室蘭工業大学
学術資源アーカイブ
Muroran Institute of Technology Academic Resources Archive

The units of a partial Burnside ring rel ative to the Young subgroups of a symmetric group

著者	ODA Fumi hi to，TAKEGAHARA Yugen，YOSH DA Tonøyuki
j our nal or publ i cat i on titl e	Jour nal of Al gebr a
vol une	460
page r ange	$370-379$
year	$2016-08-15$
URL	ht t p：／／hdl ．handl e．net／10258／00008995
doi：info：doi／10．1016／j．jalgebra．2016．05．002	

The units of a partial Burnside ring relative to the Young subgroups of a symmetric group

Fumihito Oda*
Department of Mathematics, Kindai University, Higashi-Osaka, 577-8502, Japan
E-mail: odaf@math.kindai.ac.jp

Yugen Takegahara
Muroran Institute of Technology, 27-1 Mizumoto, Muroran 050-8585, Japan
E-mail: yugen@mmm.muroran-it.ac.jp

Tomoyuki Yoshida

Graduate School of Economics, Hokusei Gakuen University, 2-3-1, Ohyachi-Nishi, Atsubetsu-ku, Sapporo 004-8631, Japan
E-mail: ytomoyuki@mub.biglobe.ne.jp

Abstract

The unit group of a partial Burnside ring relative to the Young subgroups of the symmetric group S_{n} on n letters is included in the image by the tom Dieck homomorphism. As a consequence of this fact, the alternating character ν_{n} of S_{n} is expressed explicitly as a \mathbb{Z}-linear combinations of permutation characters associated with finite left S_{n}-sets S_{n} / Y for the Young subgroups Y.

1 Introduction

Let G be a finite group, and let $\mathrm{Cl}(G)$ be a full set of non-conjugate subgroups of G. For each $H \leq G, G / H$ denotes the set of left cosets $g H, g \in G$, of H in G. The Burnside ring $\Omega(G)$ of G is the commutative ring consisting of all formal \mathbb{Z}-linear combinations of symbols $[G / H]$ corresponding to $G / H, H \in \mathrm{Cl}(G)$, with multiplication given by

$$
[G / H] \cdot[G / U]=\sum_{H g U \in H \backslash G / U}\left[G /\left(H \cap{ }^{g} U\right)\right]
$$

*This work is supported by JSPS Grant-in-Aid for Scientific Research (C) 25400003. 2010 Mathematics Subject Classification. Primary 19A22; Secondary 20B35, 20C15, 20C30.
Keywords. Burnside ring, Character ring, Lefschetz invariant, Symmetric group, Young subgroup, tom Dieck homomorphism.
for all $H, U \in \mathrm{Cl}(G)$, where ${ }^{g} U=g U g^{-1}$ and $\left[G /\left(H \cap{ }^{g} U\right)\right]=[G / K]$ for a conjugate $K \in \mathrm{Cl}(G)$ of $H \cap{ }^{g} U$ (see, e.g., [5], [13, $\left.\S 2.1\right]$). The identity of $\Omega(G)$ is $[G / G]$. For shortness' sake, we usually write $1=[G / G]$. While the unit group of $\Omega(G)$ is an elementary abelian 2 -group (cf. §2), it is quite interesting to analyze units of $\Omega(G)$.

Let S_{n} be the symmetric group on n letters $[n]:=\{1,2, \ldots, n\}$, and let \mathfrak{Y}_{n} be the set of Young subgroups of S_{n}. Since the Young subgroups are closed under intersection and conjugation, there exists a subring of $\Omega\left(S_{n}\right)$ consisting of all formal \mathbb{Z}-linear combinations of symbols $\left[S_{n} / Y\right]$ for $Y \in \mathfrak{Y}_{n}$, which is denoted by $\Omega\left(S_{n}, \mathfrak{Y}_{n}\right)$ (see also [2]). (In short, this subring is a partial Burnside ring relative to the Young subgroups of a symmetric group.) Let $R\left(S_{n}\right)$ be the character ring of S_{n}. Then it is well-known that $\Omega\left(S_{n}, \mathfrak{Y}_{n}\right) \cong R\left(S_{n}\right)$ (see, e.g., [13, Proposition 7.2]) and the unit group of $R\left(S_{n}\right)$ consists of $\pm 1_{S_{n}}, \pm \nu_{n}$, where $1_{S_{n}}$ is the trivial character of S_{n} and ν_{n} is the alternating character of S_{n} (see, e.g., [11, Example 2]). In particular, the unit group of $\Omega\left(S_{n}, \mathfrak{Y}_{n}\right)$ is isomorphic to the Klein four-group.

Recently, in [7], Idei and the first author have given a formula of a non-identity unit of $\Omega\left(S_{n}, \mathfrak{Y}_{n}\right)$ which is described in terms of the Möbius function $\mu_{\mathfrak{Y}_{n}}$ on the poset $\left(\mathfrak{Y}_{n}, \leq\right)$ (see Eq. (2)). Such a unit is also a unit of $\Omega\left(S_{n}\right)$, and there seems to be some characterization of it as a unit of $\Omega\left(S_{n}\right)$. In general, however, there are many units of $\Omega\left(S_{n}\right)$ (see [3]). The purpose of this paper is to characterize a non-identity unit of $\Omega\left(S_{n}, \mathfrak{Y}_{n}\right)$ in terms of the tom Dieck homomorphism (see $\S 2$). Consequently, we have shown that the unit group of $\Omega\left(S_{n}, \mathfrak{Y}_{n}\right)$ is included in the image by the tom Dieck homomorphism. In the sequel, ν_{n} is expressed explicitly as a \mathbb{Z}-linear combinations of permutation characters associated with finite left S_{n}-sets S_{n} / Y for $Y \in \mathfrak{Y}_{n}$ (cf. Theorem 4.4), which is also a consequence of [6, Proposition 2.3.8, Exercise 3.15]. In order to show such a result, we see that each image of a permutation character associated with a finite left G-set by the tom Dieck homomorphism is a reduced Lefschetz invariant of a certain G-poset, which is essentially given in [10].

2 The tom Dieck homomorphism

Given $H \leq G$ and a finite left G-set X, we set

$$
\operatorname{inv}_{H}(X)=\{x \in X \mid h x=x \quad \text { for all } \quad h \in H\}
$$

By [5, Proposition 1.2.2], the $\operatorname{map} \varphi: \Omega(G) \rightarrow \widetilde{\Omega}(G):=\prod_{H \in \mathrm{Cl}(G)} \mathbb{Z}$ given by

$$
[G / U] \mapsto\left(\not \operatorname{inv}_{H}(G / U)\right)_{H \in \mathrm{Cl}(G)}
$$

for all $U \in \mathrm{Cl}(G)$ is an injective ring homomorphism, which is called the Burnside homomorphism or the mark homomorphism. Obviously, the unit group of $\widetilde{\Omega}(G)$ is $\prod_{H \in \mathrm{Cl}(G)}\langle-1\rangle$, whence the unit group of $\Omega(G)$ is an elementary abelian 2-group.

We denote by $R_{\mathbb{R}}(G)$ the real representation ring of G, and denote by $\Omega(G)^{\times}$ the unit group of $\Omega(G)$. For each element x of $\Omega(G)$ with $\varphi(x)=\left(x_{H}\right)_{H \in \mathrm{Cl}(G)}$,
we write $x=\varphi^{-1}\left(\left(x_{H}\right)_{H \in \mathrm{Cl}(G)}\right)$. By [5, Proposition 5.5.9], there exists a group homomorphism $u=u_{G}: R_{\mathbb{R}}(G) \rightarrow \Omega(G)^{\times}$such that

$$
M \mapsto \varphi^{-1}\left(\left((-1)^{\operatorname{dim} M^{H}}\right)_{H \in \mathrm{Cl}(G)}\right)
$$

for all $\mathbb{R} G$-module M, where M^{H} is the space of H-invariants of M.
Let $H \leq G$. We set $W_{G}(H)=N_{G}(H) / H$, where $N_{G}(H)$ is the normalizer of H in G. Assume that a finitely generated left $\mathbb{C} G$-module M affords a \mathbb{C}-character χ of G. For each $H \leq G, M^{H}$ is viewed as a $\mathbb{C} W_{G}(H)$-module, which affords the \mathbb{C}-character $\bar{\chi}$ of $W_{G}(H)$ given by

$$
\bar{\chi}(g H)=\frac{1}{|H|} \sum_{h \in H} \chi(g h)
$$

for all $g H \in W_{G}(H)$ (see, e.g., [1, Lemma 3.1]). In particular, $\operatorname{dim} M^{H}$ is equal to the inner product $\left\langle\left.\chi\right|_{H}, 1_{H}\right\rangle_{H}$ of the \mathbb{C}-character $\left.\chi\right|_{H}$ of H and the trivial character 1_{H} of H, where $\left.\chi\right|_{H}$ is the restriction of χ into H.

Let $\bar{R}_{\mathbb{R}}(G)$ be the ring of real valued virtual \mathbb{C}-characters of G. Then it follows from the preceding argument and [12, Theorem A] that $u: R_{\mathbb{R}}(G) \rightarrow \Omega(G)^{\times}$is extended to the group homomorphism $\bar{u}=\bar{u}_{G}: \bar{R}_{\mathbb{R}}(G) \rightarrow \Omega(G)^{\times}$given by

$$
\chi \mapsto \varphi^{-1}\left(\left((-1)^{\left\langle\left.\chi\right|_{H}, 1_{H}\right\rangle_{H}}\right)_{H \in \mathrm{Cl}(G)}\right)
$$

for all $\chi \in \bar{R}_{\mathbb{R}}(G)$, which is called the tom Dieck homomorphism. According to [13, Corollary 4.3], we have

$$
\begin{equation*}
\bar{u}(\chi)=\sum_{U \in \mathrm{Cl}(G)} \frac{1}{\left|W_{G}(U)\right|}\left(\sum_{H \leq G} \mu(U, H)(-1)^{\left\langle\left.\chi\right|_{H}, 1_{H}\right\rangle_{H}}\right)[G / U] \tag{1}
\end{equation*}
$$

for all $\chi \in \bar{R}_{\mathbb{R}}(G)$, where μ is the Möbius function on the poset $(\mathfrak{S}(G), \leq)$ of all subgroups of G.

Example 2.1 Obviously, $\bar{u}\left(1_{G}\right)=-1$.
Example 2.2 Let A_{n} be the alternating group on $[n]$. Then $1-\left[S_{n} / A_{n}\right]$ is a unit of $\Omega\left(S_{n}\right)$ and is the image of ν_{n} by the tom Dieck homomorphism.

Remark 2.3 If G is not solvable, then by [9, Theorem 5.4], $u: R_{\mathbb{R}}(G) \rightarrow \Omega(G)^{\times}$is not surjective. In particular, if $n \geq 4$, then $\bar{u}: \bar{R}_{\mathbb{R}}\left(S_{n}\right) \rightarrow \Omega\left(S_{n}\right)^{\times}$is not surjective; $\bar{u}_{S_{2}}$ and $\bar{u}_{S_{3}}$ are surjective, however (see [9]). (Note that $2\left|\operatorname{Im} \bar{u}_{S_{4}}\right|=\left|\Omega\left(S_{4}\right)^{\times}\right|=2^{6}$.)

3 The units of $\Omega\left(S_{n}, \mathfrak{Y}_{n}\right)$

We denote by $R(G)$ the character ring of G. The permutation character π_{X} associated with a finite left G-set X is given by

$$
\pi_{X}(g)=\sharp\{x \in X \mid g x=x\}
$$

for all $g \in G$. We define a ring homomorphism $\operatorname{char}_{G}: \Omega(G) \rightarrow R(G)$ by

$$
[X] \mapsto \pi_{X}
$$

for all finite left G-sets X (cf. $[12, \S 6])$.
By [13, Proposition 7.2], the ring homomorphism $\operatorname{char}_{S_{n}}: \Omega\left(S_{n}\right) \rightarrow R\left(S_{n}\right)$ induces an isomorphism

$$
\overline{\operatorname{char}}_{S_{n}}: \Omega\left(S_{n}, \mathfrak{Y}_{n}\right) \rightarrow R\left(S_{n}\right)
$$

(see also $[8,2.3])$. Hence there exists a unique unit, say α, of $\Omega\left(S_{n}, \mathfrak{Y}_{n}\right)$ satisfying $\overline{\operatorname{char}}_{S_{n}}(\alpha)=\nu_{n}$. The unit group of $\Omega\left(S_{n}, \mathfrak{Y}_{n}\right)$ consists of $\pm 1, \pm \alpha$, which are also units of $\Omega\left(S_{n}\right)$.

For each $H \leq S_{n}$, we define a Young subgroup Y_{H} to be the intersection of all Young subgroups containing H. Each Young subgroup Y of S_{n} with respect to a partition $\left(n_{1}, n_{2}, \ldots, n_{r}\right)$ includes a product σ_{Y} of pairwise disjoint n_{i}-cycles for $i=1,2, \ldots, r$ satisfying $Y=Y_{\left\langle\sigma_{Y}\right\rangle}$. Under these notations, we are now in a position to state the following lemma (cf. [13, §7.1]).

Lemma 3.1 If $\varphi(\alpha)=\left(\alpha_{H}\right)_{H \in \mathrm{Cl}\left(S_{n}\right)}$, then $\alpha_{H}=\alpha_{Y_{H}^{\prime}}$ for all $H \in \mathrm{Cl}\left(S_{n}\right)$, where $Y_{H}^{\prime} \in \mathrm{Cl}\left(S_{n}\right)$ is a conjugate of Y_{H}, and $\alpha_{Y}=\nu_{n}\left(\sigma_{Y}\right)$ for all $Y \in \mathrm{Cl}\left(S_{n}\right) \cap \mathfrak{Y}_{n}$.
Proof. Suppose that $\alpha=\sum_{j=1}^{s} a_{j}\left[S_{n} / Y_{j}\right]$ with $a_{j} \in \mathbb{Z}$ and $Y_{j} \in \operatorname{Cl}\left(S_{n}\right) \cap \mathfrak{Y}_{n}$. If $H \leq S_{n}$, then by the definition of Y_{H},

$$
\operatorname{inv}_{Y_{H}}\left(S_{n} / Y_{j}\right)=\left\{\sigma Y_{j} \mid Y_{H} \leq{ }^{\sigma} Y_{j}\right\}=\left\{\sigma Y_{j} \mid H \leq{ }^{\sigma} Y_{j}\right\}=\operatorname{inv}_{H}\left(S_{n} / Y_{j}\right)
$$

for $j=1,2, \ldots, s$. Hence it turns out that $\alpha_{H}=\alpha_{Y_{H}^{\prime}}$ for all $H \in \mathrm{Cl}\left(S_{n}\right)$. If $Y \in \mathfrak{Y}_{n}$, then by assumption, $Y=Y_{\left\langle\sigma_{Y}\right\rangle}$, whence $\operatorname{inv}_{Y}\left(S_{n} / Y_{j}\right)=\operatorname{inv}_{\left\langle\sigma_{Y}\right\rangle}\left(S_{n} / Y_{j}\right)$ for $j=1,2, \ldots, s$. Since $\overline{\operatorname{char}}_{S_{n}}(\alpha)=\nu_{n}$, we conclude that for each $Y \in \operatorname{Cl}\left(S_{n}\right) \cap \mathfrak{Y}_{n}$,

$$
\nu_{n}\left(\sigma_{Y}\right)=\sum_{j=1}^{s} a_{j} \pi_{\left[S_{n} / Y_{j}\right]}\left(\sigma_{Y}\right)=\sum_{j=1}^{s} a_{j} \sharp \operatorname{inv}_{\left\langle\sigma_{Y}\right\rangle}\left(S_{n} / Y_{j}\right)=\sum_{j=1}^{s} a_{j} \sharp \operatorname{inv}_{Y}\left(S_{n} / Y_{j}\right)=\alpha_{Y} .
$$

This completes the proof.
By using [13, Corollary 4.3] and Lemma 3.1, α is expressed in the form

$$
\begin{equation*}
\alpha=\sum_{Y \in \mathrm{Cl}\left(S_{n}\right) \cap \mathfrak{Y}_{n}} \frac{1}{\left|W_{S_{n}}(Y)\right|}\left(\sum_{H \in \mathfrak{Y}_{n}} \mu_{\mathfrak{Y}_{n}}(Y, H) \nu_{n}\left(\sigma_{H}\right)\right)\left[S_{n} / Y\right], \tag{2}
\end{equation*}
$$

where $\sigma_{H} \in S_{n}$ with $H=Y_{\left\langle\sigma_{H}\right\rangle}$. This formula is presented in [7, Corollary 5.2].
We aim to show that α is included in the image by the tom Dieck homomorphism. The permutation character $\pi_{[n]}$ associated with the S_{n}-set $[n]$ is given by

$$
\sigma \mapsto \sharp\{k \in[n] \mid \sigma(k)=k\}
$$

for all $\sigma \in S_{n}$. For each $H \leq S_{n}$, let $\operatorname{Orb}_{H}([n])$ be the set of H-orbits in $[n]$. By the Cauchy-Frobenius lemma (see, e.g., $\left[13\right.$, Lemma 2.7]), $\left\langle\left.\pi_{[n]}\right|_{H}, 1_{H}\right\rangle_{H}=\sharp \operatorname{Orb}_{H}([n])$ for all $H \leq S_{n}$. Set $\chi_{n}=\pi_{[n]}-1_{S_{n}}$. Then it is easily verified that χ_{n} is an irreducible \mathbb{C}-character of S_{n}. Obviously, $\pi_{[n]} \in \bar{R}_{\mathbb{R}}\left(S_{n}\right)$. We define a unit β of $\Omega\left(S_{n}\right)$ by

$$
\begin{aligned}
\varphi(\beta) & =\left((-1)^{\sharp \operatorname{Orb}_{H}([n])}\right)_{H \in \mathrm{Cl}\left(S_{n}\right)}=\left((-1)^{\left\langle\left.\pi_{[n]}\right|_{H}, 1_{H}\right\rangle_{H}}\right)_{H \in \mathrm{Cl}\left(S_{n}\right)} \\
& =-\left((-1)^{\left\langle\left.\chi_{n}\right|_{H}, 1_{H}\right\rangle_{H}}\right)_{H \in \mathrm{Cl}\left(S_{n}\right)},
\end{aligned}
$$

so that β is the image of $\pi_{[n]}$ by the tom Dieck homomorphism. The fact that $\alpha=(-1)^{n} \beta$ (cf. Theorem 3.4) is obtained by a combination of Lemma 3.1 and the following lemmas.

Lemma 3.2 For each $H \leq S_{n}, \sharp \operatorname{Orb}_{H}([n])=\sharp \operatorname{Orb}_{Y_{H}}([n])$. In particular, for each $Y \in \mathfrak{Y}_{n}, \sharp \operatorname{Orb}_{Y}([n])=\sharp \operatorname{Orb}_{\left\langle\sigma_{Y}\right\rangle}([n])$, where $\sigma_{Y} \in S_{n}$ with $Y=Y_{\left\langle\sigma_{Y}\right\rangle}$.
Proof. Evidently, the H-orbits in [n] coincide with the $Y_{H \text {-orbits in }}[n]$, completing the proof.

Lemma 3.3 For each $\sigma \in S_{n},(-1)^{\sharp \operatorname{Orb}_{\langle\sigma\rangle}([n])}=(-1)^{n} \nu_{n}(\sigma)$.
Proof. Assume that σ is a product of pairwise disjoint n_{i}-cycles for $i=1,2, \ldots, r$ such that $\sum_{i} n_{i}=n$. Then it is obvious that $\sharp \operatorname{Orb}_{\langle\sigma\rangle}([n])=r$. On the other hand, if $\ell=\sharp\left\{i \mid n_{i}\right.$ is odd $\}$, then $\nu_{n}(\sigma)=(-1)^{r-\ell}=(-1)^{r+n}$, because $\ell \equiv n(\bmod 2)$, completing the proof.

We are now successful in characterizing the units of $\Omega\left(S_{n}, \mathfrak{Y}_{n}\right)$ in terms of the tom Dieck homomorphism.

Theorem 3.4 The unit group of $\Omega\left(S_{n}, \mathfrak{Y}_{n}\right)$ is included in the image by the tom Dieck homomorphism. In particular, $\alpha=(-1)^{n} \beta$.
Proof. Since $-1=\bar{u}\left(1_{S_{n}}\right)$, it suffices to verify that $\alpha=(-1)^{n} \beta$. Suppose now that $\varphi(\alpha)=\left(\alpha_{H}\right)_{H \in \mathrm{Cl}\left(S_{n}\right)}$ and $\varphi(\beta)=\left(\beta_{H}\right)_{H \in \mathrm{Cl}\left(S_{n}\right)}$. If $\alpha_{Y}=(-1)^{n} \beta_{Y}$ for all $Y \in \operatorname{Cl}\left(S_{n}\right) \cap \mathfrak{Y}_{n}$, then by Lemmas 3.1 and $3.2, \alpha_{H}=(-1)^{n} \beta_{H}$ for all $H \in \operatorname{Cl}\left(S_{n}\right)$, whence $\alpha=(-1)^{n} \beta$. Now let $Y \in \operatorname{Cl}\left(S_{n}\right) \cap \mathfrak{Y}_{n}$. Then by virtue of Lemma 3.1, $\alpha_{Y}=\nu_{n}\left(\sigma_{Y}\right)$, where $\sigma_{Y} \in S_{n}$ with $Y=Y_{\left\langle\sigma_{Y}\right\rangle}$. Hence it follows from Lemmas 3.2 and 3.3 that

$$
\alpha_{Y}=(-1)^{\sharp \operatorname{Orb}_{\left\langle\sigma_{Y}\right\rangle}([n])+n}=(-1)^{\sharp \operatorname{Orb}_{Y}([n])+n}=(-1)^{n} \beta_{Y} .
$$

We have thus completed the proof.

4 The reduced Lefschetz invariant of a G-poset

There is a valuable application of Theorem 3.4. The expression of ν_{n} as a \mathbb{Z} linear combinations of permutation characters $\pi_{S_{n} / Y}$ for $Y \in \mathfrak{Y}_{n}$ is implicit in Eq. (2), while it is worth studying the explicit descriptions.

A finite left G-set equipped with order relation \leq is called a G-poset if \leq is invariant under the action of G. Let P be a G-poset, and let $S d_{i}(P)$ be the set of chains $x_{0}<x_{1}<\cdots<x_{i}$ of elements of P of cardinality $i+1$. Recall that $\Omega(G)$ is the Grothendieck group of the category of finite left G-sets and is an abelian group generated by the isomorphism classes $[X]$ of finite left G-sets X (cf. [5, 13]). The Lefschetz invariant Λ_{P} of P is defined by

$$
\Lambda_{P}=\sum_{i=0}^{\infty}(-1)^{i}\left[S d_{i}(P)\right] \in \Omega(G)
$$

and the reduced Lefschetz invariant $\widetilde{\Lambda}_{P}$ of P is defined by $\widetilde{\Lambda}_{P}=\Lambda_{P}-1$ (cf. [4, 10]). In particular, for the poset $P(X)$ consisting of nonempty and proper subsets of a finite left G-set X, the K-component of $\varphi\left(\widetilde{\Lambda}_{P(X)}\right)$ with $K \in \mathrm{Cl}(G)$ is equal to the reduced Euler-Poincaré characteristic of $P(X)^{K}\left(=\operatorname{inv}_{K}(P(X))\right)$:

$$
\sum_{i=0}^{\infty}(-1)^{i}\left|S d_{i}\left(P(X)^{K}\right)\right|-1
$$

We next give a combinatorial proof of the following proposition, which is essentially proved by [10, Proposition 5.1].

Proposition 4.1 Let X be a finite left G-set. The reduced Lefschetz invariant $\widetilde{\Lambda}_{P(X)}$ of $P(X)$ is the image of π_{X} by the tom Dieck homomorphism.

To prove Proposition 4.1, we require the following combinatorial lemma.

Lemma 4.2 For each positive integer j, set

$$
c_{j}=\sum_{i=1}^{j}(-1)^{i} \sum_{\left(n_{1}, n_{2}, \ldots, n_{i}\right) \in A(i, j)}\binom{j}{n_{1}, n_{2}, \ldots, n_{i}}
$$

where $A(i, j)=\left\{\left(n_{1}, n_{2}, \ldots, n_{i}\right) \mid \sum_{k} n_{k}=j\right.$ and $\left.n_{1}, n_{2}, \ldots, n_{i} \in \mathbb{N}\right\}$ and

$$
\binom{j}{n_{1}, n_{2}, \ldots, n_{i}}=\frac{j!}{n_{1}!n_{2}!\cdots n_{i}!} \quad \text { (multinomial coefficients). }
$$

Then $c_{j}=(-1)^{j}$ for any positive integers j.

Proof. We use induction on j. Obviously, $c_{1}=-1$. Assume that $j \geq 2$ and

$$
c_{\ell}=\sum_{i=1}^{\ell}(-1)^{i} \sum_{\left(n_{1}, n_{2}, \ldots, n_{i}\right) \in A(i, \ell)}\binom{\ell}{n_{1}, n_{2}, \ldots, n_{i}}=(-1)^{\ell}
$$

for any positive integer ℓ less than j. Clearly, there exists a bijection

$$
\bigcup_{\ell=i, \ldots, j-1} A(i, \ell) \rightarrow A(i+1, j),\left(n_{1}, n_{2}, \ldots, n_{i}\right) \mapsto\left(n_{1}, n_{2}, \ldots, n_{i}, j-\ell\right)
$$

for each positive integer i less than j. Hence the inductive assumption yields

$$
\begin{aligned}
c_{j} & =-\binom{j}{j}+\sum_{i=2}^{j}(-1)^{i} \sum_{\ell=i-1}^{j-1} \sum_{\left(n_{1}, n_{2}, \ldots, n_{i-1}\right) \in A(i-1, \ell)} \frac{j!}{n_{1}!n_{2}!\cdots n_{i-1}!(j-\ell)!} \\
& =-\binom{j}{j}-\sum_{\ell=1}^{j-1}\binom{j}{\ell, j-\ell} c_{\ell} \\
& =-1-(1-1)^{j}+1+(-1)^{j}=(-1)^{j},
\end{aligned}
$$

as desired. This completes the proof.
Proof of Proposition 4.1. For each $K \leq G$, we denote by m_{K} the number of K-orbits in X. Then it follows from the Cauchy-Frobenius lemma that $m_{K}=\left\langle\left.\pi_{X}\right|_{K}, 1_{K}\right\rangle_{K}$. Hence the assertion is equivalent to the equality $\varphi\left(\widetilde{\Lambda}_{P(X)}\right)=\left((-1)^{m_{K}}\right)_{K \in \mathrm{Cl}(G)}$. Let $K \in \mathrm{Cl}(G)$. Every chain $x_{0}<x_{1}<\cdots<x_{i}$ of elements of $P(X)^{K}$ is built on pairwise disjoint unions y_{j} of $\ell_{j} K$-orbits for $j=0,1, \ldots, i$ such that $\sum_{j} \ell_{j}<m_{K}$ and $x_{k}=\dot{\cup}_{j=0}^{k} y_{j}$ for $k=0,1, \ldots, i$. Hence a simple observation enables us to get

$$
\left|S d_{i}\left(P(X)^{K}\right)\right|=\sum_{\left(m_{1}, m_{2}, \ldots, m_{i+2}\right) \in A\left(i+2, m_{K}\right)}\binom{m_{K}}{m_{1}, m_{2}, \ldots, m_{i+2}}
$$

for each integer i with $0 \leq i \leq m_{K}-2$. This, together with Lemma 4.2, shows that

$$
\begin{aligned}
\sum_{i=0}^{\infty}(-1)^{i}\left|S d_{i}\left(P(X)^{K}\right)\right| & =\sum_{i=2}^{m_{K}}(-1)^{i} \sum_{\left(m_{1}, m_{2}, \ldots, m_{i}\right) \in A\left(i, m_{K}\right)}\binom{m_{K}}{m_{1}, m_{2}, \ldots, m_{i}} \\
& =(-1)^{m_{K}}+1
\end{aligned}
$$

Thus the reduced Euler-Poincaré characteristic of $P(X)^{K}$ is $(-1)^{m_{K}}$ (see also [10, Proposition 5.1]). Consequently, we have $\varphi\left(\widetilde{\Lambda}_{P(X)}\right)=\left((-1)^{m_{K}}\right)_{K \in \mathrm{Cl}(G)}$. This completes the proof.

We turn to the study of an explicit description of β (cf. Eq. (3)).

Corollary 4.3 The reduced Lefschetz invariant $\widetilde{\Lambda}_{P([n])}$ of $P([n])$ coincides with β.
Proof. By definition, β is the image of $\pi_{[n]}$ by the tom Dieck homomorphism. Hence the assertion is an immediate consequence of Proposition 4.1 with $G=S_{n}$ and $X=[n]$.

Given $H \leq G$, we denote by $1_{H}{ }^{G}$ the \mathbb{C}-character of G induced from 1_{H}, which coincides with $\pi_{G / H}$.

For each cycle type $\lambda=\left(1^{m_{1}}, \ldots, n^{m_{n}}\right)$ of a permutation on $[n]$, let S_{λ} be a Young subgroup of S_{n} isomorphic to $S_{1}^{\left(m_{1}\right)} \times \cdots \times S_{n}^{\left(m_{n}\right)}$, where each $S_{j}^{\left(m_{j}\right)}$ is the direct product of m_{j} copies of S_{j}.

We are now ready to express ν_{n} explicitly as a \mathbb{Z}-linear combinations of $1_{Y}{ }^{S_{n}}$ for $Y \in \mathfrak{Y}_{n}$. The following result simplifies the expression of ν_{n} in [8, Theorem 2.3.15], and is also a consequence of [6, Proposition 2.3.8, Exercise 3.15].

Theorem 4.4 The alternating character ν_{n} of S_{n} is expressed explicitly in the form

$$
\nu_{n}=\sum_{\lambda=\left(1^{\left.m_{1}, \ldots, n^{m_{n}}\right)}\right.}(-1)^{n+m_{1}+\cdots+m_{n}} \frac{\left(m_{1}+\cdots+m_{n}\right)!}{m_{1}!\cdots m_{n}!} 1_{S_{\lambda}}{ }^{S_{n}}
$$

where the sum runs over all cycle types of permutations on $[n]$.
Proof. Since $\beta=(-1)^{n} \alpha$ by Theorem 3.4 and $\nu_{n}=\overline{\operatorname{char}}_{S_{n}}(\alpha)$, the assertion is equivalent to the formula

$$
\begin{equation*}
\left((-1)^{n} \alpha=\right) \beta=\sum_{\lambda=\left(1^{m_{1}}, \ldots, n^{m_{n}}\right)}(-1)^{m_{1}+\cdots+m_{n}} \frac{\left(m_{1}+\cdots+m_{n}\right)!}{m_{1}!\cdots m_{n}!}\left[S_{n} / S_{\lambda}\right] \tag{3}
\end{equation*}
$$

Let i be a nonnegative integer. Then $\left[S d_{i}(P([n]))\right]=\sum_{t}\left[O_{t}\right]$, where O_{t} 's are the S_{n}-orbits in $S d_{i}(P([n]))$. Observe that each representative $x_{0}<x_{1}<\cdots<x_{i}$ of an S_{n}-orbit O_{t} determines $\left\{y_{0}, y_{1}, \ldots, y_{i}, y_{i+1}\right\} \subset P([n])$ such that $x_{k}=\dot{\cup}_{j=0}^{k} y_{j}$ for $k=0,1, \ldots, i$ and $[n]=\dot{U}_{j=0}^{i+1} y_{j}$, which corresponds to a cycle type $\left(1^{m_{1}}, \ldots, n^{m_{n}}\right)$ with $m_{\ell}=\sharp\left\{k \mid \sharp y_{k}=\ell\right\}$ for $\ell=1, \ldots, n$. Conversely, if $\lambda=\left(1^{m_{1}}, \ldots, n^{m_{n}}\right)$ with $\sum_{\ell} m_{\ell}=i+2 \geq 2$ is a cycle type of a permutation on $[n]$, then we can make up

$$
\frac{\left(m_{1}+\cdots+m_{n}\right)!}{m_{1}!\cdots m_{n}!}
$$

S_{n}-orbits in $S d_{i}(P([n]))$, which are isomorphic to S_{n} / S_{λ} as S_{n}-sets. Hence Eq. (3) follows form Corollary 4.3. This completes the proof.

Remark 4.5 By the Cauchy-Frobenius lemma, $\left\langle 1_{H}^{G}, 1_{G}\right\rangle_{G}=\left\langle\pi_{G / H}, 1_{G}\right\rangle_{G}=1$ for all $H \leq G$. Hence it follows from Theorem 4.4 that

$$
\sum_{\lambda=\left(1^{m_{1}}, \ldots, n^{m_{n}}\right)}(-1)^{m_{1}+\cdots+m_{n}} \frac{\left(m_{1}+\cdots+m_{n}\right)!}{m_{1}!\cdots m_{n}!}=(-1)^{n}\left\langle\nu_{n}, 1_{S_{n}}\right\rangle_{S_{n}}=0
$$

Example 4.6 By Eq. (3), the coefficients of $\left[S_{n} / U\right]$ in Eq. (1) with $G=S_{n}$ and $\chi=\pi_{[n]}$ are completely determined, and so are the coefficients of $\left[S_{n} / Y\right]$ in Eq. (2). If $n=3$, then

$$
\alpha=\left[S_{3} / S_{\left(1^{3}\right)}\right]-2\left[S_{3} / S_{\left(1^{1}, 2^{1}\right)}\right]+\left[S_{3} / S_{\left(3^{1}\right)}\right]
$$

(see also [8, pp. 41-42 and Theorem 2.3.15]). If $n=4$, then

$$
\alpha=\left[S_{4} / S_{\left(1^{4}\right)}\right]-3\left[S_{4} / S_{\left(1^{2}, 2^{1}\right)}\right]+\left[S_{4} / S_{\left(2^{2}\right)}\right]+2\left[S_{4} / S_{\left(1^{1}, 3^{1}\right)}\right]-\left[S_{4} / S_{\left(4^{1}\right)}\right] .
$$

5 Concluding remarks

If e is an idempotent of $\mathbb{Q} \otimes_{\mathbb{Z}} \Omega\left(S_{n}, \mathfrak{Y}_{n}\right)$ and if $2 e \in \Omega\left(S_{n}, \mathfrak{Y}_{n}\right)$, then $1-2 e$ and $-1+2 e$ are units of $\Omega\left(S_{n}, \mathfrak{Y}_{n}\right)$. Since α is a unit of $\Omega\left(S_{n}, \mathfrak{Y}_{n}\right)$, it follows that $(1-\alpha) / 2$ is an idempotent of $\mathbb{Q} \otimes_{\mathbb{Z}} \Omega\left(S_{n}, \mathfrak{Y}_{n}\right)$. However, $(1-\alpha) / 2 \notin \Omega\left(S_{n}, \mathfrak{Y}_{n}\right)$, because $\left(1_{S_{n}}-\nu_{n}\right) / 2 \notin R\left(S_{n}\right)$. Thus we have the following.

Proposition 5.1 The idempotents of $\Omega\left(S_{n}, \mathfrak{Y}_{n}\right)$ are only 0,1 .
What about Proof of Proposition 5.1 in terms of S_{n}-sets? Of course, in Eq. (3), the coefficient of $\left[S_{n} / S_{\left(1^{n}\right)}\right]$ is always $(-1)^{n}$, which implies that $(1-\alpha) / 2 \notin \Omega\left(S_{n}\right)$. This fact is also a consequence of Theorem 3.4, because it follows from [9, (5.4.1)] that, if e is a non-trivial idempotent, i.e., $e \neq 0,1$, of $\Omega(G)$, then the unit $1-2 e$ is not included in the image by the tom Dieck homomorphism.

The following lemma is [12, Lemma 2.1] (see also [5, Proposition 1.3.5]), which is used for the proof of existence of the tom Dieck homomorphism in [12].

Lemma 5.2 An element $\left(x_{H}\right)_{H \in \mathrm{Cl}(G)}$ of $\widetilde{\Omega}(G)$ is included in the image $\operatorname{Im} \varphi$ by the Burnside homomorphism if and only if

$$
\sum_{g U \in W_{G}(U)} x_{\langle g\rangle U} \equiv 0 \quad\left(\bmod \left|W_{G}(U)\right|\right)
$$

for all $U \in \mathrm{Cl}(G)$, where $x_{\langle g\rangle U}=x_{K}$ for a conjugate $K \in \mathrm{Cl}(G)$ of $\langle g\rangle U$.
We end this paper by giving a direct proof of the fact that $(1-\alpha) / 2 \notin \Omega\left(S_{n}\right)$.
Proof of Proposition 5.1. Suppose that $\varphi(\alpha)=\left(\alpha_{H}\right)_{H \in \mathrm{Cl}\left(S_{n}\right)}$. Then it follows from Lemma 3.3 and Theorem 3.4 (or the definition of α) that

$$
\sum_{\sigma \in S_{n}} \frac{1-\alpha_{\langle\sigma\rangle}}{2}=\sum_{\sigma \in S_{n}} \frac{1-\nu_{n}(\sigma)}{2}=\left|A_{n}\right| \not \equiv 0 \quad\left(\bmod \left|S_{n}\right|\right)
$$

where $\alpha_{\langle\sigma\rangle}=\alpha_{\langle\tau\rangle}$ if σ is a conjugate of $\tau \in S_{n}$ with $\langle\tau\rangle \in \mathrm{Cl}\left(S_{n}\right)$. This, combined with Lemma 5.2 , shows that $\left(\left(1-\alpha_{H}\right) / 2\right)_{H \in \mathrm{Cl}\left(S_{n}\right)} \notin \operatorname{Im} \varphi$. Thus $(1-\alpha) / 2 \notin \Omega\left(S_{n}\right)$, completing the proof.

REFERENCES

[1] T. Asai, N. Chigira, T. Niwasaki, and Y. Takegahara, On a theorem of P. Hall, J. Group Theory 16 (2013), 69-80.
[2] F. Bergeron, N. Bergeron, R. B. Howlett, and D. E. Taylor, A decomposition of the descent algebra of a finite Coxeter group. J. Algebraic Combin. 1 (1992), 23-44.
[3] R. Boltje and G. Pfeiffer, An algorithm for the unit group of the Burnside ring of a finite group. Groups St. Andrews 2005. Vol. 1, 230-236, London Math. Soc. Lecture Note Ser., 339, Cambridge Univ. Press, Cambridge, 2007.
[4] S. Bouc, Burnside rings, Handbook of algebra, Vol. 2, 739-804, North-Holland, Amsterdam, 2000.
[5] T. tom Dieck, Transformation Groups and Representation Theory, Lecture Notes in Mathematics, 766, Springer, Berlin, 1979.
[6] M. Geck and G. Pfeiffer, Characters of finite Coxeter groups and IwahoriHecke algebras, London Mathematical Society Monographs, New Series, 21, The Clarendon Press, Oxford University Press, New York, 2000.
[7] H. Idei and F. Oda, The table of marks, the Kostka matrix, and the character table of the symmetric group, J. Algebra 429 (2015), 318-323.
[8] G. D. James and A. Kerber, The Representation Theory of the Symmetric Group, Encyclopedia of mathematics and its applications, Vol. 16, AddisonWesley, Reading, MA, 1981.
[9] T. Matsuda, On the unit groups of Burnside rings, Japan. J. Math. (N.S.) 8 (1982), 71-93.
[10] J. Thévenaz, Permutation representations arising from simplicial complexes, J. Combin. Theory Ser. A 46 (1987), 121-155.
[11] K. Yamauchi, The construction of units of infinite order in the character ring of a finite group. Yokohama Math. J. 51 (2005), 89-97.
[12] T. Yoshida, On the unit groups of Burnside rings, J. Math. Soc. Japan 42 (1990), 31-64.
[13] T. Yoshida, The generalized Burnside ring of a finite group, Hokkaido Math. J. 19 (1990), 509-574.

