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Abstract—Many complex networks in practice can be de-
scribed by weighted network models, and the BBV model is one of
the most classical ones. In this paper, by introducing the concept
of correlation degree between nodes, a new weighted network
model based on the BBV model is proposed. The model takes
the both node strength and node correlation into consideration
during the network evolution, which better reveals the evolving
mechanisms behind various real-world networks. Results from
theoretical analysis and numerical simulation have demonstrated
the scale-free property and small-world property of the network
model, which have been widely observed in many real-world
networks. Compared with the BBV model, the added correlation
preferential attachment rule in the model leads to a faster
network propagation velocity.

Index Terms—BBV model; self attribute; correlation degree;
scale-free property; propagation velocity;

I. INTRODUCTION

Recently, a great deal of effort has been devoted to the
study of complex networks due to their important role in un-
derstanding basic mechanisms of many real complex systems
in a wide variety of fields, including the World Wide Web
[1], metabolic networks [2], worldwide airport networks [3],
scientific collaboration networks [4] and social networks [5],
etc [6], [7]. In a bid to comprehend these complex networks,
scientists proposed numerous unweighted network models in
early time, like ER random graph model [8], WS small-
world model [9], NW small-world model [10] and scale-free
network model [11]. In unweighted networks, all the links
are considered equivalent. However, the connections in many
real networks are not homogeneous [12], which naturally calls
for a typical measurement of the edge weight. Therefore, real
systems are best described by weighted growing networks with
nonuniform strengths of the links.

As a result, various weighted network models have been
proposed to describe and explain the real-world complex
systems, such as Yook-Jeong-Barabasi-Tu (YJBT) model
[13], Zheng-Trimper-Zheng-Hui (ZTZH) model [14], Antal-
Krapivsky (AK) model [15] and etc [16], [17]. The BBV
network model [18] was introduced by Barrat et. al. in 2004,
where the evolutions of degree and weight are coupled in
time. With the growth of a network, the BBV network’s node
degree, node strength and link weight all display the scale-
free property. The BBV model laid a good foundation for the

research on weighted networks, and a series of network models
are introduced based on it, such as traffic-driven growth [19],
spatial constraints [20], group-based preferential attachment
[21] and accelerating growth [22], [23].

However, the majority of existing weighted network models
merely consider the node strength in the evolution rule,
but without referring to the effect caused by the correlation
between nodes. Take the social network for examples, user B
can friend user A for the reason that A has a large amount
of fans, and user B can also make a friend with user C on
the consideration of the correlation between them in the same
breath. Specifically, the correlation between them can be the
same nationality, same interests or even just the same friends.
The strength preferential attachment mechanism based on the
node strength is somewhat patchy in establishing the rule for
network evolution. Concentrating on this aspect, we promote
the idea of node correlation in our model for creating a more
pragmatic weighted network.

The rest of this paper is organized as follows. In section 2,
the related work about weighted network models are presented.
Section 3 contains the description of the proposed weighted
network model. Section 4 is devoted to the theoretical analysis.
Numerical simulations of the model are presented in Section
5. Section 6 draws the conclusion.

II. RELATED WORK

As it mentioned in section 1, there are two kinds of network
models which are presented to describe the complex networks:
the unweighted network model and the weighted network
model. In unweighted networks, the edge only represents the
presence or absence of interaction. In other words, all the
edges in unweighted networks have equal weights. Howev-
er, many real network systems display different interaction
strengths between nodes. Therefore, weighted growing net-
work models with non-uniform strengths of the links are better
models since they can well formulate practical architectures
of more realistic complex networks, and in so many weighted
network models, the BBV model [18] is one of the most classic
ones.

In this section, we mainly introduce some weighted network
models improved on the BBV model [18].



In the BBV model [18], only the weights of the edges
departing from the vertex i will obtain an increase, but the
weights of the other edges will keep unchanged, that means
the weights are rearranged locally. However, much empirical
evidence has demonstrated that the establishment of new edges
will introduce variations of the existing weights across the
network in most real networks. So in this paper [24], the
authors let the emergences of new edges promote a total
increase of traffic, that is proportionally distributed among all
the edges in accordance with their own weights, which can
rapidly spurs the expansion of networks.

By studying the real directional social network and an-
alyzing the dynamic evolution of international import and
export trade network, this paper [25] proposed the topology
generation algorithm of weighted directed network based on
the triad formation rule.In the algorithm, directed edges were
added to the network by using weight preferential attachment
rule and triad formation rule. Simulation results show that the
algorithm can generate the network topology consistent with
real network environment and has good controllability of the
clustering coefficient.

There is an another model [26] which also considers the
triad formation. The most evolution mechanisms just describe
interactions between the newly added node and the old ones.
Actually, such interactions also exist between old nodes. Such
interactions more easily occur between neighbors(friends of
friends), so-called Triad Formation. Furthermore, some inter-
actions are generated randomly representing the small-world
effect of networks.

Another drawback of the BBV model [18] is also pretty con-
spicuous, and it is that the model barely illustrates interactions
between newly added node and the old ones, totally ignoring
interactions between old nodes. Additionally, the rearrange-
ment of weights is local, but we need a model that allows the
flow to be widely updated. A truly novel network model is
the one that has widely weighted dynamics, which promotes
a general mechanism for the occurrence of varying power-law
behaviors without resorting to more complicated topological
rules and variations of the basic preferential attachment rule
[27].

This paper [28] proposes a directed weighted network model
based on BBV model by culminating with directivity and
characteristic of network evolution. It introduces parameters
p, q, the strength of a node is divided into in-strength and out-
strength, picks over and evolution of this model based on BBV
building thought [18]. Theory analysis and numerical value
simulation results show that node distribution of out-strength
and in-strength with the exponent of [2, 3] in this model.
Average path and clustering coefficient which are adjusted by
parameter can consistent with the characteristics of complex
network.

Considering the node attraction, a new and realistic weight-
ed evolving complex network model [29] was proposed based
on the network model with limited node strength. Through the
research it is found that the distribution of node strength of
this model is changed and its more realistic in the network

comparing with the BBV model [18]. By adjusting the pa-
rameters of the relevant property that a more optimal state
of the network can be gained. It can guide the evolution of
the actual network, reduce the networks load and enhance its
performance.

However, the above weighted network models merely con-
sider the node strength in the evolution rule, but without
referring to the effect caused by the correlation between nodes.
In this paper, we introduce the concept of correlation degree
in our model for creating a more pragmatic weighted network.

III. NETWORK MODEL

A. Preliminary

A weighted network can be described by a weighted adja-
cency matrix with entries that are equal to the weights on the
edges, namely

W = (wij) (1)

where i, j = 1, 2, 3 . . . , . . . N . If there is no edge between
node i and node j, we have wij = 0.

The node degree of a node i in a weighted network, namely
node strength si(or node weight), is defined as

si =
∑

j∈v(i)

wij (2)

where v(i) is the set of neighbors of node i. The node strength
distribution function p(s) represents the probability that a
node’s strength value is s.

B. The correlation degree between nodes

The evolution rules of most previous weighted network
models are based on node strength preferential attachment,
which means that the nodes with greater node strength would
be more likely to be chosen as “friend”. But these kind of
evolving rules are inadequate to describe the network evolution
scenario shown as follows. A new user who joins in an online
social network for the first time may not want to connect to
the most popular user, instead he is more likely to choose the
ones who have same hobbies or come from same place to be
his neighbors.

To address this practical challenge, we propose a new
weighted evolving network model with additional consider-
ation of the correlation between nodes in the growth of a
network, and the related parameters are defined as follows.

Self attribute is a newly defined node feature which
represents node inherent self attributes. For an example of
an online social network, a user’s self attribute could be
his interests, profession, hometown, and even the graduated
college. The different users who have same self attribute could
become friends on a certain probability. In the paper, the
self attribute of node n is denoted by βn. In the process of
network evolution, the values of all the nodes self attributes
are randomly assigned to a numeric between 0 and 1.

Correlation degree is a newly defined network feature
which represents the correlation degree between any two nodes
in the network. We assume that the closer values of self



attributes, the higher correlation degree between nodes. The
correlation degree between node n and node i is denoted by
τni, and the calculation formula of parameter τni is defined
as follows:

τni = 1− |βn − βi| (3)

According to the (3), we can see that closer value of self
attributes between nodes is an indicator of high correlation
degree.

C. Evolution Algorithm of the Model

1) Network Initialization: We start from a small number
m0 of fully connected nodes, and fix a self attribute value
β(0 ≤ β ≤ 1) to every node. The weight of each edge is
assigned to w0.

2) Topological Growth: In every time step
i. With probability α, we add a new node n with the self

attribute value of βn to the network. The new node develops
m links to the existing nodes in the network. According to
the strength preferential attachment rule, the probability of an
existing node i being selected for connection is dependent on
the strength of node i. ∏

n→i

=
si∑
l sl

(4)

where function
∑

l sl represents the sum of node strength of
the whole network, and probability parameter α ∈ [0, 1].

ii. With probability 1−α, we add a new node n with the self
attribute value of βn to the network. The new node develops
m links to the existing nodes in the network. According to the
correlation preferential attachment rule, the probability of an
existing node i being selected for connection is dependent on
the correlation degree between node i and node n.∏

n→i

=
1− |βn − βi|∑
l(1− |βn − βl|)

=
τni∑
l τnl

(5)

where function
∑

l τnl represents the sum of correlation degree
between node n and any other nodes in the whole network.

3) Weighted Dynamics: The weight of each new edge (n, i)
is initially set to a predefined value w0. For the sake of
simplicity, we limit the weight evolving condition to the case
where the introduction of a new link on node i will trigger only
local rearrangements of weights on node i’s existing neighbors
j ∈ τ(i), According to the following rules:

wij → wij +∆wij (6)

wij = δi ·
wij

si
(7)

constant δi represents the extra information flow of node i,
which is brought by the new edge (n, i). Since the connected
edge will share some flow according to wij , so the strength
of node i will change dynamically according to the following
rule:

si → si + w0 + δi (8)

IV. THEORETICAL ANALYSIS

When a new node is added into the network, the strength
of an existing node i in the network might be affected in
the following two cases: (1) a new edge connects to node i
directly; (2) a new edge connects to one of node i’s neighbors.

The weight of each new edge is fixed to w0 = 1. The
evolution equation for si(t) is thus given by

dsi
dt

= α ·m · si∑
l sl

· (1 + δ) + α ·
∑

j∈v(i)

m · si∑
l sl

· δwij

si
+

(1− α) ·m · τni∑
l τnl

· (1 + δ) + (1− α) ·
∑

j∈v(i)

m · τni∑
l τnl

· δwij

si
(9)

The new edge increases the total strength of the whole
network by an amount equal to 2+2δ, implying that

∑
l sl ≈

2m(1+δ)t. Because we fix the node self attribute β ∼ U(0, 1),
the correlation degree also follows uniform distribution, thus
implying that

∑
l τnl ≈

1
2 ·m · t, and

dsi
dt

= α · 2δ + 1

2δ + 2
· si
t
+ 2(1− α) · (δ + 1) · τni

t
(10)

So we have
dsi
dt

= A · si
t
+B · τni

t
(11)

where A = α · 2δ+1
2δ+2 , and B = 2(1−α)(δ+1). With the initial

condition si(t = i) = m, we can integrate (10) to obtain

si(t) = (m+
Bτni
A

) · ( t
i
)A − Bτni

A
(12)

The time evolution equation for ki is:
dki
dt

= (1− α) ·m · τni∑
l τnl

+ α ·m · si∑
l sl

(13)

We can obtain

ki(t) ≈
α

2(2δ + 1) ·A
si =

δ + 1

(2δ + 1)2
si (14)

Considering all these above, ki and si are considered to be
linear.

We set ti to be the time that a node i enters the network,
so the probability P (si(t) < s) that a node’s strength si(t) is
smaller than s can be written as

P (si(t) < s) = P{ti > t(
mA+Bτni
sA+Bτni

)
1
A }

= 1− P{ti ≤ t(
mA+Bτni
sA+Bτni

)
1
A }

(15)

Then the probability density of P (s) can be given by

P (si) =
∂P (si < s)

∂s
=

t

m0 + t
· (mA+Bτni)

1
A

(sA+Bτni)1+
1
A

(16)

When t → ∞, P (s) ∼ s−γ where γ = 1+ 1
A , A = α· 2δ+1

2δ+2 .
We can conclude that the node strength follows the power-
law distribution whose scaling exponent varies from 2 to 3 as
2
3 ≤ α ≤ 1(δ = 1).
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Fig. 1. Node strength distribution P (s) of the network with parameter 2
3
≤

α ≤ 1.

Likewise, P (k) ∼ k−γ where γ = 1 + 1
A , A = α · 2δ+1

2δ+2 .
We can conclude that the node degree follows the power-law
distribution whose scaling exponent varies from 2 to 3 as 2

3 ≤
α ≤ 1(δ = 1).

As we can see from the above theoretic analysis, node
strength and degree of the network both follow the power-law
distribution with an exponent γ ∈ [2, 3] as 2

3 ≤ α ≤ 1(δ = 1).
In particular, when α = 1, the network evolving condition is
exactly same as the BBV model [18]. This kind of scale-free
property has been discovered in many real-world networks, so
our analytic results here have demonstrated the practicality of
our proposed model.

V. NUMERICAL SIMULATION

In order to verify the validity of the obtained analytical
predictions, we performed extensive numerical simulations of
networks generated by proposed model with a different value
of parameter α. In the simulation, we fix δi = δ = 1, w0 = 1,
m0 = 5, m = 2, N = 1000 and β ∈ U(0, 1).

A. Node degree distribution and strength distribution

In the simulation, we fix α = 2
3 , α = 3

4 , α = 5
6 and α = 1

respectively.
As shown in Fig. 1 and Fig. 2, both node strength and degree

follow the power-law distribution with an exponent γ ∈ [2, 3]
when 2

3 ≤ α ≤ 1(δ = 1), the red lines in figures represent the
scaling exponent of the power-law distribution. The numerical
simulations are coherent with the results from theoretical
analysis in section 3 and consistent with the statistical results
of many real-world networks [30], [31].

B. Linear correlation between node degree and strength

In the simulation, parameter α is assign to 2
3 , δ = 0.5,

δ = 1, δ = 2 and δ = 5 are fixed respectively to experiment
the linear relationship between node degree and strength.
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Fig. 2. Degree distribution P (k) of the network with parameter 2
3
≤ α ≤ 1.

Fig. 3. Strength si versus ki with different values of δ.

As we can see from Fig. 3, no matter what value of
parameter δ is, node degree ki and strength si are always
linear, which is same as the result from theoretical analysis.

C. Clustering coefficient and average shortest path length

In the simulations, we fix α = 2
3 , α = 5

6 and α = 1
respectively. The values of average clustering coefficient and
average shortest path length of the network are calculated by
averaging over 20 independent runs.

Clustering coefficient C is often used for the characteriza-
tion on the correlation degree between nodes in the network.
The clustering coefficient of one given node i is defined as
the ratio between existing and potential numbers of neighbor-
ing connections of node i. The formula for calculating the
clustering coefficient of node i in the network can be defined
as:

Ci =
2Ei

ki(ki − 1)
(17)
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Fig. 4. Average clustering coefficient of the network as parameter 2
3
≤ α ≤

1.
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Fig. 5. Average path length of the network as parameter 2
3
≤ α ≤ 1.

where parameter ki represents the number of node i’s neigh-
bors, and Ei represents the number of existing connections
between node i and its neighbors. The average clustering
coefficient C is the mean value of all the nodes’ clustering
coefficient in the network.

Average shortest path length is another significant property
for evaluating the distance between nodes. The distance dij
denotes the length of shortest path between node i and node
j. The average shortest path length L is defined as the average
length of the shortest paths between any pair of two nodes in
the network.

L =
1

1
2N(N + 1)

∑
i≥j

dij (18)

where parameter N is the total nodes number of the network.

From Fig. 4 and Fig. 5, we can see that the values of average
clustering coefficient C and average shortest path length L

both change as a function of network size. While the number
of nodes grows, the former values decrease and the latter
ones increase, which just shows the small-world property of
the network. The average clustering coefficient C decreases
as the value of parameter α increases, that is, the smaller
parameter α is, the easier nodes will cluster together. As we
see from the topological growth rule of our model, when the
parameter α becomes smaller, the weight of the correlation
between nodes in the evolutionary process becomes greater.
When the maximum value (the value is 1) is fixed to α, node
strength is the only factor to be considered in the network
evolution rule, and the network changes into the BBV network.
In other words, the dual assessment of both node strength
and correlation makes nodes be more likely to get clustered
together, which leads to a higher probability to cluster, a better
connectivity of the whole network. On the contrary, with the
increase of parameter α, average path length increase distinctly
because of the lower clustering degree between the network
nodes.

From the above simulation results, we conclude that node
strength distribution P (s) and degree distribution P (k) of the
network both exhibit a power-law behavior as 2

3 ≤ α ≤ 1.
By adjusting parameters α, we can adjust the weights of node
strength and correlation in evaluating rules. As demonstrated
by the numerical simulations, the smaller parameter α is,
and the easier nodes can get clustered together, the higher
propagation velocity network has.

VI. CONCLUSION

In this paper, we propose a weighted network model based
on the correlations between nodes which takes the node
strength and node correlation into consideration during the
network evolution, and the weights of these two evolving
assessment factors are adjusted by parameter α. As we can see
from the both theoretical analysis and numerical simulations,
the network model shows the scale-free property and the
small-world property that are observed in many real-world
networks. Moreover, we have demonstrated that the dual
assessment of node strength and node correlation leads to a
higher propagation velocity of the whole network. In a word,
the weighted network model we introduced in this paper better
reveals the evolving mechanisms behind various real-world
networks than many existing models.
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