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Abstract. For any finite abelian group A, we give the lower bound
of ord,(|Hom(A4, Sy)|), and determine the region of convergence of the
p-adic power series 1 + Y > | |[Hom(A, S,)|X™/nl.

1 Introduction

Let A be a finite abelian group and h,,(A) the number of homomorphisms
from A to the symmetric group S, on n letters. For convenience, we put
ho(A) = 1. We denote by E4(X) the exponential generating function of the
sequence {h,(A)}, i.e., Ea(X) =" h,(A)X™/nl. According to [20],

Ei(X) = exp (dZI mATM)X"> :

where m4(d) denotes the number of subgroups of index d in A.

Let p be a prime. It follows from [17, 21] that h,(A) is a multiple of
ged(|Al,n!). This property interests us in p-divisibility of h,(A). Using the
generating function above we research into ord,(h,(A)). Here ord,(a) denotes

2000 Mathematics Subject Classification: Primary 05A15; Secondary 20B30; 20K01; 20K27.
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THE NUMBER OF HOMOMORPHISMS 2

the exponent of p in the decomposition of a into prime factors for each non-zero
integer a. For the notation and terminology, see [10].

We denote by C,u the finite cyclic group of order p*. Since h,(C,) is a
multiple of ged(p,n!), it follows that ord,(h,(C,)) > 1 for n > p; however,
this inequality does not indicate the real value of ord,(h,(C,)). If a Sylow
p-subgroup of A is the direct product of two cyclic p-groups, the properties
of ord,(h,(A)) are available in [9, 18]. To take an example, ord,(h,(C,)) >
[n/p] — [n/p?] (see also [4, 5, 6, 7]). Here [z] denotes the largest integer not
exceeding x for each real number z. If p = 2, this assertion is equivalent to [3,
Theorem 10].

In this paper, we generalize the results shown in [9]. Especially, we know
the best lower bound of ord,(h,(A)) (cf. Theorem 1.1) so that we can get the
region of convergence of the p-adic power series E4(X) (cf. Corollary 1.1).

Let s be a nonnegative integer. For nonnegative integers Ai, Ay, ... such
that Ay > Ay > -+ and s = A\ + Ag + - - -, the sequence A = (A1, Mg, ...) is
called a partition of s. Any partition of s contains only finitely many nonzero
terms. If A = (A1, Ag,...) is a partition of s and if a finite abelian p-group P
is isomorphic to the direct product of cyclic p-groups C);, @ = 1,2,..., ie,
P~ Cp X Cpy X -+, then A is called the type of P.

Let a\(4; p) denote the number of subgroups of order p' in a finite abelian
p-group of type A. It is well known that «,(i;p) is a polynomial in p with
nonnegative integer coefficients, which depends only on A\ and i. In order to
study E4(X), we need the properties of a,(7; p) shown in [1, 15]. For instance,
we use Butler’s unimodality result [1, Theorem|, namely,

For a partition X of s, if i is a positive integer less than or equal to [s/2],
then ax(i;p) — ax(i — 1;p) has nonnegative coefficients.

Throughout the paper, A = (A1, A, ...) denotes a partition of s. Let

oo 1)

and v = s —u = min{s — Ay, [s/2]}. For brevity’s sake, we define

k
n
— if k is a positive integer,
fp(n) = ; [pf}

0 if k£ is a nonpositive integer,
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and

Our goal in this paper is to establish the following theorem (see Section 8).

Theorem 1.1 Let A be a finite abelian group, and suppose that A possesses
a Sylow p-subgroup of type .

(1) We have ord,(h,(A)) > 75(n). FExcepting the case where p = 2 and
2u=s>2, if n is a multiple of p"**, then ord,(h,(A)) = 73 (n).

(2) Suppose that p = 2 and that 2u = s > 2. If n is a multiple of 2“*3, then
ordy(h,(A)) = 73(n).

For part (2) of Theorem 1.1, a detailed result is seen in Corollary 8.2.
When 2u = s > 2, the difference between the cases where p > 2 and p = 2
comes from that between Lemmas 2.4 and 2.6 which are the keys to proving
Theorem 1.1 with A = Cpu X Cp» (see Theorems 2.1 and 2.2).

The radius of convergence of the p-adic power series F4(X) is p® where

ord,(hy,(A)) — ord,(n!)

a = lim inf ,
n— 00 n

so that we can get the following corollary to Theorem 1.1 (see Section 9).

Corollary 1.1 Under the hypothesis of Theorem 1.1, the p-adic power series
EA(X) converges only in the open disc of radius p* where

7
© Qut3

a = 1 2u — s horwi
— — otnerwise.
p(p—1)  pvt!

if p=2 andif 2u=s>2,

Many results in this paper are based on the results in [9]. In Section 2
we give an alternative proof of [9, Theorem 3.1] and that of [9, Theorem 4.2]
except the second assertion. The second assertion of [9, Theorem 4.2] with
[ > 2 is wrong; but [9, Theorem 4.1], which states the first two assertions of
[9, Theorem 4.2] with [ = 1, is true nevertheless. In Section 7 we correct an
error in [9, Theorem 4.2] (see Theorem 7.1).
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We state a brief outline of the proof of Theorem 1.1. Sections 3 and 4
are devoted to analyses of a,(i;p) and Ep(X) for a finite abelian p-group P.
The first statement of (1) with A = P is proved in Section 5. We continue to
discuss the properties of h,(P) in Sections 6 and 7. The theorems on h,(P)
are extended to those on h,(A), and consequently, Theorem 1.1 is proved at
the end of Section 8.

2 The direct product of two cyclic p-groups

In this section we assume that A = (u,v,0,...) and that P is the direct
product of two cyclic p-groups Cp« and Cpe. Here u > v > 0.

Let H be a finite group, and let H™ be the direct product of n copies of
H. Let H1 S, be the wreath product of H with S,. Hence every element of
H S, is written as (hy, ha, ..., hy)m for (hi,ho, ..., h,) € H™ and 7 € S,,,
and the product of two elements of H .S, is defined by

(hl, ]’LQ, c. ,]’Ln)ﬂ' : (hll, h/2, . h/n>7T/ = (hlh;—1(1), hgh;_1(2), ey hnh;__1(n))ﬂ'7l'/

for all (hy, ho, ... hy)7w, (B, By, ... K )7 € HQS,.

Let d be a positive integer, and let C; be a finite cyclic group of order d.
We define h(Cy, H) := #{z € H | 2¢ = 1}. So h(Cy, H) is just the number of
homomorphisms from Cy to H.

Put h,(Cy; H) = h(Cq, H2 S,) if n > 1, and ho(Cy; H) = 1.

The centralizer of a permutation that factorizes ¢ disjoint cycles of length
p“™tin S, where 0 < i < [n/p“t!], is isomorphic to the direct product
(Cpu+1 ZSi) X Sn_pu+1i of Cpu+1 1.S; and Sn_pqulZ‘, and

[(Cputr 1S5) X Sy putry| = p(““)ii!(n — pti)!
(see [8, 4.1.19]). Hence the following lemma, which is [18, (10)], holds.
Lemma 2.1 Let y, = [n/p“™Y] for each nonnegative integer n. Then

I nlhy(Cpe; Cutr)
o n: 7 Yy pu+1
hn(cpu+1 X va) — Z p(u+1)lz'<n _pu+12)' hn—p“‘+1i<P)'

1=0

We use the fact that ord,(n!) = 372 [n/p’] ([14, p. 242]), and also use [9,
Lemma 2.1], namely,
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Lemma 2.2 For each integer i with 0 < i < [n/p“t1],

ord, (#M) = [ (")
-3 (B

J=u+2

Let {dp,dy,...} be the set consisting of all divisors of d. Let r = dj for
some k, and suppose that 7’ = (i1 iy --- 4,) is a cycle of length r in S,,. Then
the number of elements (hy, ha, ..., h,)7’ in H.S, such that

((hi,hgy ... )T = e

and h; = ey for any i with ¢ # i1, ia,..., ¢, is |H|""'h(Cy/,, H). Here e and
ey are the identities of HS,, and H, respectively. Hence, if 7 is a permutation
in S,, that factorizes disjoint j; cycles of length d; for £k = 0, 1, 2,..., then
the number of elements (hy, ha, ..., h,)C in H .S, such that

((hla h27 R hn)(>d =€

and ( is conjugate to 7 in S, is
n! , _

e |H|(dk_1)ﬂkh(c’d/d H)*

szzo g ! 1}:[0 '

(see also [8, 4.2]). This means that

n! o .
ha(Cas H) = Y ———— [ [ [H|“"* *h(Cuyas HY*,  (A)
odo-+) [Tiso i J!
jodo+jidi+--=n 11k>0 "k k>0
where the summation runs over all sequences (jo, j1, ... ) of nonnegative inte-
gers jU)jla ... with deO +j1d1 + - =n.

Lemma 2.3 Suppose that e and m are integers with e > m > 0. Then
i (Cym; Cpe ) = > Ciovnin P R0 o (R
Jo+iip+-+impm=n
where rp(k) = (e —m)(p* — 1) — k and

n!

Ci i == C
J0ye-s Jm m -
Hk:opkjk]k!
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Proof. By (A), we have

h (Cym; Cpe ) = - Z Hk Opk‘kak' H e(p*—1)jiu+(m—k)ji (B)
Jotj1ptimp™
The lemma is an immediate consequence of this fact. O
The next lemma is stated in [18, Lemma 2.5].
Lemma 2.4 Suppose that e and m are integers with e > m > 0. Then
B (Cym; Cpe) = p™  mod pmtem=1+0,
where 6 = 1 if either p > 2 or m =0, and 6 = 0 otherwise.

Proof. If m = 0, then the assertion clearly holds. Assume that m > 1. For
each integer k£ with 1 < k < m,

(k) =(e—=m)(p* = 1) =k =(e—=m—-1)(p* = 1) +p* — (k+ 1)
>e—m—1+9,

and thereby, Lemma 2.3 deduces the assertion. O

We give an alternative proof, which is sketched in [18], of [9, Theorem 3.1],
namely,

Theorem 2.1 Let y, = [n/p*T| for each nonnegative integer n. Then

ordy(hn(P)) = f;'(n) — (= 0)yn,

(_1)ynn| o B
h,(P) = [ — P d pls (M= (=0)yn—1)+8
( ) plu— ’U+1)yny (n putly, )! P ‘Hyn( ) mod p

where 0 = 1 if either p > 2 or v =20, and 6 = 0 otherwise.

Proof. We use induction on y,. Suppose that y, = 0. Then n < p“*!, and
hence hy,(Cpu+r X Cp) = hy(P) for any nonnegative integer k. This, combined
with [21, Main Theorem] (see also [17]), shows that

ord,(h,(P)) =0 mod ged(p“t* n!)
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for any nonnegative integer k. Thus ord,(h,(P)) > ord,(n!) = f}(n). More-
over, the second assertion clearly holds. We next suppose that y,, > 1. By the
inductive assumption,

ordy (hy, (Cpusr x Cpv)) > f;“(n) —(u+1—w) {pvﬁm] )

Furthermore,

) = k10|

pu+2

= fp(n) = (= 0)ya + (w+ 1=0) (y”‘ H)

p

> fi(n) = (u=v)yp +u—v+1,
and thereby,
ordy, (hy (Cputr X Cp)) > fii(n) — (u —v)(yn — 1) + 1.

Hence we can use Lemma 2.1 to get

Yn
n!hi(cpv; Opu+1) B )11
; putDigl(n — putly)! hy—pu+1;,(P) =0 mod p'r (o)

By Lemma 2.2 and the inductive assumption,

n!
ord, (p(““)ii!(n — ] hn_pqulZ‘(P))

> () — i+ F4(n— p) — (u— ) [

= fy(n) = (u—v)y, — vi
for any integer ¢ with 1 < i < y,. The first assertion now follows from Lemma
2.4 and (C). Furthermore, by the inductive assumption,

n — pitly
pu+1

B i nlhi(Cpo; Cpust)  hy_pusii(P)

o plutDig] (n — putli)!

Yn

_ Z n! . (=1 ) hi—priy, (P)

p(u—v-‘rl)ii! p(u—v-i-l)(yn—i) (yn _ Z)' (n _ pu+1yn)!

=1

= Z (L)' (=1)n! h (P)
= 1 Z'(yn - Z)' p(U—U+1)ynyn!<n _ pu+1yn)' nfpu+1yn
— (_1)y"n‘ fu(n)—(u—v)(yn_1)+5
— p(ufvﬁ’l)ynyn(n _ pu+1yn)' hn—pu+1yn (P) mod p ’
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completing the proof. O

We turn to the case where p =2 and v = v > 1. By (B),

ZW}("zZ(Z 2jo)X":er><13(2X+X2) (D)

i1
n=0 =0 \jo+2j:=n JO1"

(see also [13, Proposition 3.4]), whence

Z —h"<csl; Ca) X" =exp (X + XT) = (Z hnfo) Xn) . (E)

The following lemma is due to Tomoyuki Yoshida.

Lemma 2.5 We have

ords(hn (Co; Cy)) = {”; 1}

Proof. By (D), we have

- hn(CQ;CQ) n—1 __ - hn(02;02) n . hn(CQ;CQ) n+1
Z—(n—l)! Xrl=y et tox +Z—n! 2X"

Hence, if n > 2, then
hn(Cg; Cg) = 2hn,1(02; CQ) + 2(n — 1)}1”72(02; CQ)

([2])-We use induction on n. If n < 1, then the assertion clearly holds. Suppose
that n > 2. By the inductive assumption, ords(h,,(Ca; Cs)) = [(m + 1)/2] for
any nonnegative integer m less than n. Hence we have

n

ordy (i (Cy; Cy)) = 1 +min{{§}, [" > 1] +a} ,

where
0 if n is even,

o= n )
ords < [5} ) +1 otherwise.
The assertion is an immediate consequence of this fact. O

The next lemma, combined with Lemma 2.4, plainly explains the difference
between the cases where p > 2 and p = 2.
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Lemma 2.6 Let m be a positive integer. Then
B (Com; Comi1) = 2™h, (Cy)  mod 2mnHin/2=ln/al+1
Moreover, if 0 < n < 3, then
hin(Com; Com+1) = 2™ h,, (Cy).

Proof. We keep the notation of Lemma 2.3, and prove the first assertion. For
each integer k with 3 < k < m, we have

ro(k) =28 — 1 —k > 282,

Moreover, if jo + 2j1 + - - - + 2™, = n, then
n] [n]_[do+2i] [do+2i], N=opo.
—_— —_— — p— — 2 .
HI R b 2 e W
Hence Lemma 2.3 yields
o (Cim; Gl

— Z Z z‘ I z)' o S ra (K
=0 Jo!27 1! il(n — @)t TTs, 2Rk !

Jo+2j1=1
22 g+ 2 jp=n—i

- n! (n—1)! m .
— e hz C RS AN 2mn+zk:2 ra(k)j
;i!(n—i)! (C2) 2

M 9kjr g, |
22jg+- 42 jry=n—i [Tz 272!

= 2mnhn<c2) mod 2mn+[n/2]7[n/4}+1'

Here

2!
MG = 2 e

Jo+2j1=i

by (A) with d =2 and H = {ey},

orda(hi(C2)) > H _ M

by [12] (see also Theorem 2.1), and

NN AN
OI'dQ <22T]2| = 01‘d2 22j2j2! = J2 >1

if 22j, = n — i > 4. This proves the lemma. O

The next theorem is stated in [9, Theorem 4.2].
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Theorem 2.2 Suppose that p =2 and u = v > 1. Let y, = [n/2"Y] for each
nonnegative integer n. Then

ordy(h(P)) > 73(n),

and

n!
- 2uny, (n — 2utly, )

hn(P)

! hyn(CQ)hn—2u+1yn(P) mod 27—3(”)4_1‘

Proof. Recall that 73(n) = fi(n) + [yn/2] — [yn/4]. By Theorem 2.1, we
may assume that y, > 1. We use induction on y,. If y, = 1, then the first
assertion is a consequence of Theorem 2.1. Assume that y, = k + 21 4+ 4m,
where k, [ € {0, 1}. We have y,, — 2[y,/2] + [yn/4] = k + m. Hence, if y,, # 2,
then by Theorem 2.1 and Lemma 2.1,

Ordg(hn(02u+1 X CQ”)) Z f;—i_l(n) - |:2ZL+2:|

— )+ | %]

> 1i(n) + 1

and

Yn
n!hi(cm; CQu+1) hn—2u+li(P) . 2(n)41
— 2 (ut1)ig) : (n — 20+1j)] =0 mod 2™ . (F)

In particular, if y, = 1, then it follows from Lemma 2.6 that

n!

5(n = gurry] Pzt (P) - mod 97} (m)+1,

hn(P) = —

Suppose that y, = 2. Then by the above fact and Lemmas 2.1 and 2.6,
hn(02u+l X CQu)
(P) +

n!
22(n — 2072)]

n:
m hn,2u+1 (P) -+

hn hn,2u+2 (P)
ho(P) mod 273+

This, combined with Theorem 2.1 and the fact that

hn_2u+2(P) = hn_2u+2 (02u+1 X 02u>,
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shows that ordy(h,(P)) > 7¢(n) and

— : Tfn 1
hn(P) = mhn_2u+2(P) mod 2 (n)+ .

Suppose now that y, > 3. By Lemma 2.2 and the inductive assumption,

n!
ord; (2(““)%!(71 — QutLy)] hn—2u+lz‘(P))

ey [ [ 25

for any integer ¢« with 1 < ¢ < y,. Hence the first assertion follows from
Theorem 2.1, Lemma 2.6, and (F). Moreover, it follows from the inductive
assumption that

i n!hi(cgu;CQqul) hn—2u+1i(P)
- Zl 9(u+1)ij) ’ (n — 2u+14)!

. i n'hZ(C'Q) ) hyn_i(CQ) ) hn—2“+1yn (P)
214! 2un=i(y, — i)l (n — 2utly,)!

i=1
yn
hi(Ca)  hy,—i(Co) n!
= o ' ) - —_ou+1 P
{ ;yn 2! (Y — 1) [ 2v9n9,!(n — 2utiy,)! hi—gutiy, (P)

mod 27a(m+1,
Thus the second assertion follows from (E) and Lemma 2.5. This completes
the proof. O
3 The number of subgroups of a finite abelian p-group

Recall that A = (A1, Ag, ... ). We must study the properties of a,(i;p). Let
a;j, i,j € Z, denote nonnegative integers such that a,(i;p) = Zj a; jp’, which
depend only on A and 7. When i or j is a negative integer, we consider a; ; = 0.
By the duality of finite abelian p-groups,

ax(i;p) = an(s — i;p),
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whence a;; = as_;;. It is clear that a,(0;p) = an(s;p) = 1. Furthermore, if
A > T1andif Ay =0, then ay(1;p) =an(s —Lip)=1+p+---+p L.

Definition 3.1 We define the partition Nof s — )\ by N = (A2, Az, ...), and
define @; ;, i,j € Z, to be nonnegative integers such that as5(i;p) = Zj a; ;7
which depend only on X and i.

The following lemma is useful for an investigation into the coefficients a; ;.

Lemma 3.1 We have

Qi35 — Aj—15 = Q4 j—i — Qs—i41,j—s+i—1-

Proof. We may assume that s > 1. Suppose that k is the largest number such
that Ay = A1, and define the partition A of s — 1 by

A=A, N, A — L e, ).
Then it follows from [15, Theorem 1, Corollary| that
ax(i;p) = az(i;p) +p oz (i — Aip)
= a5(i;p) +p"ag(s — i p)
and .
ax(i;p) = az(i — 1;p) + p'as(i; p).
Here the former yields

s—i+1

as(i—1L;p) = ax(i— 1;p) = p*ag(s — i+ 1;p),

and the latter yields
az(i — 1;p) = ax(i;p) — pas(i;p).
By these equations, we have

s—i+1

ax(i;p) — (i — 1;p) = plas(isp) — p* " Tag(s — i + 1;p),

which is shown in [16]. Now the assertion is an immediate consequence of this
equation. This proves the lemma. O

Using Lemma 3.1 we get several properties of the coefficients a; ;, i, 7 € Z.
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Proposition 3.1 Putt = s— ;. The following statements hold.
(1) Ifi+j <s, then a;; > a;_1.
(2) Ifi+j <sandifi>j, then a;; = a,_1;.

(3) Ifi+j<sandifj<t, thena;,; — aj—1j-1 > Qi—1; — Qi—2,j_1.
(
(
(

)
)
) If0 < j <min{t,[s/2]}, then a;; = a;_1;+ 1.
)
)

N

)
6

If 0 < j <min{t,[(s+1)/2]} and if A3 > 1, then a; 41 = aj_141 + 1.

Assume that t < [(s +1)/2]. Ift <i < s—t+1, then a;; = a;,—1; for
any integer j.

(7) Assume thatt < [(s+1)/2]. If j > t, then a;; = a1 ;.
Proof. The assertion (1) follows from Lemma 3.1. For, if i +j < s, then

as_i+17j_s+i_1 = 0 because j —s+1 S O, and hence Qi3 — Qi—15 Eim-_i by
Lemma 3.1. In the proof of (2)—(7), we use this fact without notice.

(2) If ¢ +] < sandifi> j, then Qi — Q15 = am_i = 0.
(3) Assume that ¢ + j < s and that j < t. Then

(ai,j - aifl,jfl) - (aifl,j - aifQ,jfl) = (ai,j - Clzel,j) - (aifl,jfl - aifQ,jfl)

= Qjj—; — Qj—1,j—i-

Since ¢ + (j — i) < t, it follows from (1) that @; ;_; > @;_1 j—;. Hence we have
Qjj — Qi—1j-1 = Qim1j — Aj—2 1.

(4) Applying (2) to a5(isp), © € Z, we get ajo = 1 for any j with 0 < 5 < t.
Hence, if 0 < j < min{t, [s/2]}, then a;; = a;—1; + Gj0 = aj—1; + 1.

(5) Assume that A3 > 1. If 0 < j < ¢, then @;; = 1 by (2) and (4) [11]. Hence,
if 0 < ] < min{t, [(S + 1)/2]}, then Qji+1 = Aj—15+1 +aj71 = Aj-14+1 + 1.

(6) We may assume that ¢ < [(s + 1)/2]. Let j be any integer. If ¢ < i, then
ai,j*i = a\s,i+1’j,s+i,1 = (0 because t < 1 S s—1+ 1, and hence CLiJ’ = CLZ‘,L]' by
Lemma 3.1.

(7) Let j be any integer. Since t < s —t+ 1, it follows that @s_s41 j—s+t—1 = 0.
Hence a;; = a;—1j + a; ;¢ by Lemma 3.1. Moreover, if j > ¢, then @, = 0,
and thereby, a;; = a;—1 ;. O
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Remark 3.1 The assertion (1) of Proposition 3.1 is a part of [1, Theorem] (see
Section 1). According to [16], Lemma 3.1 enables us to get [1, Theorem]. Also,
(2), (4), and (6) of Proposition 3.1 yield [1, Note]:

ax(i;p) = ax(i — 1;p) if t<i<[(s+1)/2],
ax(i;p) = an(i — 1;p) +p° mod pt if 0 <i<min{t, [s/2]}.

We apply Proposition 3.1 to the following explicit result (see also [19,
Proposition 5.3]), which is used in [9].

Proposition 3.2 Suppose that A = (u,v,0,...). Then

l+p+---+p if 0<i<w,
a(izp)=q L+p+--+p" if v<i<u,
l4+p+---+p" if u<i<s.

Proof. We determine a; ;, ,j € Z. Since \ is the type of Cp, it follows that
Qs—it1 j—s+i—1 = 0 for any j greater than v. If i < j < v, then i +j < s,
and thereby, @s_;41j-s1i-1 = 0. Hence, if i < j, then Lemma 3.1 yields
a;j — @i—1; = @; j—; = 0. Thus, if ¢ < j, then a;; = a;_1; = --- = ap; = 0.
Now we may assume that j <. If v < j <4 < w, then a,; = 0, and hence
a,; =+ =ay; =0 by (6) of Proposition 3.1. If 0 < j <w and if j <i < u,
then a;; = --- =aj; = aj_1; +1 =1 Dby (2) and (4) of Proposition 3.1. We
have thus determined a; ; in the case where either i < j or 0 < j < i < w.
Now the proposition follows from the duality of finite abelian p-groups. This
completes the proof. O

4 A decomposition of the exponential formula

In this section we give a decomposition of Ep(X) for any finite abelian
p-group P. Recall that v = min{s — Ay, [s/2]}. We start with two definitions:

Definition 4.1 For each integer m with 0 < m < s+ 1, put

( v s ka
P> (e = ok jpmm1) 5 + 9 H(X) 0 <m <,
j=m = b
AR =1{ v xr .
ZZ@S_;W-W ifv<m<s,
j=m k=j
0 itm=s+1.

\

We define @, (X) := exp(} (X)).
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Definition 4.2 For each pair (I,m) € Z x Z of nonnegative integers [ and m
with m <'s, put b;,, = a@;m — @—1.m—1, and define

bim —bi—1m i 0<I<s—m andif 0<m<v,
Clm =1 Qm —Q-1,m if 0<I<s—m andif v<m<s,
A1 if {>s—m.

There are only finitely many pairs (I, m) such that ¢, # 0. The properties
of ¢;,, play an important role in the proof of Theorem 1.1.

Proposition 4.1 The integer ¢, is nonnegative for any nonnegative integers
[ and m with m < s. In particular, coo = 1, and co,, =0 tf m > 1.

Proof. Let | and m be nonnegative integers with m < s. If [ > s — m, then
Clm = Qmy > 0. If [ < s —m, then the first assertion follows from (1) and (3)
of Proposition 3.1. The last assertion is clear. This completes the proof. O

Now we are ready to show the following.

Theorem 4.1 Let P be a finite abelian p-group of type A\. Then Ep(X) and
®,(X) are decomposed as

Ep(X) = o)(X) H H exp(pttmTEXPT ) em,

m=0[l=s—m+1

0(X) = [[T] Bo xcpn Xy T T Fer (X770,
m=0 [=0 m=v+1 [=0

Proof. The number of subgroups of index p* in P is ay(s — k;p), whence
Ep(X) =exp(d>_j_pan(s — k; p)X?" /pF). Furthermore, we have

s k

k k S 0
D aa(s— k;p));—z = Z“s—’wz% DI sy P XY

k=0 j=0 k=0 j=k+1

_ A Y S aptxe

m=0[l=s—m+1
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Then the first decomposition of Ep(X) clearly holds, and hence it remains to
show the decomposition of ®,(X). By Definitions 4.1 and 4.2, we obtain

v S—j+m

Zzbskj+mm)§ if OSmSU,

PR(X) = i TH(X) = a5 k= o
Zas_kmr if v<m<s.
p m

Ifm<l<s—m,then a,,m = aj—1,m and a;_1,,m-1 = @_2.m—1 by (2) of
Proposition 3.1, which forces b, = b_1,,. Hence, for any integer m with
0<m<w,

v Ss—j+m k
XP
+1
SDT(X> - m E E bs k—j4+mm =~ —j
j=m  k=j p
v S— J—l—m Xp
— E E skj—i—mm_bskj—i-m 1m>§ ij
— D
j=m  k=j =]
v m s—l—j+m Xpi
= E E (bl,m - bl—l,m) E i
j=m =0 =7 p
m v—m s—l—-m—j Xpm+z‘
= Clm p] :
P
=0 7=0 i=j
Moreover, for any integer m with v <m <'s,
k:
+1
()OT(X> - m Z Qs— km k m
s k Xpi
= E (a/s—k,m - as—k—l,m) E p%m
k=m i=m
s—m s—l— mXpm+z
= Cl,m i
=0 =0 p

Now, since ¢§(X) = >0 _,(p7(X) — (X)), we obtain
v m v—m s—l—m—j prti

A=Y anY 3 Y Y Y ~ |

m=0 =0 j=0  i=j m=v+1 1=0 i=0
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Here Proposition 3.2 implies that, if 0 < m < wv and if 0 <[ < m, then

v—m s—l—-m—j

'Xpm+i
B 07 o (53]
J=0 i=j

Furthermore, if 0 <1 < s —m, then

s—l—m m+i
m XP
Ecpsflfm (Xp ) = eXp < i ) ‘
=0 p

Hence the decomposition of ®,(X) holds. We have thus proved the theorem.
O

FEzample 4.1 Suppose that A = (1,1,1,1,1,1,0,...). Then u = v = 3, and
the table of nonzero a; ;, i, j € Z, is the following.

U Gip Qi1 Gip ;3 Qia o iy Qie Qi7 Qg Qg
0 1

1 1 1 1 1 1 1

2 1 1 2 2 3 2 2 1 1

3 1 1 2 3 3 3 3 2 1 1
41 1 1 2 2 3 2 2 1 1

5 1 1 1 1 1 1

6 1

For each (I,m) € Z x Z with0 <m <6 and 0 <1 <6 —m,

1 it  (I,m)=1(0,0), (1,m) where 2<m <5,
Clm =4 2 if (Il,m) = (2,4),
0 otherwise.

Consequently, we have
PA(X) = Ec yuc y(X)Ec ,xc, (X7)Ec , (X7) Ec, (X”") exp(X7")? exp(X"").

In order to prove Theorem 1.1, we need further information about c¢;,,.
Recall that u = max{A;,[(s +1)/2]} = s — v.

Lemma 4.1 Suppose that 0 < m < v. Unless A3 > 1 and (I,m) = (1,2),
cim = 0 for any positive integer | withm —1 <1 <s—m. If \3 > 1 and if
m = 2, then c;2 = 1.
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Proof. If A3 > 1 and if m = 2, then ¢;2 = b12 — bp2 = @12 = 1. Thus the
second assertion holds. We prove the first one.

Ifm <1l <s—m,then a.,, = @1, and G_1m-1 = G_2m-1 by (2)
of Proposition 3.1, which yields ¢;,, = 0. Also, if m > 1, then by (4) of
Proposition 3.1, G m—0m-1,m = Gm—1,m—1—0m-2m—1 = 1, and hence ¢, ,,, = 0.
Moreover, if A3 = 0 and if m > 2, then ¢,,_1,, = 0 by Proposition 3.2. Now we
assume that A3 > 1 and m > 3. Then, since m — 1 < v = min{s — Ay, [s/2]},
(5) of Proposition 3.1 implies that a,,—1.m—Am—2m = Gm-2.m—1—Cm—3m—1 = L.
Hence we have ¢;,—1,, = 0, as desired. Thus the first assertion holds. O

Lemma 4.2 Suppose thatv < m < u. Ifu = Ay, then ¢;,, = 0 for any integer
Lwithv<l<s—m. Ifu>X\, thenu=v+1 and ¢, ,4+1 = 1.

Proof. Since v < u, it follows that v < [(s + 1)/2]. Hence, if u = A, then
s—A =v < [(s+1)/2] and s—\; < s—m < Ay, and thereby, it follows from (6)
and (7) of Proposition 3.1 that a,—1.m = Gym = -+ = Gs—mm. Thus, if u = Ay,
then ¢;,,, = 0 for any integer [ with v <[ < s—m. Assume that u > A\;. Then
A3 > 1and u = [(s+1)/2]. Furthermore, 0 < v < min{s — Ay, [(s+1)/2]} and
u=v+1, because v =s—u < s— A and [s/2] =v < u = [(s+1)/2]. Hence,
by (5) of Proposition 3.1, ¢y yt1 = @pypt1 — Gy—10+1 = 1. This completes the
proof. O

FEzample 4.2 Suppose that A = (5,1,1,1,0,...). Then u =5 = A; and v = 3,
and the table of nonzero a, ;, ¢, 5 € Z, is the following.

a

[=)

S
<
—

Qi2 Q33 Q44

00 I O UL W O
e e e e
— == = e
NN NN
DWW W N
— ==

For each (I,m) € Z x Z with 0 <m <8and 0 <1 <8 —m,

1 if (I,m)=1(0,0), (1,2), (1,3), (2,4),
Clom = .
0 otherwise.
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Hence we have
®A(X) = Ec yxc s (X)Ec,uxc, (X)) Ec ,(XP) B, (X7").

Ezample 4.3 Suppose that A = (2,2,1,0,...). Then u = 3 > A\; = 2 and
v = 2, and the table of nonzero a, ;, ¢, j € Z, is the following.

U a0 a1 G2 Q3
0] 1

1 1 1 1

2] 1 1 2 1
3] 1 1 2 1
41 1 1 1

51 1

For each (I,m) € ZxZ with0 <m <5 and 0 <[ <5—m,

B 1 if (I,m)=(0,0), (1,2), (2,3),
Clm = 0 otherwise.

Now we get

BA(X) = Ec yxc,, (X)Ec, (X)) exp(X7).

5 The lower bound

In this section, we denote by P a finite abelian p-group of type A, and
show that ord,(h,(P)) > 73(n) (cf. Theorem 5.2). First of all, we state a
consequence of Theorems 2.1 and 2.2:

Theorem 5.1 If A3 =0, then ord,(h,(P)) > 73(n).
In order to generalize this theorem, we set
Qe ={(Il,m) eZxZ|0<I<s—m, 0<m<min{k,s}, ¢, #0}
for each nonnegative integer k, and set
Q={(Im)eZxZ|1>0,0<m<s, ¢.,7#0}

Note that, if A3 = 0, then Q = {(0,0)} by Proposition 3.2. It follows from
Lemma 4.1 that [ < m for each (I,m) € Q,. Hence Theorem 4.1 implies that

Ep(X)=0x(X) [ exp@tmxr ") (G)

(I,m)eN—Q,
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and
03) = [[ Eepixeuon 0[] B (X7 (1)
(I,m)€ENy (I,m)eNs—Qy

Let I denote the set consisting of all elements (I, m,i) of Z x Z x Z such
that (I,m) € Q and 1 <i < ¢,,. Let I';, be the set of mappings o from I to
the set of nonnegative integers such that

Clm Clym

Z Zp o(l,m,i) + Z Zpsm (l,m, 1)

(I,m)eQs =1 (I,m)eQ—Q; i=1

Definition 5.1 For each element o of I',,, put

Clm

Gm(o(l,m,1 )
ho(P) =
n(P) H H o(l,m,i)! ~’
(I;m)e i=1
where
h(Coot X Coem)  if - (I,m) € Q,
Gm(n) = { hn(Chicm) it (I,m) e Q, — O,
plm=sn if (I,m) e Q—Q,.

Now (G) and (H) yield the following.

Proposition 5.1 We have h,(P) = )_ . hi(P).
We wish to show that ord,(hZ(P)) > 73(n) for all ¢ € T',,.

Definition 5.2 For each nonnegative integer m, put

w—m 2™Mn 2" | . _
et (n) — [ﬁ} - {W} if p=2 andif 2u=s2>2,

u—m p"n :
[y (n) = (2u —s) {p““} otherwise.

Especially, 77(n) = 7°(n). Note that 2u — s = u — v and that 2u = s > 2
if and only if u =v > 1.

Definition 5.3 For each ¢ € I',, and for nonnegative integers 5 and k, put

Clm
pr(n) = > > {ordy(grm(o(l,m, i) = " (a(l,m, i)},
(lm)eﬂk i=1

i) =H s 2

(I,m)eQy, =1
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It is evident that 47, (n) > 0 for any nonnegative integers j and k.

Lemma 5.1 Let o € I',,. Ezcepting the case where p =2 and u=1v > 1,

ord,(h7(P)) > 73(n) + (u = v+ 1)7i14 4 (n) + p7(n).
Furthermore, if p =2 and if u =v > 1, then

ordy(hy (P)) > T)%(n) + 73+1,u+1(n) + PZ+1<”)7
and
ordy(hg(P)) > 73(n) + 297 3,01 (1) + piy(n).

Proof. Put nj,, = o(l,m,1) for each element (I,m,i) of I. Since ord,(n!) =
Z‘;‘;l[n/pj], it follows that ord,(n!) < n. Hence

=[] 3 S5

-1 (I,m)eqs =1
Clym
+ Z Zordp(gz,m(”zi,m))v
(I,m)eQs i=1
which yields
ord,(hg(P)) — futt(n)
Clim u—m+1 i s
Z Z ord,(gi.m(nf ) Z [ }}jL Z Vs
(Lim)eQ, i=1 =t e
Clom
> 3 SRl — S )} + ).
(I,m)€eq, =1

Now, excepting the case where p = 2 and v = v > 1, we obtain
ord, (5 (P)) 2 78(n) + (u — v + 1371, (n) + g (n).
Assume that p = 2 and that v = v > 1. Then we have
ordy (h7y(P)) — f37%(n)

Clom

- 3 Z{ord2<gl,m<n;’,m>>— ) [”2—’”]}+ 3 )

(I,m)EQy41 =1 j=u+3

Cl,m
2mnl m anl m o o
> — Z Z { [ Qu+1 } { Qu+3 } } + 'Yu+3,s<n) + Put1 (n)

(I,m)€Qy41 =1
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Thus
ordy(hy, (P)) > 7’)%(”) + ’73+1,u+1(”) + ’Yg+3,u+1(n) + ’YZ+3,s(n) + PZH(”)-
Moreover, since vy, 1 41(n) = Vi41,5(1) = Yi45u41(n) = Vi43,4(n), it follow that
ordy(hy(P)) > 73(n) + Yar1,s(M) + 290 13.401(0) + poir(n).
This proves the lemma. O

We are trying to show that ord,(hg(A)) > 73(n) for all ¢ € I',,. For each
nonnegative integer k, set

Qo ={l,m) e |1>1, m>2}

Definition 5.4 Put kgo(n) = 0, and, for each (I,m) € Qs, put

p'n
[t n) = (w—1—v+m) [p"“} —mv"™(n) if m<w,

Kim(n) = I+my,
} —7v"(n) i v<m<s.

S—l—m p
o~ == |22
p
Lemma 5.2 We have Q) = @SU{(O, 0)} and ord,(grm(n)) > Kim(n)+72"(n)
for all (I,m) € Q.

Proof. By Lemmas 4.1 and 4.2, ¢;p = 0if 1 <[ < s,and¢; =0if1 <[ < s—1.
These facts, together with Proposition 4.1, yield €, = Q, U {(0,0)}.

It follows from Theorem 5.1 that ord,(goo(n)) > 72°%(n). If (I,m) € Q,,
then u — [ > v — m because [ < m by Lemma 4.1, and hence

In
ordy(gum(n) > f37'(n) = (w—1—v+m) L”

by Theorem 5.1. Also, if (I, m) € ﬁs and if m > v, then

Hmp,
oxdy (i) = £ ) (s = 1= m) | E 2,

Hence we conclude that ord,(g;m(n)) > Kim(n) + 73" (n). O

Lemma 5.3 Suppose that A3 > 1. Then the following statements hold.
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(1) Assume that either p > 2 or u > v. Let (I, m) € Q.. Then Kim(n) > 0.
If (I,m) # (v,u) and if n > p*~™ T, then Kym(n) > u—v+ 1.

(2) Assume that p =2 and that w =wv. Let (I,m) € Quir. Then Kim(n) > 0.
If (I,m) # (1,2) and if n > 27" then K, (n) > 1. Furthermore, if
(I,m) # (1,2) and if n > 2“"™F3 then rym(n) > 3.

Proof. (1) If m < v, then [ < m by Lemma 4.1, and hence

() = 5710) = (w ==+ m) [ B2 ] = o)+ (= [ 2]

u—

> [5]- o2+ w-o{ 28] - [25])

J=u

o] [

Moreover, if m < v and if n > p*~™" then sy ,,(n) > u—v+ 1.

Assume that v < m < w. Since ¢,, # 0 and [ < s —m, it follows from
Lemma 4.2 that either [ < v or (I,m) = (v,u). By the definition, we have
Kpu(n) = —13"(n) = (u —v)[n/p] > 0. On the other hand, if [ < v, then

() = 5770 = (5= 0= ) [E 2] — ot + =) [ 2]
L o i
- 2 L] emmlEs] o]
> (u—v+1) [ﬁrﬂ — (u—v) [jﬂ;] > 0.

Now, if (I,m) # (v,u) and if n > p*~™! then [ < v and Ky, (n) > u—v+ 1.

(2) If m = u+ 1, then by the definition,

u n n

and the assertions follow. Next we assume that m < u. If m =2, then [ =1
by Lemma 4.1, and

=[] o] ] o
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Assume that 3 < m < wu. Then [ < m — 2 by Lemma 4.1. If | <m — 3, then

) = £571) = ()| 2] - g + [ 28] + [ 2]

S 5| o5+ 5]+ 5

Jj=u—m-+3
S 2Mn, 2Mn,
— | Qu+tl o u+t3 |’
which yields the assertions. This inequality holds even if [ = m — 2, and hence
the lemma follows. O

Now the following results are established.

Proposition 5.2 We have ord,(hZ(P)) > 13 (n) for allo € T,,.

Proof. The proposition follows from Lemmas 5.1, 5.2, and 5.3. O

Theorem 5.2 We have ord,(h,(P)) > 13 (n).

Proof. The theorem is an immediate consequence of Propositions 5.1 and 5.2.
O

6 Abelian p-groups

In this section we will provide two lemmas and go on to prove a key result
(cf. Theorem 6.1) to Theorem 1.1.

Lemma 6.1 Suppose that A3 > 1 and that 0 € T',,. Put ng = 0(0,0,1),
nig=o0(1,2,1), and ny, = o(v,u,1).
(1) Assume that either w = A\ or u = v. Ezxcepting the case where p =2 and
u=v, if [no/p"*] < [n/p"*], then (u—v+1)77,1 4 (0)+p7(n) = u—v+1.
(2) Assume that u > A and that uw = v+1. If [ng/p" ™+ [nwu/p] < [n/p"],
then 2771, (n) + pg(n) > 2.
(3) Assume that p =2 and that uw = v. If [ng/2""] + [n12/2*7Y < [n/2vF1],
hen A ia (1) 4 0741 (0) = 1. 1 [10/2%) + [1.0/21) < [1/25%9), then
270 301 (M) + 054 (n) > 2.
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Proof. (1) Since either u = A\; or u = v, it follows from Lemmas 4.1 and 4.2 that
Cpu = 0. Thus (v,u) & Q. Hence, excepting the case where p = 2 and u = v,
if o(l,m,i) > p*~™"! for some element (I,m,i) of I with (I,m) € Qu, then
(I,m) # (v,u) and p%(n) > Kym(o(l,m,i)) > uw—ov+1 by Lemma 5.2 and (1)
of Lemma 5.3. Furthermore, if [ng/p"!] < [n/p*™] and if o(I,m, i) < pv~™"!
for any element (I, m, i) of I with (I,m) € (., then

YVurs1u(n) = |:p7ji1:| - {pu+11 Z qzm{ i ZLJ: ] > 1

m)ef), =1

Hence (1) follows.

(2) The hypothesis and Lemma 4.2 yield ¢, , = 1; however, the proof is similar
to that of (1) as follows. If o(l,m,) > p“ ™! for some element (I,m,1) of
I with (I,m) € Q, — {(v,u)}, then pZ(n) > kym(co(l,m,i)) > 2 by Lemma
5.2 and (1) of Lemma 5.3. Moreover, if [ng/p“™'] + [n,./p] < [n/p*™] and if
o(l,m,i) < p*~™* for any element (I,m,i) of I with (I,m) € Q, — {(v,u)},
then 77, ,(n) > 1. Now we get (2).

(3) Using Lemma 5.2 and (2) of Lemma 5.3, we can get the results. The proof
is completely analogous to that of (2). Note that ¢;5 = 1 by the hypothesis
and Lemma 4.1. O

Lemma 6.2 Suppose that P is a finite abelian p-group of type \. Let o € T',,,
and let A be a subset of 2,. Then

h(P) p pam
ordp< wacpm>> >hn)— D H"(o(l,m,1)).

H(l,m)EA ha’(l,m,l)( P (l,m)EA

Proof. The lemma follows from Lemmas 5.1, 5.2, and 5.3. O

Theorem 6.1 Suppose that P is a finite abelian p-group of type A. Let y,, =
[n/p“tY] for each nonnegative integer n. Put 6 = 1 if either p > 2 or s = u,
and is O otherwise.

(1) FEzcepting the case where p = 2 and 2u = s > 2, if either u = Ay or
2u = s, then
(-1

h,(P) = pRu=styny 1 — putiy, )l

Py put1y, (P)  mod p™ X(n)+2u=s+.
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(2) Ifu> A and if 2u = s+ 1, then

(=1 —p)n!

P(n)+14+68
pryn!(n — ptiy,)! B puity, (P)  mod p™m+iHo,

hn(P) =

Proof. (1) If A3 = 0, then the assertion follows from Theorem 2.1. Hence we
assume that /\iz 1. Assume that either p > 2 or © > v and that either u = \;
oru=wv. Set @ =Q—{(0,0)} and

fn ={oel,|s(0,0, 1)/pu+1] = Yn}.

Then by Proposition 5.1, Lemma 5.1, and (1) of Lemma 6.1,

= Z ho(P) mod prAmtu=vil (I)

aefn

Suppose that o € fn Since cp o = 1, it follows that

B (Cpu X Clyo) Clmgl a(l,m,1i))
ho(P) = “812 ad
wlP)=n ng! H H o(l,m,i)!
(1,m)eq) i=1

where nJ = (0,0, 1). Moreover, using Theorem 2.1, we obtain

(=1)ng!  hng_puriy, (Cpu X Cpr)

i T/I\)(ng)+U7U+5.
p(u—v—l—l)ynyn! (ng _ pu—l-lyn)l

g (Cpu X Cpo) = mod p
Hence Lemma 6.2 with A = {(0,0)} implies that

“1)nn) R _puity, (Chu X Che 1 Giml(
hZ(P>: (1)71 . 0p+yn< X HHgl lmz)

- plumot gy, (n§ — p**lyn)! o(l,m,i)

(1,m)eq =1

mod pr (n)+u—v+d_

Now, combining the formula above with (I), we conclude that

1)¥n! (Cpu x Cpo Tr lmz)

hn(P) = (u v+1)yny | Z o _ZM_ Py, H ngm (1, m, )

oels (1,m)eq =1

_ (=1)vn! T gim(o(l,m,i )
- p(ufv‘kl)yny | Z H H l m, 7/
v L, _putly, (Lm)eQi=1
(1
p(u v+1)yny (n pu+1y )l

Py put1y, (P)  mod p™ X () u—vtd
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Here Proposition 5.1 is applied to the last congruence. Thus (1) follows.

(2) Assume that v > A; and that u = v+ 1. By Lemma 4.2, we have ¢,, = 1.
Set 2 =Q — {(0,0), (v,u)} and
fn(y) - {0 el | [U(U7 u, 1)/17] =Y, [0-(07 0, 1)/pu+1] = Yn — y}

for each integer y with 0 <y <y,. Then by Proposition 5.1, Lemma 5.1, and
(2) of Lemma 6.1,

Yn

EZ Z ho(P) mod pAM+2, (J)

y=0 O'an(y)
Suppose that o € fn(y) Since ¢og = ¢y, = 1, it follows that

hnU(CUXCv) 1 g, lmz)
ho(P) =n! —— L ml
alP)=n ng! ng, HH o(lym,i)! "’

u (1,m)e) =1

where n§ = ¢(0,0,1) and ng , = o(v,u,1). Observe now that by Lemmas 5.1,
5.2, and 5.3,

ordy(hy (P)) = 73(n) 2 p3(n) 2 Kou(ng,) = y.

By Theorem 2.1 with P is the group consisting of only the identity, we also
have

(=1)"ng.!
1= mod p.
Py (ng, —py)!
Hence the preceding formula of h?(P) yields
hTLO(CuXCv) (—1) Clmgl l mz)
he(P) = n! —0~—F P m(
a(P)=n ng! poyl(ng HH o(l,m,1i)!
(z m)eQ =1

mod pr (n)+2 ,

and also, Lemma 6.2 with A = {(0,0)} implies that
n! (_1)y glm(0<l7m7i>>
dp | — - ’
P ngl pryllng, — py)! H~H o(l,m,i)!

o —1)¥nc |
— ord, (h dA GO M .7 ) > 7L(n) — 72°(ng).
7 y !
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(Note that the congruence above is clear if y = 0.) Moreover,
Png (Cpu X Cipe)
(=D Rgl hpg ey, —y) (Cpu X C)
- PP (y, — )t (g — P (g — )]

P(,Oo
mod pTA (ng)+146

by Theorem 2.1, and consequently,
(_1>y7ln! hn _pu+1 yn y (O X O ) 1
Py — )yt (g = (=) (0, — py)!

he(P) =

Clm

X H Hglm oft,m,i)) modp RARAl

(l,m,1q)!
(L,m)eq =1

Now, the formula above, together with (J), yields

Yn
() =3 (=1 n! S hnS—:z:“(yn—zi)(Cpu X Cp) 1
Py — )y 2 (n§ — " Hyn —y)! (g, —py)!
o€l (y)
Clom
glm l m, ) )
X
H H o(l,m,1i)
(I,m)eq =1
— (—1)y”n' i py G,m glm l m, i )
- 2yn — ! Z H H
pY =0 (Yn — y)Y! oeT, e, (Lm)en i1 o(l,m,1)
mod p n)+1+8

Hence it follows from Proposition 5.1 that

hn(P) = (=1)¥n! {i( Yn'D? } hy—ptiy, (P)

Pyl | = (e — )yl (n—p*Tly,)!

__ (=1=p)n
= pr"yn!(n —p““yn)! hn,puﬂyn (P) mod p

+1+§

Thus (2) follows. This completes the proof. O

7 Abelian 2-groups

Throughout this section we suppose that p = 2. If 2u = s > 2 as well, then
the properties of h,(P), where P is a finite abelian 2-group of type \, are a
little complicated (cf. Theorems 7.1 and 7.2). First, we provide the following.
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Lemma 7.1 Suppose that u > 2. Put w = [n/2"] and z = [n/2"]. Then

n' hn,2u+1z(02u—1 X Czu—2)

. f37H ) —wt1
25721 (n —2utlz)! mod 2% '

hn(cgufl X 02u72) =

Proof. Put n’ =n — 2"z and v’ = w — 2z. Then by Theorem 2.1,

(=)'l iy guy(Cou—t X Chu-z)

) fu_l(’n/)fwlﬁ’l
22w gy (n — 2uw)! mod 27 ’

hn’ (CQu—l X C2u—2) =

Since z = [w/2], it follows from Theorem 2.1 that

w
1= W HlOd 2.

Hence it follows from Theorem 2.1 that

1YWl ; - o
hn(CQu—l X CQu—Q) ( 1) s . hn_2 w(C2 X CQ )

22! (n — 2vw)!
~ (=1)*n! w! P —guy(Cou-1 X Cou-2)
2wyl 2 zlwl (n — 2vw)!
ool (=)0 By gug(Caur X Cus)
T 5eip/l 2wyl (n — 2%w)!

n! hn/(Cgufl X 02u72)

mod 2f;71(")7w+1,

= 2577 n'!
completing the proof. O

We correct the second assertions of [9, Theorem 4.2] and [18, Theorem
2.1(b)] with [ > 2, together with [18, Theorem 3.10(d)].

Theorem 7.1 Suppose that 2u = s > 2 and that P is a finite abelian 2-group
of type . Let z, = [n/2"3] for each nonnegative integer n.

(1) If \3 =0 and if u > 2, then

n! 2
_ 2 (n)+2
n(P) = 202n 2 I(n — 2utdz )| fin 32, (P) - mod 27 '

(2) If either A3 > 1 or u=1, then

_ <_1)Znn' 72(n)+2
hn(P) - 26Z’ﬂ2n!(n — 2u+3Zn>! hn—2“+3zn (P) mOd 2 ’ '



THE NUMBER OF HOMOMORPHISMS 30

Proof. (1) Suppose that A = (u,u,0,...) with u > 2. We argue by induction
on u. Let Q = Cyu-1 X Cyu-1, and set ' = n — 2u*32,. We use the formula

[n/2]
hn(P) = Z (L hin—2i(Ca2u ) hi(Q)

— (n — 2i)l
(see [9]). Since 2% > 2u, it follows that for any nonnegative integers k, I, and
m such that k < 24" and [ < 2¥,

k+2“+1l+22“+1m 5 k’—|—2u+1l—|—22u+1m
Qu+1 U 22u+1

]:l+(22“—2u)m20.

This, combined with Theorem 5.1, shows that

e’} e’} 00 2u . .
n 1 n— 21 n— 21 n— 21
LB sl e A=
j=1 j=1 j=1 j=1
u—1 . . .
) 7 )
+ 3|5 |z] |7
j=1
S “[n n n n 21 n— 2
= 92 + qut2 | | Qu+3 + utl | |gutl| | utl
j=1

5 (BB Sl

j=u+3 j=u+3
. . . 2u .
9 n 2 n— 2 n—2i n—2i
ZTA(n)+2(|:2u+3:|_|:2u+3}_|: Qu+3 }) + { Qu+3 }jL Z [ 21 |
Jj=u+3

(When u = 2, the corresponding part in the proof of [9, Theorem 4.2] is not
correct.) Suppose that u = 2. If n —2%(z, — 2+ 1) < n — 2i < 2°2 with
z=1,2,... z,, then

ord, ((”—' hn_gi(CQz;)hi(Q)) > 72(n) + 2.

n — 2i)li!
Hence

Zn n/2] 24(2" Z) |
mn: 2 ) 2

Z Z m h”*Qi(CZ‘*)hi(Q) mod 27+

=242
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Observe now that by [9, Theorem 4.1],

(—1)%!
26221(7 — 242)!

hi(Q) =

hi01,(Q) mod 20/2+E/21-li/21+2,

where 0 < 2 < z, and 2%z < i < [n/2] — 2*(2, — 2). Then we obtain

Zn (_1)zn| [n/2}—24(zn—z)

: P2 024 h’i724z
m(P) =D g5 2 (n—<2¢)!)" 2

— 94,1
— ! v (1 —24z2)!

L (1)) ["Z/Z] hosi2:(Cat) halQ)

6z ~| — 9 — 251 |
— 202l = (n—-20-2%2)0

mod 27(M+2,

Moreover, it follows from Theorem 5.1 that

Zn

n'/ 2]

Z”n' oy 21 024 hz(@)
h,(P) = .
(P) ;25%*22 — 2)12! ZZ:; (n' — 2i)! 7!

2 [n/2]
_ (=3)nl Z hy—2i(Cas)  hi(Q)
- 267z, (n/ — 2i)! il

|
= ﬁhn/(P) mOd 27—3(”)4_2,

#nznin

as desired. Suppose next that v > 3. If n — 2432, < n — 2i, then

ords ((TL—L;Z)'Z' hnZi(CQ2“>hi(Q)>

o[ 2] [ £ 5

j=u+3
> 73(n) + 2.
Thus
[n/2] ) 2
m(P)= 3 g (O )i(@) mod 2RO
§=2ut2z,

By the inductive assumption,

il et
hi(Q) = 55 T )!hi_w%n(@) mod 273 @+/2 —zt2
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where 2472z, < i < [n/2]. We now obtain

[n/2]
n! hn—Qi(CQQU) hi—2u+2z (Q)
ho(P) = — : 5
)= ge 2. o o3
=2ut2z,
n' /2]
n! [Z/ n’ 21 022u . hz(Q)
262"2 | 7
. n! T2 (n)+2
= W h (P) mod 2™ )+ 5

as desired. Thus (1) holds.

(2) If uw = 1, then the assertion is stated in [9, Theorem 4.1], and is already
proved. Suppose that u > 2 and that A3 > 1. Then, since u = v > 2, it follows
from Lemma 4.1 that c; 2 = 1. Set

Q=0Q-1{0,0),(1,2)}
and
T.(2)={ocel,|[o(1,2,1)/2""] = 2, [¢(0,0,1)/2""] = 2, — 2}

for each integer z with 0 < z < z,,. Then by Proposition 5.1, Lemma 5.1, and
(3) of Lemma 6.1,

=>" " hg(P) mod 272, (K)
2=0 5eT,(2)
Since ¢y = c12 = 1, it follows that for any o € I',,,

hng (CQM X CQM) hnt{,z(CQufl X 02u72>

he(P) = n!
Clm (L)
glm lmz)
x H H o(l,m,i)!
(I,m)eq =1

where n§ = 0(0,0,1) and n{, = o(1,2,1).
Suppose that ¢ € T',(2). Then Lemma 7.1 implies that

hni? (CQu—l X CQu—Q)
o nl 2' hntf72,2u+lz(02u—l X CQu—Q)

f;_l("T,Q)—[”f,z/2u]+1
= 95z, (ngy — 2u+12)! mod 2 ’
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Also, it follows from (1) that

ng' hn872“+3(zn72) (02" X CZ“)

X 72(ng)+2
WA (g = (ng =2z =y med 2

hng (Cgu X Cgu) =

Hence (L), combined with Theorem 5.1, yields

hZ(P) = n! ) hn872“+3(zn7z)(02u x Cou)
26zn—z<zn - z)lzl (na _ 2u+3(z — Z))'
hang ,—2ut15(Cau-r X Cou-2) r Gim(o(l,m,i ) >
X 2 m d 27}\(n)+2’
(n12 — Qutly ) H H l m, Z mo
(t, m)eQ i=1
because

he(P) 2 2,0 2,2
n > o s AN ) o
ordy (hng(CQu < Cgu)hnb(céufl X 02u2)> > 7y(n) — 7y (ng) — 73 (nl,z)

by Lemma 6.2 with A = {(0,0), (1,2)} and
nJ n? ng
31 (ns) — { Zﬂ — 7 (nf,) = [2;_’21} - 2{ Qﬂ +22>z

Now, combining the preceding formula of h¢(P) with (K), we have

il n! hn"—2“+3(z _Z)<Cgu X Cgu)
P) = 0 il
hn( ) Z QGZHfZ(Zn _ Z)'Z‘ Z (ng _ 2u+3<zn _ Z))'

z=0 €T, (2)
xhn‘l’,272“+1z<c2“’1 X 02" 2 H cllIm glm l m, i )
(ng 5 — 2ut1z)! o(l,m,1)
’ (Ilm)ey =1
_n!i 2 Z H”H”glm lmz)
- 262’n (Zn . Z)'Z‘ l m /L
z=0 'n out3,, (l m EQ i=1

mod 27A(W+2,

Hence Proposition 5.1, together with Theorem 5.2, yields

n! “ 27 2, By —guts., (P)
ho(P) = —— "
(P) 2620 2,1 {; (z, — z)!z!} (n —2u+32,)!

(—=1)*n! ”
= 262zn 5 |(n —out3, )' hn_2u+3zn(P) mod 2 5 ( )+2,
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as desired. This competes the proof. O

The following theorem, as well as Theorem 7.1, includes the interesting
difference arising from the value of As.

Theorem 7.2 Suppose that 2u = s > 2 and that P is a finite abelian 2-group
of type . Let y, = [n/2"T] for each nonnegative integer n.

(1) Assume that \3 = 0. Then

n!

h,(P) =
(P) 2uny,l(n — 2ut1y,)

!hyn<C2)hn—2u+1yn(P) mod QTf(n)Jrl'

In particular, if y, =3 mod 4, then h,(P) =0 mod oTa(m+L,
(2) Assume that A3 > 1.
(i) If either y, =0 mod 4 ory, =1 mod 4, then

n!
~ 2y, l(n — 24y,

hn(P)

!hyn(CZ)hn—2u+1yn(P) mod 27A(m+1,

(i) If y, =2 mod 4, then h,(P) =0 mod 273(M+1,
(iii) Ify, =3 mod 4, then

n!
P) =
P) = 2 =DM = 2

hy,—2(C2) hpy—ous1y, (P)

mod 27A(m+1,

Proof. (1) The first assertion is a part of Theorem 2.2, and is already proved.
It follows from [12] (see also [4, 9]) that

m — [@] if n=0,1,2 mod 4,
e [ IO

Hence, if A3 = 0 and if y, = 3 mod 4, then by the congruence in (1) and
Theorem 5.2,

ords(h,(P)) > ordy(n!) — y, — orda(y,!) + orda(hy, (C2))
o ]
=71¢(n) + 1.
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Thus (1) holds.
(2) Since u = v > 2, it follows from Lemma 4.1 that ¢; 5 = 1. Set
Q=0-1{(0,0),(1,2)}
and
Tu(y) ={o €lw|[0(1,2,1)/2 ] =y, [0(0,0,1)/2""] = y — y}

for each integer y with 0 <y < y,. Then by Proposition 5.1, Lemma 5.1, and
(3) of Lemma 6.1,

Ei > hg(P) mod 23

y=0 5T, (v)

Furthermore, if ¢ € T, (y) with y > 1 and y # 2, then s;5(0(1,2,1)) > 1, and
hence pg,,(n) > 1 by Lemma 5.2 and (2) of Lemma 5.3. Now, Lemma 5.1

yields
> RP)+ Y hg(P) mod 23 (N)
o€l (0) o€l (2)

Since cpp = 1 and ¢; 2 = 1, it follows that for each o € Iy,

hng (OQu X 02u> ' hntfj(CQu—l X Cgu 2 H Cle glm l m Z

7(P) — nl
h?(P) = n! o (m. )

ng| nd,!
0 1,2 (1,m)eq i=1

where n§ = 0(0,0,1) and nf, = 0(1,2,1). Here, if o € I';(y), then (1) yields

nO hy _y(CQ) ) hng—2“+1(yn—y)(02“ X Czu)
20 (y, —y)t (g — 2Ty — y))!

Also, if o € T',(2), then [n{,/2"] =1, and, by Theorem 2.1,

mod 27+,

hng (Cgu X C2u)

7’Li2! hng,2_2u<02u71 X 02u72)

. f37 Mg )
52 (nfz ~ o) mod 272 1,2/

(CQu 1 X 02u 2) =

”12

Now set
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and

n!
A (P) = { 20n(y, — 2)!(n — 2ut1y,)!
0 otherwise.

hyn_Q(OQ)hn_2u+1yn(P) lf Yn Z 2,

Then by an argument similar to the proof of (2) of Theorem 7.1,

> h(p)

hO(P) mod 2R+

o€l (0)
and
> h(P)=hP(P) mod 23
o€l (2)
Hence (N) yields
ha(P) = hO(P) + hP(P) mod 273+ (0)

We can now show the statements (i), (ii), and (iii) of (2) as follows.

If y, > 2 and if either y, =0 mod 4 or y, =1 mod 4, then by (M) and
Theorem 5.2,

ordy (h{? (P)) > ordy(n!) — y, — orda((yn — 2)!) + ordy(hy, 2(Cy))

> r2(n) + {?ﬂ - [94_2}

3(n) + 1.

Thus (i) follows from (O).
Next, if y,, = 2, then h,, (C3) = 2, and hence

= nm2ttv ) X(n)+1
hn(P) = 2 (n—2w2)] =0 mod 2™

by (O) and Theorem 5.2. Thus (ii) follows from (2) of Theorem 7.1.
Finally, if y,, =3 mod 4, then

ordg(hgo)(P)) > 72(n) +1

by (M) and Theorem 5.2. Hence (iii) follows from (O). O
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8 Abelian groups

We generalize Theorems 5.2, 6.1, 7.1, and 7.2, and establish Theorem 1.1
at the end of this section.

Theorem 8.1 Suppose that A possesses a Sylow p-subgroup of type \. Let
Yn = [n/p"TY and z, = [n/2"T3] for each nonnegative integer n. Put 6 =1 if
either p > 2 or s = u, and is 0 otherwise.

(1) We get ord,(h,(A)) > 13 (n).

(2) FEzcepting the case where p = 2 and 2u = s > 2, if either u = Ay or
2u = s, then

(—=1)¥ n!

hn(A) = pRu=stDyny 1(n — putly )]

hn—p““yn (A) mod pr(")““—SH_

(3) If u> A\ and if 2u = s+ 1, then

(=1 —p)¥n! P
ho(A) = P puiy, (A d pralm+iss
(A4) P2yl (n — pitiy,)! P “yn( ) mod p

(4) Assume that p = 2 and that 2u = s > 2.
(i) If \3 =0 and u > 2, then

' 2
ho(A) = i hoygurs, (A) mod 273(W+2,

T 20z, I(n — 2ut32,)!

(ii) If either A3 > 1 or u =1, then

() = g

7'2 n
= Q62 I(n — 2ut32,)! hp—guts., (A)  mod 2 x(M+2,

(5) Assume that p =2 and that 2u = s > 2.
(i) If A3 =0, then

n!
- 2uny, (n — 2utly,)

hn(A)

| hyn (02)hn_2u+lyn (A) mod 27—2(”)4'1'

In particular, if y, =3 mod 4, then h,(A) =0 mod o)+,
(ii) If A3 > 1 and if either y, =0 mod 4 ory, =1 mod 4, then
n!

= T3 (n)+1
hn(A) = Qynyn!(n — 2“+1yn)! hyn (Cg)hn_Qqulyn (A) mod 27 .
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(i) If A\s > 1 and if y, =2 mod 4, then hy(A) =0 mod 273(M+1,
(iv) If A3 > 1 and if y, =3 mod 4, then

n!
hp,(A) =
) = S =2t — 2yl

hy,—2(C2) by g1y, (A)

mod 273+,

Remark 8.1 The first assertion of [9, Theorem 5.1(3)] with [ > 2 is wrong.

Although we can get Theorem 8.1 as an analogy with [9, Theorem 5.1], we
give an orderly proof of it. Let P be a finite abelian p-group of type A. For a
positive integer a, we define

EP(QSX) = exp <i MXapk> :

k
a
k=0 p

and denote by h,,(a; P), n =0,1,2,..., the rational numbers such that

o0

han(a; P)

Ep(a; X) = — X"

P X) =2 =
n=0

Especially, h,,(P) = h,(1; P). This power series is introduced in [9, Section 5.

Under the notation above, we get the following.

Proposition 8.1 Suppose that ay = 1 and that aq,...,a; are integers such
that a; > 1 and ged(a;,p) = 1 for all i. Let m,ng,ny,...,n; be nonnegative
integers with m > agng + ainy + - - - + ayny. Put

!
m! ha;n; (a;; P)
H(m:al,...,al;no,...,m):h (P)” (a;n;)! )
no illg ).

i=0
Then ord,(H(m : a1,...,a;;nog,...,n)) > 7h(m) — 7r(ng), and the following
statements hold.
(1) If [no/p"*'] < [m/p"*"], then
ord,(H(m : ay,...,a;ng,...,n)) > 1h(m) +2u—s+1—73(ng).

(2) Assume that p =2 and that 2u = s > 2. If [ng/2“"3] < [m/2"3], then

ordy(H(m : ay,...,a;;n0,...,m)) > 7a(m) +2 — 75(no).
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Proposition 8.1 is a result of the following three lemmas. Under the hy-
pothesis and notation of Proposition 8.1, we show a technical lemma:

Lemma 8.1 Suppose that ord,(hgn,(a;; P)) > 13(ain;) for all i with i > 1.
Then ord,(H(m : a,...,a;;ng,...,n)) > 75(m) — 7r(ng), and the following
statements hold.
(1) Suppose that ordy,(han,(a;; P)) > 75 (an;) + 2u — s + 1, provided 1 > 1
and a;n; > p"t. Then the assertion (1) of Proposition 8.1 holds.
(2) Assume that p = 2 and that 2u = s > 2. Moreover, suppose that
ordy (ha;n, (ai; P)) > 1 (an;) + 2, provided © > 1 and a;n; > 273, Then
the assertion (2) of Proposition 8.1 holds.

Proof. Unless p =2 and 2u = s > 2,

ord,(H(m : ay,...,a;no, ... m)) + ord, (hnO(EOP))
-3l ]@(m )

Z7(m) + (2u—s+1 { u+1] + i (Ordp auni (255 P)) = UZH [alnz]>

-t o [ 2] :

£)

=
l

+ ) (ordy(hapn, (ai; P)) — 73(aini)) .

Likewise, if p = 2 and 2u = s > 2, then
ordo(H(m @ ay,...,a;5ng,...,n)) + ordy(hy, (P))

> 72(m) + {2:11} +2 {ng} + i (Ord2<haim(ai; P)) — ut3 {a;D

i=0 j=1

o ([32] - Sla]) 2 (2]

I
+ Z (ord(ha,n, (as; P)) — 73 (amy)) -
1=0

The lemma follows from these inequalities and Theorem 5.2. O

The following lemma is a consequence of Theorem 5.2 and Lemma 8.1.
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Lemma 8.2 Let a be an integer greater than 1. Then ord,((an)!h,(P)/n!) >
73 (an), and the following statements hold.
(1) We have ord,((an)'h,(P)/n!) > 7¥(an) + 2u — s+ 1 provided an > p"**.

(2) Assume that p = 2 and that 2u = s > 2. Then ordy((an)!h,(P)/n!) >
73 (an) + 2 provided an > 2473,

Proof. If an > p“*') then [n/p**!] < [an/p“*!], because a > 1. Also, if
an > 2“3 then [n/2“"] < [an/2*"®]. Now, Theorem 5.2 and Lemma 8.1
with m = an, ng = n, and [ = 0 yield the lemma. This completes the proof.
O

Using Lemmas 8.1 and 8.2, we obtain the following generalization of |9,
Lemma 5.1], which, together with Lemma 8.1, yields Proposition 8.1.

Lemma 8.3 Let a be an integer such that a > 1 and ged(a,p) = 1. Then
ord, (han(a; P)) > 73 (an), and the following statements hold.

(1) We have ord,(han(a; P)) > 78 (an) + (2u — s + 1) provided an > p***.

(2) Assume that p = 2 and that 2u = s > 2. Then ordy(he,(a; P)) >
72 (an) + 2 provided an > 2v*3.

Proof. We show the lemma by induction on n. If n = 0, then the assertions
clearly hold. Assume that n > 0. By the definition, Ep(a; X)* = Ep(X?).
Comparing the coefficients of X" on both sides, we have

a
han, (a; P) ha(P)
ahgn(a; P) + Z (an)! H a(naT)' = (an)! nn‘ 7
ni+ng+--+na=n i=1 v ’
n;<n
where the summation runs over all sequences ny,ns,...,n, of nonnegative

integers such that n;y + ny + --- +n, = n and n; < n for all <. Now, since
ged(a, p) = 1, the inductive assumption and Lemma 8.1 with m = an, ng = 0,
[ =a, and a; = -+ = a; = a, together with Lemma 8.2, yield the assertions.
This completes the proof. O

Proof of Proposition 8.1. The statements follow from Lemmas 8.1 and 8.3. O

We can now prove Theorem 8.1.
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Proof of Theorem 8.1. Let P be a Sylow p-subgroup of A. Then there exist
integers ay, as, ..., a; greater than 1 such that

Ea(X) = Ep(X) [ [ Ep(as; X).

i=1
Comparing the coefficients of X™ on both sides, we have
n
hn(A) = ZhnO(P) Z H(n:ay,...,a;5n0,...,10),
no=0 aini+--+an;=n—no

where the summation Zalm +bayny=n—ng TULS OVer all sequences nq,...,n; of
nonnegative integers such that ayny + - -+ + ayn; = n — ng. (For the notation,
see Proposition 8.1.) Hence (1) follows from Theorem 5.2 and Proposition 8.1.
Moreover, in the equation above, if ng < p**ly,, then

ord,(H(n : ay,...,a;5n0,...,m)) > 75(n) +2u—s+1—715(ng)
by (1) of Proposition 8.1. Now we have

Ping (P Ly, (as; P
hn(A) = n! Z n((J! ) Z HW

no>pttly, aini+---+an=n—ng i=1

mod p'rf\)(n)+2u—s+1 ]

Excepting the case where p = 2 and 2u = s > 2, if either v = A\; or 2u = s,
then by (1) of Theorem 6.1 and Proposition 8.1,

(_1>yn hn —putl (P)
=pl—— e
hn<A) - n'p(Zu—s+1)ynyn! Z (n(] — p“*lyn)!

no>p¥tly,
l haini (a’u P)
8 Z H (a;in;)!

aini+--+an;=n—ng i=1

hn*P““yn (A) mod pff(ﬂ)+2u75+6.

(—=1)¥n!
pRuemstuny, (n — putiy,)!
Hence (2) holds. Likewise, (3) and (5) follow from Theorems 6.1(2) and 7.2

and Proposition 8.1, and (4) follows from Theorem 7.1 and Proposition 8.1.
This completes the proof. O

The proof of the following corollary to Theorem 8.1 is completely analogous
to that of [9, Corollary 3.1].
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Corollary 8.1 Under the hypothesis of Theorem 8.1, the following statements
hold.

(1) Assume that either p > 2 or 2u > s.
(1) If ordy(hpy—puriy, (A)) < T8 (n = p“Ty,) + 2u — s+ 6, then
ordy(hn(A)) = ordy(hn—periy, (A)) + 75" yn).
(i) If ordy(hy—pui1y, (A)) > 78 (n — p"“Ty,) + 2u — s + 6, then

ord,(h,(A)) > 18(n) + 2u — s + 6.

(2) Assume that p =2 and that 2u = s > 2.
i) If ordg(hy_guts,, (A)) < 73 (n — 2%F32,) + 2, then
(i) . A

ordy(hn(A)) = ordy(hp_guts,, (A)) + 75(2“32,).
(i) If ordg(hy,_gu+s,, (A)) > 73(n — 2“%32,) + 2, then

ordy(hy,(A)) > 73(n) + 2.

The assertion (1) of the following corollary is a part of [9, Theorem 1.4].

Corollary 8.2 Assume that p =2 and that 2u = s > 2.

(1) If A3 = 0, then orda(h,(A)) = 72(n) for each nonnegative integer n such
that n = 0, 2“1 or 2¢+2 mod 2v+3,

(2) If A3 > 1, then ordy(h,(A)) = 72(n) for each nonnegative integer n such
that n = 0, 24+, or 2utl 4 2u+2 mod 2uF3,

Proof. As mentioned earlier, for any positive integer y,

ordy(h,(Cz)) = M - {%]
if y # 3 mod 4 (see (M)). Hence (5) of Theorem 8.1 yields the corollary. O

Theorem 1.1 is a consequence of Theorem 8.1 and Corollaries 8.1 and 8.2.

Proof of Theorem 1.1. The assertion (1) follows from (1) of Theorem 8.1 and
(1)(i) of Corollary 8.1. The assertion (2) follows from Corollary 8.2. O
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9 The proof of Corollary 1.1

We conclude this paper with the proof of Corollary 1.1.

Lemma 9.1 Suppose that A possesses a Sylow p-subgroup of type X. Set
ord,(h,(A)) — ord,(n!)

a = lim inf

n—oo n
Then
7 . .
T Surs if p=2 andif 2u=s>2,
a= 1 |
“\p-1 +2u—s+1 o otherwise.

Proof. Suppose that p = 2 and 2u = s > 2. For each positive integer n, set
_ordy(h,(A)) — ordy(n!)
" n
and z, = [n/2“"]. Then (2) of Corollary 8.1, together with (1) of Theorem
8.1, yields

- Qu+3 Zn

— a,2u+3zn .

By [10, Chapter IV], we have

I 6 1 , ords(z,!)
11N A9ou+3 = — — m —————
n—o0o 2 #n Qu+3 Qut3 00 Zn
7
- Qu+3 '

We now define a sequence {8,}:°, by

8, = ap if n =2ut3z,,
" Agut3(z,4+1)  otherwise.
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Set I, = inf{a; | ¢ > n} and m,, = inf{p; | i > n}. Then {l,,}>>; and {m,}>2,
are monotone sequences satisfying

Lh<lh< - <L, <m,<mug <---.

Moreover,

I ! 7
1m m,, = 11111 a9u+3 = ——F
nooo n—00 2 #n Qu+3 ’

and thereby, {[,,}°°, converges. Since lou+s, = Mmou+s, for any positive integer
z, it follows that

lim ! li li 7
a = 11m = 1M Mou+3 = l1m m, = — .
n—00 " n—00 Zn n—o00 " 2u+3

Unless p = 2 and 2u = s > 2, a similar argument to the preceding one,
together with (1) of Corollary 8.1, enables us to obtain

1 1
a = — E+2u—8—|—1 p“+1'

Thus the lemma follows. O

Proof of Corollary 1.1. By [10, Chapter IV] and Lemma 9.1, the radius of
convergence is p®, where

7
~Surs if p=2 andif 2u=s>2,
a =
! + 2 +1 L therwi
- — u—s otherwise
p_1 pu+1 w

(see also [9]). Suppose that |z|, = p* (see [10]). If p = 2 and if 2u = s > 2,
then by (2) of Theorem 1.1,

h2u+3+k (A) 2u+3+k u+3+k k
Ordg(wﬁ? = -2 CL—72 —I—].:]_

for any nonnegative integer k. Unless p = 2 and 2u = s > 2, (1) of Theorem
1.1, yields

pk—l_ 1
p—1 p-1

hu A
o (0 ) <

for any nonnegative integer k. Hence the p-adic power series E4(X) converges
only in the open disc of radius p®. This completes the proof. O
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Remark 9.1 The radius of convergence of the p-adic power series E¢,(X) is
given in [14, p. 389, Proposition].
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