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Dualities and evolutes of fronts in hyperbolic
and de Sitter space

Liang Chen1∗† and Masatomo Takahashi2‡
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2 Muroran Institute of Technology, Muroran 050-8585, JAPAN

Abstract

We consider the differential geometry of evolutes of singular curves in hyperbolic 2-
space and de Sitter 2-space. Firstly, as an application of the basic Legendrian duality
theorems, we give the definitions of frontals in hyperbolic 2-space or de Sitter 2-space,
respectively. We also give the notions of moving frames along the frontals. By using
the moving frames, we define the evolutes of spacelike fronts and timelike fronts, and
investigate the geometric properties of these evolutes. As results, these evolutes can be
viewed as wavefronts from the viewpoint of Legendrian singularity theory. At last, we
study the relationships among these evolutes.
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1 Introduction

This paper is a part of our research projects about the differential geometry of evolutes of
singular curves in different ambient space forms. Notions of evolutes (or, focal sets) of regular
curves in Euclidean plane or 3-space are classical topics in differential geometry. As well known,
the evolute of a regular plane curve is defined as the locus of the center of osculating circle of
the original curve. The radius of the osculating circle of a regular plane curve is 1/κ, where κ
is the curvature of the curve. Unfortunately, if the curve is not regular at some point, then we
can not define the evolute at this point as the classical way. The second author of this paper,
however, had presented an alternative method for the studying of evolutes of singular curves in
Euclidean plane [4, 5]. They firstly define frontals (or fronts) in Euclidean plane and Legendrian
curves (or Legendrian immersions) in the unit tangent bundle of R2. The differential geometric
properties of the frontal is studied in [3]. The most difference between a regular curve and a
frontal is that the frontal might exist singular points. A key tool for studying of the frontal is
so called moving frame defined in the unit tangent bundle. By using the moving frame, they
defined a pair of smooth functions like as the curvature of a regular curve and called the pair the
curvature of the Legendrian curve. As results, the existence and uniqueness for the Legendrian
curve which take this curvature as the associated curvature are established. Furthermore, they
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† Partially supported by NNSF of China (Grant No. 11101072) and STDP of Jilin Province (Grant No. 20150520052JH).

‡ Partially supported by JSPS KAKENHI (Grant No. 26400078).
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used the moving frame and the curvature of the Legendrian immersion to give a new definition
of an evolute of the front. We remark that this new definition on the evolute is consistent with
the classical one when the curve is a regular curve. They also studied the evolutes of smooth
curves in sphere 2-space as applications of this method [13]. In this paper, we proceed with this
way to investigate the evolutes of smooth curves in hyperbolic 2-space and de Sitter 2-space. As
it to be expected, the situation presents certain peculiarities when compared with the Euclidean
case and the sphere case. For instance, in our case the evolutes of smooth spacelike curves in
hyperbolic 2-space (or, de Sitter 2-space) are split into hyperbolic 2-space and de Sitter 2-space.

The organization of this paper is as follows. In §2, we prepare some basic notions on regular
curves in hyperbolic 2-space and de Sitter 2-space, respectively. We first review the properties
of the evolutes of regular curves in hyperbolic 2-space which developed by S. Izumiya and his
collaborators in [8] (for regular hypersurfaces case please see [9, 10]). Moreover, by using a
similar way to that of [8], we study the evolutes of spacelike regular curves and timelike regular
curves in de Sitter 2-space, respectively. In §3, we give a brief review on the basic Legendrian
duality theorems appeared in [2, 6, 7]. Especially, ∆1-duality and ∆5-duality are very helpful in
this paper. We define the spacelike frontals (or, spacelike fronts) in hyperbolic 2-space and de
Sitter 2-space, and spacelike Legendrian curves (or, spacelike Legendrian immersions) by using
the ∆1-duality. We also use the ∆5-duality to define the timelike frontals (or, timelike fronts)
in de Sitter 2-space and timelike Legendrian curves (or, timelike Legendrian immersions). The
basic properties of the frontals are discussed. We give the definitions of evolutes of spacelike
fronts in hyperbolic 2-space, spacelike and timelike fronts in de Sitter 2-space in §4, respectively.
We also study the geometric properties of these evolutes in this section. In the last section, §5,
we investigate the relationships among the evolutes of these fronts in hyperbolic 2-space and
de Sitter 2-space.

We shall assume throughout the whole paper that all maps and manifolds are C∞ unless
the contrary is explicitly stated.

Acknowledgement. The authors would like to thank the referee for helpful comments to
improve the original manuscript.

2 The evolutes of regular curves

In this section, we investigate the basic properties of evolutes of regular curves in hyperbolic
2-space or de Sitter 2-space, respectively. Firstly, we will prepare some notions in Minkowski
space. For details of Lorentzian geometry, see [12].

Let R3 = {(x1, x2, x3)|xi ∈ R, i = 1, 2, 3} be a 3-dimensional vector space. For any vectors
x = (x1, x2, x3) and y = (y1, y2, y3) in R3, the pseudo scalar product of x and y is defined to
be 〈x,y〉 = −x1y1 + x2y2 + x3y3. We call (R3, 〈, 〉) the Minkowski 3-space and write R3

1 instead
of (R3, 〈, 〉).

We say that a non-zero vector x in R3
1 is spacelike, lightlike or timelike if 〈x,x〉 > 0, 〈x,x〉 =

0 or 〈x,x〉 < 0 respectively. The norm of the vector x ∈ R3
1 is defined by ‖x‖ =

√
|〈x,x〉|.

For any x = (x1, x2, x3),y = (y1, y2, y3) ∈ R3
1, we define a vector x ∧ y by

x ∧ y =

∣∣∣∣∣∣
−e1 e2 e3
x1 x2 x3
y1 y2 y3

∣∣∣∣∣∣ ,
where {e1, e2, e3} is the canonical basis of R3

1. For any w ∈ R3
1, we can easily check that

〈w,x ∧ y〉 = det(w,x,y),
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so that x ∧ y is pseudo-orthogonal to both x and y. Moreover, if x is a timelike vector, y is a
spacelike vector and x ∧ y = z, then by a straightforward calculation we have

z ∧ x = y, y ∧ z = −x.

If x is a spacelike vector, y is a timelike vector and x ∧ y = z, then by a straightforward
calculation we have

z ∧ x = −y, y ∧ z = x.

If both x, y are a spacelike vectors and x ∧ y = z, then by a straightforward calculation we
have

z ∧ x = −y, y ∧ z = −x.

For a vector v ∈ R3
1 and a real number c, we define the plane with the pseudo-normal v by

P (v, c) = {x ∈ R3
1|〈x,v〉 = c}.

We call P (v, c) a timelike plane, spacelike plane or lightlike plane if v is spacelike, timelike or
lightlike, respectively.

We define hyperbolic 2-space by

H2(−1) = {x ∈ R3
1 | 〈x,x〉 = −1},

de Sitter 2-space by
S2
1 = {x ∈ R3

1 | 〈x,x〉 = 1},

(open) lightcone at the origin by

LC∗ = {x ∈ R3
1 \ {0}| 〈x,x〉 = 0}.

We consider a curve given by the intersection of H2(−1) (or, S2
1) with the plane P (v, c) as

follows:
HP (v, c) = H2(−1) ∩ P (v, c) (or,DP (v, c) = S2

1 ∩ P (v, c))

and call it the hyperbolic (or, de Sitter) ellipse, hyperbolic (or, de Sitter) parabola or hyperbolic
(or, de Sitter) hyperbola if v is timelike, lightlike or spacelike, respectively.

We study the evolutes of regular curves in hyperbolic 2-space or de Sitter 2-space, respec-
tively, in the following.

2.1 The evolutes of regular curves in hyperbolic 2-space

We firstly give a brief review on differential geometry of regular curves in H2(−1). For details
please see [8]. Let γh : I → H2(−1) be a regular curve, we have ||γ̇h(t)|| 6= 0, where γ̇h(t) =
(dγh/dt)(t). Denoted by th(t) = γ̇h(t)/||γ̇h(t)|| ∈ S2

1 the unit spacelike tangent vector. We
can define a unit spacelike vector eh by eh(t) = γh(t) ∧ th(t) and call it the normal vector of
γh, then we have a pseudo orthonormal frame {γh, th, eh} of R3

1 along γh. By the standard
arguments, we can give the following hyperbolic Frenet-Serret type formula: γ̇h(t)

ṫh(t)

ėh(t)

 = ||γ̇h(t)||

 0 1 0

1 0 κh(t)

0 −κh(t) 0


 γh(t)

th(t)

eh(t)

 ,
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where κh(t) =
det(γh(t),γ̇h(t),γ̈h(t))

||γ̇h(t)||3
, we call it the hyperbolic geodesic curvature. We remark that

since γh is a regular curve in H2(−1), it may admit the arc length parametrization s = s(t).
Therefore, we can assume that γh(s) is a unit speed curve. To the convenience of calculation,
however, we stick to the general parametrization in this paper.

Under the assumption that κh(t) 6= ±1, we define the evolute of γh as follows:

Ev(γh) : I → R3
1, Ev(γh)(t) = ± 1√

|κ2h(t)− 1|
(κh(t)γh(t) + eh(t)) .

In the case κ2h(t) > 1, Ev(γh)(t) is located in H2(−1), we call it the hyperbolic evolute of γh and
denote it by Eh

v (γh)(t). If 0 ≤ κ2h(t) < 1, it is in S2
1 , we call it the de Sitter evolute of γh and

denote it by Ed
v (γh)(t). If κh(t)

2−1 = 0 for all t ∈ I, then γh is a part of a hyperbolic parabola
(horosphere) in H2(−1) (cf. [10]). Moreover, if κh(t0)

2 − 1 = 0, then κh(t0)γh(t0) + eh(t0) is
a lightlike point. Then we can not define the evolute at such points in this way. In order to
consider the evolute at such points, we need a theory of type changing curves in R3

1. Then we
have the following proposition ([8], Proposition 4.1).

Proposition 2.1 Suppose that γh : I → H2(−1) is a regular curve with κ2h(t) 6= 1. Then
κ̇h(t) ≡ 0 if and only if Eh

v (γh)(t) or Ed
v (γh)(t) are constant vectors. Under this condition, γh

is a part of a hyperbolic ellipse or a part of a hyperbolic hyperbola, respectively.

If v0 = Eh
v (γh)(t0) and c0 = ∓κh(t0)/

√
|κ2h(t0)− 1|, then we have γh and HP (v0, c0) are at

least 3-point contact at γh(t0), see [8]. In this case, we call HP (v0, c0) the osculating hyperbolic
ellipse (or, osculating hyperbolic hyperbola). Its center v0 is called the center of hyperbolic
geodesic curvature. Therefore, the evolutes of γh is the locus of the center of hyperbolic geodesic
curvature.

2.2 The evolutes of regular spacelike curves in de Sitter 2-space

We now consider the differential geometry of regular spacelike curves in S2
1 . Let γd : I → S2

1

be a regular curve. The regular curve γd is said to be spacelike if γ̇d(t) is a spacelike vector
at any t ∈ I, where γ̇d(t) = (dγd/dt)(t). We call such curve a spacelike curve. Denoted by
td(t) = γ̇d(t)/||γ̇d(t)|| ∈ S2

1 the unit spacelike tangent vector. We can define a unit timelike
vector ed by ed(t) = γd(t) ∧ td(t) and call it the normal vector of γd, then we have a pseudo
orthonormal frame {γd, td, ed} of R3

1 along γd. By the standard arguments, we can give the
following spacelike de Sitter Frenet-Serret type formula: γ̇d(t)

ṫd(t)

ėd(t)

 = ||γ̇d(t)||

 0 1 0

−1 0 κd(t)

0 κd(t) 0


 γd(t)

td(t)

ed(t)

 ,

where κd(t) =
det(γd(t),γ̇d(t),γ̈d(t))

||γ̇d(t)||3
, we call it the spacelike de Sitter geodesic curvature.

Under the assumption that κd(t) 6= ±1, we define the evolute of γd as follows:

Ev(γd) : I → R3
1, Ev(γd)(t) = ± 1√

|κ2d(t)− 1|
(κd(t)γd(t)− ed(t)) .

In the case κ2d(t) > 1, Ev(γh)(t) is located in S2
1 , we call it the de Sitter evolute of γd and

denote it by Ed
v (γd)(t). If 0 ≤ κ2d(t) < 1, it is in H2(−1), we call it the hyperbolic evolute of

γd and denote it by Eh
v (γd)(t). We remark that for the case κ2d(t) = 1, it has similar geometric

meaning with the case κ2h(t) = 1. Then we have the following proposition.
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Proposition 2.2 Suppose that γd : I → S2
1 be a regular spacelike curve with κ2d(t) 6= 1. Then

κ̇d(t) ≡ 0 if and only if Eh
v (γd)(t) or Ed

v (γd)(t) are constant vectors. Under this condition, γd
is a part of a de Sitter ellipse or a part of a de Sitter hyperbola, respectively.

The proof of this proposition is similar to that of Proposition 4.1 in [8], so we omit it.

We assume that v0 = Eh
v (γd)(t0) and c0 = ±κd(t0)/

√
|κ2d(t0)− 1|, then we have γd and

DP (v0, c0) are at least 3-point contact at γd(t0). In this case, we call DP (v0, c0) the osculating
de Sitter ellipse (or, osculating de Sitter hyperbola). Its center v0 is called the center of spacelike
de Sitter geodesic curvature. Therefore, the evolutes of γd is the locus of the center of spacelike
de Sitter geodesic curvature.

2.3 The evolutes of regular timelike curves in de Sitter 2-space

Finally, we consider the differential geometry of regular timelike curves in S2
1 . Let γT : I → S2

1

be a regular curve. The regular curve γT is said to be timelike if γ̇T (t) is a timelike vector
at any t ∈ I, where γ̇T (t) = (dγT/dt)(t). We call such curve the timelike curve. Denoted
by tT (t) = γ̇T (t)/||γ̇T (t)|| ∈ H2(−1) the unit timelike tangent vector. We can define a unit
spacelike normal vector eT by eT (t) = γT (t) ∧ tT (t) and call it the normal vector of γT . Then
we have a pseudo orthonormal frame {γT , tT , eT} of R3

1 along γT . By the standard arguments,
we can give the following timelike de Sitter Frenet-Serret type formula: γ̇T (t)

ṫT (t)

ėT (t)

 = ||γ̇T (t)||

 0 1 0

1 0 κT (t)

0 κT (t) 0


 γT (t)

tT (t)

eT (t)

 ,

where κT (t) =
det(γT (t),γ̇T (t),γ̈T (t))

||γ̇T (t)||3 , we call it the timelike de Sitter geodesic curvature.

We define the evolute of γT in de Sitter space as follows:

Ed
v (γT ) : I → S2

1 , E
d
v (γT )(t) = ± 1√

κ2T (t) + 1
(κT (t)γT (t)− eT (t)) .

We call it the spacelike de Sitter evolute of γT . Then we have the following proposition.

Proposition 2.3 Suppose that γT : I → S2
1 be a regular timelike curve. Then κ̇T (t) ≡ 0 if

and only if Ed
v (γT )(t) is a constant vector. Under this condition, γT is a part of a de Sitter

hyperbola.

The proof of this proposition is also similar to that of Proposition 4.1 in [8], so we omit it.

We assume that v0 = Ed
v (γT )(t0) and c0 = ±κT (t0)/

√
κ2T (t0) + 1 then we have γT and

DP (v0, c0) are at least 3-point contact at γT (t0). In this case, we call DP (v0, c0) the osculating
de Sitter hyperbola. Its center v0 is called the center of timelike de Sitter geodesic curvature.
Therefore, the spacelike de Sitter evolutes of γT is the locus of the center of timelike de Sitter
geodesic curvature.

3 The frontals in hyperbolic 2-space and de Sitter 2-

space

In this section, we consider the differential geometry of smooth curves in hyperbolic 2-space or
de Sitter 2-space, respectively. If the curve have singular points, we can not define the pseudo
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orthonormal Frenet frame at these singular points. We also can not use the Frenet-Serret type
formula to study the properties of the original curve. In order to overcome this difficulty, we
take advantage of the way developed by the second author of this paper in [3] instead of the
classical way. We give the detailed descriptions about this way as follows.

3.1 The spacelike frontals in hyperbolic 2-space

We firstly consider the differential geometry of curves in H2(−1). Let γh : I → H2(−1) be a
smooth curve. We call γh the spacelike frontal in H2(−1), if there exists a smooth mapping
γdh : I → S2

1 , such that the pair (γh,γ
d
h) : I → ∆1 satisfies (γh(t),γ

d
h(t))

∗θ = 0 for all t ∈ I.
Here

∆1 = {(v,w) | 〈v,w〉 = 0 } ⊂ H2(−1)× S2
1

is a 3-dimensional manifold and θ is a canonical contact 1-form on ∆1 (cf. [6, 7]). The
condition (γh(t),γ

d
h(t))

∗θ = 0 is equivalent to 〈γ̇h(t),γdh(t)〉 = 0, for all t ∈ I. We call (γh,γ
d
h)

the spacelike Legendrian curve in ∆1. Moreover, if (γh,γ
d
h) is an immersion, we call γh the

spacelike front in H2(−1) and (γh,γ
d
h) the spacelike Legendrian immersion in ∆1.

Let (γh,γ
d
h) be a spacelike Legendrian curve in ∆1. If γh is singular at a point t0 in H2(−1),

then we can not define the Frenet-Serret formula at this point. By the definition of the spacelike
Legendrian curve, however, the γdh is always well defined even if at a singular point of γh. Let
γsh(t) = γh(t) ∧ γdh(t) ∈ S2

1 . We have a moving frame {γh,γdh,γsh} which called the hyperbolic
Legendrian Frenet frame of R3

1 along γh. By the standard arguments, we have the following
hyperbolic Legendrian Frenet-Serret type formula: γ̇h(t)

γ̇dh(t)

γ̇sh(t)

 =

 0 0 mh(t)

0 0 nh(t)

mh(t) −nh(t) 0


 γh(t)

γdh(t)

γsh(t)

 ,

where mh(t) = 〈γ̇h(t),γsh(t)〉 and nh(t) = 〈γ̇dh(t),γsh(t)〉. We call the pair (mh, nh) the space-
like hyperbolic Legendrian curvature of spacelike Legendrian curve (γh,γ

d
h). We remark that

if (γh,γ
d
h) is a spacelike Legendrian curve (respectively, spacelike Legendrian immersion) with

the spacelike hyperbolic Legendrian curvature (mh, nh), then both (γh,−γdh) and (−γh,γdh) are
spacelike Legendrian curves (respectively, spacelike Legendrian immersions) with the spacelike
hyperbolic Legendrian curvatures (−mh, nh) and (mh,−nh), respectively.

We will characterize the properties of (mh, nh) as follows.

Proposition 3.1 If (γh,γ
d
h) : I → ∆1 is a spacelike Legendrian curve with the spacelike hyper-

bolic Legendrian curvature (mh, nh), then (mh, nh) depends on the parametrization of (γh,γ
d
h).

Proof. Let (γ̄h, γ̄
d
h) : Ī → ∆1 be a spacelike Legendrian curve and (m̄h, n̄h) be its spacelike

hyperbolic Legendrian curvature. Suppose that t : Ī → I is a (positive) change of param-
eter, that is, t is surjective and has a positive derivative at every point. We assume that
(γ̄h(u), γ̄dh(u)) = (γh(t(u)),γdh(t(u))) for all u ∈ Ī, then we have{

m̄h(u)γ̄sh(u) = ˙̄γh(u) = mh(t(u))ṫ(u)γsh(t(u)),

n̄h(u)γ̄sh(u) = ˙̄γdh(u) = nh(t(u))ṫ(u)γsh(t(u)).

It follows from γ̄sh(u) = γsh(t(u)), we have{
m̄h(u) = mh(t(u))ṫ(u),

n̄h(u) = nh(t(u))ṫ(u).
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2

Proposition 3.2 Suppose that (γh,γ
d
h) : I → ∆1 is a spacelike Legendrian curve with the

spacelike hyperbolic Legendrian curvature (mh, nh). Then (mh(t), nh(t)) 6= (0, 0) if and only if
(γ̇h(t), γ̇

d
h(t)) 6= (0, 0), for all t ∈ I.

Proof. By the hyperbolic Legendrian Frenet-Serret type formula, this assertion holds. 2

Example 3.3 Let γh be a regular curve in H2(−1) with the hyperbolic geodesic curvature κh.
If we take γdh = eh, then (γh,γ

d
h) is a spacelike Legendrian curve with the spacelike hyperbolic

Legendrian curvature (−||γ̇h||, ||γ̇h||κh). In fact, it is a spacelike Legendrian immersion. More-
over, by a straightforward calculation, we have nh(t) = |mh(t)|κh(t) for all t ∈ I. In this case,
we have nh(t) = 0 if and only if κh(t) = 0.

Example 3.4 Let γh : I → H2(−1) be γh(t) = (
√

1 + t2n + t2m, tn, tm), where m = n + k,
m,n, k ∈ N. It is obviously that the origin is the singular point of γh. We assume that

γdh(t) =
1√

k2t2m +m2t2k + n2
(ktm
√

1 + t2n + t2m, ktm+n +mtk, kt2m − n).

By a straightforward calculation, we have

γsh(t) =

√
1 + t2n + t2m√

k2t2m +m2t2k + n2

(
mt2k+n + ntn√
1 + t2n + t2m

, n,mtk
)

and (γh,γ
d
h) is a spacelike Legendrian curve with the spacelike hyperbolic Legendrian curvature

(mh, nh), where

mh(t) =
tn−1
√
k2t2m +m2t2k + n2

√
1 + t2n + t2m

,

nh(t) =
ktk−1 (k2t2m+2n +m(m+ n)t2m + n(m+ n)t2n +mn)

(k2t2m +m2t2k + n2)
√

1 + t2n + t2m
.

Moreover, if k = 1, then (γh,γ
d
h) is a spacelike Legendrian immersion. In the case when n = 2

and m = 3, we call γh the hyperbolic 3/2-cusp, see Figure 1 (i).

(i) hyperbolic 3/2-cusp (ii) hyperbolic astroid

Figure 1
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Example 3.5 Let I = [0, 2π). We define γh : I → H2(−1) by

γh(t) =
(√

1 + cos6 t+ sin6 t, cos3 t, sin3 t
)

and call it the hyperbolic astroid, see Figure 1 (ii). It is obviously that γh is singular at point
t = 0, π/2, π and 3π/2. We assume that

γdh(t) =
1√

1 + sin2 t cos2 t

(
sin t cos t

√
1 + sin6 t+ cos6 t, sin t(1 + cos4 t), cos t(1 + sin4 t)

)
.

By a straightforward calculation, we have

γsh(t) =
1√

1 + sin2 t cos2 t

(
sin2 t− cos2 t,− cos t

√
1 + sin6 t+ cos6 t, sin t

√
1 + sin6 t+ cos6 t

)
and (γh,γ

d
h) is a spacelike Legendrian curve with the spacelike hyperbolic Legendrian curvature

(mh, nh), where

mh(t) =
3 sin t cos t

√
1 + sin2 t cos2 t√

1 + sin6 t+ cos6 t
,

nh(t) =
3 sin4 t cos4 t+ 3 sin2 t cos2 t− 1− sin6 t− cos6 t

(1 + sin2 t cos2 t)
√

1 + sin6 t+ cos6 t
.

Moreover, (γh,γ
d
h) is also a spacelike Legendrian immersion.

Let (γh,γ
d
h) : I → ∆1 be a spacelike Legendrian curve in ∆1. We define a mapping

γφh : I → H2(−1) by

γφh(t) = coshφγh(t) + sinhφγdh(t),

where φ is any fixed real number. Then γφh(t) is the point on the geodesic started from γh(t)
directed by γdh(t) with a constant length. We call it the hyperbolic parallel of the frontal γh (cf.
[10]). Then we have the following assertion.

Proposition 3.6 Let (γh,γ
d
h) : I → ∆1 be a spacelike Legendrian curve with the spacelike

hyperbolic Legendrian curvature (mh, nh). For any fixed real number φ, (γφh, (γ
φ
h)d) : I → ∆1 is

a spacelike Legendrian curve with the spacelike hyperbolic Legendrian curvature (mφ
h, n

φ
h), where

(γφh)d : I → S2
1 , (γφh)d(t) = sinhφγh(t) + coshφγdh(t),

mφ
h(t) = coshφmh(t) + sinhφnh(t), n

φ
h(t) = sinhφmh(t) + coshφnh(t).

Moreover, (mφ
h)2(t)− (nφh)2(t) = m2

h(t)− n2
h(t) for all t ∈ I.

Proof. It is obviously that (γφh(t), (γφh)d(t)) ∈ ∆1 and 〈γ̇φh(t), (γφh)d(t)〉 = 0 for all t ∈ I. By

the definition of spacelike Legendrian curve, (γφh, (γ
φ
h)d) is a spacelike Legendrian curve in ∆1.

On the other hand, we have γφh(t) ∧ (γφh)d(t) = γsh(t). Hence {γφh, (γ
φ
h)d,γsh} is a hyperbolic

Legendrian Frenet frame of R3
1 along γφh. Moreover,

γ̇φh(t) = (coshφmh(t) + sinhφnh(t))γ
s
h(t),

˙
(γφh)d(t) = (sinhφmh(t) + coshφnh(t))γ

s
h(t).

According to the hyperbolic Legendrian Frenet-Serret type formula, we have

mφ
h(t) = coshφmh(t) + sinhφnh(t), n

φ
h(t) = sinhφmh(t) + coshφnh(t)

are the spacelike hyperbolic Legendrian curvature. By a direct calculation, we have (mφ
h)2(t)−

(nφh)2(t) = m2
h(t)− n2

h(t) for all t ∈ I. 2

We call (γφh, (γ
φ
h)d) the spacelike parallel Legendrian curve.
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3.2 The spacelike frontals in de Sitter 2-space

We now consider the differential geometry of spacelike curves in S2
1 . Suppose γd : I → S2

1

is a spacelike curve at regular points t ∈ I, namely, γ̇d(t) is a spacelike vector at the regular
points. We call γd the spacelike frontal in S2

1 if there exists a smooth mapping γhd : I → H2(−1)
such that the pair (γhd ,γd) : I → ∆1 satisfies (γhd(t),γd(t))

∗θ = 0 for all t ∈ I. The condition
(γhd(t),γd(t))

∗θ = 0 is equivalent to 〈γ̇d(t),γhd(t)〉 = 0, for all t ∈ I. We call (γd,γ
h
d) the

spacelike Legendrian curve in ∆1. Moreover, if (γd,γ
h
d) is an immersion, we call γd the spacelike

front in S2
1 and (γd,γ

h
d) the spacelike Legendrian immersion in ∆1.

Let (γd,γ
h
d) be a spacelike Legendrian curve in ∆1 and γsd(t) = γd(t)∧γhd(t) ∈ S2

1 . We have
a moving frame {γd,γhd ,γsd} which called the spacelike de Sitter Legendrian Frenet frame of
R3

1 along γd. By the standard arguments, we have the following spacelike de Sitter Legendrian
Frenet-Serret type formula: γ̇d(t)

γ̇hd(t)

γ̇sd(t)

 =

 0 0 md(t)

0 0 nd(t)

−md(t) nd(t) 0


 γd(t)

γhd(t)

γsd(t)

 ,

where md(t) = 〈γ̇d(t),γsd(t)〉 and nd(t) = 〈γ̇hd(t),γsd(t)〉. We call the pair (md, nd) the spacelike
de Sitter Legendrian curvature of the spacelike Legendrian curve (γd,γ

h
d). We remark that if

(γd,γ
h
d) is a spacelike Legendrian curve (respectively, spacelike Legendrian immersion) with

the spacelike de Sitter Legendrian curvature (md, nd), then both (γd,−γhd) and (−γd,γhd) are
spacelike Legendrian curves (respectively, spacelike Legendrian immersions) with the spacelike
de Sitter Legendrian curvatures (−md, nd) and (md,−nd), respectively.

We can also characterize the properties of the spacelike de Sitter Legendrian curvature
(md, nd) by the similar arguments with the spacelike hyperbolic Legendrian curvature (mh, nh).
We summarize here as follows.

Proposition 3.7 If (γd,γ
h
d) is a spacelike Legendrian curve with the spacelike de Sitter Leg-

endrian curvature (md, nd), then (md, nd) depends on the parametrization of (γd,γ
h
d).

The proof is almost the same with Proposition 3.1, so that we omit it.

Proposition 3.8 Suppose that (γd,γ
h
d) be a spacelike Legendrian curve with the spacelike de

Sitter Legendrian curvature (md, nd). Then (md(t), nd(t)) 6= (0, 0) if and only if (γ̇d(t), γ̇
h
d(t)) 6=

(0, 0), for all t ∈ I.

Example 3.9 Let γd be a regular spacelike curve in S2
1 with the spacelike de Sitter geodesic

curvature κd. If we take γhd = ed, then (γd,γ
h
d) is a spacelike Legendrian curve in ∆1 with the

spacelike de Sitter Legendrian curvature (‖γ̇d‖, ‖γ̇d‖κd). In fact, it is a spacelike Legendrian
immersion in ∆1. Moreover, it follows from the spacelike de Sitter Legendrian Frenet-Serret
type formula, we have nd(t) = |md(t)|κd(t) for all t ∈ I. Then we have nd(t) = 0 if and only if
κd(t) = 0.

Let (γd,γ
h
d) be a spacelike Legendrian curve in ∆1. We define a mapping γφd : I → S2

1 by

γφd(t) = coshφγd(t) + sinhφγhd(t),

where φ is any fixed real number. Then γφd(t) is the point on the geodesic started from γd(t)
directed by γhd(t) with a constant length. We call it de Sitter parallel of the spacelike frontal
γd (cf. [10]). Then we have the following assertion.
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Proposition 3.10 Let (γd,γ
h
d) be a spacelike Legendrian curve in ∆1 with the spacelike de

Sitter Legendrian curvature (md, nd). For any fixed real number φ, (γφd , (γ
φ
d)h) is a spacelike

Legendrian curve in ∆1 with the spacelike de Sitter Legendrian curvature (mφ
d , n

φ
d), where

(γφd)h : I → H2(−1), (γφd)h(t) = sinhφγd(t) + coshφγhd(t),

mφ
d(t) = coshφmd(t) + sinhφnd(t), n

φ
d(t) = sinhφmd(t) + coshφnd(t).

Moreover, (mφ
d)2(t)− (nφd)2(t) = m2

d(t)− n2
d(t) for all t ∈ I.

Proof. It is obviously that ((γφd)h(t),γφd(t)) ∈ ∆1 and 〈γ̇φd(t), (γφd)h(t)〉 = 0. By the definition

of spacelike Legendrian curve, (γφd , (γ
φ
d)h) is a spacelike Legendrian curve in ∆1. On the other

hand, we have γφd(t)∧(γφd)h(t) = γsd(t). Hence {γφd , (γ
φ
d)h,γsd} is a spacelike de Sitter Legendrian

Frenet frame of R3
1 along γφd . Moreover,

γ̇φd(t) = (coshφmd(t) + sinhφnd(t))γ
s
d(t),

˙
(γφd)h(t) = (sinhφmd(t) + coshφnd(t))γ

s
d(t).

According to the spacelike de Sitter Legendrian Frenet-Serret type formula, we have

mφ
d(t) = coshφmd(t) + sinhφnd(t), n

φ
d(t) = sinhφmd(t) + coshφnd(t)

are the spacelike de Sitter Legendrian curvature. By a direct calculation, we have (mφ
d)2(t) −

(nφd)2(t) = m2
d(t)− n2

d(t) for all t ∈ I. 2

3.3 The timelike frontals in de Sitter 2-space

We now consider the differential geometry of timelike curves in S2
1 . Let γT : I → S2

1 be a
timelike curve at regular points t ∈ I, namely, γ̇T (t) is a timelike vector at the regular point.
We call γT the timelike frontal in S2

1 if there exists a smooth mapping γdT : I → S2
1 , such that

the pair (γT ,γ
d
T ) : I → ∆5 satisfies (γT (t),γdT (t))∗α = 0 for all t ∈ I. Here

∆5 = {(v,w) | 〈v,w〉 = 0 } ⊂ S2
1 × S2

1

is a 3-dimensional manifold and α is a canonical contact 1-form on ∆5 (cf. [2, 6]). The condition
(γT (t),γdT (t))∗α = 0 is equivalent to 〈γ̇T (t),γdT (t)〉 = 0, for all t ∈ I. We call (γT ,γ

d
T ) the

timelike Legendrian curve in ∆5. Moreover, if (γT ,γ
d
T ) is an immersion, we call γT the timelike

front in S2
1 and (γT ,γ

d
T ) the timelike Legendrian immersion in ∆5.

Let (γT ,γ
d
T ) be a timelike Legendrian curve in ∆5 and γhT (t) = γT (t) ∧ γdT (t) ∈ H2(−1).

We have a moving frame {γT ,γdT ,γhT} which called the timelike de Sitter Legendrian Frenet
frame of R3

1 along γT . By the standard arguments, we have the following timelike de Sitter
Legendrian Frenet-Serret type formula:

γ̇T (t)

γ̇dT (t)

γ̇hT (t)

 =

 0 0 mT (t)

0 0 nT (t)

mT (t) nT (t) 0


 γT (t)

γdT (t)

γhT (t)

 ,

where mT (t) = −〈γ̇T (t),γhT (t)〉 and nT (t) = −〈γ̇dT (t),γhT (t)〉. We call the pair (mT , nT ) the
timelike de Sitter Legendrian curvature of timelike Legendrian curve (γT ,γ

d
T ). We remark that

if (γT ,γ
d
T ) is a timelike Legendrian curve (respectively, timelike Legendrian immersion) in ∆5

with the timelike de Sitter Legendrian curvature (mT , nT ), then both (γT ,−γdT ) and (−γT ,γdT )
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are timelike Legendrian curves (respectively, timelike Legendrian immersions) in ∆5 with the
timelike de Sitter Legendrian curvatures (−mT , nT ) and (mT ,−nT ), respectively.

We can also characterize the properties of the timelike de Sitter Legendrian curvature
(mT , nT ) by the similar arguments with the spacelike de Sitter Legendrian curvature (md, nd).
We summarize them and omit the proofs as follows.

Proposition 3.11 If (γT ,γ
d
T ) : I → ∆5 is a timelike Legendrian curve with the timelike de Sit-

ter Legendrian curvature (mT , nT ), then (mT , nT ) depends on the parametrization of (γT ,γ
d
T ).

Proposition 3.12 Suppose that (γT ,γ
d
T ) : I → ∆5 is a timelike Legendrian curve with the

timelike de Sitter Legendrian curvature (mT , nT ). Then we have (mT (t), nT (t)) 6= (0, 0) if and
only if (γ̇T (t), γ̇dT (t)) 6= (0, 0), for all t ∈ I.

Example 3.13 Let γT be a regular timelike curve in S2
1 with the timelike de Sitter geodesic

curvature κT . If we take γdT = eT , then (γT ,γ
d
T ) is a timelike Legendrian curve in ∆5 with the

timelike de Sitter Legendrian curvature (‖γ̇T‖, ‖γ̇T‖κT ). In fact, it is a timelike Legendrian
immersion in ∆5. Moreover, we have nT (t) = |mT (t)|κT (t) for all t ∈ I. Therefore, we have
nT (t) = 0 if and only if κT (t) = 0.

Let (γT ,γ
d
T ) : I → ∆5 be a timelike Legendrian curve in ∆5. We define γθT : I → S2

1 by

γθT (t) = cos θγT (t) + sin θγdT (t),

where θ ∈ [0, 2π) is a fixed number. Then γθT (t) is the point on the geodesic started from γT (t)
directed by γdT (t) with a constant length. We call it the timelike parallel of the timelike frontal
γT . Then we have the following assertion.

Proposition 3.14 Let (γT ,γ
d
T ) : I → ∆5 be a timelike Legendrian curve with the timelike de

Sitter Legendrian curvature (mT , nT ). For any fixed θ ∈ [0, 2π), (γθT , (γ
θ
T )d) : I → ∆5 is a

timelike Legendrian curve with the timelike de Sitter Legendrian curvature (mθ
T , n

θ
T ), where

(γθT )d : I → S2
1 , (γθT )d(t) = − sin θγT (t) + cos θγdT (t),

mθ
T (t) = cos θmT (t) + sin θnT (t), nθT (t) = − sin θmT (t) + cos θnT (t).

Moreover, (mθ
T )2(t) + (nθT )2(t) = m2

T (t) + n2
T (t) for all t ∈ I.

Proof. It is obviously that (γθT (t), (γθT )d(t)) ∈ ∆5 and 〈γ̇θT (t), (γθT )d(t)〉 = 0. By the definition of
timelike Legendrian curve, (γθT , (γ

θ
T )d) is a timelike Legendrian curve in ∆5. On the other hand,

we have γθT (t) ∧ (γθT )d(t) = γhT (t). Hence {γθT , (γθT )d,γhT} is a timelike de Sitter Legendrian
Frenet frame of R3

1 along γθT . Moreover,

γ̇θT (t) = (cos θmT (t) + sin θnT (t))γhT (t), ˙(γθT )d(t) = (− sin θmT (t) + cos θnT (t))γhT (t).

Therefore

mθ
T (t) = cos θmT (t) + sin θnT (t), nθT (t) = − sin θmT (t) + cos θnT (t)

are the timelike de Sitter Legendrian curvature and (mθ
T )2(t) + (nθT )2(t) = m2

T (t) +n2
T (t) for all

t ∈ I. 2

We call (γθT , (γ
θ
T )d) the timelike parallel Legendrian curve.
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4 The evolutes of fronts in hyperbolic 2-space and de

Sitter 2-space

4.1 The evolutes of spacelike fronts in hyperbolic 2-space

We firstly consider the geometric meanings of evolutes of spacelike fronts in H2(−1). Let
(γh,γ

d
h) : I → ∆1 be a spacelike Legendrian immersion with the spacelike hyperbolic Legen-

drian curvature (mh, nh) which satisfies n2
h(t) 6= m2

h(t) for all t ∈ I. We define a mapping
Ev(γh) : I → R3

1 by

Ev(γh)(t) = ± 1√
|n2
h(t)−m2

h(t)|
(
nh(t)γh(t)−mh(t)γ

d
h(t)
)

and call it the totally evolute of γh in R3
1. We remark that if n2

h(t) > m2
h(t), then Ev(γh)(t) ∈

H2(−1). In this case, we denote it by Ehv (γh) and call it the hyperbolic evolute of γh. Moreover,
if n2

h(t) < m2
h(t), then Ev(γh)(t) ∈ S2

1 . We rewrite it as Edv (γh) and call it the de Sitter evolute
of γh. Furthermore, if nh(t)

2 − mh(t)
2 = 0 for all t ∈ I, then γh is a part of a hyperbolic

parabola (horosphere) in H2(−1). If nh(t0)
2 −mh(t0)

2 = 0, then nh(t0)γh(t0) −mh(t0)γ
d
h(t0)

is a lightlike point. Then we can not define the evolute at such points in this way. By a direct
calculation, we have the following properties about the totally evolutes of γh.

Proposition 4.1 Suppose that (γh,γ
d
h) : I → ∆1 is a spacelike Legendrian immersion with

the spacelike hyperbolic Legendrian curvature (mh, nh). Then the totally evolute Ev(γh) of γh
is independent on the parametrization of (γh,γ

d
h).

Proof. According to the proof of Proposition 3.1, if we take t : Ī → I as a (positive) change of
parameter, that is, t is surjective and has a positive derivative at every point. Then we have{

m̄h(u) = mh(t(u))ṫ(u),

n̄h(u) = nh(t(u))ṫ(u).

Therefore,

Ev(γh)(u) = ± 1√
|n̄2
h(u)− m̄2

h(u)|
(
n̄h(u)γh(u)− m̄h(u)γdh(u)

)
= ± 1√

|n2
h(t(u))−m2

h(t(u))|ṫ2(u)

(
nh(t(u))γh(t(u))−mh(t(u))γdh(t(u))

)
ṫ(u)

= Ev(γh)(t). 2

Remark 4.2 Let (γh,γ
d
h) : I → ∆1 be a spacelike Legendrian immersion.

(i) If we take −γh instead of γh, then the totally evolute of γh does not change.

(ii) If we take −γdh instead of γdh, then the totally evolute of γh does not change.

Proposition 4.3 Let γh : I → H2(−1) be a regular curve in H2(−1) with the hyperbolic
geodesic curvature κh which satisfies κh 6= ±1. Then we have the following assertions:

(i) If κ2h(t) > 1, then Eh
v (γh)(t) = Ehv (γh)(t).

(ii) If κ2h(t) < 1, then Ed
v (γh)(t) = Edv (γh)(t).
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Proof. Without loss of generality, by Example 3.3, we take γdh = eh, then (γh,γ
d
h) is a spacelike

Legendrian immersion with the spacelike hyperbolic Legendrian curvature (−||γ̇h||, ||γ̇h||κh).
It follows from the definition of the totally evolute γh, we have

Ev(γh)(t) = ± 1√
|n2
h(t)−m2

h(t)|
(
nh(t)γh(t)−mh(t)γ

d
h(t)
)

= ± 1√
|κ2h(t)− 1|

(κh(t)γh(t) + eh(t)) .

Since κ2h(t) > 1 if and only if n2
h(t) > m2

h(t), we have Eh
v (γh)(t) = Ehv (γh)(t). Moreover,

κ2h(t) < 1 if and only if n2
h(t) < m2

h(t), we have Ed
v (γh)(t) = Edv (γh)(t). 2

According to the above proposition, we have shown that the definition of the totally evolute
of γh is consistent with the definition of the evolute of γh when γh is a regular curve in H2(−1).

Proposition 4.4 Suppose that (γh,γ
d
h) : I → ∆1 be a spacelike Legendrian immersion with

the spacelike hyperbolic Legendrian curvature (mh, nh). Then we have the following assertions:

(i) If t0 is a singular point of γh, then Ehv (γh)(t0) = ±γh(t0).

(ii) If t0 is a singular point of γdh, then Edv (γh)(t0) = ±γdh(t0).

(iii) (a) If n2
h(t) > m2

h(t), then (Ehv (γh),γ
s
h) : I → ∆1 is a spacelike Legendrian immersion with

the spacelike hyperbolic Legendrian curvature(
ṁhnh −mhṅh
n2
h −m2

h

,±
√
n2
h −m2

h

)
.

(b) If n2
h(t) < m2

h(t), then (Edv (γh),γ
s
h) : I → ∆5 is a timelike Legendrian immersion with

the timelike de Sitter Legendrian curvature(
mhṅh − ṁhnh
m2
h − n2

h

,±
√
m2
h − n2

h

)
.

Proof. (i) Since t0 is a singular point of γh, we have mh(t0) = 0. It follows that

Ehv (γh)(t0) = ± 1√
n2
h(t0)

nh(t0)γh(t0) = ±γh(t0).

(ii) Since t0 is a singular point of γdh, we have nh(t0) = 0. It follows that

Edv (γh)(t0) = ± 1√
m2
h(t0)

mh(t0)γ
d
h(t0) = ±γdh(t0).

(iii) We firstly suppose that n2
h(t) > m2

h(t) and denote that

γ̃h = Ehv (γh), γ̃
d
h = γh ∧ γdh = γsh, γ̃

s
h = γ̃h ∧ γ̃

d
h.

By a straightforward calculation, we have

˙̃γh(t) =
ṁh(t)nh(t)−mh(t)ṅh(t)

n2
h(t)−m2

h(t)

(
±1√

n2
h(t)−m2

h(t)

(
mh(t)γh(t)− nh(t)γdh(t)

))
,
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˙̃
γdh(t) = γ̇sh(t) = ±

√
n2
h(t)−m2

h(t)

(
±1√

n2
h(t)−m2

h(t)

(
mh(t)γh(t)− nh(t)γdh(t)

))
and

γ̃sh(t) =
±1√

n2
h(t)−m2

h(t)

(
mh(t)γh(t)− nh(t)γdh(t)

)
.

It follows that

〈 ˙̃γh(t), ˙̃γh(t)〉 =

(
ṁh(t)nh(t)−mh(t)ṅh(t)

n2
h(t)−m2

h(t)

)2

≥ 0,

〈 ˙̃γh(t), γ̃
d
h(t)〉 = 〈Ėhv (γh)(t),γ

s
h(t)〉 = 0, ( ˙̃γh(t),

˙̃γ
d

h(t)) 6= (0, 0)

and

m̃h(t) = 〈 ˙̃γh(t), γ̃
s
h(t)〉 =

ṁh(t)nh(t)−mh(t)ṅh(t)

n2
h(t)−m2

h(t)
,

ñh(t) = 〈 ˙̃γd(t), γ̃
s
h(t)〉 = ±

√
n2
h(t)−m2

h(t).

This means that (γ̃h, γ̃
d
h) = (Ehv (γh),γ

s
h) : I → ∆1 is a spacelike Legendrian immersion with

the spacelike hyperbolic Legendrian curvature

(
ṁhnh −mhṅh
n2
h −m2

h

,±
√
n2
h −m2

h

)
. Therefore the

assertion (a) of (iii) holds.

Moreover, if n2
h(t) < m2

h(t), then

Ėdv (γh)(t) =
mh(t)ṅh(t)− ṁh(t)nh(t)

m2
h(t)− n2

h(t)

(
±1√

m2
h(t)− n2

h(t)

(
mh(t)γh(t)− nh(t)γdh(t)

))
.

We have

〈Ėdv (γh)(t), Ėdv (γh)(t)〉 = −
(
mh(t)ṅh(t)− ṁh(t)nh(t)

m2
h(t)− n2

h(t)

)2

≤ 0.

Thus Ėdv (γh)(t) is a timelike vector at a regular point of Edv (γh) in S2
1 . We denote that

γ̃T = Edv (γh), γ̃
d
T = γsh, γ̃

h
T = γ̃T ∧ γ̃

d
T .

By using almost the same arguments as above, we have

˙̃
γdT (t) = γ̇sh(t) = ±

√
m2
h(t)− n2

h(t)

(
±1√

m2
h(t)− n2

h(t)

(
mh(t)γh(t)− nh(t)γdh(t)

))
,

γ̃hT (t) =
±1√

m2
h(t)− n2

h(t)

(
mh(t)γh(t)− nh(t)γdh(t)

)
,

〈 ˙̃γT (t), γ̃dT (t)〉 = 〈Ėdv (γh)(t),γ
s
h(t)〉 = 0, ( ˙̃γT (t), ˙̃γ

d

T (t)) 6= (0, 0)

and

m̃T (t) = 〈 ˙̃γT (t), γ̃hT (t)〉 =
mh(t)ṅh(t)− ṁh(t)nh(t)

m2
h(t)− n2

h(t)
,

ñT (t) = 〈 ˙̃γT (t), γ̃hT (t)〉 = ±
√
m2
h(t)− n2

h(t).

This means that (γ̃T , γ̃
d
T ) = (Edv (γh),γ

s
h) : I → ∆5 is a timelike Legendrian immersion with

the timelike de Sitter Legendrian curvature

(
mhṅh − ṁhnh
m2
h − n2

h

,±
√
m2
h − n2

h

)
. Therefore the

assertion (b) of (iii) holds. 2
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Let (γh,γ
d
h) : I → ∆1 be a spacelike Legendrian immersion with the spacelike hyperbolic

Legendrian curvature (mh, nh) which satisfies n2
h 6= m2

h. We now explain the hyperbolic or de
Sitter evolute of the spacelike front γh : I → H2(−1) as a wavefront from the viewpoint of
Legendrian singularity theory [1, 11, 14] as follows. We define a function HT : I×H2(−1)→ R
by HT (t,v) = 〈γsh(t),v〉 and call it the hyperbolic timelike height function on the space-
like Legendrian immersion (γh,γ

d
h). We also define another function HS : I × S2

1 → R by
HS(t,v) = 〈γsh(t),v〉 and call it the hyperbolic spacelike height function on the spacelike Legen-
drian immersion (γh,γ

d
h). By a straightforward calculation, we have the following proposition.

Proposition 4.5 Let (γh,γ
d
h) : I → ∆1 be a spacelike Legendrian immersion with the spacelike

hyperbolic Legendrian curvature (mh, nh).

(i) Suppose that v ∈ H2(−1) and n2
h(t) > m2

h(t) for all t ∈ I:

(a) HT (t,v) = 0 if and only if there exist real numbers a and b such that v = aγh(t)+bγdh(t).

(b) HT (t,v) = (∂HT/∂t)(t,v) = 0 if and only if v = Ehv (γh)(t).

(ii) Suppose that v ∈ S2
1 and n2

h(t) < m2
h(t) for all t ∈ I:

(a) HS(t,v) = 0 if and only if there exist real numbers a and b such that v = aγh(t)+bγdh(t).

(b) HS(t,v) = (∂HS/∂t)(t,v) = 0 if and only if v = Edv (γh)(t).

Proof. (i) Taking {γh,γdh,γsh} as the moving frame of R3
1 along γh. For all (t,v) ∈ I×H2(−1),

HT (t,v) = 0 if and only if 〈γsh(t),v〉 = 0. This means that there exist real numbers a and b
with b2−a2 = −1 such that v = aγh(t)+bγdh(t). Thus, the assertion (a) of (i) holds. Moreover,
HT (t,v) = (∂HT/∂t)(t,v) = 0 if and only if 〈mh(t)γh(t)−nh(t)γdh(t), aγh(t)+bγdh(t)〉 = 0. By
a direct calculation, we can show that v = Ehv (γh)(t). Therefore, the assertion (b) of (i) holds.

(ii) By almost the same arguments as the assertion (i), we can show the assertion (ii). 2

One can show that (HT , ∂HT/∂t) is non-singular at (t,v) ∈ D(HT ), where

D(HT ) = {(t,v)|HT (t,v) =
∂HT

∂t
(t,v) = 0}.

This means that HT is a Morse family. Therefore, the hyperbolic evolute Ehv (γh) of the spacelike
front γh is a wavefront of a Legendrian immersion generated by HT . Moreover, the hyperbolic
spacelike height function HS is also a Morse family. Hence the de Sitter evolute Edv (γh) of the
spacelike front γh is also a wavefront of a Legendrian immersion generated by HS.

Proposition 4.6 Let (γh,γ
d
h) : I → ∆1 be a spacelike Legendrian immersion with the spacelike

hyperbolic Legendrian curvature (mh, nh). If t0 is a singular point of γh, then we have the
following assertions:

(i) t0 is a regular point of Ehv (γh) if and only if ṁh(t0) 6= 0.

(ii) t0 is a singular point of Ehv (γh) if and only if γ̈h(t0) = 0.

Proof. By a direct calculation,

Ėhv (γh)(t) = ±ṁh(t)nh(t)−mh(t)ṅh(t)

n2
h(t)−m2

h(t)

(
1√

n2
h(t)−m2

h(t)

(
mh(t)γh(t)− nh(t)γdh(t)

))
.

Since mh(t0) = 0, we have Ėhv (γh)(t0) = ± ṁh(t0)
|nh(t0)|

γdh(t0). Therefore, t0 is a regular point (re-

spectively, a singular point) of Ehv (γh) if and only if ṁh(t0) 6= 0 (respectively, ṁh(t0) = 0).
Furthermore, since γ̈h(t) = ṁh(t)γ

s
h(t)+mh(t)γ̇

s
h(t), we have γ̈h(t0) = ṁh(t0)γ

s
h(t). Therefore,

ṁh(t0) = 0 if and only if γ̈h(t0) = 0. 2
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Remark 4.7 If t0 is a singular point of γh, then mh(t0) = 0 and hence we can not define
Edv (γh) at this point t0. This is the reason why we don’t consider the properties of Edv (γh) at
singular point of γh.

Proposition 4.8 Let (γh,γ
d
h) : I → ∆1 be a spacelike Legendrian immersion with the spacelike

hyperbolic Legendrian curvature (mh, nh).

(i) n2
h(t) > m2

h(t) and Ėhv (γh)(t) = 0 for all t ∈ I if and only if γh(t) is a point or there exist
a constant timelike vector v and a constant real number C with C2 < 1, such that γh(t) ∈
HP (v,−1) and γdh(t) ∈ DP (v,−C) for all t ∈ I.

(ii) m2
h(t) > n2

h(t) and Ėdv (γh)(t) = 0 for all t ∈ I if and only if γdh(t) is a point or there
exist a constant spacelike vector w and a constant real number C with C2 < 1, such that
γh(t) ∈ HP (w, C) and γdh(t) ∈ DP (w, 1) for all t ∈ I.

Proof. (i) Since

Ėhv (γh)(t) = ±ṁh(t)nh(t)−mh(t)ṅh(t)

n2
h(t)−m2

h(t)

(
1√

n2
h(t)−m2

h(t)

(
mh(t)γh(t)− nh(t)γdh(t)

))
,

we have Ėhv (γh)(t) = 0 if and only if ṁh(t)nh(t) − mh(t)ṅh(t) = 0 for all t ∈ I. Therefore,
there exists a constant real number C with C2 < 1 such that mh(t) = Cnh(t). In the case
when C ≡ 0, we have γ̇h(t) ≡ 0. This means that γh(t) is a point. Moreover, if C 6≡ 0, then
γ̇h(t) = Cγ̇dh(t). It follows that γh(t) = Cγdh(t) + v, where v is a constant timelike vector. It
is obviously that 〈γh(t),v〉 = −1 and 〈γdh(t),v〉 = −C for all t ∈ I.

Conversely, if γh(t) is a point for all t ∈ I, then mh(t) ≡ ṁh(t) ≡ 0. It follows that
Ėhv (γh)(t) ≡ 0. If v is a constant timelike vector and C is a constant real number, then
γh(t) ∈ HP (v,−1) and γdh(t) ∈ HP (v,−C). Since 〈γh(t),v〉 = −1 and 〈γdh(t),v〉 = −C,
we have 〈γ̇h(t),v〉 = 0 and 〈γ̇dh(t),v〉 = 0. Therefore, v = γh(t) − Cγdh(t). Then v̇ =
mh(t)γ

s
h(t) − Cnh(t)γ

s
h(t) = 0. It follows that mh(t) = Cnh(t) and ṁh(t) = Cṅh(t). This

means that ṁh(t)nh(t)−mh(t)ṅh(t) = 0 for all t ∈ I. Therefore, Ėhv (γh)(t) = 0 for all t ∈ I.

(ii) By almost the same arguments as the proof of the assertion (i), we can show that the
assertion (ii) holds. 2

Proposition 4.9 Suppose that (γh,γ
d
h) : I → ∆1 is a spacelike Legendrian immersion with the

spacelike hyperbolic Legendrian curvature (mh, nh) and (γφh, (γ
φ
h)d) : I → ∆1 is a spacelike par-

allel Legendrian immersion with the spacelike hyperbolic Legendrian curvature (mφ
h, n

φ
h). Then

Ev(γh) = Ev(γφh) for any φ ∈ R.

Proof. According to the definition of the totally evolute of the spacelike front in H2(−1) and
Proposition 3.6, we have

Ev(γφh)(t) = ± 1√
|(nφh)2(t)− (mφ

h)2(t)|

(
nφh(t)γφh(t)−mφ

h(t)(γφh)d(t)
)

= ± 1√
|nh2(t)−mh

2(t)|
(
nh(t)γh(t)−mh(t)(γh)

d(t)
)

= Ev(γh)(t)

for any φ ∈ R. 2

In the last of this subsection, we calculate the evolutes of spacelike fronts defined in Example
3.4 and Example 3.5, respectively.
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Example 4.10 Let γh : I → H2(−1) be γh(t) = (
√

1 + t4 + t6, t2, t3) and γdh : I → S2
1 be

γdh(t) =
1√

4 + 9t2 + t6

(
t3
√

1 + t4 + t6, t5 + 3t, t6 − 2
)
.

By Example 3.4, we have

mh(t) =
t
√

4 + 9t2 + t6√
1 + t4 + t6

, nh(t) =
t10 + 15t6 + 10t4 + 6

(4 + 9t2 + t6)
√

1 + t4 + t6
.

Therefore, we have

Ev(γh)(t) = ±
(
6(1 + t4 + t6)3/2, 3t8 + 6t6 − 27t4 − 6t2, 6t9 + 8t7 + 24t3 + 8t

)√
|(t10 + 15t6 + 10t4 + 6)2 − t2(4 + 9t2 + t6)3|

,

see Figure 2.

Example 4.11 Let γh : I → H2(−1) be

γh(t) = (
√

1 + cos6 t+ sin6 t, cos3 t, sin3 t)

and γdh : I → S2
1 be

γdh(t) =
1√

1 + sin2 t cos2 t

(
sin t cos t

√
1 + sin6 t+ cos6 t, sin t(1 + cos4 t), cos t(1 + sin4 t)

)
,

where I = [0, 2π). By Example 3.5, we have

mh(t) =
3 sin t cos t

√
1 + sin2 t cos2 t√

1 + sin6 t+ cos6 t
,

nh(t) =
3 sin4 t cos4 t+ 3 sin2 t cos2 t− 1− sin6 t− cos6 t

(1 + sin2 t cos2 t)
√

1 + sin6 t+ cos6 t
.

Thus, we have

Ev(γh)(t) = ±(a
√
a, a cos3 t+ b/ cos t, a sin3 t+ b/ sin t)√
|(b− a)2 − 3b(1 + sin2 t cos2 t)2|

,

where a = 1 + cos6 t+ sin6 t, b = 3 sin4 t cos4 t+ 3 sin2 t cos2 t, see Figure 3.

hyperbolic evolute of the hyperbolic
3/2-cusp

de Sitter evolute of the hyperbolic
3/2-cusp

Figure 2
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hyperbolic evolute of the hyperbolic
astroid

de Sitter evolute of the hyperbolic
astroid

Figure 3

4.2 The evolutes of spacelike fronts in de Sitter 2-space

We now consider the geometric meanings of evolutes of spacelike fronts in S2
1 . Let (γd,γ

h
d)

be a spacelike Legendrian immersion in ∆1 with the spacelike de Sitter Legendrian curvature
(md, nd) which satisfies n2

d(t) 6= m2
d(t) for all t ∈ I. We define a mapping Ev(γd) : I → R3

1 by

Ev(γd)(t) = ± 1√
|n2
d(t)−m2

d(t)|
(
nd(t)γd(t)−md(t)γ

h
d(t)
)

and call it the totally evolute of γd in R3
1. We remark that if n2

d(t) < m2
d(t), then Ev(γd)(t) ∈

H2(−1). In this case, we denote it by Ehv (γd) and call it the hyperbolic evolute of γd. Moreover,
if n2

d(t) > m2
d(t), then Ev(γd)(t) ∈ S2

1 . We rewrite it as Edv (γd) and call it the de Sitter evolute
of γd. Furthermore, for the case n2

d(t)−m2
d(t) = 0, it has similar geometric meaning with the

case n2
h(t) − m2

h(t) = 0. By a direct calculation, we have the following properties about the
totally evolutes of γd.

Proposition 4.12 Suppose that (γhd ,γd) : I → ∆1 is a spacelike Legendrian immersion with
the spacelike de Sitter Legendrian curvature (md, nd). Then the totally evolute Ev(γd) of γd is
independent on the parametrization of (γd,γ

h
d).

Proof. If we take t : Ī → I as a (positive) change of parameter, that is, t is surjective and has
a positive derivative at every point. Then we have{

m̄d(u) = md(t(u))ṫ(u),

n̄d(u) = nd(t(u))ṫ(u).

Therefore,

Ev(γd)(u) = ± 1√
|n̄2
d(u)− m̄2

d(u)|
(
n̄d(u)γd(u)− m̄d(u)γhd(u)

)
= ± 1√

|n2
d(t(u))−m2

d(t(u))|ṫ2(u)

(
nd(t(u))γd(t(u))−md(t(u))γhd(t(u))

)
ṫ(u)

= Ev(γd)(t). 2
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Remark 4.13 Let (γhd ,γd) : I → ∆1 be a spacelike Legendrian immersion.

(i) If we take −γd instead of γd, then the totally evolute of γd does not change.

(ii) If we take −γhd instead of γhd, then the totally evolute of γd does not change.

Proposition 4.14 Let γd : I → S2
1 be a regular spacelike curve in S2

1 with the spacelike de
Sitter geodesic curvature κd which satisfies κd 6= ±1. Then we have the following assertions:

(i) If κ2d(t) > 1, then Ed
v (γd)(t) = Edv (γd)(t).

(ii) If κ2d(t) < 1, then Eh
v (γd)(t) = Ehv (γd)(t).

Proof. Without loss of generality, by Example 3.9, we take γhd = ed, then (γd,γ
h
d) is a spacelike

Legendrian immersion with the spacelike de Sitter Legendrian curvature (||γ̇d||, ||γ̇d||κd). It
follows from the definition of the totally evolute γd, we have

Ev(γd)(t) = ± 1√
|n2
d(t)−m2

d(t)|
(
nd(t)γd(t)−md(t)γ

h
d(t)
)

= ± 1√
|κ2d(t)− 1|

(κd(t)γd(t)− ed(t)) .

Since κ2d(t) > 1 if and only if n2
d(t) > m2

d(t), we have Ed
v (γd)(t) = Edv (γd)(t). Moreover,

κ2d(t) < 1 if and only if n2
d(t) < m2

d(t), we have Eh
v (γd)(t) = Ehv (γd)(t). 2

According to the above proposition, we have shown that the definition of the totally evolute
of γd is consistent with the definition of the evolute of γd when γd is a regular spacelike curve
in S2

1 .

Proposition 4.15 If (γhd ,γd) : I → ∆1 be a spacelike Legendrian immersion with the spacelike
de Sitter Legendrian curvature (md, nd), then we have the following assertions:

(i) If t0 is a singular point of γd, then Edv (γd)(t0) = ±γd(t0).

(ii) If t0 is a singular point of γhd, then Ehv (γd)(t0) = ±γhd(t0).

(iii) (a) If n2
d(t) > m2

d(t), then (Edv (γd),γ
s
d) : I → ∆5 is a timelike Legendrian immersion with

the timelike de Sitter Legendrian curvature(
mdṅd − ṁdnd
n2
d −m2

d

,±
√
n2
d −m2

d

)
.

(b) If n2
d(t) < m2

d(t), then (Ehv (γd),γ
s
d) : I → ∆1 is a spacelike Legendrian immersion with

the spacelike hyperbolic Legendrian curvature(
ṁdnd −mdṅd
m2
d − n2

d

,±
√
m2
d − n2

d

)
.

Proof. (i) Since t0 is a singular point of γd, we have md(t0) = 0. It follows that

Edv (γd)(t0) = ± 1√
n2
d(t0)

nd(t0)γd(t0) = ±γd(t0).

(ii) Since t0 is a singular point of γhd , we have nd(t0) = 0. It follows that

Ehv (γd)(t0) = ± 1√
m2
d(t0)

md(t0)γ
h
d(t0) = ±γhd(t0).
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(iii) We firstly assume that n2
d(t) > m2

d(t) and denote that

γ̃T = Edv (γd), γ̃
d
T = γsd, γ̃

h
T = γ̃T ∧ γ̃

d
T .

By a straightforward calculation, we have

˙̃γT (t) =
md(t)ṅd(t)− ṁd(t)nd(t)

n2
d(t)−m2

d(t)

(
∓1√

n2
d(t)−m2

d(t)

(
md(t)γd(t)− nd(t)γhd(t)

))
,

˙̃
γdT (t) = γ̇sd(t) = ±

√
n2
d(t)−m2

d(t)

(
∓1√

n2
d(t)−m2

d(t)
(md(t)γd(t)− nd(t)γhd(t))

)
and

γ̃hT (t) =
∓1√

n2
d(t)−m2

d(t)

(
md(t)γd(t)− nd(t)γhd(t)

)
.

It follows that

〈 ˙̃γT (t), ˙̃γT (t)〉 = −
(
md(t)ṅd(t)− ṁd(t)nd(t)

n2
d(t)−m2

d(t)

)2

≤ 0,

〈 ˙̃γT (t), γ̃dT (t)〉 = 〈Ėdv (γd)(t),γ
s
d(t)〉 = 0, ( ˙̃γT (t), ˙̃γ

d

T (t)) 6= (0, 0)

and

m̃T (t) = −〈 ˙̃γT (t), γ̃hT (t)〉 =
md(t)ṅd(t)− ṁd(t)nd(t)

n2
d(t)−m2

d(t)
,

ñT (t) = −〈 ˙̃γ
d

T (t), γ̃hT (t)〉 = ±
√
n2
d(t)−m2

d(t).

This means that (γ̃T , γ̃
d
T ) = (Edv (γd),γ

s
d) : I → ∆5 is a timelike Legendrian immersion with

the timelike de Sitter Legendrian curvature

(
mdṅd − ṁdnd
n2
d −m2

d

,±
√
n2
d −m2

d

)
. Therefore, the

assertion (a) of (iii) holds.

Moreover, we assume that n2
d(t) < m2

d(t) and denote that

γ̃h = Ehv (γd), γ̃
d
h = γsd, γ̃

s
h = γ̃h ∧ γ̃d.

By a direct calculation, we can show that

˙̃γh(t) =
ṁd(t)nd(t)−md(t)ṅd(t)

m2
d(t)− n2

d(t)

(
∓1√

m2
d(t)− n2

d(t)

(
md(t)γd(t)− nd(t)γhd(t)

))
,

˙̃γ
d

h(t) = γ̇sd(t) = ±
√
m2
d(t)− n2

d(t)

(
∓1√

m2
d(t)− n2

d(t)
(md(t)γd(t)− nd(t)γhd(t))

)
and

γ̃sh(t) =
∓1√

m2
d(t)− n2

d(t)

(
md(t)γd(t)− nd(t)γhd(t)

)
.

Therefore, we have

〈 ˙̃γh(t), ˙̃γh(t)〉 =

(
ṁd(t)nd(t)−md(t)ṅd(t)

m2
d(t)− n2

d(t)

)2

≥ 0,

〈 ˙̃γh(t), γ̃
d
h(t)〉 = 〈Ėhv (γd)(t),γ

s
d(t)〉 = 0, ( ˙̃γh(t),

˙̃γ
d

h(t)) 6= (0, 0)
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and

m̃h(t) = 〈 ˙̃γh(t), γ̃
s
h(t)〉 =

ṁd(t)nd(t)−md(t)ṅd(t)

m2
d(t)− n2

d(t)
,

ñh(t) = 〈 ˙̃γ
d

h(t), γ̃
s
h(t)〉 = ±

√
m2
d(t)− n2

d(t).

This means that (γ̃h, γ̃
d
h) = (Ehv (γd),γ

s
d) : I → ∆1 is a spacelike Legendrian immersion with

the spacelike hyperbolic Legendrian curvature

(
ṁdnd −mdṅd
m2
d − n2

d

,±
√
m2
d − n2

d

)
. Therefore the

assertion (b) of (iii) holds. 2

Let (γd,γ
h
d) be a spacelike Legendrian immersion in ∆1 with the spacelike de Sitter Leg-

endrian curvature (md, nd) which satisfies n2
d 6= m2

d. We can also explain the hyperbolic or de
Sitter evolute of the spacelike front γd as a wavefront from the viewpoint of Legendrian singu-
larity theory as follows. We define a function DT : I ×H2(−1) → R by DT (t,v) = 〈γsd(t),v〉
and call it the de Sitter timelike height function on the spacelike Legendrian immersion (γd,γ

h
d).

We also define another function DS : I × S2
1 → R by DS(t,v) = 〈γsd(t),v〉 and call it the de

Sitter spacelike height function on the spacelike Legendrian immersion (γd,γ
h
d). By a direct

calculation, we can show the following proposition.

Proposition 4.16 Let (γhd ,γd) : I → ∆1 be a spacelike Legendrian immersion with the space-
like de Sitter Legendrian curvature (md, nd).

(i) Suppose that v ∈ H2(−1) and n2
d(t) < m2

d(t) for all t ∈ I:

(a) DT (t,v) = 0 if and only if there exist real numbers a and b such that v = aγd(t)+bγ
h
d(t).

(b) DT (t,v) = (∂DT/∂t)(t,v) = 0 if and only if v = Ehv (γd)(t).

(ii) Suppose that v ∈ S2
1 and n2

d(t) > m2
d(t) for all t ∈ I:

(a) DS(t,v) = 0 if and only if there exist real numbers a and b such that v = aγd(t)+bγ
h
d(t).

(b) DS(t,v) = (∂DS/∂t)(t,v) = 0 if and only if v = Edv (γd)(t).

One can show that (DT , ∂DT/∂t) is non-singular at (t,v) ∈ D(DT ), where

D(DT ) = {(t,v)|DT (t,v) =
∂DT

∂t
(t,v) = 0}.

This means that DT is a Morse family. Therefore, the hyperbolic evolute Ehv (γd) of the spacelike
front γd is a wavefront of a Legendrian immersion generated by DT . Moreover, the de Sitter
spacelike height function DS is also a Morse family. Hence the de Sitter evolute Edv (γd) of the
spacelike front γd is also a wavefront of a Legendrian immersion generated by DS.

By almost the same arguments with Propositions 4.6, 4.8, 4.9 and Remark 4.7, we have the
following propositions and remark.

Proposition 4.17 Let (γhd ,γd) : I → ∆1 be a spacelike Legendrian immersion with the space-
like de Sitter Legendrian curvature (md, nd). If t0 is a singular point of γd, then we have the
following assertions:

(i) t0 is a regular point of Edv (γh) if and only if ṁd(t0) 6= 0.

(ii) t0 is a singular point of Edv (γh) if and only if γ̈d(t0) = 0.

Remark 4.18 If t0 is a singular point of γd, then md(t0) = 0 and hence we can not define
Ehv (γh) at this point t0. This is the reason why we don’t consider the properties of Ehv (γd) at
singular point of γd.

21



Proposition 4.19 If (γhd ,γd) : I → ∆1 be a spacelike Legendrian immersion with the spacelike
de Sitter Legendrian curvature (md, nd), then we have the following assertions:

(i) n2
d(t) > m2

d(t) and Ėdv (γd)(t) = 0 for all t ∈ I if and only if γd(t) is a point or there
exist a constant spacelike vector v and a constant real number C with C2 < 1, such that
γd(t) ∈ DP (v, 1) and γhd(t) ∈ HP (v, C) for all t ∈ I.

(ii) m2
d(t) > n2

d(t) and Ėhv (γd)(t) = 0 for all t ∈ I if and only if γhd(t) is a point or there
exist a constant timelike vector w and a constant real number C with C2 < 1, such that
γd(t) ∈ DP (w,−C) and γhd(t) ∈ HP (w,−1) for all t ∈ I.

Proposition 4.20 Suppose that (γd,γ
h
d) is a spacelike Legendrian immersion with the space-

like de Sitter Legendrian curvature (md, nd) and (γφd , (γ
φ
d)h) is a spacelike parallel Legendrian

immersion with the spacelike de Sitter Legendrian curvature (mφ
d , n

φ
d). Then Ev(γd) = Ev(γφd)

for any φ ∈ R.

4.3 The evolutes of timelike fronts in de Sitter 2-space

Finally, we consider the geometric meanings of evolutes of timelike fronts in S2
1 . Let (γT ,γ

d
T ) :

I → ∆5 be a timelike Legendrian immersion with the timelike de Sitter Legendrian curvature
(mT , nT ). We define a mapping Edv (γT ) : I → S2

1 by

Edv (γT )(t) = ± 1√
n2
T (t) +m2

T (t)

(
nT (t)γT (t)−mT (t)γdT (t)

)
and call it the spacelike evolute of γT in S2

1 . By a direct calculation, we have the following
properties about the spacelike evolutes of timelike fronts in S2

1 .

Proposition 4.21 Suppose that (γT ,γ
d
T ) : I → ∆5 is a timelike Legendrian immersion with

the timelike de Sitter Legendrian curvature (mT , nT ). Then the spacelike evolute Ev(γT ) of γT
is independent on the parametrization of (γT ,γ

d
T ).

Remark 4.22 Let (γT ,γ
d
T ) : I → ∆5 be a timelike Legendrian immersion.

(i) If we take −γT instead of γT , then the spacelike evolute of γT does not change.

(ii) If we take −γdT instead of γdT , then the spacelike evolute of γT does not change.

Proposition 4.23 Let γT : I → S2
1 be a regular timelike curve in S2

1 with the timelike de Sitter
geodesic curvature κT . Then Ed

v (γT )(t) = Edv (γT )(t).

Proof. Without loss of generality, by Example 3.13, we take γdT = eT , then (γT ,γ
d
T ) is a timelike

Legendrian immersion with the timelike de Sitter Legendrian curvature (||γ̇T ||, ||γ̇T ||κT ). It
follows from the definition of the spacelike evolute of γT , we have

Edv (γT )(t) = ± 1√
n2
T (t) +m2

T (t)

(
nT (t)γT (t)−mT (t)γdT (t)

)
= ± 1√

κ2T (t) + 1
(κT (t)γT (t)− eT (t))

= Ed
v (γT )(t). 2

According to the above proposition, we have shown that the definition of the spacelike
evolute of γT is consistent with the definition of the evolute of γT when γT is a regular timelike
curve in S2

1 .
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Proposition 4.24 If (γT ,γ
d
T ) : I → ∆5 is a timelike Legendrian immersion with the timelike

de Sitter Legendrian curvature (mT , nT ), then we have the following:

(i) If t0 is a singular point of γT , then Edv (γT )(t0) = ±γT (t0).

(ii) If t0 is a singular point of γdT , then Edv (γT )(t0) = ±γdT (t0).

(iii) (γhT , Edv (γT )) : I → ∆1 is a spacelike Legendrian immersion with the spacelike de Sitter
Legendrian curvature (

mT ṅT − ṁTnT
n2
T +m2

T

,±
√
n2
T +m2

T

)
.

Proof. (i) Since t0 is a singular point of γT , we have mT (t0) = 0. It follows that

Edv (γT )(t0) = ± 1√
n2
T (t0)

nT (t0)γT (t0) = ±γT (t0).

(ii) Since t0 is a singular point of γdT , we have nT (t0) = 0. It follows that

Edv (γT )(t0) = ± 1√
m2
T (t0)

mT (t0)γ
d
T (t0) = ±γdT (t0).

(iii) We denote that γ̃d = Edv (γT ), γ̃hd = γhT and γ̃sd = γ̃d ∧ γ̃
h
d . By a straightforward

calculation, we have

˙̃γd(t) =
mT (t)ṅT (t)− ṁT (t)nT (t)

n2
T (t) +m2

T (t)

(
±1√

n2
T (t) +m2

T (t)
(mT (t)γT (t) + nT (t)γdT (t))

)
,

˙̃
γhd(t) = γ̇hT (t) = ±

√
n2
T (t) +m2

T (t)

(
±1√

n2
T (t) +m2

T (t)
(mT (t)γT (t) + nT (t)γdT (t))

)
and

γ̃sd(t) =
±1√

n2
T (t) +m2

T (t)
(mT (t)γT (t) + nT (t)γdT (t)).

It follows that

〈 ˙̃γd(t), ˙̃γd(t)〉 =

(
mT (t)ṅT (t)− ṁT (t)nT (t)

n2
T (t) +m2

T (t)

)2

≥ 0,

〈 ˙̃γd(t), γ̃
h
d(t)〉 = 〈Ėdv (γT )(t),γhd(t)〉 = 0, ( ˙̃γd(t),

˙̃γ
h

d(t)) 6= (0, 0)

and

m̃d(t) = 〈 ˙̃γd(t), γ̃
s
d(t)〉 =

mT (t)ṅT (t)− ṁT (t)nT (t)

n2
T (t) +m2

T (t)
,

ñd(t) = 〈 ˙̃γ
h

d(t), γ̃
s
d(t)〉 = ±

√
n2
T (t) +m2

T (t).

This means that (γ̃hd , γ̃d) = (γhT , Edv (γT )) : I → ∆1 is a spacelike Legendrian immersion with
the spacelike de Sitter Legendrian curvature(

mT ṅT − ṁTnT
n2
T +m2

T

, ±
√
n2
T +m2

T

)
. 2

Let (γT ,γ
d
T ) : I → ∆5 be a timelike Legendrian immersion. We now define a function

F S : I × S2
1 → R by F S(t,v) = 〈γhT (t),v〉 and call it the de Sitter height function on the

timelike Legendrian immersion (γT ,γ
d
T ). By a straightforward calculation, we can show the

following proposition.
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Proposition 4.25 Let (γT ,γ
d
T ) : I → ∆5 be a timelike Legendrian immersion with the timelike

de Sitter Legendrian curvature (mT , nT ). For all (t,v) ∈ I × S2
1 , we have the following:

(i) F S(t,v) = 0 if and only if there exist real numbers a and b such that v = aγT (t) + bγdT (t).

(ii) F S(t,v) = (∂F S/∂t)(t,v) = 0 if and only if v = Edv (γT )(t).

One can show that (F S, ∂F S/∂t) is non-singular at (t,v) ∈ D(F S), where

D(F S) = {(t,v)|F S(t,v) =
∂F S

∂t
(t,v) = 0}.

This means that F S is a Morse family. Therefore, the spacelike evolute Edv (γT ) of the timelike
front γT is a wavefront of a Legendrian immersion generated by F S.

By almost the same arguments with Proposition 4.6, we have the following proposition.

Proposition 4.26 Let (γT ,γ
d
T ) : I → ∆5 be a timelike Legendrian immersion with the timelike

de Sitter Legendrian curvature (mT , nT ). If t0 is a singular point of γT , then we have the
following assertions:

(i) t0 is a regular point of Edv (γT ) if and only if ṁT (t0) 6= 0.

(ii) t0 is a singular point of Edv (γT ) if and only if γ̈T (t0) = 0.

Proposition 4.27 Let (γT ,γ
d
T ) : I → ∆5 be a timelike Legendrian immersion. Ėdv (γT )(t) = 0

for all t ∈ I if and only if γT (t) is a point or γdT (t) is a point or there exist a constant
spacelike vector w and two constant real numbers C1 and C2 with (C1, C2) 6= (0, 0), such that
γT (t) ∈ DP (w, C1) and γdT (t) ∈ DP (w,−C2).

Proof. Since

Ėdv (γT )(t) =
mT (t)ṅT (t)− ṁT (t)nT (t)

n2
T (t) +m2

T (t)

(
±1√

n2
T (t) +m2

T (t)
(mT (t)γT (t) + nT (t)γdT (t))

)
,

we have Ėdv (γT )(t) = 0 if and only if ṁT (t)nT (t) − mT (t)ṅT (t) = 0 for all t ∈ I. Therefore,
there exist two constant real numbers C1 and C2 with (C1, C2) 6= (0, 0) such that C1mT (t) =
C2nT (t). In the case when C1 ≡ 0, we have γ̇dT (t) ≡ 0. This means that γdT (t) is a point.
Moreover, if C2 ≡ 0, we have γ̇T (t) ≡ 0. This means that γT (t) is a point. Otherwise, we have
C1γ̇T (t) = C2γ̇

d
T (t). So that C1γT (t) = C2γ

d
T (t) +w, where w is a constant spacelike vector.

It is obviously that 〈γT (t),w〉 = C1 and 〈γdT (t),w〉 = −C2 for all t ∈ I.

Conversely, if γT (t) is a point for all t ∈ I, then mT (t) ≡ ṁT (t) ≡ 0. It follows that
Ėdv (γT )(t) ≡ 0. Moreover, if γdT (t) is a point for all t ∈ I, then nT (t) ≡ ṅT (t) ≡ 0. It also follows
that Ėdv (γT )(t) ≡ 0. On the other hand, we assume thatw is a constant spacelike vector, C1 and
C2 are constant real numbers which satisfy (C1, C2) 6= (0, 0), γT (t) ∈ DP (w, C1) and γdT (t) ∈
DP (w,−C2). It follows that 〈γT (t),w〉 = C1 and 〈γdT (t),w〉 = −C2, then 〈γ̇T (t),w〉 = 0 and
〈γ̇dT (t),w〉 = 0. We denote w = C1γT (t)−C2γ

d
T (t), then ẇ = C1mT (t)γhT (t)−C2nT (t)γhT (t) =

0. Thus we have C1mT (t) = C2nT (t) and C1ṁT (t) = C2ṅT (t). This means that ṁT (t)nT (t)−
mT (t)ṅT (t) = 0 for all t ∈ I. Therefore, Ėdv (γT )(t) = 0 for all t ∈ I. 2

We also prove the following proposition by the similar arguments with Proposition 4.9.

Proposition 4.28 Suppose that (γT ,γ
d
T ) : I → ∆5 be a timelike Legendrian immersion

with the timelike de Sitter Legendrian curvature (mT , nT ) and (γθT , (γ
θ
T )d) be a timelike par-

allel Legendrian immersion with the timelike de Sitter Legendrian curvature (mθ
T , n

θ
T ). Then

Edv (γT ) = Edv (γθT ) for any θ ∈ [0, 2π).
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5 The relationships among the evolutes of spacelike fronts

and timelike fronts

We investigate the relationships among the evolutes of spacelike fronts and timelike fronts in
hyperbolic 2-space and de Sitter 2-space. We firstly discuss the relationship between the totally
evolute Ev(γh) of a spacelike front γh in H2(−1) and the totally evolute Ev(γd) of a spacelike
front γd in S2

1 . As results, we can show the following theorem.

Theorem 5.1 Suppose that (γh,γd) : I → ∆1 is a spacelike Legendrian immersion with the
spacelike hyperbolic Legendrian curvature (mh, nh) which satisfies m2

h(t) 6= n2
h(t) for all t ∈ I.

Then we have:

(i) If m2
h(t) < n2

h(t), then Ehv (γh)(t) = Ehv (γd)(t).

(ii) If m2
h(t) > n2

h(t), then Edv (γh)(t) = Edv (γd)(t).

Proof. We firstly assume that γsh = γh ∧ γd and γdh = γd. Since (γh,γd) : I → ∆1 is a
spacelike Legendrian immersion, we have{

γ̇h(t) = mh(t)γ
s
h(t),

γ̇dh(t) = nh(t)γ
s
h(t) = γ̇d(t).

On the other hand, we denote that γsd = γd ∧ γh and γhd = γh. Then we have γsd = −γsh and{
γ̇d(t) = md(t)γ

s
d(t),

γ̇hd(t) = nd(t)γ
s
d(t) = γ̇h(t).

It is obviously that
mh(t) = −nd(t), nh(t) = −md(t).

Therefore if m2
h(t) < n2

h(t), then we have m2
d(t) > n2

d(t) and

Ehv (γh)(t) = ± 1√
n2
h(t)−m2

h(t)
(nh(t)γh(t)−mh(t)γd(t))

= ± 1√
m2
d(t)− n2

d(t)
(nd(t)γd(t)−md(t)γh(t)) = Ehv (γd)(t).

Moreover, if m2
h(t) > n2

h(t), then we have m2
d(t) < n2

d(t) and

Edv (γh)(t) = ± 1√
m2
h(t)− n2

h(t)
(nh(t)γh(t)−mh(t)γd(t))

= ± 1√
n2
d(t)−m2

d(t)
(nd(t)γd(t)−md(t)γh(t)) = Edv (γd)(t). 2

On the other hand, according to the timelike de Sitter Legendrian Frenet-Serret type for-
mula, if γT : I → S2

1 is a timelike front in S2
1 , then we can know that γdT : I → S2

1 is a
timelike curve in S2

1 and (γdT (t),γT (t)) ∈ ∆5. Therefore, γdT is also a timelike front in S2
1 . We

can define the spacelike evolute of γdT as follows: we assume that γ̃T = γdT , γ̃
d
T = γT and

γ̃hT = γ̃T ∧ γ̃
d
T = −γhT , then we have m̃T (t)γ̃hT (t) = ˙̃γT (t) = γ̇dT (t) = nT (t)γhT (t) = −nT (t)γ̃hT (t),

ñT (t)γ̃hT (t) = ˙̃γ
d

T (t) = γ̇T (t) = mT (t)γhT (t) = −mT (t)γ̃hT (t).
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Therefore, m̃T (t) = −nT (t), ñT (t) = −mT (t). Then we have

Edv (γdT )(t) = Edv (γ̃T )(t) = ± 1√
n2
T (t) +m2

T (t)

(
−mT (t)γdT (t) + nT (t)γT (t)

)
= Edv (γT )(t).

Hence we have shown the following theorem.

Theorem 5.2 Let (γT ,γ
d
T ) : I → ∆5 be a timelike Legendrian immersion, then Edv (γT )(t) =

Edv (γdT )(t) for all t ∈ I.

Remark 5.3 By Proposition 4.28, if we take θ = π/2, then we can also prove Edv (γT )(t) =
Edv (γdT )(t) for all t ∈ I.

Theorem 5.4 Suppose that (γh,γ
d
h) : I → ∆1 is a spacelike Legendrian immersion with the

spacelike hyperbolic Legendrian curvature (mh, nh). Then we have the following assertions for
all t ∈ I:

(i) If m2
h(t) > n2

h(t), then γsh is a timelike front in S2
1 and Edv (γsh)(t) = Edv (Edv (γh))(t).

(ii) If m2
h(t) < n2

h(t), then γsh is a spacelike front in S2
1 . Moreover,

(a) if (n2
h(t)−m2

h(t))
3 > (ṁh(t)nh(t)−mh(t)ṅh(t))

2, then Ehv (γsh)(t) = Ehv (Ehv (γh))(t).

(b) if (n2
h(t)−m2

h(t))
3 < (ṁh(t)nh(t)−mh(t)ṅh(t))

2, then Edv (γsh)(t) = Edv (Ehv (γh))(t).

Proof. According to Proposition 4.4, if m2
h(t) > n2

h(t), then (Edv (γh)(t),γ
s
h(t)) ∈ ∆5 is a

timelike Legendrian immersion. Therefore, γsh is a timelike front in S2
1 . Moreover, it follows

from Theorem 5.2, we have Edv (γsh)(t) = Edv (Edv (γh))(t).

On the other hand, If m2
h(t) < n2

h(t), then (Ehv (γh)(t),γ
s
h(t)) ∈ ∆1 is a spacelike Legendrian

immersion. Therefore, γsh is a spacelike front in S2
1 . Moreover, it follows from Proposition 4.4

and Theorem 5.1, we have Ehv (γsh)(t) = Ehv (Ehv (γh))(t) and Edv (γsh)(t) = Edv (Ehv (γh))(t). 2

Remark 5.5 Since Edv (γh) : I → S2
1 is a timelike front in S2

1 , Ehv (Edv (γh)) does not exist.

By ∆1-duality, Theorems 5.1 and 5.4, we have the following corollary.

Corollary 5.6 Suppose that (γhd ,γd) : I → ∆1 is a spacelike Legendrian immersion with the
spacelike de Sitter Legendrian curvature (md, nd). Then we have the following assertions for all
t ∈ I:

(i) If m2
d(t) > n2

d(t), then γsd is a spacelike front in S2
1 . Moreover,

(a) if (m2
d(t)− n2

d(t))
3 > (ṁd(t)nd(t)−md(t)ṅd(t))

2, then Ehv (γsd)(t) = Ehv (Ehv (γd))(t).

(b) if (m2
d(t)− n2

d(t))
3 < (ṁd(t)nd(t)−md(t)ṅd(t))

2, then Edv (γsd)(t) = Edv (Ehv (γd))(t)

(ii) If m2
d(t) < n2

d(t), then γsd is a timelike front in S2
1 and Edv (γsd)(t) = Edv (Edv (γd))(t).

By almost the same arguments as Theorem 5.4, we have the following result.

Theorem 5.7 If (γT ,γ
d
T ) : I → ∆5 is a timelike Legendrian immersion with the timelike de

Sitter Legendrian curvature (mT , nT ), then γhT is a spacelike front in H2
1 . Moreover, we have

the following assertions for all t ∈ I:

(a) if (n2
T (t) +m2

T (t))3 > (ṁT (t)nT (t)−mT (t)ṅT (t))2, then Ehv (γhT )(t) = Ehv (Edv (γT ))(t).

(b) if (n2
T (t) +m2

T (t))3 < (ṁT (t)nT (t)−mT (t)ṅT (t))2, then Edv (γhT )(t) = Edv (Edv (γT ))(t).
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