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Abstract. Chip fault is one of the most frequently occurring damage modes in gears. Identifying 

different chip levels, especially for incipient chip is a challenge work in gear fault analysis. In 

order to classify the different gear chip levels automatically and accurately, this paper developed 

a fast and accurate method. In this method, features which are specially designed for gear damage 

detection are extracted based on a revised time synchronous averaging algorithm to character the 

gear conditions. Then, a modified Levenberg-Marquardt training back propagation neural network 

is utilized to identify the gear chip levels. In this modified neural network, damping factor and 

dynamic momentum are optimized simultaneously. Fisher iris data which is the machine learning 

public data is used to validate the performance of the improved neural network. Gear chip fault 

experiments were conducted and vibration signals were captured under different loads and motor 

speeds. Finally, the proposed methods are applied to identify the gear chip levels. The 

classification results of public data and gear chip fault experiment data both demonstrated that the 

improved neural network gets a better performance in accuracy and speed compared to the neural 

networks which are trained by El-Alfy’s and Norgaard’s Levenberg-Marquardt algorithm. 

Therefore, the proposed method is more suitable for on-line condition monitoring and fault 

diagnosis. 

Keywords: back propagation neural network, Levenberg-Marquardt, dynamic momentum, gear 

chip levels identification, time synchronous averaging. 

Nomenclature 

ANN Artificial neural network 

MED Minimum entropy deconvolution 

AR Autoregressive 

MCKD Maximum correlated Kurtosis deconvolution 

TSA Time synchronous averaging 

BPNN Back-propagation neural network 

LM Levenberg-Marquardt 

ELM BPNN LM algorithm of back-propagation neural network improved by El-Alfy 

NLM BPNN LM algorithm of back-propagation neural network improved by Norgaard 

LS Low speed 

IS Intermediate speed 

HS High speed 

1. Introduction 

In the rotating machineries, gearboxes are one of the fundamental and most important 

transmission parts widely used in military and industries. The main functions of these rotating 

machineries are achieved based on the good conditions of gearboxes. Typical applications include 

helicopters, wind turbines, and vehicles, etc. If faults occur in any gears of these machines during 

operating, serious consequences may appear. Every year, there are many helicopters crashed due 
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to the gear faults. And for wind turbines, many unplanned downtime events are because of gear 

faults. This will lead to high maintenance fee and wind power lost. Therefore, effective gear faults 

diagnosis is crucial to prevent the mechanical system from malfunction and it can save lots of 

money. 

Gear faults can be classified into distributed faults and localized faults. Both these fault modes 

can lead to catastrophic outcomes. So, many researchers paid attention to these two fault modes 

and did many research works. In order to diagnose gear faults automatically, many artificial 

intelligence and machine learning methods were used to achieve the goal. Fan and Zuo [1] 

improved D-S evidence theory to diagnose the faults of gearbox. Lei and Zuo [2] developed a 

weighted 𝐾 nearest neighbor classification algorithm to identify the different gear crack level. Li 

et al. [3] diagnosed gear faults based on adaptive wavelet packet feature extraction and relevance 

vector machine. Qu et al. [4] used support vector machine for both feature selection and damage 

degree classification of planetary gearboxes. The proposed methods exhibited the consistently 

effective classification both on public data and experimental data. A novel intelligent model based 

on wavelet support vector machine and immune genetic algorithm was proposed to diagnose the 

gearbox’s different fault modes [5]. In their paper, immune genetic algorithm was developed to 

select the optimal parameters of the wavelet support vector machine. 

Besides, utilizing artificial neural networks (ANNs) for fault diagnosis is a hot research topic. 

In 2004, Samanta [6] reviewed fault diagnosis works using ANNs. This paper introduced the 

various features of ANNs systematically. Lai et al. [7] used a radial basis function network 

combined with cumulants to diagnose the gear faults. The cumulants were used to minimize the 

Gaussian noise and increase the signal-to-noise ratio. Rafiee et al. [8] proposed a new fault 

diagnosis procedure using a multi-layer perceptron neural network. This model was used to 

identify the different wear levels of gear. Then, Rafiee et al. [9] used genetic algorithm to optimize 

the “mother wavelet function”, “decomposition level of the signals by means of wavelet analysis”, 

and “number of neurons in hidden layer” which would has a good performance for wear levels 

identification. Li et al. [10] developed a gear fault diagnosis method based on order cepstrum and 

radial basis function neural network. 

Good features extraction, fast and accurate classification methods are the two most important 

parts of automotive fault diagnosis based on artificial intelligence or machine learning methods. 

Some innovative works are proposed through revising feature extraction methods or classification 

methods. Good features which can reflect gear faults effectively are the prerequisite of fault 

diagnosis. Therefore, many good research works are proposed to extract the good features [11-14]. 

The main idea of these works is to manifest the impulsive signal produced by gear fault. Wang 

and Wong [11] proposed using Autoregressive (AR) model to extract the residual signal which 

mainly contains the impulsive signal produced by gear fault. Then, Endo and Randall [12] 

developed the minimum entropy deconvolution (MED) to process the residual signal extracted by 

AR model. MED can enable the impulse signal more impulsive which is very useful for gear fault 

diagnosis. Later, Yang and Makis [13] developed a new gear fault detection method based on AR 

model with exogenous variables. Recently, in order to overcome the deficiencies of MED, 

McDonald et al. [14] proposed a new impulse signal enhancement method named maximum 

correlated Kurtosis deconvolution (MCKD) which can extract impulsive signal more effectively 

than MED. In addition, time synchronous averaging (TSA) technology is often used to process 

the gear fault signal before other signal processing methods. And there are many statistical features 

developed based on the TSA [15]. 

When good features are available, the effectiveness of fault diagnosis depends on classification 

methods. In this paper, the main concern is paid to the ANNs which were widely used in fault 

diagnosis domain. In this field, many research works achieve the high diagnosis performance 

through optimizing the network parameters by various heuristic algorithms [9]. However, the 

training time is very long using heuristic algorithms. This is very unbeneficial to the on-line fault 

diagnosis which needs fast processing speed. The typical algorithm of ANN is the 
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back-propagation algorithm, called back-propagation neural network (BPNN). Traditionally, the 

weights in standard BPNN are adjusted by gradient descend method according to the back 

propagation of error. However, Levenberg-Marquardt (LM) algorithm [16, 17] is a good 

combination of the Gauss-Newton technique and the steepest-descent algorithm, but avoids many 

of their limitations [18]. And, few works pay attention to the improvement of LM algorithm [19]. 

Some improved works just focus on the parameter adjustment in the LM algorithm [20-22]. 

In order to accelerate the learning speed and increase the fault classification accuracy for 

effective on-line automotive fault diagnosis, this paper addresses these problems through two 

methods. One is to extract more effective fault features based on a revised TSA method [23]; the 

other is to develop a hybrid learning algorithm to enable the ANN performing better. The main 

contribution and the innovation of this paper is the new gear fault diagnosis method developing 

based on an improved ANN learning algorithm and effective features extraction based on a revised 

TSA method. 

The rest of this paper can be organized as follows. Section 2 introduces the improved ANN 

learning algorithm detail. Section 3 validates the proposed leaning algorithm using Fisher iris data. 

Different level gear chip faults experiments are conducted and verify the proposed fault diagnosis 

method in Section 4, Section 5 concludes the work. 

2. Improved learning algorithm for BPNN 

Gradient descend with momentum (GDM) [24] and LM algorithm [25] are the two main 

methods to train the network respectively. 

In GDM algorithm, the weight update is related to the previous weight update. It is as follows: 

∆𝑤(𝑡) = 𝜂𝛿(𝑡)𝑣(𝑡) + 𝛼∆𝑤(𝑡 − 1), (1) 

where, 𝜂  is learning rate. 𝛿  is gradient which can be calculated by standard BPNN derivation 

process. When the weight update of input-hidden layer is calculated, 𝑣 is the training data 𝐗. 

While, when the weight update of hidden-output layer is calculated, 𝑣 is the output of the hidden 

layer. 𝛼 is the momentum coefficient, 0 < 𝛼 < 1. 

In LM algorithm, the weight update rule is as follows: 

Δ𝑤 = −[𝐽𝑇(𝑤) · 𝐽(𝑤) + 𝜆𝐼]−1 · 𝐽𝑇(𝑤)𝑒(𝑤), (2) 

where, the term 𝑒(𝑤) denotes the error vector of the neural network. 𝜆 is the parameter which 

impacts convergence. If 𝜆 is large, the above expression approximates steepest-descent method; 

otherwise, the equation approximates Gauss-Newton method. 𝐽 is the Jacobian matrix which is 

defined the partial derivatives of weights for 𝑒(𝑤). 

In GDM algorithm mentioned above, parameter 𝛼  is a constant. Meanwhile some papers 

referred to combine momentum item with LM algorithm together [21], but the merits of LM 

algorithm and momentum item were not exerted sufficiently. Therefore, in this paper, LM 

algorithm and momentum item are optimized comprehensively. 

(1) Improvements on momentum item. 

The form of momentum method is changed as follows: 

𝑤(𝑡 + 1) = 𝑤(𝑡) + ∆𝑤(𝑡) + 𝜆(𝑡) × 𝛼(𝑡) × ∆𝑤(𝑡 − 1), (3) 

where, 𝜆 could be regarded as learning rate in standard momentum method. Parameter 𝜆 and 𝛼 

are dynamic. 𝛼 is updated according to the error alteration and previous 𝛼 in the former iteration. 

If the error reduces in this iteration, it means the previous weight update is beneficial to converge, 

the research direction is correct. Therefore, 𝛼 should be bigger for encouraging researching on 

this direction next time. Otherwise, 𝛼 should be smaller: 
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{

𝛼(𝑡) = 1.2𝛼(𝑡 − 1), 𝐸(𝑡) < 𝐸(𝑡 − 1),
𝛼(𝑡) = 𝛼(𝑡), 𝐸(𝑡) = 𝐸(𝑡 − 1),

𝛼(𝑡) =
𝛼(𝑡 − 1)

1.2
, 𝐸(𝑡) > 𝐸(𝑡 − 1).

 (4) 

(2) Adjustment of 𝜆. 

Because 𝜆 can be seen as an adjuster between Gauss-Newton and Steepest-descend method. 

Parameter 𝜆 varies according to the neural network’s performance. For a given 𝜆, if the error 

reduces, 𝜆 should decline to perform LM as analogous Gauss-Newton which takes advantage of 

fast convergence for local search. Otherwise, 𝜆 increases to make LM analogous Steepest-descend 

algorithm for searching global optima. The rule of the adjustment of 𝜆 is as follows: 

{

𝜆(𝑡) = 1.2𝜆(𝑡 − 1), 𝐸(𝑡) > 𝐸(𝑡 − 1),
𝜆(𝑡) = 𝜆(𝑡), 𝐸(𝑡) = 𝐸(𝑡 − 1),

𝜆(𝑡) =
𝜆(𝑡 − 1)

1.2
, 𝐸(𝑡) < 𝐸(𝑡 − 1).

 (5) 

Through the Eqs. (2)-(5), the weight update is performed by the hybrid optimization using LM 

algorithm and momentum method. It could search the right direction more efficiently because the 

weights update utilizes more information. The adjustment of 𝜆 makes the LM algorithm could 

exert the advantages of Gauss-Newton and Steepest-descend method. For traditional LM 

algorithm, 𝜆 is adjusted by 10 times increased or decreased, the too large or too small value would 

make the algorithm researched the optima in global or local. The algorithm may speed down or 

oscillate, therefore, the proposed method makes the adjustment step not too large or too small, and 

meanwhile, the momentum item is introduced to weaken the oscillation around the optima. 

3. Validation of the proposed learning algorithm using public data 

In this paper, suppose the BPNN has only one hidden layer. Hyperbolic tangent as activation 

function is in the hidden neurons and linear activation function in the output neurons. The number 

of neurons in the hidden layer is important for convergence speed. Here, empirical formula is used 

to decide the number of the neurons in the hidden layer: 

ℎ𝑛 = √𝑖𝑛 + 𝑜𝑛 + 𝜎, (6) 

where 𝑖𝑛 and 𝑜𝑛 are the number of the neurons in the input layer and output layer respectively. 𝜎 

is a integer in interval [1, 10]. 
In this paper, the proposed learning method is validated by Fisher Iris Data. In addition, the 

proposed method is compared with El-Alfy’s LM (ELM) training BPNN [22] and Nørgaard’s LM 

(NLM) training BPNN [26]. Fisher Iris data should be normalized by “mapminmax” function 

provided by Matlab toolbox in advance. The maximum iteration step is 50.000.000, the training 

error goal is 1e-10, and the initial 𝜆 is 1, and the initial 𝛼 is 0.01. 

The Fisher Iris data is one of the most famous data sets for validating machine learning 

methods. The data set includes 3 classes of 50 instances each. These classes refer to “setosa”, 

“versicolor” and “virginica” which are labeled as “1”, “2” and “3” respectively. The attributes 

contain sepal length, sepal width, petal length and petal width. The unit is centimeter. Whole data 

set is separated into 2 parts; one is for training and the other for testing. In the testing set, there are 

15 tuples. For the training set, the classification map in the first three attributes can be illustrated 

in Fig. 1. 

The output of the network should be processed in order to compare with the real value. The 

real output of networks may be non-integral. So “round” function is used to process the real output. 
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The compare results are shown in Table 1. 

 
Fig. 1. Classification map in the first three attributes for training set 

Table 1. The results of different training method 

Real 

label 

Pre-processed output 
Post-processed output  

(Predicted label) 

ELM training 

BPNN 

NLM training 

BPNN 

Proposed LM 

BPNN 

ELM 

training 

BPNN 

NLM 

training 

BPNN 

Proposed 

LM BPNN 

1 

1 
1 

1 

1 

2 
2 

2 

2 

2 
3 

3 

3 

3 
3 

0.9999993285 

0.9999992952 
0.9999993685 

0.9999993274 

0.9999993273 

1.9999985480 
2.0000023463 

1.9999633692 

2.0000021698 

2.00000623203 
2.99999644211 

2.49818367950 

2.99037580647 

3.00000291431 
2.99662415041 

0.999998968 

0.99999965 
0.99999897 

0.999998969 

0.999998969 

31.38324967 
2.514282558 

–0.86908966 

1.998075311 

1.809125959 
2.999999999 

1.999987829 

2.999887007 

2.999999992 
2.995428876 

0.99999953 

0.99999953 
0.99999953 

0.99999953 

0.99999953 

2.000003934 
2.000001685 

2.002109564 

2.000011895 

2.001934675 
3.00000059 

2.506053409 

2.999991968 

3.00000059 
2.795373631 

1 

1 
1 

1 

1 

2 
2 

2 

2 

2 
3 

2 

3 

3 
3 

1 

1 
1 

1 

1 

31 
3 

–1 

2 

2 
3 

2 

3 

3 
3 

1 

1 
1 

1 

1 

2 
2 

2 

2 

2 
3 

3 

3 

3 
3 

 

 
a) ELM training BPNN 

 
b) NLM training BPNN 

 
c) Proposed LM-BPNN 

Fig. 2. Classification errors represented in 2-D plane for Fisher Iris data 
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The classification errors in 2-D plane and its 3-D map in the first three attributes can be shown 

in Fig. 2 and Fig. 3. In the 3-D figures, the points with pink color are the wrong classification. The 

errors of iteration process are shown in Fig. 4. 

The iteration steps, iteration time and classification accuracy are listed in Table 2. 

 
a) ELM training BPNN 

 
b) NLM training BPNN 

 
c) Proposed LM-BPNN 

Fig. 3. Classification errors mapped in the first three attributes for Fisher Iris data 

 
a) ELM training BPNN 

 
b) NLM training BPNN 

 
c) Proposed LM-BPNN 

Fig. 4. Errors of iteration process for Fisher Iris data 

Table 2. Comparison of different improved algorithms on benchmark data sets for Fisher Iris data 

BPNN type Iteration steps Iteration time Accuracy rate 

ELM training BPNN 483 1.092726 seconds. 93.33 % 

NLM training BPNN 1133 2.337680 seconds 73.33 % 

Proposed LM BPNN 244 0.599163 seconds 100 % 

From Fisher Iris data classification results, the proposed method is superior to other two 

improved BPNNs both in speed and classification accuracy. It needs only half steps and operation 

time compared to the ELM training BPNN. And only a quarter of steps and operation time 

compared to the NLM training BPNN. Besides of the speed, it can achieve 100 % accuracy. 
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4. Gear chip fault diagnosis using improved BPNN 

4.1. Experiment setup 

In order to further validate the effectiveness of proposed fault diagnosis method based on 

improved BPNN. A different levels gear chip fault experiment was implemented. The system 

includes a gearbox, a 4 kW three phase asynchronous motor for driving the gearbox, and a 

magnetic powder brake for loading. The speed is controlled by an electromagnetic 

speed-adjustable motor, which allows the tested gear to operate under various speeds. The load is 

provided by the magnetic powder brake connected to the output shaft and the torque can be 

adjusted by a brake controller. 

The data acquisition system is composed of acceleration transducers, PXI-1031 mainframe, 

PXI-4472B data acquisition cards, and LabVIEW software. The type of transducers is 3056B4 of 

Dytran Company. There are four transducers which are mounted in different places on gearbox. 

In order to acquire the speed and torque information, a speed and torque transducer is installed in 

the input shaft as illustrated in Fig. 5. For this transducer, one revolution of input shaft will produce 

60 impulses. 

As shown in Fig. 6, the gearbox has three shafts, which are mounted to the gearbox housing 

by rolling element bearings. Gear 1 on low speed (LS) shaft has 81 teeth and meshes with gear 3 

with 18 teeth. Gear 2 on intermediate speed (IS) shaft has 64 teeth and meshes with gear 4, which 

is on the high speed (HS) shaft and has 35 teeth. There are four transducers are mounted on the 

gearbox as depicted in Fig. 6 using circle. 

  
Fig. 5. Test-rig of gearbox Fig. 6. Structure of gearbox and the transducers location 

The chip faults are implanted on one tooth of gear 2 which meshes with gear 4 on HS shaft. 

The chip widths are 2 mm, 5 mm, and 10 mm respectively. It can be depicted in Fig. 7. They were 

tested under three different loads and rotating speeds. The rotating speeds are about 800 rpm, 

1.000 rpm and 1.200 rpm. The loads are 10 N·m, 15 N·m, and 20 N·m. For every chip fault level 

and operating condition, 60 data samples are acquired. In this paper, the data sets under 1.200 rpm 

and three different loads are used to validate the proposed methods. The signals collected by sensor 

1 are used for feature extraction and model validation. 

TSA can be used for shaft and gear analysis to both control variation in shaft speed and to 

reduce non-synchronous noise. Many statistical features specially developed for gear damage 

detection are based on TSA processing [15]. However, traditional TSA techniques suppose the 

rate of change in the shaft under analysis is linearity. In real, because of the varying load, the rate 

of change of the shaft changes more than 10 times in one revolution as shown in Fig. 8. 
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The multiple changes in sign of the derivative of the shaft speed will has a bad effect on gear 

fault analysis. In order to address this problem, Bechhoefer [23] proposed a revised TSA technique 

which can capture the speed variation in one revolution. Based on this new TSA technology, eight 

features are extracted for different chip levels identification. They are FM0, FM4, FM4*, NA4, 

NB4, ER (energy ration), M6A, and M8A. After the feature extraction, the proposed BPNN can 

be used to classify the different chip level. 

 
Fig. 7. Three different levels chip tooth 

 
Fig. 8. The rotation speed variation in three revolutions 

4.2. Results under operation condition 1.200 rpm and 20 N·m 

Before the data analysis, it states that all the initial parameters of proposed methods are same 

as used in Fisher Iris data. There are four degradation states for this chip faults experiment. They 

are normal, slight chip (2 mm width chip), medium chip (5 mm width chip), and severe chip 

(10 mm width chip). These four states can be denoted as ‘1’, ‘2’, ‘3’, and ‘4’ labels. 60 signal 

samples were collected for each state. After fault features extraction, 30 feature samples from each 

state are used for training, the rest are for testing. The classification map in the first three attributes 

of data under operation condition 1.200 rpm and 20 N·m can be depicted in Fig. 9. 

The compared outputs of different networks are operated by “round” function. Because the 

limited pages and amount of data, the results are not shown in this paper. Similar to the public 

data validation, the classification errors in 2-D plane and its 3-D map in the first three attributes 

can be shown in Fig. 10 and Fig. 11. In the 3-D figures, the points with pink color are the wrong 

classification. The errors of iteration process are shown in the Fig. 12. 

The iteration steps, iteration time and classification accuracy are listed in Table 3. 

Table 3. Comparison of different neural networks under operation condition 1.200 rpm and 20 N·m 

BPNN type Iteration steps Iteration time Accuracy rate 

ELM training BPNN 133 0.421206 seconds. 93.33 % 

NLM training BPNN 90 0.333872 seconds. 92.5 % 

Proposed LM BPNN 101 0.283346 seconds. 100 % 
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Fig. 9. Classification map in the first three attributes of the signals under operation  

condition 1.200 rpm and 20 N·m 

 
a) ELM training BPNN 

 
b) NLM training BPNN 

 
c) Proposed LM-BPNN 

Fig. 10. Classification errors in 2-D of the signals under operation condition 1.200 rpm and 20 N·m 

 
a) ELM training BPNN 

 
b) NLM training BPNN 

 
c) Proposed LM-BPNN 

Fig. 11. Classification errors mapping in the first three attributes of the signals  
under operation condition 1.200 rpm and 20 N·m 
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a) ELM training BPNN 

 
b) NLM training BPNN 

 
c) Proposed LM-BPNN 

Fig. 12. Errors of iteration process of the signals under operation condition 1.200 rpm and 20 N·m 

4.3. Results under operation condition 1.200 rpm and 15 N·m 

Similar to the chip fault classification under operation condition 1.200 rpm and 20 N·m, 30 

fault samples are used for training and the rest are for testing. Classification errors in 2-D plane 

and its 3-D map in the first three attributes can be shown in Fig. 13 and Fig. 14. Similarly, the 

points with pink color are the wrong classification. The errors of iteration process are shown in 

the Fig. 15. 

The iteration steps, iteration time and classification accuracy are listed in Table 4. 

Table 4. Comparison of different neural networks under operation condition 1.200 rpm and 15 N·m 

BPNN Type Iteration steps Iteration time Accuracy rate 

ELM training BPNN 171 0.551402 seconds. 100 % 

NLM training BPNN 269 0.670372 seconds. 91.67 % 

Proposed LM BPNN 94 0.460250 seconds. 100 % 

 

 
a) ELM training BPNN 

 
b) NLM training BPNN 

 
c) Proposed LM-BPNN 

Fig. 13. Classification errors in 2-D of the signals under operation condition 1.200 rpm and 15 N·m 
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a) ELM training BPNN 

 
b) NLM training BPNN 

 
c) Proposed LM-BPNN 

Fig. 14. Classification errors mapping in the first three attributes of the signals  

under operation condition 1.200 rpm and 15 N·m 

 
a) ELM training BPNN 

 
b) NLM training BPNN 

 
c) Proposed LM-BPNN 

Fig. 15. Errors of iteration process of the signals under operation condition 1.200 rpm and 15 N·m 

4.4. Results under operation condition 1.200 rpm and 10 N·m 

Similarly, classification errors in 2-D plane and its 3-D map in the first three attributes can be 

shown in Fig. 16 and Fig. 17. The points with pink color are the wrong classification. The errors 

of iteration process are shown in the Fig. 18. 

The iteration steps, iteration time and classification accuracy are listed in Table 5. 

Table 5. Comparison of different neural networks under operation condition 1.200 rpm and 10 N·m 

BPNN type Iteration steps Iteration time Accuracy rate 

ELM training BPNN 213 0.732871 seconds. 98.33 % 

NLM training BPNN 140 0.524008 seconds. 99.17 % 

Proposed LM BPNN 66 0.249918 seconds. 100 % 

From the gear chip fault level classification results, we can see that the proposed method is 
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faster and has better classification accuracy than the other two improved LM BPNN. The proposed 

method also achieves 100 % gear fault level identification accuracy. So, it can be concluded that 

the proposed method can be used for on-line fault diagnosis and will be very effective for 

identifying different fault level. 

However, there are three issues waiting for our further deep research in future to achieve the 

application goal. They are: (1) The initial 𝜆 is very important. It impacts the training speed and 

accuracy of the network. We tested different 𝜆 and found that too big or too small the initial 𝜆 is, 

the training process is time-taking and hard to calculate. Especially, the Hessian vector is hard to 

be calculated. So how to select the initial parameter adaptively is valuable. (2) By reviewing the 

existed literatures, we found most publications stress the parameter should be bigger or smaller 

by certain step like the learning rate in the standard BPNN. Similarly, the fix adjustment of 𝜆 may 

not balance the Gauss-Newton and Steepest descend very well. So, we will focus on how to adjust 

𝜆 in the training process and make a better performance. (3) When there are several faults existing 

simultaneously, how to use proposed method to diagnose the different fault? 

 
a) ELM training BPNN 

 
b) NLM training BPNN 

 
c) Proposed LM-BPNN 

Fig. 16. Classification errors in 2-D of the signals under operation condition 1.200 rpm and 10 N·m 

 
a) ELM training BPNN 

 
b) NLM training BPNN 

 
c) Proposed LM-BPNN 

Fig. 17. Classification errors mapping in the first three attributes of the signals under operation condition 

1.200 rpm and 10 N·m 
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a) ELM training BPNN 

 
b) NLM training BPNN 

 
c) Proposed LM-BPNN 

Fig. 18. Errors of iteration process of the signals under operation condition 1.200 rpm and 10 N·m 

5. Conclusions 

A new gear fault diagnosis method based on an improved training algorithm BPNN is proposed 

in this paper. The LM jointed with the momentum item is optimized simultaneously for training 

BPNN. This new algorithm can have faster operation speed and achieve better classification 

accuracy compared to two other improved LM algorithms. Firstly, this proposed method is 

validated using Fisher iris data. Then, it is used to diagnose the different gear chip fault level under 

three different operation conditions. All the results from public data and experimental data verified 

that the proposed method has better accuracy performance and can complete the calculation work 

rapidly. Therefore, this method is very suitable for on-line automotive gear fault diagnosis. This 

will be meaningful and will save maintenance money and downtime cost greatly. In addition, 

using this new method to diagnose the multi-faults of gearbox needs to be researched in future. 
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