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Abstract For a regular plane curve, an involute of it is the trajectory de-
scribed by the end of a stretched string unwinding from a point of the curve.
Even for a regular curve, the involute always has a singularity. By using a
moving frame along the front and the curvature of the Legendre immersion in
the unit tangent bundle, we define an involute of the front in the Euclidean
plane and give properties of it. We also consider a relationship between evo-
lutes and involutes of fronts without inflection points. As a result, the evolutes
and the involutes of fronts without inflection points are corresponding to the
differential and the integral of the curvature of the Legendre immersion.

Keywords involute, evolute, front, Legendre immersion, inflection point
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1 Introduction

The notions of involutes (or, evolvents) and evolutes were studied by C. Huy-
gens in his work [15] and investigated in physics, classical analysis, differential
geometry and singularity theory of planar curves (cf. [6], [8], [12], [13], [14],
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[20]). For a regular plane curve, an involute of it is the trajectory described
by the end of stretched string unwinding from a base point of the curve. As a
remarkable property of a regular curve without inflection points, the involute
of the regular curve has a 3/2 cusp at the base point.

On the other hand, the evolute of a regular plane curve is also classical
object (cf. [6], [12], [13]). The evolute of a regular curve without inflection
points is given by not only the locus of all its centres of curvature, but also
an envelope of the normal lines of the regular curve. It is well-known that
the relationship between involutes and evolutes of regular plane curves. The
evolute of an involute is the original curve, less portions of zero or undefined
curvature. The properties of evolutes were also discussed by using squared dis-
tance functions, the theories of Lagrangian, Legendrian singularity and further
concepts (cf. [2], [3], [4], [7], [10], [18], [19], [21], [23]).

In this paper, we define involutes of curves with singular points which are
called fronts. In section 2, we recall the definitions for the involute and the
evolute of regular plane curves. Moreover, for a Legendre curve (a Legendre
immersion) in the unit tangent bundle, we give a moving frame along the
frontal (the front) and the curvature of the Legendre curve (the Legendre im-
mersion) (cf. [9]). By using them, we define an involute of the front. We also
recall the definition of the evolute of the front without inflection points (cf.
[10]). We discuss properties of involutes without inflection points. For exam-
ple, the involute of the front without inflection points is also a front without
inflection points. We also give relationships between evolutes and involutes of
fronts without inflection points by using the curvature of Legendre immersions.
In section 3, we analyse singular points of the involute of the front without
inflection points. Moreover, we give a relationship between singular points of
the involute of the front and vertices. Since the involute of the front without
inflection points is also a front without inflection points, we can repeat the
involute of the front. We give a formula of the n-th involute of the front in
section 4. We introduce a special parametrisation for Legendre immersions
without inflection points in section 5. By using this parametrisation, the evo-
lute and the involute of the front without inflection points are corresponding
to the differential and the integral of the curvature of the Legendre immersion.
We give not only the relationship between the contact of Legendre immersions,
evolutes and involutes, but investigate also the case of the same shape of the
front and the n-th evolute (or, the n-th involute) of the front under the same
parametrisation.

We shall assume throughout the whole paper that all maps and manifolds
are C∞, unless the contrary is explicitly stated.

2 Basic notations and definitions

We recall the definitions of the involute and the evolute of a regular curve (cf.
[6], [12], [13]). Let I be an interval of R and let R2 be the Euclidean plane with
the inner product a ·b = a1b1+a2b2, where a = (a1, a2) and b = (b1, b2) ∈ R2.
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Suppose that γ : I → R2 is a regular plane curve, that is, γ̇(t) = (dγ/dt)(t) ̸= 0
for any t ∈ I. We have the unit tangent vector t(t) = γ̇(t)/|γ̇(t)| and the unit
normal vector n(t) = J(t(t)), where |γ̇(t)| =

√
γ̇(t) · γ̇(t) and J is the anti-

clockwise rotation by π/2 on R2. Then we have the Frenet formula(
ṫ(t)
ṅ(t)

)
=

(
0 |γ̇(t)|κ(t)

−|γ̇(t)|κ(t) 0

)(
t(t)
n(t)

)
,

where the curvature is given by κ(t) = ṫ(t) · n(t)/|γ̇(t)| = det (γ̇(t), γ̈(t))/|γ̇(t)|3.
Note that the curvature κ(t) is independent of the choice of a parametrisation
up to sign.

In this paper, we consider involutes and evolutes of plane curves. For t0 ∈ I,
the involute Inv(γ, t0) : I → R2 of a regular plane curve γ : I → R2 at t0 is

given by Inv(γ, t0)(t) = γ(t)−
∫ t

t0
|γ̇(u)|dut(t) and the evolute Ev(γ) : I → R2

of a regular plane curve γ : I → R2 is given by Ev(γ)(t) = γ(t)+(1/κ(t))n(t),
away from inflection points, that is, κ(t) ̸= 0.

We give examples of an involute and an evolute of a regular curve, for more
examples see [6], [12], [13].

Example 1 Let γ : [−π, π)→ R2 be a circle γ(t) = (r cos t, r sin t) with radius
r > 0. Then the involute of the circle at t0 is

Inv(γ, t0)(t) = (r cos t+ (t− t0)r sin t, r sin t− (t− t0)r cos t).

In Figure 1, the involute of the circle with r = 1 at t0 = 0 is depicted.

Example 2 Let γ : [0, 2π) → R2 be an ellipse γ(t) = (a cos t, b sin t) with
a, b > 0 and a ̸= b. Then the evolute of the ellipse is

Ev(γ)(t) =

(
a2 − b2

a
cos3 t,−a2 − b2

b
sin3 t

)
.

In Figure 2, the evolute of the ellipse with a = 3/2, b = 1 is shown.
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The involute of the circle at 0. The evolute of the ellipse.
Figure 1. Figure 2.

The following properties are well-known in classical differential geometry of
curves:
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Proposition 1 Let γ : I → R2 be a regular curve and t0 ∈ I.
(1) If t is a regular point of Inv(γ, t0), then we have Ev(Inv(γ, t0))(t) =

γ(t).
(2) If t and t0 are regular points of Ev(γ) and not inflection points of γ,

then we have Inv(Ev(γ), t0)(t) = γ(t) + (1/κ(t0))n(t).

Even if γ is a regular curve, the base point t0 is always a singular point
of the involute Inv(γ, t0) and also the evolute Ev(γ) may have singularities,
see Figures 1 and 2. For a singular point of Inv(γ, t0) (respectively, Ev(γ)),
Ev(Inv(γ, t0))(t) (respectively, Inv(Ev(γ), t0)(t)) cannot be defined.

In general, if γ is not a regular curve, then we cannot define the involute
and the evolute of the curve as above. In [10], we defined the evolute of the
front without inflection points in the Euclidean plane, see Definition 2. In this
paper, we define an involute of the front in the Euclidean plane, see Definition
3. These are generalisations of evolutes and involutes of regular plane curves.
In order to define an evolute and an involute of the front, we review Legendre
curves in the unit tangent bundle, the Frenet formula and the curvature of the
Legendre curve (cf. [9]).

We say that (γ, ν) : I → R2×S1 is a Legendre curve if (γ, ν)∗θ = 0, where θ
is the canonical contact 1-form on the unit tangent bundle T1R2 = R2×S1 and
S1 is the unit circle (cf. [2], [3], [4]). This condition is equivalent to γ̇(t)·ν(t) = 0
for all t ∈ I. Moreover, if (γ, ν) is an immersion, we call (γ, ν) a Legendre
immersion. We say that γ : I → R2 is a frontal (respectively, a front or a
wave front) if there exists a smooth mapping ν : I → S1 such that (γ, ν) is a
Legendre curve (respectively, a Legendre immersion).

Let (γ, ν) : I → R2 × S1 be a Legendre curve. Then we have the Frenet
formula of the frontal γ as follows. We put µ(t) = J(ν(t)). We call the pair
{ν(t),µ(t)} a moving frame along the frontal γ(t) in R2 and the Frenet formula
of the frontal (or, the Legendre curve) which is given by(

ν̇(t)
µ̇(t)

)
=

(
0 ℓ(t)
−ℓ(t) 0

)(
ν(t)
µ(t)

)
,

where ℓ(t) = ν̇(t) · µ(t). Moreover, there exists a smooth function β(t) such
that γ̇(t) = β(t)µ(t). The pair (ℓ, β) is an important invariant of Legendre
curves (or, frontals). We call the pair (ℓ(t), β(t)) the curvature of the Legendre
curve (with respect to the parameter t).

Definition 1 Let (γ, ν) and (γ̃, ν̃) : I → R2 × S1 be Legendre curves. We
say that (γ, ν) and (γ̃, ν̃) are congruent as Legendre curves if there exists a
congruence C on R2 such that γ̃(t) = C(γ(t)) = A(γ(t))+b and ν̃(t) = A(ν(t))
for all t ∈ I, where C is given by a rotation A and a translation b on R2.

We have the existence and the uniqueness for Legendre curves in the unit
tangent bundle analogously to the case of regular plane curves, see [9].

Theorem 1 (The Existence Theorem) Let (ℓ, β) : I → R2 be a smooth map-
ping. There exists a Legendre curve (γ, ν) : I → R2 × S1 whose associated
curvature of the Legendre curve is (ℓ, β).
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Theorem 2 (The Uniqueness Theorem) Let (γ, ν) and (γ̃, ν̃) : I → R2×S1 be

Legendre curves whose curvatures of Legendre curves (ℓ, β) and (ℓ̃, β̃) coincide.
Then (γ, ν) and (γ̃, ν̃) are congruent as Legendre curves.

In fact, the Legendre curve whose associated curvature of the Legendre
curve is (ℓ, β), is given by the form

γ(t) =

(
−
∫

β(t) sin

(∫
ℓ(t)dt

)
dt,

∫
β(t) cos

(∫
ℓ(t)dt

)
dt

)
,

ν(t) =

(
cos

∫
ℓ(t)dt, sin

∫
ℓ(t)dt

)
.

We give examples of Legendre curves.

Example 3 One of the typical examples of a front (and hence a frontal) is
a regular plane curve. Let γ : I → R2 be a regular plane curve. In this
case, we may take ν : I → S1 by ν(t) = n(t). Then it is easy to check
that (γ, ν) : I → R2 × S1 is a Legendre immersion (a Legendre curve). By
a direct calculation, the relationship between the curvature of the Legendre
curve (ℓ(t), β(t)) and the curvature κ(t) is given by ℓ(t) = −β(t)κ(t).

Example 4 Let n,m and k be natural numbers withm = n+k. Let (γ, ν) : I →
R2×S1 be γ(t) = (tn/n, tm/m) , ν(t) = (1/

√
t2k + 1)

(
−tk, 1

)
. It is easy to see

that (γ, ν) is a Legendre curve, and a Legendre immersion when n = 1 or k = 1.
We call γ of type (n,m). For example, the frontal of type (2, 3) has the 3/2 cusp
(A2 singularity) at t = 0, that of type (3, 4) has the 4/3 cusp (E6 singularity)
at t = 0, see Figure 3. By definition, we have µ(t) = (1/

√
t2k + 1)(−1,−tk)

and ℓ(t) = ktk−1/(t2k + 1), β(t) = −tn−1
√
t2k + 1.

Let (γ, ν) : I → R2 × S1 be a Legendre curve with the curvature of the
Legendre immersion (ℓ, β). We say that t0 ∈ I is an inflection point of the
frontal (or, of a Legendre curve (γ, ν)) if ℓ(t0) = 0. Note that if t0 is a regular
point of γ, the definition of the inflection point coincides with the usual in-
flection point for regular curves by Example 3. If a Legendre curve (γ, ν) does
not have inflection points, then (γ, ν) is a Legendre immersion.

In [10], we have defined the evolute of the front without inflection points
in the Euclidean plane by using parallel curves of the front. Here, we recall an
alternative definition of the evolute of the front as follows, see Theorem 3.3 in
[10]. Throughout the paper, we assume that (γ, ν) : I → R2×S1 is a Legendre
immersion without inflection points. We denote the curvature of the Legendre
immersion by (ℓ, β).

Definition 2 The evolute Ev(γ) : I → R2 of the front γ without inflection
points is given by Ev(γ)(t) = γ(t)− (β(t)/ℓ(t))ν(t).

The definition of the evolute Ev(γ) of the front is a generalisation of the
evolute Ev(γ) of a regular curve γ. For properties of the evolute of the front
see [10]. We define the involute of the front as follows:
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Definition 3 The involute Inv(γ, t0) : I → R2 of the front γ at t0 ∈ I is

given by Inv(γ, t0)(t) = γ(t)−
∫ t

t0
β(u)duµ(t).

For a regular plane curve γ : I → R2, we consider n(t) = ν(t) in Example
3. It follows that t(t) = −µ(t) and |γ̇(t)| = −β(t). Therefore, we have the
following result.

Proposition 2 For a regular curve γ : I → R2 and any t0 ∈ I, we have
Inv(γ, t0) = Inv(γ, t0).

Remark 1 The evolute and the involute of the front are independent of the
choice of a parametrisation. Moreover, if the set of regular points of γ is dense,
then Ev(γ) and Inv(γ, t0) are uniquely determined by γ, namely, they do not
depend on the choice of ν.

Proposition 3 Let (γ, ν) : I → R2 × S1 be a Legendre immersion with the
curvature of the Legendre immersion (ℓ, β) and without inflection points.

(1) The evolute Ev(γ) : I → R2 is a front. More precisely, the evolute
(Ev(γ)(t), J(ν(t))) : I → R2 × S1 is a Legendre immersion with the curvature(

ℓ(t),
d

dt

(
β(t)

ℓ(t)

))
.

(2) The involute Inv(γ, t0) : I → R2 is a front for any t0 ∈ I. More
precisely, the involute (Inv(γ, t0)(t), J−1(ν(t))) : I → R2 × S1 is a Legendre
immersion with the curvature(

ℓ(t), ℓ(t)

∫ t

t0

β(u)du

)
.

Proof (1) By using the Frenet formula of the front, we have Ėv(γ)(t) =
(d/dt) (β(t)/ℓ(t))J(µ(t)). Therefore, we have Ėv(γ)(t) · J(ν(t)) = 0. Since
(d/dt)(J(ν(t))) = J(ν̇(t)) = J(ℓ(t)µ(t)) = ℓ(t)J(µ(t)) ̸= 0, it holds that
the evolute (Ev(γ)(t), J(ν(t))) is a Legendre immersion with the curvature
(ℓ(t), (d/dt)(β(t)/ℓ(t))).

(2) By direct calculation, we have İnv(γ, t0)(t) = ℓ(t)
∫ t

t0
β(u)duJ−1(µ(t)).

Therefore, we have İnv(γ, t0)(t) · J−1(ν(t)) = 0. Since (d/dt)(J−1(ν(t))) =
J−1(ν̇(t)) = J−1(ℓ(t)µ(t)) = ℓ(t)J−1(µ(t)) ̸= 0, it holds that the invo-
lute (Inv(γ, t0)(t), J−1(ν(t))) is a Legendre immersion with the curvature

(ℓ(t), ℓ(t)
∫ t

t0
β(u)du). 2

Let (γ, ν) : I → R2×S1 be a Legendre immersion with the curvature (ℓ, β)
and without inflection points. By Proposition 3, (Ev(γ), J(ν)) : I → R2 × S1

and (Inv(γ, t0), J−1(ν)) : I → R2×S1 are also a Legendre immersion without
inflection points for any t0 ∈ I. We give a justification of Proposition 1 with
singular points.

Proposition 4 For any t0 ∈ I, we have the following:
(1) Ev(Inv(γ, t0))(t) = γ(t).
(2) Inv(Ev(γ), t0)(t) = γ(t)− (β(t0)/ℓ(t0))ν(t).
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Proof (1) By the definition of the evolute and Proposition 3, we have

Ev(Inv(γ, t0))(t) = Inv(γ, t0)(t)−
ℓ(t)

∫ t

t0
β(u)du

ℓ(t)
J−1(ν(t)) = γ(t).

(2) By the definition of the involute and Proposition 3, we have

Inv(Ev(γ), t0)(t) = Ev(γ)(t)−
∫ t

t0

d

du

(
β(u)

ℓ(u)

)
duJ(µ(t)) = γ(t)− β(t0)

ℓ(t0)
ν(t).

2

For a given Legendre immersion (γ, ν) : I → R2 × S1, we consider an
existence condition of a Legendre immersion (γ̃, ν̃) : I → R2 × S1 such that
Ev(γ̃)(t) = γ(t) or Inv(γ̃, t0)(t) = γ(t) for some t0. By using Proposition 4
and Theorem 2, we have the following Corollaries.

Corollary 1 (1) If (γ̃(t), ν̃(t)) = (Inv(γ, t0)(t) + λJ−1(ν(t)), J−1(ν(t))) for
any t0 ∈ I and any λ ∈ R, then we have Ev(γ̃)(t) = γ(t).

(2) If (γ̃(t), ν̃(t)) = (Ev(γ)(t), J(ν(t))) and t0 is a singular point of γ, then
we have Inv(γ̃, t0)(t) = γ(t).

Proof (1) Since γ̃(t) is a parallel curve of Inv(γ, t0)(t), it holds that Ev(γ̃)(t)
= Ev(Inv(γ, t0))(t). It follows from Proposition 4 that Ev(γ̃)(t) = γ(t).

(2) By Proposition 4 and β(t0) = 0, we have Inv(γ̃, t0)(t) = γ(t). 2

Conversely, we have the following result.

Corollary 2 Let (γ, ν) and (γ̃, ν̃) : I → R2×S1 be Legendre immersions with

the curvatures (ℓ, β) and (ℓ̃, β̃) respectively, and without inflection points.
(1) If (Ev(γ̃)(t), J(ν̃(t))) and (γ(t), ν(t)) are congruent as Legendre immer-

sions, then (γ̃(t), ν̃(t)) and (Inv(γ, t0)(t) + (β̃(t0)/ℓ̃(t0))J
−1(ν(t)), J−1(ν(t)))

are congruent as Legendre immersions for any t0 ∈ I.
(2) Let t0 ∈ I. If (Inv(γ̃, t0)(t), J−1(ν̃(t))) and (γ(t), ν(t)) are congruent as

Legendre immersions, then (γ̃(t), ν̃(t)) and (Ev(γ)(t), J(ν(t))) are congruent
as Legendre immersions, and t0 is a singular point of γ.

We give an example of an involute of a front. Examples of evolutes of fronts
are presented in [10].

Example 5 Let (γ, ν) : R → R2 × S1 be of type (2, 3) in Example 4, γ(t) =(
t2/2, t3/3

)
, ν(t) = (1/

√
t2 + 1) (−t, 1) . We have µ(t) = (−1/

√
t2 + 1)(1, t),

ℓ(t) = 1/(t2 +1) and β(t) = −t
√
t2 + 1. It follows that the involute of the 3/2

cusp at t0 ∈ R is given by

Inv(γ, t0)(t) =

(
t2

6
− 1

3
+

1

3

(t20 + 1)
3
2

√
t2 + 1

, − t

3
+

1

3

(t20 + 1)
3
2

√
t2 + 1

t

)
.

Note that the involute of the 3/2 cusp at t0 = 0 is diffeomorphic to the 4/3
cusp at 0, see Figure 3 and Corollary 3 below.
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The 3/2 cusp. The involute of the 3/2 cusp at 0.
Figure 3.

3 Properties of involutes of fronts

Let (γ, ν) : I → R2 × S1 be a Legendre immersion with the curvature (ℓ, β)
and without inflection points. We give properties of the involute of the front.

Proposition 5 For any points t0, t1 ∈ I, Inv(γ, t1) is a parallel curve of
Inv(γ, t0).

Proof By the definition of the involute, we have

Inv(γ, t1)(t) = γ(t)−
∫ t

t1

β(u)duµ(t) = Inv(γ, t0)(t) +
∫ t0

t1

β(u)duJ−1(ν(t)).

Since J−1(ν(t)) is the unit normal of Inv(γ, t0)(t), Inv(γ, t1) is a parallel
curve of Inv(γ, t0). 2

We analyse singular points of the involute of the front.

Proposition 6 Let t0 ∈ I.
(1) t1 is a singular point of Inv(γ, t0) if and only if

∫ t1
t0

β(s)ds = 0.

(2) Suppose that t1 is a singular point of Inv(γ, t0). Then Inv(γ, t0) is
diffeomorphic to the 3/2 cusp at t1 if and only if β(t1) ̸= 0.

(3) Suppose that t1 is a singular point of Inv(γ, t0). Then Inv(γ, t0) is
diffeomorphic to the 4/3 cusp at t1 if and only if β(t1) = 0 and β̇(t1) ̸= 0.

Proof (1) By differentiating of the involute of the front, we have İnv(γ, t0)(t) =
ℓ(t)

∫ t

t0
β(u)duν(t). By the assumption ℓ(t) ̸= 0 for all t ∈ I, we have the result.

(2) From the Frenet formula of the front, we have

Ïnv(γ, t0)(t) =
(
ℓ̇(t)

∫ t

t0

β(u)du+ ℓ(t)β(t)

)
ν(t) + ℓ(t)2

∫ t

t0

β(u)du µ(t).

By (1), we obtain Ïnv(γ, t0)(t1) = ℓ(t1)β(t1)ν(t1). Moreover, we have

...
I nv(γ, t0)(t1) =

(
2ℓ̇(t1)β(t1) + ℓ(t1)β̇(t1)

)
ν(t1) + 2ℓ(t1)

2β(t1)µ(t1).
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Thus, det
(
Ïnv(γ, t0)(t1),

...
I nv(γ, t0)(t1)

)
= 2ℓ(t1)

3β(t1)
2 ̸= 0 if and only if

β(t1) ̸= 0. Therefore, we obtain (2).

(3) By (2), det
(
Ïnv(γ, t0)(t1),

...
I nv(γ, t0)(t1)

)
= 0 if and only if β(t1) = 0.

Moreover, under the conditions
∫ t1
t0

β(u)du = 0 and β(t1) = 0, we have

Inv(4)(γ, t0)(t1) =
(
3ℓ̇(t1)β̇(t1) + ℓ(t1)β̈(t1)

)
ν(t1) + 3ℓ(t1)

2β̇(t1)µ(t1)

and hence det
(...
I nv(γ, t0)(t1), Inv(4)(γ, t0)(t1)

)
= 3ℓ(t1)

3β̇(t1)
2. Thus,

det
(
Ïnv(γ, t0)(t1),

...
I nv(γ, t0)(t1)

)
= 0,

det
(...
I nv(γ, t0)(t1), Inv(4)(γ, t0)(t1)

)
̸= 0

if and only if β(t1) = 0, β̇(t1) ̸= 0. It follows that Inv(γ, t0) is diffeomorphic
to the 4/3 cusp at t1 (cf. [5], [16], [17]). Therefore, we obtain (3). 2

By Proposition 6, we have the following Corollary:

Corollary 3 Under the above notations, we have the following.
(1) Inv(γ, t0) is diffeomorphic to the 3/2 cusp at t0 if and only if t0 is a

regular point of γ.
(2) Inv(γ, t0) is diffeomorphic to the 4/3 cusp at t0 if and only if γ is

diffeomorphic to the 3/2 cusp at t0.

Remark 2 In this paper, we assume that the front does not have inflection
points, though we can define the involute of the front with inflection points.
In this case, the involute of the front is a frontal (cf. [11]). We can find other
kinds of singularities of the involute, see [1], [11], [22].

Lemma 1 If t1 ∈ I \{t0} is a singular point of Inv(γ, t0), then there exists at
least one singular point of γ in the open interval (t0, t1) (respectively, (t1, t0))
when t0 < t1 (respectively, t1 < t0).

Proof We show the case for t0 < t1. By the mean value theorem for integration,
there exists a point ξ ∈ (t0, t1) such that

∫ t1
t0

β(u)du = β(ξ)(t1− t0). Since t1 is

a singular point of Inv(γ, t0), we have
∫ t1
t0

β(u)du = 0. It follows that β(ξ) = 0,
that is, ξ is a singular point of γ. 2

Next we discuss a relationship between singular points of an involute of
the front and vertices. Let (γ, ν) be a Legendre immersion with the curvature
of the Legendre immersion (ℓ, β) and without inflection points. We say that
a point t0 is a vertex of the front γ (or, of the Legendre immersion (γ, ν)) if
(d/dt)(β/ℓ)(t0) = 0, equivalently (d/dt)Ev(t0) = 0, that is, a singular point of
the evolute. Note that if t0 is a regular point of γ, the definition of the vertex
coincides with the usual vertex for regular curves (cf. [10]).

In this paper, we say that a Legendre immersion (γ, ν) : [a, b] → R2 × S1

is closed if (γ(n)(a), ν(n)(a)) = (γ(n)(b), ν(n)(b)) for all n ∈ N ∪ {0}, where
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γ(n)(a), ν(n)(a), γ(n)(b) and ν(n)(b) means one-sided differential. If (γ, ν) :
[a, b] → R2 × S1 is a closed Legendre immersion, then either a and b are
regular points of γ or singular points of γ. When a and b are singular points
of γ, we treat these singular points as one singular point of γ.

Note that if (Inv(γ, t0), J−1(ν)) : [a, b] → R2 × S1 is a closed Legendre
immersion, then (γ, ν) is also closed. By Lemma 1 and Proposition 3.11 in
[10], we have the following Lemma.

Lemma 2 Let (γ, ν) : [a, b]→ R2×S1 be a Legendre immersion without inflec-
tion points. Suppose that (Inv(γ, t0), J−1(ν)) is a closed Legendre immersion
and singular points of γ and Inv(γ, t0) are finite. Then

♯Σ(Inv(γ, t0)) ≤ ♯Σ(γ) ≤ ♯V (γ), (1)

where Σ(Inv(γ, t0)) (respectively, Σ(γ)) is the set of singular points of the
involute Inv(γ, t0) (respectively, γ) and V (γ) is the set of vertices of the front
γ.

Proof We show the first inequality. Suppose that s0, . . . , sn are singular points
of Inv(γ, t0) such that a < s0 < s1 < · · · < sn < b. By Lemma 1, there is at
least one singular point of γ in the open interval (si−1, si) for each i = 1, . . . , n.
We show that there is at least one singular point of γ in (sn, b] ∪ [a, s0).
Since (Inv(γ, t0), J−1(ν)) and (γ, ν) are closed Legendre immersions, we have∫ b

t0
β(u)du =

∫ a

t0
β(u)du, that is,

∫ b

a
β(u)du = 0. If β(t) > 0 (respectively,

β(t) < 0) on (sn, b] ∪ [a, s0), then
∫ t

t0
β(u)du is a monotone increasing func-

tion (respectively, monotone decreasing function) on (sn, b] and [a, s0). Hence

0 =
∫ sn
t0

β(u)du <
∫ b

t0
β(u)du and

∫ a

t0
β(u)du <

∫ s0
t0

β(u)du = 0 (respectively,

0 =
∫ sn
t0

β(u)du >
∫ b

t0
β(u)du and

∫ a

t0
β(u)du >

∫ s0
t0

β(u)du = 0). This im-

plies
∫ b

a
β(u)du =

∫ b

t0
β(u)du −

∫ a

t0
β(u)du > 0 (respectively,

∫ b

a
β(u)du =∫ b

t0
β(u)du−

∫ a

t0
β(u)du < 0). This contradicts the fact

∫ b

a
β(u)du = 0. There-

fore, there exists a point ξ ∈ (sn, b] ∪ [a, s0) such that β(ξ) = 0.
Next, we suppose that s0, . . . , sn are singular points of Inv(γ, t0) such that

a = s0 < s1 < · · · < sn = b. In this case, there are n singular points of the
involute (note that we treat a and b as one singular point). By Lemma 1, there
is at least one singular point of γ in each interval (si−1, si), i = 1, . . . n. Hence
the inequality holds.

The second inequality is a direct consequence of the proof of Proposition
3.11 in [10]. Also see Remark 3 below. 2

Remark 3 By definition, the set of vertices of the front γ is the set of singular
points of Ev(γ). By Proposition 4, we can also prove the second inequality of
(1) in Lemma 2 by the same method as the first inequality.

Remark 4 If (Inv(γ, t0), J−1(ν)) : [a, b] → R2 × S1 is a closed Legendre im-

mersion, then Inv(γ, t0)(a) = Inv(γ, t0)(b) and hence
∫ b

a
β(s)ds = 0. It follows

that γ must have a singular point. As a consequence, if γ is a regular curve,
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then (Inv(γ, t0), J−1(ν)) cannot be a closed Legendre immersion (cf. Figure
1).

We give conditions that the front has at least four vertices. (cf. [10]).

Proposition 7 Let (γ, ν) : I → R2 × S1 be a Legendre immersion without
inflection points. Suppose that (Inv(γ, t0), J−1(ν)) is a closed Legendre im-
mersion.

(1) If Inv(γ, t0) has at least four singular points, then γ has at least four
vertices.

(2) If Inv(γ, t0) has at least two singular points which degenerate more
than 3/2 cusp, then γ has at least four vertices.

Proof (1) This statement is obtained from the inequality in Lemma 2 directly.
(2) Suppose Inv(γ, t0) has at least two singular points t1 and t2 which

degenerate more than 3/2 cusp. By Proposition 6, we have
∫ ti
t0

β(u)du = 0

and β(ti) = 0 for i = 1, 2. Thus t1 and t2 are singular points of γ. Moreover,
by Lemma 1, there exists at least one singular point for each subset (t1, t2)
and I \ [t1, t2]. Therefore, γ has at least four singular points. As a consequence,
γ has at least four vertices by Lemma 2. 2

4 The n-th evolutes and involutes of fronts

Let (γ, ν) : I → R2 × S1 be a Legendre immersion with the curvature (ℓ, β)
and without inflection points. By Proposition 3, (Ev(γ), J(ν)) : I → R2 × S1

and (Inv(γ, t0), J−1(ν)) : I → R2×S1 are also a Legendre immersion without
inflection points for any t0 ∈ I. Therefore, we can repeat the evolute and the
involute of the front. In [10], we give the form of the n-th evolute of the front,
where n is a natural number. We write Ev0(γ)(t) = γ(t) and Ev1(γ)(t) =
Ev(γ)(t) for convenience. We define Evn(γ)(t) = Ev(Evn−1(γ))(t) and

β0(t) = β(t), βn(t) =
d

dt

(
βn−1(t)

ℓ(t)

)
,

inductively.

Theorem 3 ([10]) (Evn(γ), Jn(ν)) : I → R2 × S1 is a Legendre immersion
with the curvature (ℓ, βn), where the n-th evolute of the front is given by

Evn(γ)(t) = Evn−1(γ)(t)− βn−1(t)

ℓ(t)
Jn−1(ν(t))

and Jn is n-times operation of J .

We also write Inv0(γ, t0)(t) = γ(t) and Inv1(γ, t0)(t) = Inv(γ, t0)(t) for
convenience. We define Invn(γ, t0)(t) = Inv(Invn−1(γ, t0), t0)(t) and

β−1(t) = ℓ(t)

∫ t

t0

β(u)du, β−n(t) = ℓ(t)

∫ t

t0

β−n+1(u)du

inductively. Then we give the form of the n-th involute of the front by using
induction.
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Theorem 4 (Invn(γ, t0), J−n(ν)) : I → R2 × S1 is a Legendre immersion
with the curvature (ℓ, β−n), where the n-th involute of the front γ at t0 is
given by

Invn(γ, t0)(t) = Invn−1(γ, t0)(t) +
β−n(t)

ℓ(t)
J−n(ν(t))

and J−n is n-times operation of J−1.

Remark 5 We can consider n-th involutes of the front at different initial points.
The difference is given by a parallel curve of the involute by Proposition 5. In
this paper, we only consider the n-th involute of the front at the same initial
point.

By Theorems 3 and 4, we have the following sequence of the Legendre immer-
sions (the evolutes and the involutes) without inflection points,

· · · Inv← (Inv2(γ, t0)(t), J−2(ν)(t))
Inv← (Inv(γ, t0)(t), J−1(ν)(t))

Inv←

(γ(t), ν(t))
Ev→ (Ev(γ)(t), J(ν)(t)) Ev→ (Ev2(γ)(t), J2(ν)(t))

Ev→ · · ·

and the corresponding sequence of the curvatures of the evolutes and the
involutes,

· · · ← (ℓ(t), β−2(t)) ← (ℓ(t), β−1(t))←
(ℓ(t), β(t)) → (ℓ(t), β1(t))→ (ℓ(t), β2(t))→ · · · . (2)

5 The arc-length parameter for ν

Let (γ, ν) : I → R2×S1 be a Legendre immersion with the curvature (ℓ, β). If
β(t) ̸= 0 for all t ∈ I, then γ is a regular curve in R2. Thus, we can choose the
arc-length parameter s of γ. On the other hand, if ℓ(t) ̸= 0 for all t ∈ I (that
is, without inflection points), then ν is a regular curve in S1 ⊂ R2. Thus, we
can choose the arc-length parameter s of ν. It follows that ν(s) and also µ(s)
are unit speed. By the same method for the arc-length parameter of regular
plane curves, one can prove the following:

Proposition 8 Let (γ, ν) : I → R2 × S1 be a Legendre immersion without
inflection points, and let t0 ∈ I. Then ν is parametrically equivalent to the
unit speed curve

ν : I → S1; s 7→ ν(s) = ν ◦ t(s),

under a change of parameter t : I → I with t(0) = t0 and with t′(s) > 0.

We call the above parameter s in Proposition 8 the arc-length parameter
for ν. If t is the arc-length parameter for ν, then we have |ℓ(t)| = 1 for all
t ∈ I. Note that we may assume ℓ(t) = 1 for all t ∈ I, if necessary, by a change
of parameter t 7→ −t.
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In this section, we suppose that ℓ(t) = 1 for all t ∈ I. Then the second
components of the curvatures of the evolutes and the involutes in the sequence
(2) are given by

· · · ←
∫ t

t0

∫ t

t0

β(t)dtdt←
∫ t

t0

β(t)dt← β(t)→ d

dt
β(t)→ d2

dt2
β(t)→ · · · .

As a result, the evolutes and the involutes of fronts are corresponding to the
differential and the integral of the curvature of the Legendre immersion.

Next, we recall the notion of the contact between Legendre immersions
(cf. [9]). Let (γ, ν) : I → R2 × S1; t 7→ (γ(t), ν(t)) and (γ̃, ν̃) : Ĩ → R2 ×
S1;u 7→ (γ̃(u), ν̃(u)) be Legendre immersions respectively and let k be a nat-
ural number. We say that (γ, ν) and (γ̃, ν̃) have at least k-th order contact at
t = t0, u = u0 if (di/dti)(γ, ν)(t0) = (di/dui)(γ̃, ν̃)(u0) for i = 0, . . . , k − 1.

In general, we may assume that (γ, ν) and (γ̃, ν̃) have at least first order
contact at any point t = t0, u = u0, up to congruence as Legendre immersions.
We denote the curvatures of the Legendre immersions (ℓ(t), β(t)) of (γ(t), ν(t))

and (ℓ̃(u), β̃(u)) of (γ̃(u), ν̃(u)), respectively.

Theorem 5 ([9, Theorem 3.1]) If (γ, ν) and (γ̃, ν̃) have at least (k + 1)-th
order contact at t = t0, u = u0, then

di

dti
(ℓ, β)(t0) =

di

dui
(ℓ̃, β̃)(u0), i = 0, . . . , k − 1. (3)

Conversely, if the condition (3) holds, then (γ, ν) and (γ̃, ν̃) have at least
(k + 1)-th order contact at t = t0, u = u0, up to congruence as Legendre
immersions.

As a corollary of Theorem 5, we have the relationship between the contact
of Legendre immersions, evolutes and involutes.

Corollary 4 Under the above notations, we have the following.

(1) If (γ, ν) and (γ̃, ν̃) have at least (k+1)-th order contact at t = t0, u = u0,
up to congruence as Legendre immersions, then (Ev(γ), J(ν)) and (Ev(γ̃), J(ν̃))
have at least k-th order contact at t = t0, u = u0, up to congruence as Legendre
immersions.

(2) (Inv(γ, t0), J−1(ν)) and (Inv(γ̃, u0), J
−1(ν̃)) have at least (k + 1)-th

order contact at t = t0, u = u0, up to congruence as Legendre immersions if
and only if (γ, ν) and (γ̃, ν̃) have at least k-th order contact at t = t0, u = u0,
up to congruence as Legendre immersions.

Finally, we consider when a front and its n-th evolute or involute have the
same shape as the original curve under the same parametrisation. Namely,
is there a Legendre immersion (γ, ν) : I → R2 × S1 such that (γ, ν) and
(Evn(γ), Jn(ν)) : I → R2 × S1 (respectively, (Invn(γ, t0), J−n(ν)) : I →
R2 × S1) are congruent?
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Theorem 6 Under the above notations, we have the following.

(1) Legendre immersions (γ, ν) and (Evn(γ), Jn(ν)) are congruent as Leg-
endre immersions if and only if the curvature of the Legendre immersion

(γ(t), ν(t)) is given by ℓ(t) = 1, β(t) =
∑n−1

k=0 cke
λk
nt, where ck is a con-

stant, λn is a primitive n-th root of unity, λk
n = cos(2πk/n)+ i sin(2πk/n) for

k = 0, . . . , n− 1 and i is the imaginary unit.

(2) Legendre immersions (γ, ν) and (Invn(γ, t0), J−n(ν)) are congruent as
Legendre immersions if and only if (γ, ν) is given by γ(t) = (a, b), ν(t) =
(cos t, sin t), up to congruence as Legendre immersions, where a, b ∈ R.

Proof (1) By ℓ(t) = 1 and Theorem 3, we have β(t) = (dnβ/dtn)(t). The linear
ordinary differential equation can be solved, and the general solution is given

by β(t) =
∑n−1

k=0 cke
λk
nt, where ck is a constant, λn is a primitive n-th root

of unity, λk
n = cos(2πk/n) + i sin(2πk/n) for k = 0, . . . , n − 1 and i is the

imaginary unit. By Theorem 2, the converse holds.

(2) By ℓ(t) = 1 and Theorem 4, we have β(t) =
∫ t

t0
· · ·
(∫ t

t0
β(t)dt

)
· · · dt,

n-times integrations for β(t). This is equivalent to the conditions β(t) =
(dnβ/dtn)(t) and (diβ/dti)(t0) = 0 for i = 0, . . . , n − 1. It follows from (1)
that ck = 0 for k = 0, . . . , n − 1, namely, β(t) = 0 for all t ∈ I. By Theorem
1, we obtain γ(t) = (a, b), ν(t) = (cos t, sin t), up to congruence as Legendre
immersions, where a, b ∈ R. By a direct calculation, we have the converse. 2

We give examples for the cases n = 1, 2 and 3 in Theorem 6 (1).

Example 6 (1) The case of n = 1 in Theorem 6 (1). Since ℓ(t) = 1 and β(t) =
β̇(t), we have β(t) = cet, where c ∈ R. It follows that

γ(t) =
( c
2
et(cos t− sin t),

c

2
et(cos t+ sin t)

)
, ν(t) = (cos t, sin t) ,

up to congruence. We draw the front γ(t) for c = 1 as in Figure 4, left.

(2) The case of n = 2 in Theorem 6 (1). Since ℓ(t) = 1 and β(t) =
β̈(t), we have β(t) = c1e

t + c2e
−t, where c1, c2 ∈ R. It follows that γ(t) =

(γ1(t), γ2(t)), ν(t) = (cos t, sin t) , where

γ1(t) =
c1
2
et(cos t− sin t) +

c2
2
e−t(cos t+ sin t),

γ2(t) =
c1
2
et(cos t+ sin t) +

c2
2
e−t(sin t− cos t),

up to congruence. We draw the front γ(t) for c1 = 1 and c2 = −1 as in Figure
4, middle. In this case, 0 is a singular point of γ.

(3) The case of n = 3 in Theorem 6 (1). Since ℓ(t) = 1 and β(t) =
...
β (t),

we have

β(t) = c1e
t + c2e

− t
2 cos

√
3

2
t+ c3e

− t
2 sin

√
3

2
t
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as a smooth general solution, where c1, c2, c3 ∈ R. By a direct calculation, we
have γ(t) = (γ1(t), γ2(t)), ν(t) = (cos t, sin t), where

γ1(t) =
c1
2
et (cos t− sin t)

− c2e
−t/2

(
1

2(2 +
√
3)

(
−1

2
sin(

√
3

2
+ 1)t− (

√
3

2
+ 1) cos(

√
3

2
+ 1)t

)

− 1

2(2−
√
3)

(
−1

2
sin(

√
3

2
− 1)t− (

√
3

2
− 1) cos(

√
3

2
− 1)t

))

− c3e
−t/2

(
− 1

2(2 +
√
3)

(
−1

2
cos(

√
3

2
+ 1)t+ (

√
3

2
+ 1) sin(

√
3

2
+ 1)t

)

+
1

2(2−
√
3)

(
−1

2
cos(

√
3

2
− 1)t+ (

√
3

2
− 1) sin(

√
3

2
− 1)t

))
,

γ2(t) =
c1
2
et (cos t+ sin t)

+ c2e
−t/2

(
1

2(2 +
√
3)

(
−1

2
cos(

√
3

2
+ 1)t+ (

√
3

2
+ 1) sin(

√
3

2
+ 1)t

)

+
1

2(2−
√
3)

(
−1

2
cos(

√
3

2
− 1)t+ (

√
3

2
− 1) sin(

√
3

2
− 1)t

))

+ c3e
−t/2

(
1

2(2 +
√
3)

(
−1

2
sin(

√
3

2
+ 1)t− (

√
3

2
+ 1) cos(

√
3

2
+ 1)t

)

+
1

2(2−
√
3)

(
−1

2
sin(

√
3

2
− 1)t− (

√
3

2
− 1) cos(

√
3

2
− 1)t

))
,

up to congruence. We draw the front γ(t) for c1 = 0, c2 = 0 and c3 = 1 as in
Figure 4, right.
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(1) n = 1, (2) n = 2, (3) n = 3,
c = 1. c1 = 1, c2 = −1. c1 = c2 = 0, c3 = 1.

Figure 4.
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