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ABSTRACT With the explosive growth of mobile data traffic and rapidly rising energy price, how to
implement caching at small cells in an energy-efficient way is still an open problem and requires further
research efforts. In this paper, we study the energy-efficient context-aware resource allocation problem,
which falls into the category of mixed integer nonlinear programming (MINLP) and is NP-hard. To pro-
vide a tractable solution, the MINLP problem is decoupled and reformulated as a one-to-one matching
problem under two-sided preferences, which are modeled as the maximum energy efficiency that can be
achieved under the expected matching. An iterative algorithm is developed to establish preference profiles
by employing nonlinear fractional programming and Lagrange dual decomposition. Then, we propose
an energy-efficient matching algorithm based on the Gale–Shapley algorithm, and provide the detailed
discussion and analysis of stability, optimality, implementation issues, and algorithmic complexity. The
proposed matching algorithm is also extended to scenarios with preference, indifference, and incomplete
preference lists by introducing some tie-breaking and preference deletion rules. The simulation results
demonstrate that the proposed algorithm achieves significant performance and satisfaction gains compared
with the conventional algorithms.

INDEX TERMS Energy-efficient, context-aware, caching, ultra-dense, small cell.

I. INTRODUCTION
The explosive growth of mobile internet will lead to an
avalanche of mobile data traffic, which is predicted to
increase more than 1000 times over the next decade [1].
Along with the explosion of data traffic, it is also expected
that almost 50 billion devices will be connected by 2020 [2].
Considering that air-interface spectrum efficiency (SE) is
approaching its physical limit and new spectrum acquisi-
tion becomes more and more difficult, a further require-
ment of 1000-fold increase in capacity from the long term
evolution (LTE) system is a very challenging task [3].

To tackle this challenge, deploying small cells (SCs) in
an ultra-dense way to complement existing cellular infras-
tructures provides a promising approach to further increase
area SE by shrinking cell size and bringing contents closer
to users [4]. SCs represent a novel networking paradigm

shift from conventional long-range, high-cost macro base
stations (MBSs) to short-range, low-cost small cell base
stations (SBSs), which can be ultra-densely deployed under-
laying MBSs to enable localized communications and
high-density spatial reuse of wireless resources [4]. Despite
numerous benefits, the integration of ultra-dense SBSs with
conventional MBSs poses new challenges in resource alloca-
tion design. High-speed backhaul links which connect SBSs
with the core network are indispensable to guarantee harsh
and stringent quality of service (QoS) requirements of numer-
ous delay-sensitive applications. In a regime that the cell
density is comparable to user density [4], [5], it will be too
costly to deploy high-speed fiber backhaul for every SBS.
Therefore, state-of-the-art SC architectures propose to handle
highly predicable bulky traffic by implementing caching at
the wireless edge. By such, the storage capacity is able to
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replace the limited backhaul capacity, which is used only to
refresh caches at a rate that is much slower than users’ content
request rates.

A few works have addressed resource allocation problems
in caching based SCs. The idea of using caching to support
mobility has been exploited in [6]–[8]. The main underlying
theme behind this body of works is to cache contents at
local access points to reduce the delay experienced by users
moving from one cell to another. Another line of works aim
at maximizing the hit ratio of content requests by proactive
caching. Due to the limited storage capacity, it is critical to
properly predict future requests and then decide which con-
tents to cache based on content popularity. A common sim-
plification for content popularity is to assume that the global
content popularity follows the Zipf distribution [4], [9], [10].
More complicated models that employ user-specific content
popularity and social information for future content request
predictions were studied in [11]–[13]. Instead of focusing
on individual client, collaborative frameworks for coordi-
nating content retrieval in cooperative SCs and users were
proposed in [14] and [15], respectively. In [4] and [6], the
authors proposed coded content caching schemes to enable
robust and fast content dissemination in large-scale dynamic
networks at the cost of increased computation complexity.
The joint optimization of content caching and pushing
through broadcasting is shown to effectively alleviate cellular
data bottleneck and resolve randomness of content request
arrivals [10], [17]. In video streaming, while full caching
would incur tremendous cost, partial caching that only
stores part of the requested video stream based on view-
ing patterns provides a promising way for efficient content
splitting [18], [19].

However, most of the previous studies mainly focus
on SE optimization and ignore energy efficiency (EE)
during the resource allocation process. It is difficult to
directly extended these works to the domain of EE opti-
mization because optimum EE and SE are not always
achievable simultaneously and may sometimes even con-
flict with each other [20]. On the other hand, EE has
already become a critical design factor in cellular net-
works due to rapidly rising energy price and environmen-
tal concerns [21]. The current mobile network operational
expenditure (OPEX) for electricity globally is already more
than 10 billion dollars, among which 60%− 80% of the
energy is consumed by BSs [22]. The CO2 emissions pro-
duced by cellular networks are as high as those from
8 million vehicles [21]. It is expected that the ultra-densely
deployed SBSs and their corresponding network infras-
tructures will further incur significant increase in electri-
cal energy consumption and CO2 production. Furthermore,
energy-efficient resource allocation is also important for
UEs because UEs with limited battery capacity can quickly
run out of battery if without careful energy optimization
design. As a result, how to implement caching at the ultra-
dense SCs in an energy-efficient way while satisfying vari-
ous practical system constraints such as transmission power,

backhaul capacity, storage capacity, QoS requirement, etc.,
is still an open problem and requires further research
efforts.
In this paper, we propose an energy-efficient context-aware

matching approach for resource allocation by exploiting
properties of matching theory, nonlinear fractional program-
ming, and Lagrange dual decomposition. Matching theory
provides a low-complexity decentralized self-organizing
solution to the two-sided matching problem in college admis-
sions [23], marriage stability [24], labor markets [25], etc.,
and has been widely applied for solving resource alloca-
tion problems in cellular networks [6], [11], [26], cognitive
radios [27], social networks [28], D2D communications [29],
mobile energy-harvesting networks [30], etc.
The contributions of this paper are summarized in the

following three main aspects:
• We consider the scenario that both SBSs and UEs seek
to form proper SBS-UE partnerships in order to maxi-
mize EE under practical constraints of QoS, transmis-
sion power, backhaul capacity, and storage capacity.
The energy-efficient context-aware resource allocation
problem for SBSs is formulated as a joint partner selec-
tion and power allocation problem, which falls into
the category of NP-hard mixed integer nonlinear pro-
gramming (MINLP). To provide a tractable solution, we
decouple the partner selection and power allocation sub-
problems by reformulating theMINLP problem as a one-
to-one matching problem, which consists of two finite
and disjoint sets (SBSs and UEs), and their preferences
over each other.

• Preference profiles of SBSs and UEs are modeled based
onmaximumEE that can be achieved under the expected
matching by taking into consideration dynamically vary-
ing channel states and aggregate interference levels.
A SBS’s preference is obtained by solving a distributed
power allocation problem, which is nonconvex due to the
objective function in fractional form. We transform the
nonconvex problem into an equivalent convex one with
an objective function in subtractive form and propose
an iterative algorithm to solve it based on nonlinear
fractional programming [31] and Lagrange dual decom-
position [32].

• With the established preference profiles, we propose an
matching algorithm based on the Gale-Shapley (GS)
algorithm [23], and prove that the produced matching
is not only stable for both SBSs and UEs, but also
is weak Pareto optimal for SBSs. We also extend the
proposed matching algorithm to the cases of preference
indifference and incomplete preference lists by introduc-
ing some tie-breaking and preference deletion rules, and
provide a detailed discussion and analysis for stability,
optimality, implementation issues, and algorithmic com-
plexity. Finally, the proposed algorithm is evaluated by
simulations and compared with conventional algorithms
from the perspective of EE performance and satisfaction
gains.

1850 VOLUME 3, 2015



Z. Zhou et al.: Energy-Efficient Context-Aware Matching for Resource

The structure of this paper is organized as follows:
Section II describes the system model and the problem
formulation. Section III introduces the proposed energy-
efficient context-aware matching algorithm and analyzes
the stability, optimality, implementation issues and algo-
rithmic complexity. Section IV presents simulation results
and performance evaluations. Section V draws relevant
conclusions.

II. SYSTEM MODEL AND PROBLEM FORMULATION
In this section, we firstly introduce the system model of
caching-enabled ultra-dense small cells, and then presents the
problem formulation.

A. SYSTEM MODEL
We consider the ultra-dense SC scenario that is composed of
a conventional high-power MBS, K low-power SBSs such
as picocells, microcells, or femtocells, and M UEs [33].
The density of SBSs is comparable to or even larger than
UE density, i.e., K > M , which is shown in Fig. 1. Due
to the ultra-dense deployment, we assume that each SBS
can serve at most one UE. The MBS is used to provide
downlink coverage of the overall network, which is generally
equipped with advanced signal processing units and high-
speed backhaul links. In contrast, SBSs with limited storage
and backhaul capacities are deployed near to UEs to offload
traffic loads from the MBS and deliver high QoS at low
operation costs.

FIGURE 1. System model of ultra-dense small cells.

Throughout the paper, the words ‘‘file’’ and ‘‘content’’
are used interchangeably for the same meaning. In the
network, the sets of SBSs and UEs are denoted as S =
{s1, · · · , sk , · · · , sK } and U = {u1, · · · , um, · · · , uM },
respectively. Each SBS sk ∈ S is equipped with a data
storage of capacity Dk that contains a set of cached files
Ck ⊆ C from the total set of contents C in the sys-
tem. For simplicity, all files are assumed to have the
same size s. Each file is requested based on its popularity,
which is assumed to follow a Zipf distribution [9], [10].

When sk has available backhaul bandwidth, it can cache
popular files via the backhaul until reaching the max-
imum storage capacity Dk . The macro-cell spectrum is
divided into orthogonal frequency channels (e.g., an orthog-
onal resource block in LTE), and each SBS sk ∈ S is
allocated with a bandwidth wk . To increase SE, the fre-
quency spectrum is reused by SBSs after certain geo-
graphical distance with dynamic frequency allocation [34].
Both SBSs and UEs seek to form SBS-UE partner-
ships through proper partner selections in order to opti-
mize EE while guaranteeing QoS requirements. The
SBS and UE partner selection decisions are defined
as follows.
Definition 1: The SBSs’ partner selection matrix X is

a K ×M matrix with the (k,m)-th element xk,m ∈ {0, 1}
indicating the SBS-UE partnership (sk , um) for the SBS sk ,
∀sk ∈ S, ∀um ∈ U . If xk,m = 1, sk is willing to form a
partnership with um, and if xk,m = 0, otherwise.
Definition 2: The UEs’ partner selection matrix Y is

a M × K matrix with the (m, k)-th element ym,k ∈ {0, 1}
indicating the SBS-UE partnership (um, sk ) for the UE um,
∀sk ∈ S, ∀um ∈ U . If ym,k = 1, um is willing to form a
partnership with sk , and if ym,k = 0, otherwise.
Remark 1: In general, the partner selection decisions of

sk and um may contradict with each other due to different
preferences, i.e., xk,m 6= ym,k . A SBS-UE partnership (sk , um)
can be formed if and only if xk,m = ym,k = 1.
Over a time period of T , each UE um ∈ U requests Nm

files Fm = {f m1 , · · · , f
m
Nm}, Fm ⊂ C from its serving SBS,

e.g., sk . If the requested files are available in the cache of sk ,
i.e., Fm ∩ Ck , then these files will be delivered directly from
sk to um without going through the core network. Defining
tc as the channel coherence time, there are a total of bT/tcc
time instants, and the interval duration between any two
consecutive time instants is tc. At time instant t , the maximum
achievable transmission rate between sk and um is given by

rk,m(t) = wk log2

(
1+

xk,mym,kpk (t)gk,m(t)
N0 +

∑
j 6=k,j∈Sk pj(t)gj,m(t)

)
, (1)

where gk,m is the channel gain between sk and um, pk is the
transmission power of sk , and

∑
j6=k,j∈Sk pj(t)gj,m(t) denotes

the aggregate interference caused by the set of SBSs Sk
that reuse the same channel. gj,m represents the interference
channel gain between sj and um. Fast fading due to multi-path
propagation and slow fading due to shadowing and pathloss
are considered in the channel model [35]. For example, gk,m is
given by

gk,m = $βk,mζk,md
−α
k,m, (2)

where$ is the pathloss constant, βk,m is the fast-fading gain
with exponential distribution, ζk,m is the slow-fading gain
with log-normal distribution, α is the pathloss exponent, and
dk,m is the transmission distance.
Denoting ‖Fm ∩ Ck‖ as the number of files that are

available in sk ’s cache, the estimated time duration to transmit
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‖Fm ∩ Ck‖ to um is given by

T̃ cachek,m =
‖Fm ∩ Ck‖s

r̄k (t)
, (3)

where r̄k (t) is the historical average transmission rate of sk
until time instant t . In case of T̃ cachek,m > T , only a portion of
cached data can be delivered to um within [0,T ]. Therefore,
the time duration during which cached data can be transmitted
is defined as

Tmaxk,m = min{T̃ cachek,m ,T }. (4)

If the requested files are not available in sk ’s cache, i.e.,
Fm\{Fm ∩ Ck}, sk has to firstly retrieve these files from the
core network through its backhaul link with capacity Bk , and
then transmits them to um. The maximum transmission rate
between sk and um is given by

rmaxk,m (t) = min{rk,m(t), xk,mym,kBk}. (5)

Note that, in case of limited backhaul capacity and user
proximity, Bk is insufficient to keep up with rk,m(t), i.e.,
Bk � rk,m(t). As a result, um will experience a significantly
increased delay, which is independent from the quality of
wireless channels.

The total throughput (bits) between sk and um during T is
defined as

Uk,m =


⌊
Tmaxk,m /tc

⌋∑
t=1

rk,m(t)+
bT/tcc∑

t=
⌊
Tmaxk,m /tc

⌋ rmaxk,m (t)

 tc, (6)

where bxc denotes the largest integer not greater than x.
The total energy consumption (J) of sk during T is given by

Ek =
bT/tcc∑
t=1

(
1
η
pk (t)+ pcirk

)
tc, (7)

where η is the power amplifier (PA) efficiency, i.e., 0<η< 1.
pcirk is the circuit power of sk which represents the average
energy consumption of device electronics such as mixers,
filters, digital-to-analog/analog-to-digital converters, etc.,
and is assumed as a constant.

The utility EE (bits/J) is defined as the ratio of throughput
to total energy consumption [36]. The EE of sk is given by

UEE
k =

∑
um∈U Uk,m
Ek

=

∑⌊
Tmaxk,m /tc

⌋
t=1 rk,m(t)+

∑bT/tcc
t=
⌊
Tmaxk,m /tc

⌋ rmaxk,m (t)∑bT/tcc
t=1

1
η
pk (t)+ pcirk

. (8)

Regarding UE um, since the total downlink throughput
between sk and um during T is the same asUk,m defined in (6),
we only need to consider the total energy consumption, which
is calculated as

Em = pcirm T , (9)

where pcirm is the circuit power of um consumed for receiving
data, and is assumed as a constant. The EE of um is given by

UEE
m =

∑
sk∈S Uk,m
Em

=

(∑⌊
Tmaxk,m /tc

⌋
t=1 rk,m(t)+

∑bT/tcc
t=
⌊
Tmaxk,m /tc

⌋ rmaxk,m (t)

)
tc

pcirm T
.

(10)

B. PROBLEM FORMULATION
In this subsection, firstly, we introduce the problem formu-
lation for SBSs. During the resource allocation process, any
SBS faces the following challenges:
• Which UE should be selected to form a SBS-UE part-
nership in order to maximize EE considering various
practical constraints and factors such as local content
availability, backhaul capacity, QoS requirement, chan-
nel state, and interference levels, etc?

• How much transmission power should be allocated for
the expected SBS-UE partnership in order to maxi-
mize EE while satisfying QoS and transmission power
constraints?

• Will the selected UE also be willing to form this
partnership?

• Will the formed partnership be easily disrupted by other
SBSs who also want to form partnerships with the
selected UE?

Thus, the energy-efficient context-aware resource alloca-
tion problem for a SBS sk consists of two subproblems, the
first is denoted as the power allocation subproblem, and the
second is denoted as the partner selection subproblem.
The power allocation subproblem and the partner selec-
tion subproblem are solved in Subsection III-A, and III-B,
respectively.
Denoting xk = {xk,1, · · · , xk,m, · · · , xk,M } and pk =
{pk (1), · · · , pk (t), · · · , pk (bT/tcc)} as sk ’s partner selection
and power allocation strategy sets, respectively. For any
sk ∈ S, the corresponding EE optimization problem is for-
mulated as

max
(xk,pk)

UEE
k (xk,pk)

s.t. C1 : 0 ≤ pk (t) ≤ pmaxk , t =
[
1,
⌊
Tmaxk,m /tc

⌋ ]
C2 : 0 ≤ pk (t) ≤ pBk (t), t =

[ ⌊
Tmaxk,m /tc

⌋
, bT/tcc

]
C3 : Uk,m(xk,m,pk) ≥ xk,mym,kUmin

k,m, ∀um ∈ U ,
C4 : xk,m = {0, 1}, ∀um ∈ U ,
C5 :

∑
um∈U

xk,m ≤ 1. (11)

C1 and C2 are the maximum transmission power constraints,
i.e., the transmission power should be no greater than pmaxk

when t =
[
1,
⌊
Tmaxk,m /tc

⌋ ]
, and no greater than pBk (t) when

t =
[ ⌊
Tmaxk,m /tc

⌋
, bT/tcc

]
. pBk (t) is the transmission power
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that achieves exactly the backhaul capacity Bk and is calcu-
lated as

pBk (t) =

(
2
Bk
wk − 1

)(
N0 +

∑
j 6=k,j∈Sk pj(t)gj,m(t)

)
gk,m(t)

. (12)

C3 specifies the QoS requirement in terms of minimum
throughput. C4 and C5 ensure that sk serves at most one UE.
Secondly, we introduce the problem formulation for UEs.

Similarly, any UE also faces the following challenges:
• Which SBS should be selected to form a UE-SBS part-
nership in order to maximize EE?

• Considering various practical constraints and factors,
will the selected SBS also be willing to form this part-
nership?

• Will the formed partnership be easily disrupted by
other UEs who also want to form partnerships with the
selected SBS?

For each um ∈ U , denoting ym = {ym,1, · · · ,
ym,k , · · · , ym,K } as um’s partner selection strategy set, the
corresponding EE optimization problem is formulated as

max
ym

UEE
m (ym)

s.t. C6 : Uk,m(ym,k ) ≥ xk,mym,kUmin
k,m, ∀sk ∈ S,

C7 : ym,k = {0, 1}, ∀sk ∈ S,
C8 :

∑
sk∈S

ym,k ≤ 1. (13)

C6 specifies the QoS constraint similarly as C3. C7 and C8
ensure that um is served by at most one SBS.
Remark 2: Regarding the QoS constraints C3 and C6,

from (6), we can see that the files Fm ∩ Ck are transmitted
at data rate rk,m during the interval [0,Tmaxk,m ], and the files
Fm\{Fm ∩ Ck} are transmitted at data rate rmaxk,m during the
interval [Tmaxk,m ,T ]. As a result, Fm ∩ Ck only depends on
the instantaneous channel capacity, but Fm\{Fm ∩ Ck} are
exposed to possible QoS degradation due to the limited back-
haul capacity Bk .
Remark 3: From (11), it is noted that the partner selection

subproblem and the power allocation subproblem are cou-
pled with each other. The formulated problem falls into the
category of MINLP, which is NP-hard and computationally
intractable.

To solve (11), we decouple the partner selection and the
power allocation subproblems by reformulating the MINLP
problem as a one-to-one matching problem. The matching
problem is denoted as the triple (S,U ,P), which consists
of two finite and disjoint sets, i.e., S, U , and the set of
their preferences P . A one-to-one matching µ is defined as
follows [24]:
Definition 3: In the matching problem (S,U ,P), a match-

ing µ is a one-to-one correspondence from the set S ∪ U
onto itself under preference P such that for each sk ∈ S and
um ∈ U , µ(sk ) ∈ U ∪ {sk} and µ(um) ∈ S ∪ {um}. µ(sk ) = um
if and only if µ(um) = sk .

Ifµ(um) = um orµ(sk ) = sk , um or sk stays single. It means
that either none SBS is able to satisfy the QoS requirement of
uk , or there is no UE to be served by sk . In the former case,
QoS requirement should be reduced to a lower level for sk
to be served by a SBS. While in the latter case, sk can enter
into sleeping mode to save energy. µ(sk ) = sk and µ(sk ) ∈
U cannot hold at the same time. The same property holds
for µ(um). Either sk or um designs a proposal to demonstrate
its expected partner based on its preference. A total of K SBS
(or M UEs) may jointly design K (or M ) proposals, and the
set of these proposals is defined as a matching. We assume
that either sk or um cares about whom it is matched with,
but is not otherwise concerned with partners of other SBSs or
UEs. In the following, we discuss how to establish the two-
sided preferences P and how to produce an energy-efficient
context-aware matching µ under P .

III. THE ENERGY-EFFICIENT CONTEXT-AWARE
MATCHING APPROACH
In this section, firstly, we show how to establish preference
profiles by using an iterative algorithm. Then, the energy-
efficient context-aware matching algorithm under the estab-
lished two-sided preferences is introduced in detail. Finally,
stability, optimality, implementation issues and algorithmic
complexity are discussed and analyzed.

A. PREFERENCE PROFILE ESTABLISHMENT
Before solving the energy-efficient matching problem, the set
of preference profiles P needs to be established. Taking the
SBS sk as an example, we model sk ’s preference over um as
the maximum EE that can be achieved when they are matched
with each other, i.e., µ(sk ) = um, µ(um) = sk , and xk,m =
ym,k = 1. The maximum EE under this matching is obtained
by solving the following power allocation problem:

max
pk

UEE
k (pk)

∣∣∣
µ(sk )=um

s.t. C1,C2,C3. (14)

To solve (14), we introduce a transformation to handle
the nonconvex problem via nonlinear fractional program-
ming [31], and propose an iterative algorithm to solve the
transformed problem. The maximum EE under µ(sk ) = um
is defined as

q∗k,m = max
pk

UEE
k (pk)

∣∣∣
µ(sk )=um

=
Uk,m(p∗k)
Ek (p∗k)

, (15)

where p∗k is the optimum power allocation strategy set of sk .
The following theorem can be derived based on [31]:
Theorem 1: qd∗i is achieved if and only if

max
pk

Uk,m(pk)− q∗k,mEk (pk)

= Uk,m(p∗k)− q
∗
k,mEk (p

∗

k) = 0. (16)

Theorem 1 shows that the transformed problem with an
objective function in subtractive form is equivalent to the non-
convex problem with an objective function in fractional form.
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Algorithm 1 Iterative Power Allocation Algorithm

1: Input: Fm, gk,m,
∑

j∈Sk ,j 6=k gj,mpj, Ck , T̃
cache
k,m , pcirk , pmaxk ,

pBk , U
min
k,m .

2: Output: q∗k,m.
3: Initialize: Nmax , 1, qk,m
4: while n < Nmax do
5: obtain p̂k using (21) or (22)
6: if Uk,m(p̂k)− qk,mEk (p̂k) > 1 then
7: Update: qk,m = Uk,m(p̂k)/Ek (p̂k)
8: else
9: p∗k = p̂k, and q∗k,m = Uk,m(p∗k)/Ek (p

∗

k)
10: end if
11: Update: n = n+ 1
12: end while

Therefore, instead of solving (14), we can focus on the
following equivalent problem:

max
pk

Uk,m(pk)− q∗k,mEk (pk)

s.t. C1,C2,C3. (17)

The new problem can be viewed as a weighted sum of Uk,m
and Ek , where the parameter q∗k,m acts as the price (negative
weight) of the power consumption.

It can be easily seen that (17) is a convex optimiza-
tion problem. However, the specific value of q∗k,m is still
unknown. Thus, we propose an iterative algorithm based on
Dinkelbach’s method to find q∗k,m. The iterative power alloca-
tion algorithm is summarized in Algorithm 1. The initial val-
ues of qk,m can be set as a small positive number, e.g., 10−4.
At each iteration, the following transformed problem is solved

max
pk

Uk,m(pk)− qk,mEk (pk)

s.t. C1,C2,C3. (18)

Karush-Kuhn-Tucker (KKT) conditions and Lagrange dual
decomposition are used to solve the above problems. The
Lagrangian associated with (18) is given by

LEEk (pk,3k ,2k , ϑk )

= Uk,m(pk)− qk,mEk (pk)−

⌊
Tmaxk,m /tc

⌋∑
t=1

λk (t)(pk (t)− pmaxk )

+ϑk

(
Uk,m(pk)− Umin

k,m

)
−

bT/tcc∑
t=
⌊
Tmaxk,m /tc

⌋θk (t)
(
pk (t)− pBk (t)

)
,

(19)

where3k and2k are the Lagrange multiplier vectors associ-
ated withC1 ∼ C2, respectively. ϑk is the Lagrangemultiplier
corresponding to C3. The equivalent dual problem is decom-
posed as [32]

min
(3k ,2k , ϑk ≥ 0)

max
pk

LEEk (pk,3k ,2k , ϑk ). (20)

If t =
[
1,
⌊
Tmaxk,m /tc

⌋ ]
, the optimal value p̂k (t) corresponding

to qk,m(t) is given by

p̂k (t) =
[
η(1+ ϑk )wk tc log2 e
qk,m(t)+ ηλk (t)

−
Ik,m(t)+ N0

gk,m(t)

]+
, (21)

where Ik,m(t) =
∑

j∈Sk ,j 6=k gj,m(t)pj(t), and [x]+ =

max{0, x}. If t =
[ ⌊
Tmaxk,m /tc

⌋
, bT/tcc

]
, p̂k (t) is given by

p̂k (t) =
[
η(1+ ϑk )wk tc log2 e
qk,m(t)+ ηθk (t)

−
Ik,m(t)+ N0

gk,m(t)

]+
. (22)

Equation (21) and (22) indicate a water-filling algorithm,
where the water level is determined by the cost of satisfying
the transmission power and QoS constraints, i.e., λk , θk ,
and ϑk , respectively, as well as the current cost of total power
consumption given by qk,m. Then, the Lagrange multipliers
are updated by using the gradient method [37] as

λk (t, τ + 1) =
[
λk (t, τ )+ εk,λ(t, τ )

(
p̂k (t, τ )− pmaxk

)]+
,

θk (t, τ + 1) =
[
θk (t, τ )+ εk,θ (t, τ )

(
p̂k (t, τ )− pBk (t)

)]+
,

ϑk (τ + 1) =
[
ϑk (τ )− εk,ϑ (τ )

(
Uk,m(τ )− Umin

k,m

)]+
,

(23)

where τ is the iteration index, and ε is the positive step size.
We have adopted a constant step size to strike a balance
between optimality and convergence speed.
Then, qk,m is updated for the next iteration as qk,m =

Uk,m(p̂k)/Ek (p̂k). The iteration process will continue until
either the stoping criteria1 or the maximum iteration number
Nmax is reached. In the final iteration, we set p∗k = p̂k, and
calculate q∗k,m as (15).
Similar to the modeling of sk ’s preference over um, the

preference of um over sk is also defined as the maximum
EE that can be achieved under µ(um) = sk . Since um has
no knowledge of the contents stored in the sk ’s cache, and
the denominator of (10) is a constant term over [0,T ], um’s
preference only depends on the total throughput that can be
provided by sk during [0,T ], i.e., Uk,m.
The preference profile establishment algorithm is summa-

rized in Algorithm 2. Firstly, by using Algorithm 1, sk is able
to obtain the maximum EE that can be achieved for every
possible matching with um ∈ U . We introduce a preference
relation �, which is a complete, reflexive, and transitive
binary relation between any sk ∈ S and um ∈ U [24].
We write um �sk um′ to mean sk prefers um to um′ , which
is defined as

um �sk um′ ⇔ q∗k,m > q∗k,m′ . (24)

Similarly, we write sk �um sj to mean um prefers sk to sj,
which is defined as

sk �um sj ⇔ Uk,m(p∗k) > Uj,m(p∗j ). (25)

Next, the preference profile of sk is represented by an ordered
list of preferences on the set U , which is established by
sorting every um ∈ U in descending order based on the
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Algorithm 2 Preference Establishment Algorithm
1: Input: S, U .
2: Output: P .
3: for sk ∈ S do
4: for um ∈ U do
5: calculate mutual preferences of the SBS-UE pair

(sk , um) using Algorithm 1.
6: end for
7: end for
8: for sk ∈ S do
9: establish P(sk ) by sorting each um ∈ U in descending

order based on q∗k,m.
10: end for
11: for um ∈ U do
12: establish P(um) by sorting each sk ∈ S in descending

order based on Uk,m.
13: end for

Algorithm 3 Energy-Efficient Stable Matching Algorithm
1: Input: S,U ,P .
2: Output: an energy-efficient context-aware matching µ.
3: Initialize: µ = φ, 8 = S.
4: while 8 6= φ do
5: for sk ∈ 8 do
6: sk proposes to the most preferred UE among those

who have not yet rejected it in P(sk ).
7: end for
8: for um ∈ U do
9: if um receives a proposal from sk , and prefers sk to

its currently engaged sj, i.e., sk �um sj then
10: sk is kept engaged, while sj is rejected, i.e.,

µ(um) = sk ;
11: add sj into 8, and remove sk from 8.
12: else
13: sj is continually kept engaged, while sk is

rejected, i.e., µ(um) = sj.
14: end if
15: end for
16: end while

criteria of maximum achievable EE q∗k,m, e.g., P(sk ) =
{· · · , um, um′ · · · }. In a similar way, um’s preference is rep-
resented by an ordered list of preferences on the set S , e.g.,
Pum = {· · · , sk , sj, · · · }. The set of preference lists is denoted
as P = {P(s1), · · · ,P(sK ),P(u1), · · · ,P(uM )}.

B. THE ENERGY-EFFICIENT CONTEXT-AWARE
MATCHING ALGORITHM
After establishing preference profiles for each sk ∈ S and
um ∈ U , a one-to-one matching between SBSs and UEs
is produced based on the GS algorithm [23]. The proposed
energy-efficient context-aware matching algorithm is sum-
marized in Algorithm 3. To start, each SBS proposes to its
most favorite UE, who is ranked as the first choice on its

preference list. After receiving the proposal, each UE rejects
the SBS if it already holds a better proposal. Any SBS who
is not rejected at this point is kept ‘‘engaged’’. In the next
step, any SBS who was rejected previously proposes to its
next choice who is the most preferred UE among those who
have not yet rejected it. If a SBS finds that it has been rejected
by all of the UEs whom it has already proposed to, then it
issues no further proposals, and enters into the sleeping mode
for energy saving. Each UE receiving proposals rejects all
but its most preferred among the group consisting of the new
proposals together with any SBS it may have kept engaged
from previous steps. The process continues until no SBS is
rejected, when every SBS is either matched to someUE or has
been rejected by every UE on its preference list. At the end
of this process, we will have a stable matching between SBSs
and UEs. The algorithm has a nature of deferred acceptance
since UEs are able to keep the best available SBS at any step
engaged without accepting it outright.
In the case of preference indifference, i.e., some SBS or

UE is indifferent between two or more possible matching
partners, Algorithm 3 can be extended to handle this prob-
lem by introducing some fixed tie-breaking rule. For exam-
ple, at any step of the algorithm when sk must indicate a
choice between um and um′ whom are equally well liked,
i.e., q∗k,m = q∗k,m′ , the tie-breaking rule proceeds as if the
preferences are according to the order of signal to noise plus
interference ratio (SINR), or occupancy time of the backhaul
link, i.e., min{T −Tmaxk,m ,T −T

max
j,m }. Such a tie-breaking rule

can be used to specify which UE a SBS will propose to when
it is indifferent about its next proposal, or to specify which
SBS a UE will keep engaged when it is indifferent between
two or more SBSs.

In the case of incomplete preference lists, SBSs on one side
of the matching market only have partial knowledge about
UEs on the other side. Taking an example, in a large-scale
network, it is sometimes infeasible for a SBS to obtain the
complete knowledge of every UE due to scalability issues.
If the knowledge of um is not available to sk , then um will
not appear on sk ’s preference list P(sk ). We assume that
P(sk ) and P(um) are consistent for any sk ∈ S and um ∈ U ,
which represents that if deleting um from sk ’s preference list
P(sk ) implies that sk is also deleted from um’s preference list
P(um) [25]. Algorithm 3 can be easily modified to handle the
matching problem with incomplete preference list by intro-
ducing some preference deletion rule. For example, SBSs and
UEs that cannot be involved in thematching process should be
deleted from each other’s preference list. If the SBS-UE pair
(sk , um) is deleted, it entails deleting sk and um from P(um)
and P(sk ), respectively. Then the algorithm can proceed as in
the case of complete lists to produce an matching, which can
be obtained in polynomial time.

C. DISCUSSIONS
In this subsection, the stability, optimality, implementation
issues and algorithmic complexity of the proposed algorithm
are discussed and analyzed in detail.
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1) STABILITY
Before proving that a matching is stable, we firstly introduce
the concepts of blocking pair. In an instance of the energy-
efficient context-aware matching problem, we assume that
there exists a SBS sk and a UE um who are not matched to one
another at µ, i.e., µ(sk ) 6= um and µ(um) 6= sk . If sk and um
prefer each other more than their current assignments at µ,
i.e., um �sk µ(sk ) and sk �um µ(um), we say that (sk , um)
is the blocking pair who blocks the matching µ. Thus, µ is
unstable since both sk and um are eager to disrupt µ and to
be matched with each other. The stability of a matching is
defined as follows [24]:
Definition 4: A matching µ is stable if it is not blocked by

any individual SBS-UE pair.
In order to show that the proposed energy-efficient match-

ing is stable, we need to prove that any SBS-UE pair cannot
improve its EE by disrupting the partner selection and power
allocation decisions produced by µ.
Theorem 2: The matching µ produced by Algorithm 3 is

stable.
Proof: The proof of Theorem 2 is given in

Appendix A.

2) OPTIMALITY
Regarding optimality, we derive the following theorems by
exploiting properties of nonlinear fractional programming
and matching theory.
Theorem 3: For every sk ∈ S, qk,m produced by

Algorithm 1 in each iteration converges to the unique opti-
mum EE q∗k,m.

Proof: The proof of Theorem 3 is given in
Appendix B.
Theorem 4: The matching µ produced by Algorithm 3 is

weak Pareto optimal to SBSs.
Proof: The proof of Theorem 4 is given in

Appendix C.
Taking sk and um as an example, Theorem 2 shows that

if µ(um) = sk , then there is no such sj ∈ S\{sk} that
satisfies sj �um µ(um) and um �sj µ(sj). Theorem 3 ensures
that the achieved EE performance under µ(um) = sk is the
optimum one under QoS and transmission power constraints.
Theorem 4 shows that there is no other matching, stable or
not, that all UEs prefer to µ.

3) IMPLEMENTATION
Although the proposed algorithm is implemented in a dis-
tributed fashion, it can also be implemented in a centralized
way by exploiting the powerful MBSs. In the centralized
implementation, the MBS can serve as a matchmaker to
perform amatching between SBSs and UEs under established
preferences. Implementation procedures are explained below.

First of all, since the MBS does not know preference
profiles of the two sides, it intends to build these profiles
by asking each SBS and UE for necessary information, such
as Fm, gk,m, Ik,m, Ck , T̃ cachek,m , pcirk , pmaxk , pBk , and Umin

k,m .
After collecting enough information, the MBS establishes

the preference profile P(sk ) for each sk ∈ S and P(um) for
each um ∈ U by using Algorithm 2. Finally, the MBS will
employ Algorithm 3 to produce a stable matching by using
the established preference profiles.
The centralized implementation is also suitable for future

cloud-based architectures of cellular networks such as cloud
radio access network (C-RAN) [38], [39]. In C-RAN, remote
radio heads (RRHs) with edge storage capabilities are densely
deployed and are managed by a centralized base baseband
unit (BBU) pool to cooperatively support UEs. Information
exchange and RRU-UE matching can be performed in the
centralized BBU pool to provide flexible control through
centralized network coordination, which further facilitates the
implementation of the proposed algorithm.

4) COMPLEXITY
Algorithm 3 must eventually stop after a finite number of
iterations because the number of SBSs is limited, and no
SBS proposes more than once to any UE. For a SBS-UE
pair such as (sk , um), the complexity to establish preference
profiles is mainly dominated by Algorithm 1. The algorithmic
complexity of Algorithm 1 is in the order of O(LmaxloopL

max
dual),

where Lmaxloop and Lmaxdual are the maximum numbers of iter-
ations required for reaching convergence and solving dual
problems, respectively. In Algorithm 2, with K SBSs and
M UEs, sorting algorithms that sort preferences in descend-
ing order have a known complexity of O

(
KM log(KM )

)
.

The algorithmic complexity of Algorithm 3 is in polynomial
time O(KM ) [25].

IV. SIMULATION RESULTS
In this section, the proposed algorithm is compared with con-
ventional context-unaware water-filling algorithms in which
UE association is based on maximum SINR [35], [40]. The
values of simulation parameters are based on [4], [6], [9],
[11], and [14], and are summarized in Table 1. We con-
sider a single macro cellular network with a cell radius
of 500 m. The results are averaged over a total number

TABLE 1. Simulation parameters.
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FIGURE 2. The locations of K SBSs and M UEs generated in one
simulation (K = M = 100, the cell radius is 500 m).

of 500 simulations. For each simulation, the locations
of K SBSs and M UEs are generated randomly as shown
in Fig. 2. The total bandwidth is 100 MHz and the assigned
bandwidth per SBS is wk = 2 MHz. Each UE um ∈ U
requests ‖Fm‖ = 1.5 × 103 files, out of a set of ‖C‖ =
1.5×109 files. The files in C have the same size of s = 2 KB.
Each SBS sk ∈ S has a storage capacity chosen from an
intervalDk = [0, 5] TB, and a backhaul capacity chosen from
an interval Bk = [0.5, 10] Mbps. A training phase with a
duration of 600 seconds is considered prior to performance
evaluations, in which each sk downloaded a set of popular
files Ck through its backhaul link based on file popularity.

The proposed algorithm is verified from the aspects of
EE performance and satisfaction. We evaluate satisfactions
of SBSs based on cumulative distribution functions (CDFs)
of their matched UEs. Taking sk as an example, we define
sk ’s satisfaction threshold as um′ , which is assumed to be
ranked as the j-th choice on sk ’s preference list P(sk ). This
threshold is the criteria used to evaluate sk ’s satisfaction, that
is, sk is satisfied with the matching µ if it is matched to
some UE that is preferred by sk at least as well as um′ , i.e.,
µ(sk ) �sk um′ . Otherwise, sk is unsatisfied with µ if it prefers
um′ to its matched partner, i.e., um′ �sk µ(sk ). The CDF
of the satisfaction is defined as Pr{µ(sk ) �sk um′}, which
describes the probability that µ(sk ) will be found to have a
higher ranking than the satisfaction threshold um′ .
Fig. 3 shows the average EE performance as a func-

tion of the storage capacity Dk in a network with K =

M = 100 SBSs and UEs, for different backhaul capacities
Bk = 2, 4 Mbps. Simulation results show that the proposed
algorithm is mostly beneficial during a storage-capacity lim-
ited regime (i.e., Dk ≤ 3 TB). In this regime, the pro-
posed approach yields a performance gain that increases
exponentially with storage capacity since higher capacity
allows SBSs to cache more popular files and increase the
probability of having requested files cached closer to UEs.
Note that, locally cached files can be transmitted at data rates

FIGURE 3. Average energy efficiency performance versus storage capacity
per SBS (K = M = 100, Bk = 2, 4 Mbps Dk = 0 ∼ 5 TB).

much higher than the backhaul capacity, which is able to
substantially reduce transmission duration and correspond-
ing circuit energy consumption. Comparing to the context-
unaware maximum-SINR matching algorithm, the proposed
approach achieves maximum performance gains of 305%
and 126% for Bk = 2 Mbps and Bk = 4 Mbps, respec-
tively. The proposed algorithm dramatically improves EE
performance by exploiting local content availability notably
in backhaul-capacity limited scenarios. Finally, the gains
achieved from caching saturate when storage capacity is
already large enough to cache all of the files available in the
network (i.e., Dk > 3 TB).
Fig. 4 shows the average EE performance as a function

of the backhaul capacity Bk in a network with K = M =
100 SBSs and UEs, for different storage capacities Dk =
1, 2, 3 TB. Simulation results show that the maximum EE
performance gains for Dk = 1, 2 and 3 TB are 133%, 370%,
and 928%, respectively. The performance gains reach the

FIGURE 4. Average energy efficiency performance versus backhaul
capacity per SBS (K = M = 100, Bk = 0.5 ∼ 10 Mbps Dk = 1, 2, 3 TB).
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FIGURE 5. CDF of SBSs’ satisfactions versus satisfaction threshold
(N = K = 100, 200, Bk = 2 Mbps, Dk = 2 TB, 104 simulations).

maximum value when Bk = 0.5 Mbps, and decrease mono-
tonically as the backhaul capacity increases. For example, the
maximum performance gain withDk = 2 TB is reduced from
370% to 26%when Bk is increased form 0.5 to 7Mbps.When
the backhaul capacity is large enough, the performance gains
brought by caching reduce to zero because backhaul capacity
no longer represents a bottleneck to data delivery.

Fig. 5 compares SBSs’ satisfactions of the proposed
approach with context-unaware random matching under
Bk = 2 Mbps, Dk = 2 TB, K =M = 100, 200. We have
not used maximum SINR based matching for comparison
because it has not taken SBSs’ preferences into consideration
at all. In Fig. 5, the CDF is obtained based on a Monte-Carlo
approach by repeating simulations for 104 times. When
K = M = 100, simulation results show that 50.87% of SBSs
are matched with their first three choices. In comparison, only
2.71% of SBSs are matched with their first three choices
under the randommatching. As cell and UE densities increase
(i.e., K andM are increased from 100 to 200), the probability
that SBSs are matched with their first three choices is still as
high as 44.96% under the proposed matching, while under the
randommatching the probability is only 1.52%. The proposed
approach achieves a satisfaction performance that is an order
of magnitude higher than the conventional approach. Further-
more, the proposed approach is able to exploit the spatial
diversity of ultra-dense deployment and enhance satisfaction
performance in a wide range of satisfaction thresholds.

V. CONCLUSION
In this paper, we investigated the energy-efficient context-
aware resource allocation problem in caching-enabled
ultra-dense small cells. We formulated the joint partner
selection and power allocation problem as a one-to-one
matching problem, and took both SBSs’ and UEs’ prefer-
ences into consideration. We developed an iterative algo-
rithm to establish preference profiles by employing nonlinear
fractional programming and Lagrange dual decomposition.

An energy-efficient context-aware stable matching algorithm
was proposed based on the GS algorithm, and was extended
into the cases of preference indifference and incomplete pref-
erence lists. Stability, optimality, implementation issues and
algorithmic complexity were discussed and analyzed. Simu-
lation results show that the proposed algorithm is able to over-
come the backhaul-capacity limitations, and yield significant
gains in terms of EE performance and SBS satisfaction with
respect to conventional non-cache based algorithms. In future
works, we will deal with heterogeneous data traffic, and
evaluate the proposed matching algorithm with some other
performance metrics such as file delay distributions, etc.

APPENDIX A
PROOF OF THEOREM 2

Proof: Suppose um �sk µ(sk ), then sk must have
proposed to um before proposing to µ(sk ) according to
Algorithm 3. Since µ(sk ) 6= um when the algorithm stops,
sk must have been rejected by um in favor of some µ(um),
i.e.,µ(um) �um sk . Thus, um and sk do not block the matching
µ. Since the matchingµ is not blocked by any sk ∈ S and any
um ∈ U , it is stable.

APPENDIX B
PROOF OF THEOREM 3

Proof: Firstly, we prove that q∗k,m produced by
Algorithm 1 is unique. According to Theorem 1, we have

max
pk

Uk,m(pk)− q∗k,mEk (pk)

= Uk,m(p∗k)− q
∗
k,mEk (p

∗

k) = 0. (26)

Define F(qk,m) = Uk,m(p∗k) − qk,mEk (p∗k), F(qk,m) is
only an function of qk,m given p∗k is fixed. Thus, we have
limqk,m→−∞ F(qk,m) = +∞, and limqk,m→+∞ F(qk,m) =
−∞. Since F(qk,m) is monotonically decreasing as qk,m
increases and continuous for qk,m, F(qk,m) = 0 must have
a unique solution q∗k,m.

Secondly, we prove that qk,m produced by Algorithm 1
converges to q∗k,m. In order to prove the convergence, we
need to show that qk,m obtained by solving the equivalent
problem (18) increases in each iteration of Algorithm 1.

We denote p̂k(n) as the optimum power allocation in the
n-th iteration, and qk,m(n) and qk,m(n+1) as the EE in the n-th
iteration and (n+1)-th iteration, respectively. We assume that
qk,m(n) 6= q∗k,m, and qk,m(n+1) 6= q∗k,m. Otherwise, the itera-
tive algorithm terminates due to the stopping criteria. After
p̂k(n) is obtained, qk,m(n + 1) is updated as qk,m(n+ 1)=
Uk,m

(
p̂k(n)

)
/Ek

(
p̂k (n)

)
. The optimization problem (18) in

the n-th iteration can be rewritten as

max
pk(n)

Uk,m
(
pk(n)

)
− qk,m(n)Ek (pk(n))

= Uk,m
(
p̂k(n)

)
− qk,m(n)Ek

(
p̂k(n)

)
= qk,m(n+ 1)Ek

(
p̂k(n)

)
− qk,m(n)Ek

(
p̂k(n)

)
= Ek

(
p̂k(n)

)(
qk,m(n+ 1)− qk,m(n)

) (a)
> 0.

(b)
H⇒ qk,m(n+ 1) > qk,m(n) (27)
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Defining p̃k(n) such that qk,m(n) = Uk,m
(
p̃k(n)

)
/Ek

(
p̃k(n)

)
,

(a) can be proved based on Theorem 1 as

max
pk(n)

Uk,m
(
pk(n)

)
− qk,m(n)Ek (pk(n))

≥ Uk,m
(
p̃k(n)

)
− qk,m(n)Ek

(
p̃k(n)

)
= 0. (28)

(b) is available since if Ek
(
p̂k(n)

)(
qk,m(n+1)−qk,m(n)

)
> 0

and Ek
(
p̂k(n)

)
> 0, we must have qk,m(n+ 1)− qk,m(n)> 0.

Therefore, qk,m is increased in each iteration and will even-
tually approaches q∗k,m as long as the number of iterations is
large enough.

APPENDIX C
PROOF OF THEOREM 4

Proof: ∀sk ∈ S, if there exists a matching µ′ such
that µ′(sk ) �sk µ(sk ), then µ

′ must match every sk ∈ S to
some UE who had rejected it under µ. Hence, all of these
UEs, µ′(S), must have rejected some SBS under µ. However,
according to Algorithm 3, any UE who gets a proposal in the
last step of the algorithm has not rejected any SBS. Otherwise,
the rejected SBS needs at least one further step to be matched,
which contradicts with the assumption of the last step. Thus,
the above assumptions do not hold, and no such µ′ exists.
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