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ABSTRACT
Purpose: This work aims to analyze and compare the performance between the
Ordinary Least Squares (OLS) method executed in Minitab (v. 17) and the genetic
programming performed in Eurega Formulize (v. 1.24.0).

Theoretical reference: Obtaining a model that mathematically describes the
relationship between the independent variable and the response variable is essential to
optimizing the process. The model can be described as an approximate representation
of the real system or process, while the modeling process is a balance between
simplicity and accuracy (X. Chen et al., 2018; Gomes et al., 2019; Sampaio et al.,
2022; A.R. S. Silvaet al., 2021).

Method: An Evaluation of the best method for constructing mathematical models was
performed using the Adjusted Coefficient of Determination (Radj2) and Akaike's
Information Criterion

Results and conclusion: The comparison between the use of the methods showed the
superiority of genetic programming over OLS in the construction of mathematical
models.

Originality/Value: Genetic Programming produces mathematical models that are
sometimes differentiated when several replicates are performed, but always with
similar explanatory power and with biased characteristic that does not affect in any
way the quality of prediction of the dependent variable being studied.

Doi: https://doi.org/10.26668/businessreview/2023.v8i8.3131
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OTIMIZACAO DE RESPOSTAS MULTIPLAS: ANALISE COMPARATIVA ENTRE MODELOS
OBTIDOS PELO MINIMO METODO ORDINARIO E PROGRAMAGAO GENETICA

RESUMO

Finalidade: Este trabalho tem como objetivo analisar e comparar o desempenho entre 0 método dos minimos
guadrados ordinarios (OLS) executado no Minitab (v. 17) e a programacao genética realizada no Eurega Formulize
(v. 1.24.0).

Referéncia tedrica: Obter um modelo que descreva matematicamente a relacéo entre a varidvel independente e a
variavel de resposta é essencial para otimizar o processo. O modelo pode ser descrito como uma representagdo
aproximada do sistema ou processo real, enquanto o processo de modelagem é um equilibrio entre simplicidade e
precisdo (X. Chen et al., 2018; Gomes et al., 2019; Sampaio et al., 2022; A. R. S. Silva et al., 2021).

Método: A Avaliagdo do melhor método para construir modelos matematicos foi realizada utilizando-se o
Coeficiente Ajustado de Determinacdo (Radj2) e o Critério de Informagdo de Akaike.

Resultados e conclusdo: A comparacéo entre o uso dos métodos mostrou a superioridade da programagao genética
sobre 0 OLS na construgdo de modelos matematicos.

Originalidade/Valor: A Programagdo Genética produz modelos matematicos que as vezes sdo diferenciados
guando varios replicados sdo realizados, mas sempre com poder explicativo semelhante e com caracteristicas
tendenciosas que nao afetam de forma alguma a qualidade de predicédo da variavel dependente sendo estudada.

Palavras-chave: Modelos Mateméaticos, Quadrados Minimos Ordinarios, Programagdo Genética.

OPTIMIZACION DE RESPUESTA MULTIPLE: ANALISIS COMPARATIVO ENTRE MODELOS
OBTENIDOS POR EL METODO DE MINIMOS ORDINARIOS Y PROGRAMACION GENETICA

RESUMEN

Obijetivo: Este trabajo tiene como objetivo analizar y comparar el desempefio entre el método de minimos
cuadrados ordinarios (MCO) ejecutado en Minitab (v. 17) y la programacién genética realizada en Eurega
Formulize (v. 1.24.0).

Referencia teorica: La obtencion de un modelo que describa matematicamente la relacion entre la variable
independiente y la variable respuesta es esencial para optimizar el proceso. EI modelo puede describirse como una
representacion aproximada del sistema o proceso real, mientras que el proceso de modelado es un equilibrio entre
simplicidad y precision (X. Chen et al., 2018; Gomes et al., 2019; Sampaio et al., 2022; A. R. S. Silva et al., 2021).
Meétodo: Se realiz6 una evaluacién del mejor método para la construccion de modelos matematicos utilizando el
coeficiente de determinacién ajustado (Radj2) y el criterio de informacién de Akaike.

Resultados y conclusion: La comparacion entre el uso de los métodos mostro la superioridad de la programacion
genética sobre OLS en la construccion de modelos matematicos.

Originalidad/Valor: La Programacion Genética produce modelos matematicos que a veces se diferencian cuando
se realizan varias réplicas, pero siempre con similar poder explicativo y con caracteristicas sesgadas que no afectan
en modo alguno la calidad de prediccion de la variable dependiente que se estudia.

Palabras clave: Modelos Matematicos, Minimos Cuadrados Ordinarios, Programacion Genética.

INTRODUCTION

Obtaining a model that mathematically describes the relationship between the
independent variable and the response variable is essential to optimizing the process. The model
can be described as an approximate representation of the real system or process, while the
modeling process is a balance between simplicity and accuracy (X. Chen et al., 2018; Gomes
etal., 2019; Sampaio et al., 2022; A. R. S. Silva et al., 2021). Empirical models are built based
on statistical analysis of experimental observations using regression techniques. Compared to

the phenomenological model, the empirical model has the disadvantage of not extrapolating the
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data, making the model valid only within the experimental data collection process used to obtain
the model (Chau, 2017; V. C. P. Chen et al., 2006; Zhang et al., 2020).

Determining a process improvement is typically complex due to variations in customer
demand and technological advances. Generally, several responses must be considered in order
to achieve an overall process improvement (Salido et al., 2016). It is important to note that an
optimization process does not necessarily imply the determination of optimal operating
conditions since it is practically impossible to establish the optimal point due to the large
number of variables that impact a process. Instead, what can be determined are improvement
conditions from the selection of maximum points within a predetermined search space (Gomes
et al., 2019; Ivanov et al., 2016).

Genetic Programming (GP) is part of a broader research field called evolutionary
computing, which involves the development of global search and optimization algorithms based
on the theory of biological evolution (Garg & Lam, 2015; Katebi et al., 2017; Wan et al., 2018).
Ordinary Least Squares (OLS) is a mathematical optimization method that aims to find the best
fit for a data set by trying to minimize the sum of squared differences between the estimated
and observed data values (Beena & Kumaran, 2010; Cribari-Neto & Lima, 2014; Lakshmi et
al., 2021).

The difficulty encountered when working with phenomenological models is to
determine all the physical and chemical properties that may affect the process in some way.
Many studies applying Design of Experiments (DOE) to optimize processes, especially
processes involving multiple responses, have neglected the quality of the model obtained
(Ch’ng et al., 2005; Derringer & Suich, 1980; Khuri & Conlon, 1981; Pang et al., 2020; Pinto
& Pereira, 2021). This one examines the use of genetic programming to obtain models with
higher predictability than those obtained by Ordinary Least Squares (OLS), and the use of

models with multiple responses in the optimization process.

LITERATURE REVIEW

In this section, the scientific literature is reviewed to introduce the theoretical
foundations of the GP and OLS topics. Papers from journals with high impact factor were
prioritized.

Genetic Programming
In GP, each chromosome (individual in the population) represents a possible solution to
a problem, and is composed of a string of genes. The initial population is taken at random to
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serve as a starting point for the algorithm. A fitness function is defined to check the fitness of
the chromosome to the environment. Based on the fitness value, chromosomes are selected and
crossover and mutation operations are performed on them to produce offspring for the new
population. The fitness function evaluates the quality of each offspring. The process is repeated
until enough offspring are created (Kalra & Singh, 2015; Wu & Yang, 2013).

GP operates by searching for syntactic expressions that have evolved based on candidate
solutions in order to find the expression that best describes the relationship between a set of
independent variables and dependent variables Unlike ordinary optimization methods, in
conventional optimization methods, potential solutions are represented by numbers (usually
vectors of real numbers), while symbolic optimization algorithms represent potential solutions
in a structured order of various symbols. One of the most popular methods of structure
representation is the binary tree (Wu & Yang, 2013).

A population member in GP is a hierarchically structured tree consisting of functions
and terminals. The functions and terminals are selected from a set of functions and a set of
terminals, as shown in Figure 1. The set of F operators may contain the basic arithmetic

operations. However, it can also include other mathematical methods (Amir Haeri et al., 2017).

Figure 1. The basic GP algorithm using a tree representation for individuals.

Node Function
1
fx(-"1~-":--"3)=5(~\'2“%l)+-"3
2 4
f:(-"r-":--"s):S(-": —Al)
i fi(x.x%,,%,)=5
4 Sl X255 ) =205 = %1
2 S5 (x,%,%;)=x,
o ﬁ(.r,..vz..r3)=%l
7 Fixx,x)=4
8 Fe %% )=%
2 So (X, %, %) = x;

Source: Gomes et al. (2019).

The process of using GP to derive a mathematical model is to generate a series of initial
equations that describe the relationship between input variables and output variables. The
expression of these equations usually uses the tree form, in which the mathematical parameters
and functions that make up the model are expressed in the tree leaves and the answers in the
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root(Poli et al., 2008). Compared to other techniques for modeling nonlinear problems, the
major advantage of GP is that GP can create models with relatively low errors and does not
require the behavior of the dependent and independent variables in the prior process. GP has
many applications in modeling problems involving nonlinear equations, emphasizing its

greatest use in time series prediction (Wu & Yang, 2013).

Ordinary Least Squares

OLS regression is used to fit a straight line through the data, but has a reputation for
underestimating the slope when there is measurement error. Ordinary least squares regression
is suitable for bivariate data lines, so for all data points, the vertical (square) distance from the
data point to the line is minimized (Figure 2) (Gomes et al., 2019; Kilmer & Rodriguez, 2017;
Qasim et al., 2020).

Figure 2. Fitting a line to bivariate data using ordinary least squares (OLS) regression.

(a)

Log (trait size)

Log (body size)

Source: Adapted: Kilmer and Rodriguez (2017).

The slope of this line is described by the equation bOLS = cov(x,y)/var(x). Therefore,
if polycystic ovary changes or the variance of the x-axis variable changes, the OLS slope will
change. Since OLS regression uses vertical residuals to fit a line, the values on the horizontal
axis are assumed to be perfectly measured, and any deviation from the data points on the
regression line is attributed to the variables plotted on the vertical axis (Kilmer & Rodriguez,
2017; Liu & Piantadosi, 2017; Salmeron et al., 2017). However, the classical OLS estimation
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used for linear regression is no longer applicable due to the lack of sufficient degrees of freedom
(Wang & Leng, 2016).

EVALUATION MODEL CRITERIA

When fitting regression models to experimental data using models with few fitting
parameters, they may not be satisfactory in describing the behavior of the data, their estimates
are far from the experimentally obtained values, which results in a lack of model fit to the
experimental data. Very complex models tend to distribute experimental errors in their
parameters, resulting in parameters with low or no statistical significance, and, although they
tend to describe the experimental points reliably, they may have poor ability to represent the
behavior of the process that generated the data due to the occurrence of random noise in the
response (Pitt & Myung, 2002). Therefore, the best model will be the one that aligns a good fit
to the experimental data for a good ability to represent the process behavior. To obtain a
balanced model, one must use information-theoretic criteria proposed for mathematical model

selection, such as the adjusted R? and Akaike criterion information.

Adjusted R?
When comparing models with different numbers of parameters, it is appropriate to use
the coefficient of determination adjusted to the number of parameters of each model, so that

they are compared under equal conditions and Eq. (Draper & Smith, 1998).

- 2_
Ra? = B (1)

p = Number of parameters of the regression model
n = Number of observations
R2 = Coefficient of Determination

The adjusted R? compares the explanatory power of regression models that contain
different numbers of predictors. The adjusted R? is a modified version of R? that has been
adjusted for the number of predictors in the model. The adjusted R? increases only if a new term
added improves the model more than would be expected by chance. It decreases when a
predictor improves the model less than expected by chance (Draper & Smith, 1998).
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Akaike Information Criterion

Akaike's Information Criterion (AIC) is an asymptotically unbiased opinion estimator
of the Kullback-Leibler (K-L) divergence. The K-L divergence can be interpreted as a
"divergence" between complete reality and a model. Thus, the best model loses the least
information relative to other models in the set (Burnham & Anderson, 2004; Pinto & Pereira,
2021). The (AIC) is obtained from the solution of Eq. (2).

AIK = =21n(L) + 2K (2)

Where:

L is the maximum point of the Log-Likelihood function, and K is the number of parameters estimated by the model
plus one. The first term represents a measure of lack of fit, while the second term represents a measure of model
complexity. In the case of ordinary least squares estimation, the (AIC) can be obtained from Eg. (3).

AIC = N.In=Z + 2K (3)

Where:

N is the number of points used to obtain the model (sample size). When more parameters are added to a model,
the first term becomes smaller while the second term becomes larger. When a statistical model is used to represent
a given process, the representation will never be exact, that is, the model will never be perfect and some
information will certainly be lost. The AIC estimates the relative amount of information lost by a given model: the
less information a model loses, the higher the quality of that model and the lower the AIC score.

When N is small compared to K for the largest model in the candidate set (as a rule, N
/ K <40), it is recommended to use the Akaike information criterion corrected for small samples
(AICC) (Burnham & Anderson, 2004). The AICC is given by Eq. (4).

AIC + 2K.(K+1) @)
N-K-1

The use of the AICC instead of the AIC is preferred, as it is more accurate for small
samples and gives very similar results for large samples (Alrubaie et al., 2007). Determining
the differences of the AICC (Ai) allows for quick comparison and ranking of candidate models.

For the i-th model, Ai is given by Eqg. (5).

Ai = AlCci — min AICc (5)
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Where:

min AICC is the lowest AICC value among all the models evaluated. The Ai of the best generated model is equal
to zero, while the rest of the models have positive values, and the higher the value of Ai for the model, the worse
the quality of its fit will be. As a rule, models with Ai < 2 have substantial predictability support, those with 2 <
Ai <7 have considerably less support, and models with Ai > 7 have no support (Burnham & Anderson, 2004).

Homoscedasticity

In Statistics, a sequence of random variables is homoscedastic if all its random variables
have the same finite variance. This is also known as homogeneity of variance. Assuming that a
variable is homoscedastic when in fact it is heteroscedastic results in unbiased but inefficient
point estimates and biased standard error estimates, and can result in overestimation of the
quality of fit as measured by Pearson's coefficient (Diniz et al., 2012; Gomes et al., 2019;
Gongalves & Ghosh, 2022; Wilcox, 2007).

RESEARCH METHOD

This work can be classified as an applied research because it aims at providing
improvements in the current literature, with normative empirical objectives, aiming at
developing policies and strategies that improve the current situation (Araujo et al., 2021; H. de
O. G. da Silva et al., 2021; Will M. Bertrand & Fransoo, 2002). The problem approach is
quantitative, as is the modeling and simulation research method. The research steps were

performed following the sequence shown in Figure 3.

Figure 3. Research method steps

. : Step 2: Obtaining the Step 3: Obtaining the
Eftgﬁég,?%'.eﬁgfa”ffgm S models that describe each models that describe each
rFerIti le problems response using the response using Genetic
plep ' Ordinary Least Square. Programming.
v
Step 4: Analysis of the Step 5: Comparison of R2 Step 6: Analysis of the
models obtained in Step- S Adjusted and AIC of results obtained in Steps
2 e Step-3 using R? adj, replicates to test 2,3,4,5and final
AIC and AICC. variability. conclusions.

Step 1: The Experimental data were selected from the work of Naderi and Khamehchi
(2017); Sathiya et al, (2011). This choice was based on the fact that this work is the

Source: Authors (2023).
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most widely used data source for comparing optimization methods with multiple
responses.

Step 2: Models were generated from the experimental data, describing the previously
selected responses, using the Ordinary Least Squares technique with the help of Minitab
v.19; the models were refined with R2adj (Adjusted Coefficient of Determination).
Step 3: Models were generated from the experimental data, describing the previously
selected responses, using the Symbolic Regression Technique via Genetic Programming
with the help of Eurega v 1.24.0; a more detailed review of this software can be found
at (Dub&akova, 2011).

Step 4: An analysis of the models obtained in steps 2 and 3 was performed, comparing
values of adjusted R?, AIC and AICC. With this comparison, the models can be
classified according to their higher predictability.

Step 5: During Step 3, three replicates of each model were run, and the comparison of
the adjusted R? and AIC of the replicates were compared with each other to show that
the variability is very small and the models are reliable.

Step 6: The conclusions presented at the end of this paper were drawn from the results

obtained in the previous steps.

Case 1

The problem described by Naderi and Khamehchi (2017) is the optimization of
Recovery Factor (RF) and Cumulative Water Production (LnWp). The present study has two
objectives. The first objective is to find the optimal number of water wells and their
corresponding locations. The second objective is to find the optimal production rate and its
corresponding locations, the drilling thickness, and the lower bound of the pipe head pressure
using a new stick-inspired metaheuristic algorithm. In this regard, DOE via Response Surface
and Symbolic Regression (RSM) via Genetic Programming were used to develop equations to
model RF and Wp, and compare the fit of both methods.

DOE is a systematic method for obtaining the most information by running a minimum
set of experiments in order to determine the input-output relationship. Table 1 shows the seven
independent variables and the two dependent variables. RSM is a collection of mathematical
and statistical techniques for obtaining the relationships between independent and dependent

variables (response) (Box & Wilson, 1951).
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The Table shows the Dependent Variables LnWp and RF, and the seven independent
variables (X1, X2, X3, X4, X5, X6 and X7).

Table 1. Dependent and Independent Variables

X1 Coded variable for well location I.
X2 Variable coded for the location of well J.
X3 Variable coded for average reservoir permeability.
X4 Variable coded for permeability anisotropy.
X5 Variable coded for gas production rate.
X6 Variable coded for borehole thickness
X7 Variable coded for pipe head pressure
Wp Cumulative Water Production.
LnWp Cumulative Water Production.
RF Gas Recovery Factor (%)

Source: Authors (2023).

Table 2 shows the results of all 57 different BBD-based flow simulations for seven
factors with three levels that were performed using the Eclipse 100 black oil simulator.

Table 2. Result of 57 flow simulations based on BBD

Ln
# X1 X5 X3 Xa Xs Xe X7 RF% Wp
1 1 0 1 0 1 0 0 51.03 10.73
2 0 0 1 1 0 0 1 34.67 12.28
3 0 0 0 1 1 1 0 74.84 8.11
4 0 1 0 0 1 0 1 82.16 8.31
5 1 0 1 0 1 0 0 78.15 8.04
6 1 0 0 0 0 1 1 80.65 8.10
7 0 0 1 1 0 0 1 62.34 13.88
8 1 0 0 0 0 1 1 79.38 12.87
9 1 0 0 0 0 1 1 56.94 11.86
10 O 1 0 0 1 0 1 65.81 7.65
11 0 0 0 1 1 1 0 70.99 8.02
12 0 0 0 1 1 1 0 65.77 13.20
13 0 0 0 0 0 0 0 75.92 8.03
14 0 0 0 1 1 1 0 66.63 13.10
15 0 1 0 0 1 0 1 85.58 8.33
16 0 1 1 0 0 1 0 62.27 7.46
17 1 0 1 0 1 0 0 51.13 10.70
18 0 1 0 0 1 0 1 82.16 8.31
19 1 1 0 1 0 0 0 73.21 8.18
20 1 1 0 1 0 0 0 73.11 8.17
21 1 0 0 0 0 1 1 79.36 12.87
22 0 1 1 0 0 1 0 7142 12.10
23 1 0 0 0 0 1 1 6291 7.51
24 1 0 0 0 0 1 1 62.87 7.50
25 0 1 1 0 0 1 0 62.32 7.46
26 1 0 1 0 1 0 0 51.23 10.75
27 0 1 1 0 0 1 0 52.55 12.74
28 1 0 1 0 1 0 0 78.20 8.04
29 1 1 0 1 0 0 0 50.57 13.85
30 1 0 0 0 0 1 1 80.69 8.10
31 0 0 1 1 0 0 1 88.21 8.40
32 1 0 1 0 1 0 0 7728 8.11
33 1 1 0 1 0 0 0 73.04 8.17
34 0 1 1 0 0 1 0 71.20 12.09
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35 0 0 1 1 0 0 1 59.87 7.68
36 1 0 1 0 1 0 0 51.11 10.70
37 0 1 0 0 1 0 1 63.85 7.69
38 1 0 1 0 1 0 0 77.29 811
39 0 0 1 1 0 0 1 87.60 8.67
40 O 1 1 0 0 1 0 52.34 12.73
41 1 0 0 0 0 1 1 56.83 11.87
42 0 0 0 1 1 1 0 76.33 8.83
43 0 0 1 1 0 0 1 76.39 8.26
44 0 0 1 1 0 0 1 66.70 7.87
45 0 1 0 0 1 0 1 63.77 7.69
46 0 1 1 0 0 1 0 76.75 7.97
47 1 1 0 1 0 0 0 49.85 1381
48 0 1 1 0 0 1 0 76.74 797
49 0 0 0 1 1 1 0 76.46 8.90
50 1 1 0 1 0 0 0 4726 13.69
51 0 0 1 1 0 0 1 67.13 7.16
52 1 1 0 1 0 0 0 4961 1381
53 0 0 0 1 1 1 0 76.00 8.40
54 0 0 0 1 1 1 0 7257 9.45
5 0 1 0 0 1 0 1 85.61 8.33
56 1 1 0 1 0 0 0 73.06 8.17
570 1 0 0 1 0 1 65.80 7.65

Source: Authors (2023).

Table 4 shows the coefficient of determination (R?) and adjusted coefficient of
determination (R?adj) for the proxy equation of the recovery factor and cumulative water yield.
These statistics are used to show the quality of fit for regressions. R? is a number between zero
and one that shows how well the well data fits a statistical model. In other words, it measures
the percentage of the variability in the process explained by the fitted model (Naderi &
Khamehchi, 2017).

Case 2

The problem described by Sathiya et al. (2011) is the use of Taguchi's method that
determines the optimal results of finite analytical data and the dominant factors involved in the
optimization of laser welding from finite analytical data. In this study, three level process
parameters, i.e. beam power (BP), travel speed (TS) and focal position (FP) are considered. In
this study, an orthogonal L27 matrix with 26 degrees of freedom was used. Twenty-seven
experiments on the three shielding gases are required to study the entire welding parameter
space when the orthogonal L27 arrangement is used. The experimental results of the laser weld,
i.e. tensile strength, bead width, and depth of penetrations, are shown in Table 3. The weld
profiles were obtained by sectioning and polishing with suitable abrasive and diamond paste.
The weld samples were etched with 10% oxalic acid, an electrolyte, to indicate and increase
the contrast of the fusion zone with the base metal.
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The joint quality is evaluated by studying X1= BW (Weld Bead Geometry) X2=TST
(Tensile Strength), and X3= (PDO) Penetration Pitting using Argon, Nitrogen and Helium
gases. The goal is to model RI1=TST(BP,TS,FP)Arg, R2=BW(BP,TS,FP)Arg,
R3=DOP(BP,TS,FP)Arg, R4=TST(BP,TS,FP)Nit, R5=BW(BP,TS,FP)Nit,
R6=DOP(BP,TS,FP)Nit, R7=TST(BP,TS,FP)Hel, R8=BW(BP,TS,FP)Hel,
R9=DOP(BP,TS,FP)Hel.

Table 3. Experimental results

Beam power Focal

. Argon Nitrogen Helium
Travel speed  position
In KW in_ in mm TST BW DOP  TST BW DOP  TST BW DOP
m/min (Mpa) (mm) (mm) (Mpa) (mm) (mm) (Mpa) (mm) (mm)
1 1 615 2.032 2.891 589  1.632 2.699 620 1.251 2.854

622 2.041 2902 590 1.629 2.696 618 1.249 2.859
620 2.043 2.923 585  1.634 2.697 615 1250 2.858
589 2.109 2.722 612 1579 2719 627 1152 2.946
585 2.112 2.693 605 1582 2712 622 1149 2942
579 2113 2.732 609 1580 2.716 624  1.148 2,947
568 1.729 2.895 601 1.299 2770 630 1.227 2.660
565 1.732 2.932 598 1301 2772 629 1.230 2.664
570 1.736 2.879 603 1.303 2.769 634 1229 2.662
610 1570 2.893 570 1.451 2.810 612 1232 2.780
612 1569 2821 569  1.449 2812 609 1230 2.782
605 1563 2.851 572 1450 2.811 605 1231 2781
623 1.959 2.693 565 1.629 2.790 620 1331 2.795
625 1961 2714 570 1.632 2.786 625 1330 2.791
619 1.960 2.737 557 1.630 2.789 619 1332 2.796
621 2119 2.735 618 1.920 2.659 629 1.273 2.785
619 2120 2.694 620 1917 2.664 635 1.275 2781
616 2.123 2.727 624 1922 2.663 633 1.272 2.780
620 1.646 2.723 629  1.240 2.453 594 1439 2.887
625 1.650 2.745 625 1.242 2451 591  1.438 2.883
619 1642 2731 622 1.239 2.452 590 1434 2.885
629 1610 2787 635 1.479 2.859 621 1362 2.631
633 1.609 2.725 639 1470 2.855 619 1360 2.632
631 1606 2.753 641 1473 2.857 620 1361 2.633
632 1.828 2732 599 1619 2.830 573 1329 2.870
635 1.831 2.794 602 1.612 2831 579 1330 2.873
630 1.829 2721 605 1.617 2.829 575 1331 2.875
Source: Authors (2023).

WWWWWWWWwWwNNNNMNNDNNMNNNNPRPRRPRPRERPRRERERE
WWWNNNRERPRPRPPWWWNNNEPRPPWWWNNNRERE R R
WNNPFPWNPFPWNPFPONPFPOWONPFPWONPFPONPOWONPEPEWODN

RESULTS AND DISCUSSION
Case 1

The models obtained using Ordinary Least Squares, using Minitab v.17, are shown in
Egs. (6)-(7).
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Lnwp =7.266 — 0.010 X1 + 0.008 X2 — 0.868 X3 + 1.750 X4 + 0.048 X5 + 1.963 X6 — 0.418
X7 +1.536 X1*X1 + 0.824 X2*X2 + 0.672 X3*X3 + 1.307 X4*X4 + 1.254 X6*X6 + 0.003
X1*X5 —0.003 X1*X5 + 0.003 X2*X6 — 1.400 X3*X4 + 0.856 X4*X6 (6)

RF  =68.13 +2.27 X1 +0.49 X2 -1.39 X3 +1.19 X4 + 1.38 X5 + 6.00 X6 + 2.24 X7 —
4.53 X1*X7 — 4.86 X2*X7 -6.95 X3*X4 (7)

The models proposed by the Genetic Programming method with the three replicates

using the Eureqa Formulize software are found in Egs. (8) - (13).

49.8

— X3 - X3.X4— X52 - X7% —
X6+X4.X2-—4,82

Ln(Wp)1 = X4 + X4.X6 + X3.X2% —
X6.X5% — X22.X3% — 0,424.X7 (8)

RF1=681+6.X2+6.X6+6.X4.X2? —6.X3.X4 — 11X5.X6 — 9.71.X1.X2. X4 —
13.8.X2.X32 (9)

Ln(Wp)2 = 9.56 + X4 + 2.3.X5 + X4.X5 + X2? + 1.82.X4. X2% — X3 - X3.X4 —
X5.X4?% - 2.56.X22.X7?(10)

RF2 = 68.1 + 5.47.X2 + 5.47.X5 + 2.28X1 — 7.X3. X4 — 10.4. X5. X6 —

10.4.X1.X2.X4 — 13.3.X2.X32 (11)

Ln(Wp)3 = 9.75 + X4 + 2.31. X5 + X4. X5 + 1.78.X4. X2% + X22. X4% — X3 — X5.X4% —
1.42.X3.X4 — 1.78.X2.X7% (12)

RF3 = 68.1 + 5.29.X5 + 5.29.X2.X6 — 7.33.X3. X4 — 11.4.X5.X6 — 9.55.X1. X2. X4 —
13.1.X2.X32 (13)

The values of R?, R%adj, and R2- R%adj of the models presented in equations (6) to (13)
are shown in Table 4, and it is possible to see that the R?adj is always higher in the model
obtained by Genetic Programming than in the one obtained by the Ordinary Least Squares
Method, showing that the Genetic Programming optimization is the best method for building

mathematical models.

Table 4. Comparison of the models based on the results of RZj

R? RZadj R2-RZj
Ln (Wp)MT 89.22% 82.75% 6.47%
RFIMT 24.37% 7,93% 16.44%
Ln (Wp)1E 94.69% 94.59% 0,1%
Ln (Wp)2E 90.60% 90.07% 0,53%
Ln (Wp)3E 91.54% 90.89% 0,65%
RF1E 51.45% 44.52% 6,93%
RF2E 48.68% 40.99% 7.69%
RF3E 48.36% 42.17% 6.19%

Source: Authors (2023).
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The AIC and AICC values for the models presented in equations (6) to (13) are shown
in Table 5, and it can be seen that the AICC (since the rule, N/K < 40) for all models is always
lower in the model obtained by Genetic Programming than that obtained by the Ordinary Least
Squares Method, showing that Genetic Programming optimization is the best method for
building mathematical models.

Table 5. Comparison of the models based on the results of the AIC
Modelo AIC AICC
Ln (Wp)MT | -1.6678 | 14.02451

RFIMT 286.7189 | 291.5015
Ln (Wp)1E -74.67 | -74.5973
Ln (Wp)2E 8.043 8.49583
Ln (Wp)3E | -35.8763 | -35.1071

RF1E 256.198 | 258.4837
RF2E 259.0617 | 261.3474
RF3E 265.629 | 267.9147

Source: Authors (2023).

The AICC and A values of the models presented in equations (6) to (13) appear in Table
6, for the replications made by Genetic Programming the average AICC value of the three
values was calculated. The A is calculated by decreasing the smallest value of it by itself and
the smallest value, by the largest value, a value greater than and equal to 7 was found, which
means that the Ordinary Least Squares Method is the worst method for building mathematical

models.

Table 6. Comparison of the models based on the results of the A

Modelo AICC A
Ln (Wp)MT 14.02451 | 47.7607
Média
-33.7362 0
(Ln(Wp))
RFIMT 291.5015 | 28.9196
Média (RF) 262.5819 0

Source: Authors (2023).

Since the worst AICC value of the models obtained by Genetic Programming is still
better (a smaller value) than the value obtained by the Ordinary Least Squares Method, the best
value obtained by Genetic Programming was chosen to perform the Normality Test to verify
Homoscedasticity. The values presented in Table 7 show that model 2 is Homoscedastic

because the p-value is greater than 0.05 (the distribution of the residuals is normal when p-value
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Is greater than 0.05). While model 1 is Heteroscedastic because its p-value is less than 0.05, so
only model 2 is unbiased.

Table 7. Results of Homoscedasticity test

K p-Value < 0,05
Modelo p-Value (Homoscedastic)

Ln (Wp) — Rep-1 0,006 Heteroscedastic
RF-Rep-1 0,874 Homoscedastic

Source: Authors (2023).

Case 2

The models obtained using Ordinary Least Squares, using Minitab v.17, are shown in
Egs. (14)-(22).

R1 = 611.74 + 18.94X1 — 0.33X2. X3 (14)

R2 = 1.8460 — 0.1331.X1 + 0.0717X2 + 0.0007X3 + 0.1224. X1. X2 (15)
R3 = 2.7831 — 0.0477.X1 (16)

R4 = 601.63 + 10.83.X1 + 6.61.X2 — 9.X1.X2 (17)

R5 = 1.5381 + 0.1766.X1.X2 (18)
R6 = 2.7315 — 0.0074.X1 + 0.0503. X2 + 0.0763. X1. X2 (19)

R7 = 613.63 — 14.28.X1 + 3.5.X2 — 7.33.X1. X2 (20)
R8 = 1.28796 + 0.0833.X1 — 0.0214. X1. X2 (21)

R9 = 2.8012 — 0.0124. X1 — 0.0344.X2 + 0.0005. X3 + 0.0457.X1. X2 +
0.0014.X1.X2.X3 (22)

The models proposed by the Genetic Programming method with the three replicates

using the Eureqa Formulize software are found in Egs. (23) - (49).

(R1)1 = 618 + 23.7X1 + 4.83.X2 + 15.6.X1.X2 — X3 — 2.56X3% — 7.07.X1. X2% —
14.9X2.X1% (23)

(R2)1 =19+ 0.276.X2 + 0.124.X1.X2 + 0.177.X1.X2? — 0.252.X1 — 0.0369. X1 —
0.0519.X2% — 0.307.X2.X1? (24)

(R3)1 =2.71+0.0197.X1 + 0.00483.X1.X2 + 0,0821X22 + 0.0306.X12 +
0.0713.X2.X1% — 0.0682.X2 — 0.101. X1. X22 (25)
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(R4)1 = 564 + 25.2.X2 + 10.8.X1 + 57.8X12 + 31.5X2%2 — 9.X1.X2 — 27.8.X2.X1% —
49.3X12.X22 (26)

(R5)1 = 1.63 + 0.235.X2 + 0.177.X1.X2 + 0.0547.X2% — 0.0304. X1 — 0.103. X1% —
0.224.X2.X1? — 0.135. X1%.X22 (27)

(R6)1 = 2.8+ 0.0727.X1 + 0.0727.X1.X2 + 0.185.X2.X12 — 0.0727.X2 —
0.119.X1.X22 — 0.0263.X12. X22 (28)

(R7)1 = 621 + 11.8X2 + 2.17.X2.X3 — X1 — 7.33.X1.X2 — 12.5.X2. X12 —
19.3.X1.X22 — 17.3.X12.X22 (29)

(R8)1 = 1.33 + 0.0735.X1 + 0.021.X2 + 0.121.X1%.X22 — 0.0215. X1. X2 —
0.0616.X1% — 0.079X2% — 0,0535.X2.X12 (30)

(R9)1 =2.79 + 0.046.X1.X2 + 0.216.X1.X2% + 0,0385. X1%. X2% — 0.157. X1 —
0.00899.X2% — 0.052.X2.X1% (31)

(R1)2 = 618 + 23.3.X1 + 5.17.X2 + 15.4.X1.X2 — X3 — 2.56.X3% — 7.39.X12% —
6.58.X1.X2% — 15.4.X2.X12 (32)

(R2)2 = 1.93 + 0.277.X2 + 0.122.X1.X2 + 0.178.X1.X2% — 0.251. X1 — 0,0548.X12 —
0.0706.X2% — 0.307. X2. X12 (33)

(R3)2 = 2.71 + 0.0197. X1 + 0.00488. X1. X2 + 0.0821. X22 + 0.0306.X12 +
0.0713.X2.X1%2 — 0.0682.X2 — 0.101. X1. X22 (34)

(R4)2 = 564 + 25.2.X2 + 10.8.X1 + 57.8.X12 + 31.5.X22 — 9.X1.X2 — 27.8.X2. X1% —
49.3.X12.X22 (35)

(R5)2 = 1.63 + 0.235.X2 + 0.177.X1.X2 + 0.0545.X22 — 0.0304. X1 — 0.103.X1% —
0.224.X2.X12 — 0.134.X12. X22 (36)

(R6)2 = 2.81 +0.0708.X1 + 0.0763.X1.X2 + 0.187.X2.X1% — 0.0746. X2 —
0.0335.X12 — 0.0832.X2%2 — 0.117. X1. X22 (37)

(R7)2 =621+ 11.8.X2+ 2.17.X2.X3 — X1 —7.33.X1.X2 — 12.5.X2.X1% —
19.3.X1.X2% — 17.3.X12%. X 22 (38)

(R8)2 = 1.33 + 0.0834.X1 + 0.0213. X2 + 0.133.X12.X2% — 0.021. X1. X2 —
0.074.X12 — 0.0776.X2% — 0.0534. X2.X1? (39)

(R9)2 = 2.79 + 0.0457.X1.X2 + 0.216.X1. X2 + 0.0377.X12. X22 — 0.156. X1 —
0.00833X22 — 0.0518. X2.X12 (40)

(R1)3 =618 +23.7.X1 + 4.83.X2 + 15.6. X1.X2 — X3 — 2.55.X3%2 — 7.07X1% —
7.07.X1.X2% — 14.9.X2.X1? (41)

(R2)3 = 1.93 4+ 0.277.X2 + 0.122.X1.X2 + 0.178.X1.X2% — 0.251. X1 — 0.0549. X1% —
0.0708.X2% — 0.307. X2.X12 (42)
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(R3)3 =2.71+0.0197.X1 + 0.00483.X1.X2 + 0.0821.X2% 4+ 0,0306.X1% +
0,0713.X2.X1% — 0.0682.X2 — 0.101. X1. X22 (42)

(R4)3 = 564 + 25.2.X2 + 10.8.X1 + 57.8.X1% + 31.5.X22 — 9.X1.X2 — 27.8.X2. X1% —
49.3.X12.X22 (43)

(R5)3 = 1.63 + 0.235.X2 + 0.177.X1.X2 + 0.0542. X2% — 0.0304.X1 — 0.103.X12 —
0.224.X2.X1? — 0.134. X1%.X22 (44)

(R6)3 = 2.79 + 0.0707.X1 + 0.0757.X1. X2 + 0.188.X2.X12 — 0.0757. X2 —
0.0505.X22 — 0.117.X1.X22 — 0.0491. X12. X22 (45)

(R7)3=621+11.8.X2+2.17.X2.X3 — X1 —7.33.X1.X2 — 12.5.X2. X1% —
19.3.X1.X2% — 17.3. X12. X 22 (46)

(R8)3 = 1.33 + 0.0833.X1 + 0,0212. X2 + 0.132.X1%.X2% — 0.0214.X1.X2 —
0.073.X1% — 0.0766X2% — 0.0532. X2.X12 (47)

(R9)3 = 2.79 + 0.0457.X1.X2 + 0.216. X1.X22 + 0.0377.X12.X2% — 0.156. X1 —
0.00882.X22 — 0.0518. X2. X12 (48)

The values of R?, R%adj, and R? - R%adj of the models presented in equations (14) to (49)
are shown in Table 8, and again it is always possible to see that the R?adj is always higher in
the model obtained by Genetic Programming than in the one obtained by the Ordinary Least
Squares Method, showing that the Genetic Programming optimization is the best method for

building mathematical models.

Table 8. Response functions statistics-1
R? RZ%adj |R%*R?adj
(R1) MT |55.74%|52.06% | 3.68%
(R2) MT |51.42%|42.06% | 9.36%
(R3) MT [24.21%|21.18% | 3.03%
(R4) MT [27.10%) 13.85% | 13.25%
(R5) MT |38.08%|32.93% | 5.15%
(R6) MT |32.08%|23.22% | 8.86%
(R7) MT |52.59%| 46.40% | 6.19%
(R8) MT |73.99%|71.82% | 2.17%
(R9) MT |19.30%| 0.09% [19.21%
(RD1 |97.41%]|96.63% | 0.78%
(R2)1 |98.98%|98.61%| 0.37%
(R3)1 |92.35%|89.53% | 2.82%
(R4)1 |97.73%|96.89% | 0.84%
(R5)1 |99.52%|99.34%| 0.18%
(R6)1 |99.69%(99.59%| 0.1%
(R7)1 |98.92%|98.60% | 0.32%
(R8)1 |95.76%]|94.20% | 1.56%
(R9)1 ]99.94%99.92% | 0.02%
(R1)2 |97.41%]|96.46% | 0.95%
(R2)2 199.45%]99.25%| 0.2%
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(R3)2 92.35%|89.53% | 2.82%
(R4)2 |97.73%]|96.89% | 0.84%
(R5)2 99.52%]99.33% | 0.19%
(R6)2 99.17%]|98.85% | 0.32%
(R7)2 |98.92%|98.60% | 0.32%
(R8)2 |97.74%|96.45% | 1.29%
(R9)2 99.94%]99.92% | 0.02%
(R1)3 |97.40%]|96.46% | 0.94%
(R2)3 199.45%(99.25%| 0.2%
(R3)3 |92.35%|89.53% | 2.82%
(R4)3 |97.73%|96,89% | 0.84%
(R5)3 99.52%|99.33% | 0.19%
(R6)3 |99.97%]99.96% | 0.01%
(R7)3 |98.92%|98.60% | 0.32%
(R8)3 97.41%]96.45% | 0.96%
(R9)3 199.94%]99.92% | 0.02%
Source: Authors (2023).

The AIC and AICC values for the models presented in equations (14) to (49) are shown
in Table 9, and it is possible to see that the AICC for all models is always lower in the model
obtained by Genetic Programming than in the one obtained by the Ordinary Least Squares
Method, showing that the Genetic Programming optimization is the best method for building

mathematical models.

Table 9. Response functions statistics-2
Modelo AlC AICC
(R1) MT | 145.6686 | 146.1686
(R2) MT | -96.7054 | -94.8872
(R3) MT | -142.492 | -142.332
(R4) MT | 166.7845 | 167.828
(R5) MT | -100.408 | -100.248
(R6) MT | -120.853 | -119.81
(R7) MT | 141.5464 | 142.5899
(R8) MT | -168.224 | -167.724
(R9) MT | -121.776 | -118.919
(RD1 114.1467 | 118,3467
(R2)1 -196.262 | -190.367
(R3)1 -192.179 | -186.284
(R4)1 81.1275 | 87.02224
(R5)1 -219.308 | -213.413
(R6)1 -133.384 | -129.184
(R7)1 46.141 50.341
(R8)1 -207.732 | -201.837
(R9)1 -312.175 | -307.975
(R1)2 79.3555 | 85.25024
(R2)2 -211.674 | -205.779
(R3)2 -192.202 | -186.307
(R4)2 81.1275 | 87.02224
(R5)2 -221.432 | -215.537
(R6)2 -231.477 | -225.582
(R7)2 46.141 50.341
(R8)2 -220.524 | -214.629
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(R9)2 | -312.977 | -308.777
(R1)3 | 79.0965 | 84.99124
(R2)3 | -211.674 | -205.779
(R3)3 | -192.181 | -186.286
(R4)3 | 81.1275 | 87.02224
(R5)3 | -219.314 | -213.419
(R6)3 | -290.625 | -284.73
(R7)3 | 46.141 | 50.341

(R8)3 | -220.352 | -214.457
(R9)3 | -312.977 | -308.777

Source: Authors (2023).

The values of the AICC and A of the models presented in equations (14) to (49) appear
in Table 10; for the replications made by Genetic Programming, the value of the average of the
AICC of the three values was calculated. The A is calculated by decreasing the smallest value
of it itself and the smallest value of the largest value, a value greater than and equal to 7 was
found which means that the Ordinary Least Squares Method is the worst method for building

mathematical models.

Table 10. Comparison of the models based on the results of the A

Modelo AICC A
(RL) MT 146.1686 | 49.973
Média das Rep(R1) 96.196 0
(R2) MT -94.8872 | 105.7528
Média das Rep(R2) | -200.64 0
(R3) MT -142.332 | 43.958
Média das Rep(R3) | -186.29 0
(R4) MT 167.828 | 80.8058
Média das Rep(R4) | 87.0222 0
(R5) MT -100.248 | 113.875
Média das Rep(R5) | -214.123 0
(R6) MT -119.81 93.355
Média das Rep(R6) | -213.165 0
(R7) MT 142.5899 | 92.2489
Média das Rep(R7) 50.341 0
(R8) MT -167.724 | 42.584
Média das Rep(R8) | -210.308 0
(R9) MT -118.919 | 189.591
Média das Rep(R9) | -308.51 0

Source: Authors (2023).

The values presented in Table 11 show that only model 2 is Heteroscedastic (p-value <
0.05); therefore, only this model is biased. It is interesting to note that verifying
Homoscedasticity does not mean that the quality of the model is low or high, but rather that

there is or is not a tendency to overestimate or underestimate the predicted values.
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Table 11. Results of Homoscedasticity test
p-Value < 0,05
(Homoscedastic)
R1-Rep-3 0,527 Homoscedastic
R2-Rep-2 | < 0,005 Heteroscedastic
R3-Rep-2 0,861 Homoscedastic
R4-Rep-2 0,833 Homoscedastic
R5-Rep-2 0,741 Homoscedastic
R6-Rep-3 0,359 Homoscedastic
R7-Rep-2 0,246 Homoscedastic
R8-Rep-2 0,415 Homoscedastic
R9-Rep-2 0,665 Homoscedastic
Source: Authors (2023).

Modelo | p-Value

CONCLUSION

From the results obtained in this work, it can be concluded that GP can obtain
mathematical models from data obtained by a DOE experimental array with performance
always superior to OLS. Genetic Programming produces mathematical models that are
sometimes differentiated when several replicates are performed, but always with similar
explanatory power and with biased characteristic that does not affect in any way the quality of

prediction of the dependent variable being studied.
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