values for the significance of the mutual

information between each pair of tested variables.

Results

We investigate how selection at the gene network level may lead to the evolution of differential

gene-specific expression noise, as observed in biological systems. To do so, we introduce a new

gene regulatory model with stochastic gene expression, which extends Wagner’s model [20] by

adding node-specific intrinsic noise parameters (Fig 1A and 1B). In this framework, the phe-

notype is represented by the expression level of each gene, and is the realization of a random

distribution determined by the genotype. The fitness of an individual is further determined by

its distance to an optimal phenotype, therefore, stabilizing selection is implemented as acting

on the expression level. We used this model to simulate the evolution of populations of gene

regulatory networks with mutable levels of gene-specific expression noise under selective and

non-selective conditions (Fig 1C and 1D), and assessed how node properties affect the evolu-

tion of intrinsic noise.

Expression noise propagates along the regulatory network

We first investigated how noise propagated in the model gene regulatory networks. It was

shown that noise is additive in biological networks and, therefore, propagates from regulators
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to regulated genes [17, 18]. To assess whether our model successfully captured this property,

we generated a dataset of 2,000 realized random network topologies, and tested whether gene

expression variance increased with the number of ingoing regulatory links. As expected, we

found that the absolute instrength of a gene had a significant positive effect on gene expression

variance (linear mixed-effects model with coefficient β = 0.28, p-value < 2.2 × 10−16) (Fig 2A),

indicating that noise propagation was captured in our model. Furthermore, the mutual infor-

mation between gene expression variance and absolute instrength was significant (MI = 0.67,

p-value� 10−4, permutation test). High node instrength increases expression noise, in line

with the experimental evidence that the noisiness of promoters increases with the number of

regulatory inputs [35].

We then looked at fitness costs associated with high expression noise in regulators and

regulated genes. In a dataset of 1,000 random network topologies, we assessed the mean fit-

ness of the clonal populations of 1,000 individuals under stabilizing selection on the expres-

sion level. Each gene was imposed 5 different levels of intrinsic noise, while the intrinsic

noise of the rest of the network was kept at 0. We found that increasing the level of expres-

sion noise of a single gene decreased the mean fitness of the network (linear mixed-effects

model with coefficient β = -0.002, p-value < 2.2 × 10−16), as expected. However, the strength

of this effect depended on the gene centrality. The reduction of fitness due to gene-specific

expression noise was significantly, but marginally, affected by instrength (linear model

with coefficient β = 0.004, p-value < 2.2 × 10−16, Fig 2B). The mutual information between

mean fitness of the population and absolute instrength was not significant (MI = 0.22, p-

value = 0.18, permutation test). However, the mean fitness significantly decreased with node

outstrength (linear model with coefficient β = -0.19, p-value < 2.2 × 10−16, Fig 2C). The

mutual information between mean fitness of the population and absolute outstrength was

significant (MI = 0.43, p-value� 10−4, permutation test). Higher fitness cost of expression

noise in gene with high outstrength suggests there is a differential selective pressure acting

Fig 2. Noise propagation is captured by the gene regulatory network model. A—Gene-specific expression variance increases with the absolute

instrength of the node, indicating noise propagation is reflected in the gene regulatory network model. The lines indicate the 25% (lower dashed line),

50% (solid line), and 75% (upper dashed line) fitted quantiles. B, C—Gene-specific expression variance decreases fitness in gene networks under

stabilizing selection on gene expression level. Increasing the level of gene-specific expression noise reduces the mean fitness of the clonal population.

The mean fitness of the population is significantly, but marginally, increased by noise in genes with higher node instrength (B), and significantly

decreased by noise in genes with higher node outstrength (C). Lines represent the smoothed conditional means and grey bands represent the 95%

confidence interval bands. Coefficients, p-values and partial marginal R2 measures are estimated using linear mixed-effects models with expression

variance or mean fitness as the response variable, instrength and outstrength as fixed effect explanatory variables, and the network topology sample as

the random effect explanatory variable. Mutual information (MI) p-values were computed with a permutation test with 10,000 permutations.

https://doi.org/10.1371/journal.pcbi.1010982.g002
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on genes based on their centrality in the gene regulatory network, which we explore in the

next section using an in silico evolutionary experiment.

Gene expression noise is reduced under a stabilizing selection regime

To investigate how gene-specific expression noise responds to stabilizing selection at the net-

work-level, we simulated the evolution of 2,000 random network topologies with and without

selection on the gene expression level. We observed that gene expression variance decreased

throughout evolution under selective conditions (Fig 3A), and the distribution of intrinsic

noise parameters in the population shifted towards lower noise genotype values (Fig 3B), indi-

cating that low-noise alleles conferred a fitness increase to the network. Conversely, gene

expression variance remained constant throughout evolution under neutral conditions, and

the distribution of noise genotypes reflected only the distribution of random mutations. Repli-

cating the simulations for each network topology sample yielded similar reduction of gene

expression variance (Fig 3C) and median noise parameter in the population (Fig 3D). As the

initial networks were at their optimal expression level, the mean expression level did not

change during evolution and was highly correlated between the first and last generations

(Pearson’s r = 0.99, p-value < 2.2 × 10−16, S1 Text), confirming that selection acted only on the

gene expression variance. Population size had a positive effect on the selective pressure acting

on genes, as expected, selection being more efficient in large populations (S1 Text). A popula-

tion size of 1,000 individuals was chosen for the main simulations as the optimal population

size in the trade-off between selecting mutations with small effects and reducing computa-

tional speed.

Next, we investigated how individual nodes within a network respond to selection, based

on their centrality properties.

Evolutionary change in phenotypes: Regulators reduce their expression

noise to a higher degree

We first analysed the phenotype change, i.e. the relative change in gene-specific expression

variance after evolution. The variance of gene expression depends both on the intrinsic noise

Fig 3. Gene-specific expression noise evolves in a model with selection. A—The distribution of expression levels of an example gene throughout

evolution in populations evolved under stabilizing selection on gene expression level and under neutrality. The variance of gene expression level is

reduced under selection, but not under neutrality. B—The distribution of intrinsic noise parameters of an example gene throughout evolution in

populations evolved under selection and under neutrality. The median intrinsic noise parameter skews to lower values under stabilizing selection, but

not under neutrality. C, D—Replicates of the simulations with the same input network and parameters. Replicates have different dynamics, but reach

similar outcomes in terms of expression variance (C) and median intrinsic noise parameter (D) in the evolved populations. The evolution of each

network topology sample was replicated 10 times under selection and 10 times under neutrality.

https://doi.org/10.1371/journal.pcbi.1010982.g003
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of the genes (that is, its genotype in our model) and the number and noise of the genes it is

connected with.

We fitted linear models to assess the impact of the absolute instrength and outstrength

measures on the relative change in expression variance for each node in each network.

Under selection, both absolute instrength and absolute outstrength had a significant nega-

tive effect (linear mixed-effects model with coefficients βinstrength = -0.003, p-value = 2.9 ×
10−10, Fig 4A; βoutstrength = -0.046, p-value < 2.2 × 10−16, Fig 4B), meaning that genes with

more and stronger connections reduced their expression variance to a larger extent than

less connected genes. The effect was notably stronger for outstrength (marginal R2 = 0.15)

than for instrength (marginal R2 = 5.2 × 10−4). Similarly, the mutual information was

significant between the relative change in gene expression variance under selection and

absolute instrength (MI = 0.09, p-value�10−4, permutation test) and absolute outstrength

(MI = 0.14, p-value� 10−4, permutation test). Genes with high outstrength are strong regu-

lators and their reduction of expression variance to a larger extent indicates that high expres-

sion noise is more detrimental in regulators than in regulated genes. Under neutrality,

absolute instrength had a significantly positive effect (linear mixed-effects model with coeffi-

cient β = 8.3 × 10−4, p-value < 2.2 × 10−16, Fig 4C) and absolute outstrength did not have a

significant effect on the relative change in gene expression variance (linear mixed-effects

model with coefficient β = 7.1 × 10−5, p-value = 0.26, Fig 4D). The mutual information was

significant between the relative change in gene expression variance under neutrality and

absolute instrength (MI = 0.03, p-value� 10−4, permutation test) and absolute outstrength

(MI = 0.01, p-value� 10−4, permutation test). These effects are much smaller and of oppo-

site direction than the ones measured in selective conditions, indicating that genetic drift

did not cause the effect of centrality measures on expression variance observed in selected

populations.

Fig 4. Node-level network centrality measures affect the relative change of gene-specific expression variance under network-level selection. For

each gene, the relative change of expression variance before and after evolution (Rel. Δ expr. variance) was averaged over all replicates. A, B—Absolute

instrength (A) and absolute outstrength (B) have a significant negative effect on the relative change in gene expression variance in populations evolved

under selection. A lower value of relative change of expression variance indicates a bigger reduction in expression variance between the first and last

generation and a stronger response to selection. The lines indicate the 25% (lower dashed line), 50% (solid line), and 75% (upper dashed line) fitted

quantiles. C, D—Absolute instrength (C) and absolute outstrength (D) have a significant, but negligible, negative effect on the relative change in gene

expression variance in the populations evolved under neutrality. The dataset consists of 74,443 genes from 2,000 populations with unique 40-gene

random network topology samples, which were independently evolved 10 times under selection and 10 times under neutrality. Coefficients, p-values

and partial marginal R2 measures were estimated using linear mixed-effects models with relative change of gene-specific variance as the response

variable, instrength and outstrength as fixed effect explanatory variables, and the network topology sample as the random effect explanatory variable.

Mutual information (MI) p-values were computed using 10,000 permutations.

https://doi.org/10.1371/journal.pcbi.1010982.g004
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Evolutionary change in genotypes: Regulators are more likely to respond—

And display a stronger response—To selection

To investigate differential selective pressure acting on gene-specific expression noise, we ana-

lysed the change of intrinsic noise parameters in populations of gene regulatory networks

evolved with or without stabilizing selection on the expression level. We measured the selective

pressure acting on individual genes as the average reduction in the intrinsic noise parameter

relative to the beginning of the evolutionary simulation (see Methods). The selective pressure

on genes was found to be close to 0 in neutrally evolving populations, as expected (Fig 5B). In

the presence of selection, however, the distribution of selective pressures was found to be

bimodal (Fig 5A). Therefore, we binned genes in two categories according to whether they

responded to selection (selective pressure> 0.5) or not (selective pressure� 0.5). We then sep-

arately analysed the probability to respond to selection and the strength of the response.

Absolute instrength had a significant and strongly negative effect (logistic regression with

coefficient β = -1.87, p-value < 2.2 × 10−16, Fig 5C) on the probability of a gene to respond to

selection, that is, genes with more and stronger incoming links are less likely to respond to

selection. Absolute outstrength also had a significant effect on the probability of a gene to

respond to selection (logistic regression with coefficient β = -0.08, p-value = 6.7 × 10−7,

Fig 5D). However, this effect was small and was lost when the interaction terms between

instrength and outstrength were included in the model (SI).

For a qualitative analysis of the effect of network centrality on the selective pressure acting

on individual genes, we fitted linear-mixed effects models on the set of genes that responded to

selection, with selective pressure as the response variable. In the genes that responded to selec-

tion from the selected populations, absolute instrength had a significant negative effect (linear

mixed-effects model with coefficient β = -0.04, p-value < 2.2 × 10−16, Fig 5E). Conversely,

absolute outstrength had a significant positive effect (linear mixed-effects model with coeffi-

cient β = 0.03, p-value < 2.2 × 10−16, Fig 5F) on the selective pressure. In the selected popula-

tions, the mutual information was significant between the selective pressure and absolute

instrength (MI = 0.19, p-value� 10−4, permutation test) and absolute outstrength (MI = 0.31,

p-value� 10−4, permutation test). In the neutral populations, neither absolute instrength nor

absolute outstrength had a significant effect (linear mixed-effects model with coefficient

βinstrength = 2.4 × 10−8, p-value = 0.99, Fig 5G; βoutstrength = −1.2 × 10−5, p-value = 0.49, Fig 5H)

on the selective pressure. Similarly, the mutual information was not significant between the

selective pressure and absolute instrength (MI = 0.005, p-value = 0.34, permutation test), nor

absolute outstrength (MI = 0.005, p-value = 0.45, permutation test).

The increased selective pressure in genes with high outstrength (strong regulators) can be

explained by noise propagation to downstream elements. Namely, expression noise in regula-

tors propagates to the genes they regulate, increasing the overall expression noise in the gene

regulatory network. If gene expression levels in the network are under stabilizing selection,

expression noise is deleterious. Therefore, regulator genes experience a comparatively higher

selective pressure to reduce expression noise than regulated genes. In a genome-wide expression

noise screen in Drosophila melanogaster, transcription factors were found to have lower expres-

sion variation [36]. Suppression of expression noise can be attained through negative autoregu-

lation [37–39], whereby a regulator acts as its own repressor. Incidentally, 40% of transcription

factors in E. coli [40] and many eukaryotic transcription factors [41] have negative autoregula-

tion, indicating a wide-spread control of expression noise in natural regulatory networks.

In contrast to regulator genes, we found that regulated genes, i.e. genes with high node

instrength, are less likely to respond to selection and the selective pressure decreases with node

instrength. Since the expression noise of genes is a sum of their intrinsic noise and noise
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propagated from upstream elements, the contribution of intrinsic noise to the total noise of

the gene will be comparatively smaller in strongly regulated genes. The network can thus

respond to selection either by reducing the intrinsic noise of the focal gene, or by reducing the

intrinsic noise of any of the upstream elements, which would reduce propagated noise. As a

result, there is a relaxation of selective pressure in regulated genes, which is distributed on

upstream genes. On the other hand, the same mechanism increases the selective pressure on

upstream genes, i.e. regulators.

Fig 5. Differential selective pressure is acting on genes based on their centrality. A, B—Distributions of the measured selective pressure in selected

(A) and neutral (B) populations. Genes with a selective pressure above 0.5 were categorized as responsive to selection. C, D—High instrength genes are

less likely to respond to selection. Absolute instrength (C) has a strong significant negative effect on the probability of selection response. Absolute

outstrength (D) has a weak significant negative effect on the probability of selection response. E, F—In the subset of genes that responded to selection,

high instrength (E) decreases the selective pressure, while high outstrength (F) increases the selective pressure acting on individual genes. The lines

indicate the 25% (lower dashed line), 50% (solid line), and 75% (upper dashed line) fitted quantiles. G, H—Absolute instrength (G) and outstrength (H)

have no significant effect on the selective pressure in the non-selected populations. The dataset consists of 74,443 genes from 2,000 populations with

unique 40-gene random network topology samples, which were independently evolved 10 times under selection and 10 times under neutrality. The

selective pressure on each gene is calculated as the average normalized reduction of the intrinsic noise parameter during the evolutionary simulation

and summarized as the mean over all replicates in each scenario. Coefficients, p-values and partial marginal R2 measures are estimated using logistic

regression and linear mixed-effects models with selection responsiveness or selective pressure as the response variable, instrength and outstrength as

fixed effect explanatory variables, and the network topology sample as the random effect explanatory variable. Mutual information (MI) p-values were

using 10,000 permutations.

https://doi.org/10.1371/journal.pcbi.1010982.g005
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To check the robustness of our results, we performed the node-level network centrality

analysis on two additional datasets with different topology structures: scale-free (Barabási–

Albert) and small-world (Watts–Strogatz) topology models. We find consistent effects (direc-

tion and significance) of local network centrality metrics on the selective pressure acting on

gene-specific noise across topology models, showing that our findings are robust to the topol-

ogy model used (S4 Text). However, the effect size of network centrality metrics differed

between the topology models, pointing at an effect of the topology model on noise propagation

and the evolution of gene-specific expression noise, which we investigate in the next section.

Global network properties affect the evolvability of expression noise and

selective pressure on constituent genes

Lastly, we analysed how topological structures and graph-level network properties affect the

expression noise response of constituent genes to selection on a joint dataset of random

(Erdős–Rényi), scale-free (Barabási–Albert) and small-world (Watts–Strogatz) network topol-

ogies. Jointly analysing genes from all three topology types with linear models, we observed

statistically significant interactions between instrength and outstrength and network topology

types on both the probability to respond to selection and the selective pressure acting on gene-

specific expression noise (Table 1). We found that genes in scale-free networks have a signifi-

cantly higher probability of responding to selection than genes in random networks. These

results are in agreement with previous studies reporting a higher evolvability of scale-free

networks [42, 43]. Conversely, genes in small-world networks have a significantly lower proba-

bility of responding to selection than genes in random networks. Furthermore, there are signif-

icant effects of interactions between instrength and outstrength with the topology type on the

selective pressure on constituent genes.

To investigate which global topological features of the three network models affect expres-

sion noise evolution, we performed a principal component analysis (PCA) on 12 graph-level

measures. The first two dimensions of the PCA expressed 85.4% of the total dataset inertia (S2

Text), so we used the first two principal components (PCs) as synthetic explanatory variables

in linear mixed-effects models. The loading of the first synthetic variable (PC1) is dominated

by negative loadings of diameter and mean path distance, and the centralization measures,

namely positive loadings of outdegree and closeness centralization and negative loadings of

indegree and betweenness centralization. The diameter of a network is defined as the longest

shortest path between any two nodes. Centralization is a measure of the extent to which a net-

work is centered around a single node and can be computed from different centrality metrics.

The loading of the second synthetic variable (PC2) is dominated by the negative loading of the

average degree, average indegree and average outdegree measures (S2 Text). For a more intui-

tive interpretation, the signs of both PCs have been switched in the statistical analysis. There-

fore, PC1 shown in the results is dominated by positive loadings of diameter, mean path

distance, indegree centralization and negative loadings of outdegree centralization, and PC2 is

dominated by positive loadings of average degree. We refer to PC1 and PC2 as synthetic net-

work diameter and centralization and synthetic average degree, respectively.

The average expression variance per network is significantly negatively affected by synthetic

network diameter and centralization (linear model with synthetic network diameter and cen-

tralization coefficient β = -6.19, p-value < 2.2 × 10−16) and significantly positively affected by

the synthetic average degree (linear model with synthetic average degree coefficient β = 13.26,

p-value< 2.2 × 10−16). The mutual information was significant between the average expression

variance per network and synthetic network diameter and centralization (MI = 0.21, p-

value� 10−4, permutation test) and synthetic average degree (MI = 0.21, p-value� 10−4,
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permutation test). This finding means that global network properties affect the amplification

of noise through noise propagation between the genes. Specifically, networks with a lower

diameter, mean path distance, indegree centralization, and higher outdegree centralization

and average degree, had higher average gene expression variance. In the selected populations,

the average selective pressure per network was significantly negatively affected by both syn-

thetic network diameter and centralization and the synthetic average degree (linear model

with synthetic network diameter and centralization coefficient β = -0.003, p-value = 4.9 × 10−11,

Fig 6A; synthetic average degree coefficient β = -0.009, p-value < 2.2 × 10−16, Fig 6B). The

mutual information was significant between the average selective pressure per network and

synthetic network diameter and centralization (MI = 0.27, p-value� 10−4, permutation test)

and synthetic average degree (MI = 0.26, p-value� 10−4, permutation test). This result shows

that the average selective pressure acting on gene-specific expression noise in networks

decreases with an increase of network diameter, mean path distance, indegree centralization

and average degree per network. Conversely, the average selective pressure increases with an

increase of outdegree centralization (Fig 6A and 6B). In the populations evolved under neu-

trality, neither synthetic network diameter and centralization, nor synthetic average degree,

Table 1. Network topology type affects the probability of responding to selection and selective pressure on gene-specific expression noise under stabilizing selection

on gene expression level.

Response Explanatory variable Beta SE p-value1

Probability of responding to selection Instrength -1.9270 0.0284 < 2.2 × 10−16 ****
Outstrength -0.0829 0.0226 < 2.6 × 10−4 ***
Scale-free (BA) topology2 0.9209 0.1075 < 2.2 × 10−16 ****
Small-world (WS) topology3 -0.2684 0.0945 0.0045 **
Instrength:BA4 0.0120 0.0516 0.8159 n.s.

Instrength:WS 0.0006 0.0401 0.9873 n.s.

Outstrength:BA -0.2947 0.0252 < 2.2 × 10−16 ****
Outstrength:WS -0.0728 0.0333 0.0287 *

Gene-specific selective pressure Instrength -0.0377 0.0004 < 2.2 × 10−16 ****
Outstrength 0.0347 0.0003 < 2.2 × 10−16 ****
Scale-free (BA) topology 0.0019 0.0012 0.1404 n.s.

Small-world (WS) topology 0.0222 0.0013 < 2.2 × 10−16 ****
Instrength:BA 0.0143 0.0007 < 2.2 × 10−16 ****
Instrength:WS -0.0055 0.0006 < 2.2 × 10−16 ****
Outstrength:BA -0.0151 0.0003 < 2.2 × 10−16 ****
Outstrength:WS -0.0075 0.0005 < 2.2 × 10−16 ****

1 Coefficients and their significance were computed using linear mixed-effects models (see Methods). The dataset consisted of 3,000 populations with unique 40-gene

random, scale-free and small-world network topology samples, which were independently evolved 10 times under selection and 10 times under neutrality. The selective

pressure on each gene was calculated as the average normalized reduction of the intrinsic noise parameter during the evolutionary simulation and summarized as the

mean over all replicates in each scenario. Genes were termed responsive to selection if their selective pressure was above 0.5. Asterisks indicate statistical significance: n.

s.—p-value> 0.05;

*—p-value� 0.05;

**—p-value� 0.01;

***—p-value� 0.001;

****—p-value� 0.0001.
2 Barabási–Albert network model.
3 Watts–Strogatz network model.
4 Colons (‘:’) indicate variable interactions.

https://doi.org/10.1371/journal.pcbi.1010982.t001
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had a significant effect on the average selective pressure per network (linear model with syn-

thetic network diameter and centralization coefficient β = −2.8 × 10−7, p-value = 0.95; synthetic

average degree coefficient β = −1 × 10−7, p-value = 0.99, Fig 6C and 6D). Similarly, the mutual

information was insignificant between the average selective pressure per network and syn-

thetic network diameter and centralization (MI = 0.15, p-value = 0.72, permutation test) and

synthetic average degree (MI = 0.15, p-value = 0.59, permutation test).

Discussion

In this work, we aimed at understanding how natural selection shaped the distribution of

expression noise levels between genes in the genome. We hypothesized that selection for low

noise at the network level translates into differential selective pressures at the gene level. To

test this hypothesis, we developed a new gene regulatory network evolution model that incor-

porates stochastic gene expression, where the gene expression mean and variance are both her-

itable and, therefore, potentially subject to natural selection. We simulated the evolution of

gene-specific expression noise in populations of model gene regulatory networks under selec-

tive and non-selective conditions. In agreement with our hypothesis, we observed that individ-

ual genes respond differently to the global selective pressure and that this response depends on

the local and global network properties. In particular, we found that genes of high centrality

exhibit a stronger selective pressure to reduce gene-specific expression noise under stabilizing

selection on the expression level and that the genetic network structure affects the propagation

and evolvability of gene-specific expression noise. In the following, we further discuss the

implications of differential selective pressure acting on constituent genes in gene networks.

Mechanisms of intrinsic noise reduction

In this study we abstracted and summarized the many determinants of intrinsic expression

noise into a single parameter, which can be viewed as a modifier locus that can directly change

Fig 6. Global network properties affect the average selective pressure acting on gene expression noise under stabilizing selection on gene

expression level. A, B—Principal component variables consisting of the diameter and network centralization (A) and average degree (B) have a

significant negative effect on the average selective pressure per network. The two synthetic variables were constructed by performing a principal

component analysis on 12 graph-level network metrics. The lines indicate the 25% (lower dashed line), 50% (solid line), and 75% (upper dashed line)

fitted quantiles. The dataset consisted of 3,000 populations with unique 40-gene random, scale-free and small-world network topology samples, which

were independently evolved 10 times under selection and 10 times under neutrality. The selective pressure on each gene is calculated as the average

normalized reduction of the intrinsic noise parameter during the evolutionary simulation and summarized over all replicates in each scenario.

Coefficients and p-values are estimated using a linear model with average selective pressure as the response variable, and PC1 and PC2 as explanatory

variables. Mutual information (MI) p-values were computed with permutation test with 10,000 permutations.

https://doi.org/10.1371/journal.pcbi.1010982.g006
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the intrinsic noise of a given gene. This simplification permitted us to investigate the evolution

of expression noise in gene networks with computationally feasible evolutionary simulations.

In reality, multiple factors that affect gene expression variance in biological systems have been

reported. These include epigenetic factors, such as chromatic dynamics [44] and presence of

chromatin remodelling complexes [45]. Other factors affect transcription directly and can,

therefore, control expression noise: the promoter shape [36], presence of a TATA box [45],

presence and number [4] of TF binding sites, TF binding dynamics [46], presence of TF decoy

binding sites [47], and transcription rate. Factors affecting translation have also been shown to

play a role in controlling noise: miRNA targetting [48], mRNA lifetime, translation rate, and

post-translational modifications such as the protein degradation rate. Compartmentalization

of proteins by phase separation has also been shown to reduce noise [49]. Lastly, gene expres-

sion costs can also affect the gene expression level distributions, and thereby expression level

noise [50]. We have demonstrated the existence of a general selective pressure acting on gene

expression noise. Biological organisms may differ in the mechanisms used to respond to this

selective pressure, calling for further, data-driven, investigations.

Global network structure impacts noise propagation and evolution

By simulating thousands of networks with distinct structures, we were further able to assess

the impact of global network characteristics on gene-specific selective pressure. Given that

there is a trade-off between the fitness advantage of reducing gene-specific expression noise at

the gene level and its mechanistic cost (for instance, in terms of mRNA processing [51]), evolv-

ing the global network structure may offer an alternative way to reduce network-level noise.

Several motifs recurrently found in regulatory networks have an impact on expression noise,

such as negative [37–39] and positive autoregulation [41], feed-forward loops [41, 52, 53] and

interlinked feed-forward loops [54].

It is important, however, to distinguish two aspects when considering the effect of the net-

work structure on the expression dynamics of constituent genes: the network structure, i.e. the

topology of the graph, and the strength of each of the regulatory interactions, both of which

impact expression noise. The same network topology, but with different regulatory interactions

strengths, can give rise to markedly different network behaviours. In the gap gene system, for

example, it was shown that multiple subcircuits share the same regulatory structure, but yield dif-

ferent expression patterns because of their differences in active components and strength of regu-

latory interactions [55]. It results that network models of gene expression noise must incorporate

both graph topology and interaction strength between all constituent genes. The Wagner model

constitutes a simple framework that fulfills these two conditions. However, it has its limitations.

Namely, it is not fine-grained enough to capture the complex dynamics of real regulatory net-

works. Models that incorporate higher molecular detail, such as large systems of differential

equations, are necessary to precisely capture in fine detail the expression dynamics of a real bio-

logical network, but they come with a cost in terms of high computation time (preventing their

use in evolutionary simulations), low tractability and, often, the inability to model noise.

Implications of selection on expression noise on the evolution of genomes

and gene regulatory networks

One mechanism by which networks and genomes evolve is gene duplication. Gene duplica-

tions are a major source of new genes and thought to be a primary source of evolutionary

novelties. It has been long proposed that new functionality arises from duplicated genes by

allowing the other gene copy to acquire new functions (neofunctionalization) or improve

existing functions (subfunctionalization) by relaxing the selective pressure acting on a single
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gene through an additional redundant copy [56]. However, most of the time the redundant

copy is lost before new functionality can arise [57], either by genetic drift alone or because hav-

ing the extra copy is deleterious. The redundant copy has a chance to evolve a new function or

improve an existing one while it is evolving neutrally or reaches fixation in the population, or

alternatively, if there is some fitness benefit of the additional copy that increases its frequency

in the population. Some benefits of having additional gene copies have been shown, such as

increased expression level for genes whose pre-duplication expression level was far from the

optimum [58]. Moreover, duplicating a gene reduces its expression noise [59, 60], averaging

the stochastic events over the two gene copies. The reduction of expression noise may, there-

fore, constitute another benefit of a gene duplication, increasing its chance of fixation in the

population. As the gene number increases in bacterial genomes, the number of regulatory

genes increases 4-fold [61], indicating a gene duplication is more likely to stay if the gene is a

regulatory gene. We hypothesize that selection on expression noise, particularly on regulatory

genes, could, therefore, be one of the forces driving the maintenance of duplicated genes.

Applications of the model framework to study complex systems

In this study, we developed a new regulatory and evolutionary model to study expression noise

in gene regulatory networks. The model represents key features of evolving gene regulatory

networks, namely the non-independence of gene expression levels and fitness determined by

the expression level of many or all genes in the network. Our results revealed that differential

selective pressure acts on intrinsic expression noise of constituent genes and that network-

level topological properties affect noise propagation within the network.

Although our study focused on gene regulatory networks, our conclusions potentially apply

to a broader range of systems. In particular, we posit that any system that fulfills two essential

properties will exhibit a similar behavior: (i) the amount of product of each system component

(here called “expression level”) is not independent and (ii) the performance (here termed “fit-

ness”) is determined by the product level of one or several of the components of the system.

There are many other complex systems that fulfill these criteria, such as biological metabolic

networks, ecological food webs, neural networks, economies, transportation and other infra-

structure networks, and social networks. We expect that the same constraints act on noise in

elements of these systems, and that some of the conclusions from gene regulatory networks

could be carefully applied to other complex systems.

Conclusion

Our results show that selection for low expression noise acting on a system (the gene network)

resulted in differential selective pressures on its individual components (the genes). We dem-

onstrated that the position of the gene in the network and the global network structure act as

important drivers of the evolution of intrinsic expression noise. Investigating how gene net-

works evolve to cope with expression noise will reveal mechanisms of how complex biological

systems adapt to function with an inevitable molecular noise in their components. A better

comprehension of these mechanisms is a prerequisite to understand the evolution of complex-

ity in biological systems, from the first self-replicating RNA systems to modern eukaryotic

cells expressing tens of thousands of genes.
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49. Klosin A, Oltsch F, Harmon T, Honigmann A, Jülicher F, Hyman AA, et al. Phase separation provides a

mechanism to reduce noise in cells. 2020; p. 6.

50. Charlebois DA. Effect and evolution of gene expression noise on the fitness landscape. Physical

Review E. 2015; 92(2):022713. https://doi.org/10.1103/PhysRevE.92.022713 PMID: 26382438

PLOS COMPUTATIONAL BIOLOGY Evolution of gene expression noise in model gene regulatory networks

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1010982 April 20, 2023 22 / 23



51. Hausser J, Mayo A, Keren L, Alon U. Central dogma rates and the trade-off between precision and

economy in gene expression. Nature Communications. 2019; 10(1):68. https://doi.org/10.1038/s41467-

018-07391-8 PMID: 30622246

52. Charlebois DA, Balázsi G, Kærn M. Coherent feedforward transcriptional regulatory motifs enhance

drug resistance. Physical Review E. 2014; 89(5):052708. https://doi.org/10.1103/PhysRevE.89.052708

PMID: 25353830

53. Camellato B, Roney IJ, Azizi A, Charlebois D, Kaern M. Engineered gene networks enable non-genetic

drug resistance and enhanced cellular robustness. Engineering Biology. 2019; 3(4):72–79. https://doi.

org/10.1049/enb.2019.0009

54. Chepyala SR, Chen YC, Yan CCS, Lu CYD, Wu YC, Hsu CP. Noise propagation with interlinked feed-

forward pathways. Scientific Reports. 2016; 6(1):23607. https://doi.org/10.1038/srep23607 PMID:

27029397

55. Verd B, Monk NA, Jaeger J. Modularity, criticality, and evolvability of a developmental gene regulatory

network. eLife. 2019; 8:e42832. https://doi.org/10.7554/eLife.42832 PMID: 31169494

56. Ohno S. Evolution by Gene Duplication. Springer Berlin, Heidelberg; 1970.

57. Lynch M, Conery JS. The Evolutionary Fate and Consequences of Duplicate Genes. Science. 2000;

290(5494):1151–1155. https://doi.org/10.1126/science.290.5494.1151 PMID: 11073452

58. Riehle MM, Bennett AF, Long AD. Genetic architecture of thermal adaptation in Escherichia coli. Pro-

ceedings of the National Academy of Sciences. 2001; 98(2):525–530. https://doi.org/10.1073/pnas.

021448998 PMID: 11149947

59. Rodrigo G, Fares MA. Intrinsic adaptive value and early fate of gene duplication revealed by a bottom-

up approach. eLife. 2018; 7:e29739. https://doi.org/10.7554/eLife.29739 PMID: 29303479

60. Chapal M, Mintzer S, Brodsky S, Carmi M, Barkai N. Resolving noise–control conflict by gene duplica-

tion. PLOS Biology. 2019; 17(11):e3000289. https://doi.org/10.1371/journal.pbio.3000289 PMID:

31756183

61. Molina N, van Nimwegen E. The evolution of domain-content in bacterial genomes. Biology Direct.

2008; 3:51. https://doi.org/10.1186/1745-6150-3-51 PMID: 19077245

PLOS COMPUTATIONAL BIOLOGY Evolution of gene expression noise in model gene regulatory networks

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1010982 April 20, 2023 23 / 23



Appendix C

CV

Nataša Puzović

Email: npuzovic@protonmail.com
Personal webpage
GoogleScholar ResearchGate Github Orcid

Formal education

• MSc Molecular Biology and Evolution, Christian-Albrechts-Universität zu Kiel, Ger-
many (2017 – 2019)

• BSc Molecular Biology and Physiology, Faculty of Biology, University of Belgrade, Serbia
(2012 – 2017)

Publications

• Puzović, N., Dutheil, J. Y. (2023). The evolution of gene expression mean and noise
in changing environments is constrained by the gene position in the gene regulatory
network. In prep.

• Ernst, E. , Nisioti, E., Clark, C., Kunal Das, K., Friedenberg, N., Gates, E., Lambros, M.,
Lazurko, A., Puzovic, N. Salas, I. (2023). Resilience - A complex-systems perspective.
Submitted to Frontiers in Complex Systems.

• Puzović, N., Madaan, T. Dutheil, J. Y. (2023). Being noisy in a crowd: Di�erential
selective pressure on gene expression noise in model gene regulatory networks. PLOS
Computational Biology, doi:10.1101/2022.08.01.502352

• V. Barroso, G., Puzović, N. Dutheil, J. Y. (2019). Inference of recombination maps from
a single pair of genomes and its application to ancient samples. PLOS Genetics, 15(11),
1–21. doi:10.1371/journal.pgen.1008449

• Barroso, G. V., Puzovic, N. Dutheil, J. Y. (2018). The evolution of gene-speci�c tran-
scriptional noise is driven by selection at the pathway level. Genetics, 208(1), 173–189.
doi:10.1534/genetics.117.300467

145

https://natashapuzovic.github.io
https://scholar.google.com/citations?user=bfdwYG4AAAAJ&hl=en&oi=ao
https://www.researchgate.net/profile/Natasa_Puzovic2
https://github.com/NatashaPuzovic
https://orcid.org/0000-0003-0969-6115
https://doi.org/10.1371/journal.pcbi.1010982
https://doi.org/10.1371/journal.pgen.1008449
https://doi.org/10.1534/genetics.117.300467


Appendix C. CV

Selected conferences during the PhD

• 21st International Conference on Systems Biology, poster presentation (see poster), Berlin,
Germany, 08-12 Oct 2022

• Evolutionary Systems Biology, virtual poster presentation, Wellcome Genome Campus,
UK, 09-11 Feb 2022

• 55th annual Population Genetics Group Meeting, oral presentation (see talk recording),
Norwich, UK, 05-07 Jan 2022

• Society for Molecular Biology & Evolution Annual Meeting (SMBE), virtual poster pre-
sentation, Society for Molecular Biology & Evolution, 03-08 Jul 2021

• CSHL Probabilistic Modeling in Genomics, virtual poster presentation, Cold Spring Har-
bor Laboratory, New York, USA, 14-16 Apr 2021

• CSHL Network Biology Meeting, virtual poster presentation, Cold Spring Harbor Labo-
ratory, New York, USA, 16-19 Mar 2021

Supervision Experience

• Barbara D’Albis, Undergraduate Internship, Apr – May 2022

• Nikhil Sharma, IMPRS PhD rotation, Nov – Dec 2020

• Tanvi Madaan, Undergraduate Internship, Jun – Aug 2020

146

https://natashapuzovic.github.io/pdfs/poster_ICSB2022.pdf
https://www.youtube.com/watch?v=svjoNXo-OCc&t=902s

	Summary/Zusammenfassung
	Foreword
	Background: The inherent randomness of living beings
	Gene expression
	History of studying genes and gene expression
	What shapes expression noise levels (molecular and evolutionary causes)?
	From genotypes to phenotypes through networks

	Biological networks
	Models of gene regulatory networks
	Wagner's gene regulatory network model

	Why should a biologist care about expression noise?
	Thesis scope

	Evolution of gene-specific expression noise under stabilizing selection
	Abstract
	Introduction
	Materials and methods
	A gene regulatory network model with stochastic gene expression
	Forward-in-time simulation of expression noise evolution
	Analysis of simulation results: expression noise and network centrality measures
	Analysis of simulation results: linear modeling
	Analysis of simulation results: information-based metrics

	Results
	Expression noise propagates along the regulatory network
	Gene expression noise is reduced under a stabilizing selection regime
	Evolutionary change in phenotypes: regulators reduce their expression noise to a higher degree
	Evolutionary change in genotypes: regulators are more likely to respond – and display a stronger response – to selection
	Global network properties affect the evolvability of expression noise and selective pressure on constituent genes

	Discussion
	Mechanisms of intrinsic noise reduction
	Global network structure impacts noise propagation and evolution
	Implications of selection on expression noise on the evolution of genomes and gene regulatory networks
	Applications of the model framework to study complex systems

	Conclusion

	The evolution of gene expression level and noise in changing environments
	Abstract
	Introduction
	Material and Methods
	Gene regulatory network model with evolvable gene expression mean and noise level
	Forward-in-time simulation of expression mean and noise evolution
	Pipeline

	Results
	Gene expression noise is transiently increased as a response to directional selection
	Regulator genes in gene regulatory networks are less adaptable to directional selection than non-regulator genes
	Gene expression noise is increased as a response to fluctuating selection
	Target genes in gene regulatory networks respond more strongly to fluctuating selection than non-target genes

	Discussion
	Limitations of the model
	Epistasis slows down adaptation and is affected by network architecture

	Conclusion

	General Discussion
	Organism as a machine, and why it isn't
	History of the organism as a machine concept
	How adequate is framing organisms as organic machines?
	A better metaphor for organisms
	What not being blind to randomness in organisms reveals

	Why should a non-biologist care about expression noise?

	Bibliography
	List of manuscripts
	Author contributions
	Acknowledgements
	Affidavit
	Appendix
	Supplementary information
	Gene regulatory network model and evolutionary model
	Parameters
	Robustness of network realization
	Convergence of expression levels during network establishment
	Population size
	Stability of mean expression level

	Network centrality metrics
	Colinearity between instrength and outstrength
	PCA of global network metrics

	Diagnostics of statistical models
	GLMM: Noise propagation
	GLMM: Relative change of expression variance
	GLMM: Selective pressure
	GLM: Average selective pressure

	Robustness of results in different topology structures
	Robustness of results to unequal fitness contribution of genes
	Filtered datasets

	Published manuscripts
	CV

