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Abstract

Subspace skyline, as an important variant of skyline, has been widely applied

for multiple-criteria decisions, business planning. With the development of mo-

bile internet, subspace skyline query in mobile distributed environments has

recently attracted considerable attention. However, efficiently obtaining the

meaningful subset of skyline points in any subspace remains a challenging task

in the current mobile internet. For more and more mobile applications, subspace

skyline query on mobile units is usually limited by big data and wireless band-

width. To address this issue, in this paper, we propose a system model that can

support subspace skyline query in mobile distributed environment. An efficient

algorithm for processing the Subspace Skyline Query using MapReduce (SSQ) is

also presented which can obtain the meaningful subset of points from the full set

of skyline points in any subspace. The SSQ algorithm divides a subspace skyline

query into two processing phases: the preprocess phase and the query phase.

The preprocess phase includes the pruning process and constructing index pro-

cess which is designed to reduce network delay and response time. Additionally,

the query phase provides two filtering methods, SQM-filtering and 𝜀-filtering, to

filter the skyline points according to user preference and reduce network cost.
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Extensive experiments on real and synthetic data are conducted and the ex-

perimental results indicate that our algorithm is much efficient, meanwhile, the

pruning strategy can further improve the efficiency of the algorithm.

Key words: subspace skyline query, MapReduce, pruning strategy,

grid, user preference

1. Introduction

Skyline query has attracted an increasing amount of attention over the past

few years. Skyline query has been widely applied in highly mobile distributed

environments for multiple-objective decisions. For example, a tourist may search

for a suitable hotel using a mobile phone network when he/she arrives at the5

airport of a city.

Due to large-scale data and high processing costs, it is not possible to com-

pute the skyline points using terminals such as mobile phones. The number of

skyline points quickly increases when the amount of data increases, particularly

for increasing trend of applications to deal with big data, for example, big data10

on the Social network. To address this problem, skyline computation in a dis-

tributed environment is the best option. [1, 2, 3, 4] proposed some approaches

for skyline processing in P2P network. These methods are restricted to their

own specific scenarios, such as overlay network, and cannot be adapted for the

aforementioned scenario.15

Furthermore, skyline query can be computationally expensive when it pro-

vides numerous candidate attributes. In many applications, various users may

focus their attention on different subsets of the attributes according to their own

interests. [5, 6] proposed efficient skyline algorithms in subspaces that can re-

trieve the skylines in a user-defined subset of attributes. MapReduce framework20

[7] is a programming model for processing large datasets using a distributed,

parallel algorithm on a cluster. A considerable amount of work has been con-

ducted to migrate traditional skyline algorithms to the MapReduce framework,

such as [8, 9, 10, 11], but they cannot support subspace skyline query.
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The subspace skyline query assumes every attribute to be of equal impor-25

tance, and the difference in the importance of attributes is not considered. Bias

to some attributes of greater interest was considered in [12], in which the authors

proposed the Weighted Dominant Skyline. However, it is not possible for users

to provide the weight assignment without any initial knowledge of the dataset.

In this paper, we only require users to provide the ranks of their attributes of30

interest.

Table 1: Dataset of Hotels

ID Price (RMB) Mileage (KM) Occupancy Rate

𝑝1 200 7 0.5

𝑝2 200 3 0.6

𝑝3 250 5 0.8

𝑝4 500 3 0.7

𝑝5 150 9 0.6

𝑝6 200 9 0.5

𝑝7 300 6 0.7

𝑝8 500 5 0.8

𝑝9 300 7 0.9

Taking Table 1 as an example, a dataset 𝑃={𝑝1, 𝑝2, ..., 𝑝9} about hotels

contains 3 attributes: the price, the distance to the airport (Mileage) and the

occupancy rate. Assuming that the attributes are of equal importance, there

are 4 skyline points in 𝑃 : 𝑝1, 𝑝2, 𝑝5 and 𝑝6. However, in many cases, the relative35

importance of attributes are often different. For example, when a tourist is very

tired, the distance to the airport is crucial for him/her, and the other attributes

are secondary. In this case, although 𝑝5 and 𝑝6 are skyline points, the tourist

does not consider these points because the distance to the airport is too far. In

the above example, the interesting subset of skyline points is {𝑝1, 𝑝2}.40

The aim of a skyline query is to help users manually make a decision. As

the size of the dataset increases, the size of skyline points becomes too large.
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There are many meaningless skyline points to report, such as 𝑝5 and 𝑝6 in the

above example. In this paper, we present a new algorithm which we call Subset

Skyline Query or SSQ for short to return the meaningful subset of subspace45

skyline points.

The major contributions of this work are summarized as follows: (1) We

present a system model for implementing the skyline operator using MapRe-

duce in any subspace, in which the requirements of mobile internet and big

data are carefully considered. (2) We propose the algorithm of the Subspace50

Skyline Query (SSQ) which can obtain the meaningful subset skyline of skyline

points. In the first phase, we design a pruning strategy based on grid to reduce

the network delay and response time. It can effectively prune out non-skyline

points in advance. The constructing index process is also used to support sub-

space skyline query. In the second phase, we provide two filtering methods,55

called SQM-filtering and 𝜀-filtering, to filter the skyline points according to user

preference and reduce network communication. (3) We conduct experiments on

real and synthetic data. Experimental evaluations show that SSQ can signifi-

cantly improve the efficiency of the subspace skyline query over big data.

The remainder of this paper is organized as follows. In Section 2, we review60

the previous work related to skyline query processing. Section 3 provides the

useful preliminaries. In Section 4, a system model is presented. Section 5

describes the implementation of the SSQ algorithm in the parallel programming

framework of MapReduce. Section 6 presents experimental evaluations that

demonstrate the efficiency of the proposed algorithm. Finally, we conclude the65

paper with a summary of our results in Section 7.

2. Related work

The skyline operator is useful for extracting interesting data points from

a dataset. Over the past decades, a considerable number of research works

have reported on the skyline operator and its variants. Börzsönyi et al. [13]70

first introduced the skyline operator into the relational database and proposed
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two algorithms: Block Nested Loop (BNL) and Divide-and-Conquer (D&C).

Chomicki et al. [14] presented Sort-Filter-Skyline(SFS) as a variant of BNL,

which can immediately eliminate objects dominated by others in the presorted

dataset. The primary shortcoming of the above algorithms is their dependence75

on memory capacity. Many skyline query algorithms based on indexing have

been proposed, such as the nearest neighbor [15] and branch-and-bound skyline

[16] algorithms. Due to the dimension curse, the size of the skyline is typically

large. Consequently, many variants of skylines have been proposed. Subspace

skyline query were first discussed by Pei, J et al. [5] and subsequently elaborated80

in later works [6]. The key concept of a subspace skyline query is to implement

the skyline operator in the most interesting subset of all dimensions by the user.

Clearly, skyline query processing using the index structure mentioned in [15, 16]

over all dimensions, such as R-tree, cannot support subspace skyline query. All

of these works assumed that skyline query is performed on centralized systems.85

Unfortunately, a large amount of data can result in low efficiency for skyline

query performed in a centralized setting.

Deviating from skyline query on centralized systems, significant research

effort has been devoted to implementing the skyline operator in distributed en-

vironments. Skyline queries in P2P networks were discussed in [2, 3, 4], in which90

unstructured peers or routing indexes were used to identify relevant peers. Sky-

line processing has also been studied in other distributed environments, such as

web information systems [17, 18, 19]. They are not adapted for our scenario

because skyline processing over big data cannot be performed in lightweight

terminals. Motivated by the fact that many points which belong to the local95

skyline sets do not belong in the final skyline result set, to reduce the amount of

local skyline communication, in [20, 21], the authors presented space partition-

ing schemes such as the angle-based partitioning approach. In contrast to the

parallel skyline algorithms designed for share-nothing distributed environments

by only exchanging messages, [9, 10, 22, 11] focused on exploiting database100

programming models, such as MapReduce, but these models cannot support

subspace skyline query. Our method aims to effectively support subspace sky-
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line query based on user preferences for large-scale data.

In the above studies, the conventional skyline algorithms were either not suit-

able for large-scale data or did not support distributed subspace skyline query.105

Furthermore, with the development of mobile internet devices, skyline query in

both mobile and distributed environments has become an important problem.

The distributed nature of the environment makes the task of discovering sky-

lines even more challenging, particularly in any subspace. Conventional skyline

algorithms do not support subspace skyline query in distributed environments.110

As the amount of data greatly increases, the number of skyline points also in-

creases; unfortunately, many of the returned skyline points do not meet the user

preferences. In addition, because some useless skyline points are reported, it is

difficult to for the user to perform a manual evaluation. Because the wireless

bandwidth is scarce, it is not necessary to report all of the skyline points to the115

mobile terminal.

In this paper, we focus on how to perform distributed skyline query to re-

trieve the meaningful subset of skyline points from the full set of skyline points

according to user preference. For this purpose, we present a system model of

Subspace Skyline Query in mobile and distributed environments. In SSQ, a120

pruning strategy is proposed to reduce network communication and to mini-

mize the response time. To support subspace skyline query, an index over the

distributed data was constructed in SSQ. Additionally, SSQ incorporates rela-

tive attribute importance into skyline query and provides two filtering methods

to remove the data points whose values are worse in the important attributes.125

The new SSQ algorithm can report the meaningful subset of the full skylines in

any subspace.

3. Preliminaries

In this section, we provide some notations that will be used throughout the

paper and the rationale of both the SQM filtering method (SQM-filtering) and130

the 𝜀 filtering method (𝜀-filtering). These filtering methods consider differences
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in the importance of the attributes.

Given a 𝑑-dimensional space 𝑆={𝑠1, 𝑠2, ..., 𝑠𝑑}, a set of points 𝑃={𝑝1, 𝑝2,
..., 𝑝𝑛} is said to be a dataset on 𝑆 if every 𝑝𝑖 ∈ 𝑃 is a 𝑑-dimensional data point

on 𝑆.135

Definition 1. (Dominate) Given a dataset 𝑃 on 𝑆, a point 𝑝𝑖 ∈ 𝑃 dominates

another point 𝑝𝑗 ∈ 𝑃 if it is better than or equal to 𝑝𝑗 in all dimensions and

better than 𝑝𝑗 in at least one dimension.

Definition 2. (Skyline) A point 𝑝𝑖 is a skyline point on 𝑆 if and only if there

does not exist a point 𝑝𝑗 dominating 𝑝𝑖 in 𝑃 .140

Definition 3. (Subspace Skyline) A subset of 𝑆, 𝐹 ⊆ 𝑆 forms a k-dimensional

subspace where 𝑘 = ∣𝐹 ∣ and 𝑘 ≤ 𝑑. For a point 𝑝𝑖 in space 𝑆, the projection

of 𝑝𝑖 in subspace 𝐹 is denoted by 𝑝′𝑖, which is a k-tuple. The 𝑝′𝑖 is a subspace

skyline on subspace 𝐹 if and only if there does not exist a point 𝑝′𝑗 dominating

𝑝′𝑖 on the subspace 𝐹 .145

Definition 4. (Partial Order Relationship of Attribute Importance) We assume

that there exists a binary relation denoted by ≻ on the subspace 𝐹 of 𝑆. Here,

≻ can be a ’>’ relationship according to the importance of different attributes.

If 𝑓1 is more important than 𝑓2 according to user preference, where 𝑓1 ∈ 𝐹 and

𝑓2 ∈ 𝐹 , we use 𝑓1 ≻ 𝑓2 to denote the partial order relationship. We obtain the150

order of 𝑘-dimensional subspace F, which is {𝑓1, 𝑓2, ..., 𝑓𝑘}.

Example 1. Considering the 3-dimensional subspace 𝐹 = {𝑃𝑟𝑖𝑐𝑒,𝑂𝑐𝑐𝑢𝑝𝑎𝑛𝑐𝑦 𝑟𝑎𝑡𝑒,

𝑀𝑖𝑙𝑒𝑎𝑔𝑒} in Table 1. The order relationship of the attributes is 𝑀𝑖𝑙𝑒𝑎𝑔𝑒 ≻
𝑃𝑟𝑖𝑐𝑒 ≻ 𝑂𝑐𝑐𝑢𝑝𝑎𝑛𝑐𝑦 𝑟𝑎𝑡𝑒 according to the tourist’s preference.

For simplicity and without loss of generality, we assume that the smaller is155

better. The objective functions of the multiple objective optimization problem

can be formulated as min(𝑓1(𝑥), 𝑓2(𝑥), ..., 𝑓𝑘(𝑥)), 𝑥 ∈ 𝑃 , where 𝑓𝑖(𝑥) is the

value of the 𝑖𝑡ℎ dimension in the tuple 𝑥.

𝑅1 = 𝑎𝑟𝑔 max
𝑥∈𝑅0

𝑓1(𝑥) (1)
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𝑅2 = 𝑎𝑟𝑔 max
𝑥∈𝑅̃1

𝑓2(𝑥) (2)

... ... ... (3)

𝑅𝑘 = 𝑎𝑟𝑔 max
𝑥∈𝑅̃𝑘−1

𝑓𝑘(𝑥) (4)

We use Eq. (1) to compute the worst tuples for the first dimension as a set

𝑅1. In Eq. (1), 𝑅0 is the initial dataset (i.e., 𝑃 ). Subsequently, we obtain the160

relatively optimal tuples in the first dimension as 𝑅̃1, 𝑅̃1 = 𝑅0−𝑅1. We use Eq.

(2) to retrieve the worst tuples for the second dimension under the constraint

of 𝑅̃1 as 𝑅2, and so on, until we retrieve 𝑅̃𝑘, where 𝑅̃𝑘 = 𝑅𝑘−1 −𝑅𝑘.

To avoid the case that the size of the result set becomes too large, a tolerant

filtering method(𝜀-filtering) is proposed. It is not necessary to retrieve the worst165

tuples for the previous attribute because it retrieves the worse tuples as 𝑅𝑖 for

the current dimension under a certain tolerant constraint 𝜀𝑖. In Eq. (5), 𝜀𝑖

is tolerance limit of i-th attribute, and it may be given based on knowing the

user preference in advance. Consequently, we can obtain more elements in 𝑅𝑖

to satisfy the condition in Eq. (5) when 0 ≤ 𝜀𝑖 ≤ 1. Meanwhile, the relatively170

optimal answer set becomes small.

𝑅𝑖 = {𝑥∣𝑓𝑖(𝑥) ≥ 𝜀𝑖𝑚𝑎𝑥(𝑓𝑖(𝑥)), 𝑥 ∈ 𝑅̃𝑖−1} (5)

Example 2. By applying the above equations to the dataset of Table 1, 𝑅1={𝑝5, 𝑝6}
, 𝑅̃1=𝑅0-𝑅1={𝑝1, 𝑝2, 𝑝3, 𝑝4, 𝑝7, 𝑝8, 𝑝9}, where 𝜀1 = 1. Assuming that the dis-

tance limit (and price or occupancy rate limits) depends on the value of 𝜀1 (𝜀2,

𝜀3), then 𝑅1={𝑝5, 𝑝6, 𝑝1, 𝑝9}, 𝑅̃1={ 𝑝2, 𝑝3, 𝑝4, 𝑝7, 𝑝8}, where 𝜀1 = 7
9 .175

4. SYSTEM MODEL

As shown in Figure 1, this section presents a framework that is applied

to subspace skyline query under a mobile distributed environment. It is a
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client/server architecture.

The client is an application that runs on terminals such as personal digital180

assistants and cell phones. These terminals can communicate with servers using

networks or wireless channels and receive the query results. Users can use these

terminals to select the preference of attributes and rank them with different

importance. Then, a client submits a skyline query to a server. The sever may

consist of many nodes that are organized by a cloud computing platform [23]185

such as Hadoop. Finally, the skyline algorithm is executed in this environment.

internet

Cloud platform

Raw data

Skyline

query

algorithm

Preprocess

Pruning
Constructing

Index

Extract

attributes

and sort

Filtering

methods

response

request

Figure 1: System model of Subspace Skyline Query

The system model consists of two modules to compute skylines: the prepro-

cess module and the query module. In the former module, the system scans the

distributed data into a regular grid and prunes the data points in those cells

dominated by others. This pruning strategy aims to reduce the costs of con-190

structing an index over big data and skyline query processing. Subsequently, the

data points are sorted for each dimension according to user preference. 𝑘 sorted

sets (𝑘 is the number of dimensions) are combined into an index file. The aim of

constructing the index is to support skyline query in arbitrary subspace. After

receiving a query request, the query module can extract the subset of attributes195
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from the index of the above module according to the user’s interest. Next, the

filtering method is executed in the subspace of interest to the user. The query

results are returned to the terminals by mobile internet. Moreover, these results

must be manageable because they need to be displayed on terminals for manual

evaluation. The filtering methods can filter out the skyline points whose values200

in the important attributes are worse.

The novelty of our system model is to propose a Lightweight Client Frame-

work in a distributed environment. Skyline computing can be performed in

back-end servers. First, it can be applicable to skyline query in mobile inter-

net environments. Second, it improves the efficiency of constructing the index205

file because the pruning strategy can reduce the amount of transferred data.

Furthermore, as a preprocessing step, pruning cannot occupy the running time

of the skyline query. Finally, it incorporates multiple-objective decision into

the query process and provides the SQM-filtering and the 𝜀-filtering methods.

We will describe the specific approaches for how to compute the skylines using210

the above two filtering methods and return the meaningful subset of skylines in

detail in Section 5.

5. Subspace Skyline Query

In this section, we first present the grid-based pruning strategy, then we

introduce the process of constructing the index file using MapReduce. Finally,215

we provide a more detailed discussion on the subspace skyline query.

5.1. Grid-based Pruning Strategy

Skyline operations are expensive when large-scale datasets are encountered.

To reduce the amount of transferred data for distributed skyline query process-

ing, a grid-based data summary was proposed in [24, 25], that captures the data220

distribution on each server. What is different from the above work is that we

proposed a pruning strategy based on grid. Because the skyline result set is con-

siderably smaller than the original dataset, the pruning strategy can eliminate

non-skyline points in advance.
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We partition the dataset using a spatial structure named grid, which divides225

the space or data into a series of contiguous cells and can be assigned unique

identifiers [26, 27]. During pruning, the data space is divided into many regular

cells of a grid. The data points in each cell are stored as ⟨ key, value ⟩ pairs,

such as ⟨𝑐2, {𝑝3, 𝑝4}⟩. We can remove the data points in those cells that are

dominated by others according to the positional relationship of the cells. The230

data points after pruning are used as the input for the skyline query.

mileage

price

...

...

Figure 2: Grid-based pruning strategy

The rationale behind our pruning strategy is that each cell dominates the

regions located at the right upper corner. In other words, they have larger

values in all dimensions, but for simplicity, the smaller is better. Taking Figure

2 as an example: cell 𝑐1 dominates cells 𝑐6, 𝑐7, 𝑐8, etc. The cells dominated by235

others can be eliminated along with the points in those cells. There are cells

that contain no points, such as 𝑐4, and thus can be eliminated. The points that

remain after pruning are organized as a type of ⟨key, value⟩ pair, where key is

the id of the cell and value is a list of tuple ids. Although Figure 2 only shows a

2D space, the proposed technique can be applied to higher dimensional spaces.240
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Algorithm 1: Grid-based Pruning Algorithm (𝑃 , 𝜆𝑖)

initialize set 𝑅1 =𝑃 , 𝑇=∅1

initialize set after pruning 𝑅2=∅2

for (each point 𝑝 ∈ 𝑅1) do3

point 𝑝 mapped into a coordinate of cell:4

𝐼𝑛𝑡𝑘𝑒𝑦.𝑥𝑖 =
⌊
𝑝.𝑥𝑖

𝜆𝑖

⌋
5

insert 𝑝 into 𝑇6

GridHash.put (𝐼𝑛𝑡𝑘𝑒𝑦, 𝑇 )7

for (GridHash.Iterator.hasNext()) do8

if(𝐼𝑛𝑡𝑘𝑒𝑦1 is dominated by 𝐼𝑛𝑡𝑘𝑒𝑦2)9

GridHash.remove(𝐼𝑛𝑡𝑘𝑒𝑦1)10

for (each Point in GridHash) do11

OutputCollector.collect(𝐼𝑛𝑡𝑘𝑒𝑦, 𝑇 )12

GridHash.remove(𝐼𝑛𝑡𝑘𝑒𝑦1)13

for (each 𝑝 ∈ 𝑇 ) do14

insert 𝑝 into 𝑅215

emit 𝑅216

Definition 5. (Grid) Given a 𝑑-dimensional dataset 𝑃 that contains a set of

data points. Each point 𝑝 ∈ 𝑃 is represented by {𝑥1, 𝑥2, ..., 𝑥𝑑}. The extent of

each cell on each dimension is 𝜆𝑖. In this paper, we assume that the points of245

data set is evenly partitioned into cells. Cell 𝐼𝑛𝑡𝑘𝑒𝑦𝑗 indicates the cell at space

coordinate (𝐼𝑛𝑡𝑘𝑒𝑦𝑗 .𝑥1, 𝐼𝑛𝑡𝑘𝑒𝑦𝑗 .𝑥2, ..., 𝐼𝑛𝑡𝑘𝑒𝑦𝑗 .𝑥𝑑), which can be calculated by

𝐼𝑛𝑡𝑘𝑒𝑦𝑗 .𝑥1=
⌊
𝑝.𝑥1

𝜆1

⌋
, 𝐼𝑛𝑡𝑘𝑒𝑦𝑗 .𝑥2=

⌊
𝑝.𝑥2

𝜆2

⌋
,..., 𝐼𝑛𝑡𝑘𝑒𝑦𝑗 .𝑥𝑑=

⌊
𝑝.𝑥𝑑

𝜆𝑑

⌋
. Clearly, any

point 𝑝 can fall into a cell.

The selection of 𝜆𝑖 depends on the value domains of the different dimensions.250

For example, assuming that the distance to the hotel in the city ranges from

1km to 50 km; in this case, threshold values between 2 and 10 should be selected

such that the data points are distributed as evenly as possible in each interval.
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Depending on the sizes of different datasets, we can adjust the values of 𝜆𝑖.

If the data points in the dataset are scarce, the values of 𝜆𝑖 should be slightly255

larger. If the data points are numerous, the values of 𝜆𝑖 should be slightly

smaller. The values of 𝜆𝑖 are given as the input parameters of Algorithm 1.

The coordinate of each grid (𝐼𝑛𝑡𝑘𝑒𝑦𝑖) is represented by the point located at

the lower-left corn in the grid. Taking 2-dimensional space as example, 𝐼𝑛𝑡𝑘𝑒𝑦1

dominates 𝐼𝑛𝑡𝑘𝑒𝑦2 when 𝐼𝑛𝑡𝑘𝑒𝑦1.𝑥 < 𝐼𝑛𝑡𝑘𝑒𝑦2.𝑥 and 𝐼𝑛𝑡𝑘𝑒𝑦1.𝑦 < 𝐼𝑛𝑡𝑘𝑒𝑦2.𝑦.260

The effect of the cell size on the pruning power will be described in detail in

Section 6. The comparisons of grid dominance relationships during pruning are

parallelized in distributed systems. The pseudo-code of the pruning algorithm

using MapReduce is shown in Algorithm 1.

We analyze the theoretical computation of algorithmically complexity about265

the pruning strategy. Give a data set 𝐷={𝑑1, 𝑑2, ..., 𝑑𝛼} with 𝑛-dimensional

attributes. Most of the traditional skyline algorithms have a worst-case com-

plexity of 𝑂(𝑛𝛼2). We partition 𝐷 into the 𝑛-dimensional grid space and

the grid has 𝑒1 × 𝑒2 × ... × 𝑒𝑛 cells, where 𝑒1 =
max{𝑑1

𝑥}
𝜆1

, 𝑒2 =
max{𝑑2

𝑥}
𝜆2

, ...,

𝑒𝑛 =
max{𝑑𝑛

𝑥}
𝜆𝑛

. The cost of grid is negligible compared to computing with all the270

points and the computing of grid is in the preprocess phase. If the points are

assumed to be evenly mapped into all cells, and the pruning strategy returns 𝛾

(1 ≤ 𝛾 ≪ 𝑒1 × 𝑒2 × ... × 𝑒𝑛) cells, the complexity of algorithm is computed as

𝑂(𝑛× ( 𝛼
𝑒1×𝑒2×...×𝑒𝑛

× 𝛾)2)=𝑂(( 𝛾
𝑒1×𝑒2×...×𝑒𝑛

)2×𝑛𝛼2). Obviously, the algorithm

after pruning is more efficient.275

5.2. Construction of the Index File using MapReduce

Figure 3 shows an example of the input/output with the map and reduce

functions in the two MapReduce jobs.

In the first MapReduce job, each map task reads a file split that is a subset

of 𝑃 . The map functions read the input records and separate each dimension280

from the records to output ⟨ number of dimensions,(value of the dimension, id

of record)⟩ as key/value pairs. Then, data points that belong to the same key

will be shuffled to one reduce task. Finally, the values of the same dimension

13



Figure 3: Process of constructing the index file using MapReduce

are transferred to the same reducer, which combines to output ⟨ (the number of

dimensions, value of the dimension), list of record ids ⟩. In the second MapRe-285

duce job, we launch map functions not to do anything and launch one reduce

function to combine the results of the first MapReduce job into an index file.

This procedure of preprocessing requires a considerable amount of extra time,

but it can be favorable for skyline computing in subspace by extracting the

subset of attributes of interest from all of the dimensions.290

5.3. Subspace Skyline Query

Figure 4 shows the processing of a skyline query in any subspace. The

MapReduce jobs mentioned in Figure 3 transform the input key/value pairs

into an index file. Subsequently, a worker scans the entire index into a type of

data structure called a tree. The tree consists of two parts: the key and the295

value. The key is the value of each dimension. The value is an id list of records

with the same value in each dimension, which are enclosed with braces as shown

in Figure 4 (a).

We extract the subset of all of the attributes of interest to users from an

index file. The SSQ algorithm incorporates relative attribute importance into300

skyline query processing. We need to adjust the order of dimensions according
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Figure 4: The Subspace Skyline Query

to the rank of each dimension by importance. The importance rank of each

dimension stems from the user’s request. In other words, the more important

a dimension is, the higher priority it should be given. Taking Table.1 as an

example, according to the tourist’s preference, three dimensions of hotels are305

selected, and the order of these dimensions is mileage, price, and occupancy

rate, as shown in Figure 4 (b).

In general, data points contained in the skyline results will be not a good

choice for users. Taking Table 1 as an example, 𝑝5 is a skyline point, but the

distance to the airport is too far. Therefore, this point should not be returned310

to users. Inspired by the concept of multiple-objective decisions, we propose

using the SQM filtering method to solve the problem. Based on Eq. (1) to Eq.

(4) mentioned in Section 3, the process of filtering is illustrated in Figure 4 (c).

In the above example, the multiple-objective optimization is formulated as

min(mileage, price, occupancy rate); assuming that the smaller is better, then315

𝑅1= {𝑝5, 𝑝6}. We can prune 𝑝5 and 𝑝6 from 𝑅0 because their values are worse

in the mileage attribute. In Figure 4 (c), 𝑝5 and 𝑝6 are marked in red strikeout.

When the price is more important than the occupancy rate for the tourist, 𝑝4

15



and 𝑝8 can be pruned away, and so on. In Figure 4 (c), 𝑝4 and 𝑝8 are marked in

green underline. In the skyline algorithm, the data points are not scanned and320

compared, as shown in Figure 4 (d).

Table 2: Symbols and Definitions

Symbols Definitions

𝑡𝑟𝑒𝑒𝑖 the 𝑖-th data structure:key and value

𝑘𝑒𝑦 the value of the data point in each dimension

𝑣𝑎𝑙𝑢𝑒 id list with the same value in each dimension

𝑡𝑒𝑚𝑝𝐿𝑖𝑠𝑡 the temporary set of data points in the same list

𝑑𝑒𝑙𝐿𝑖𝑠𝑡 the set of data points to be deleted

𝑐𝑠𝑠𝐿𝑖𝑠𝑡 the difference set of 𝑡𝑒𝑚𝑝𝐿𝑖𝑠𝑡 and 𝑑𝑒𝑙𝐿𝑖𝑠𝑡

𝑠𝑝𝑙𝐿𝑖𝑠𝑡 the set of skyline points

𝑚𝑎𝑥𝑓𝑟𝑒𝑞 the maximum number of points to be scanned in a list

In the SQM-filtering method, the size of filtered points is limited. In the

𝜀-filtering method, the points that should be removed and the number of these

points is dependent on 𝜀𝑖. 𝜀𝑖, which was mentioned in Eq. (5), is the tolerance

limit of each attribute, and its value can be set according to user preference.325

Any user has maximum thresholds, and if these maximum thresholds are not

met, then we need to filter out these tuples. A user preference is modeled as a

set of thresholds along each attribute{𝑈𝑃 1
𝑗 , 𝑈𝑃 2

𝑗 , ..., 𝑈𝑃 𝑘
𝑗 }. Therefore, 𝜀𝑖 can

be calculated as follows:

𝜀𝑖 =
𝑈𝑃 𝑖

𝑗

max{𝑓𝑖} (6)

Here, 𝑈𝑃 𝑖
𝑗 represents the 𝑖-th attribute threshold of the 𝑗-th user and max{𝑓𝑖}330

denotes the maximum of the 𝑖-th attribute. They can be given by the users.

We assume that the user is willing to pay up to RMB 200 a night and wants a

hotel that is located at most 5 km from the airport. Thus, 𝜀1 = 2
3 and 𝜀2 = 5

9 .

As indicated by Eq. (5), we can eliminate those points that are not of inter-

est to users because their values in the important attributes can not meet the335
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user’s hard constraints. We will argue that the SQM-filtering and 𝜀-filtering

can improve the performance of the skyline algorithm in the subsequent sec-

tions, particularly when the distribution of data is anti-correlated because in

large-scale datasets, there are many of those points in anti-correlated datasets.

We introduce some symbols and definitions in Table 2 to prepare for Al-340

gorithm 2. The pseudo-code of the subspace skyline query algorithm using

MapReduce is shown in Algorithm 2.

Algorithm 2: Subspace Skyline Query(𝑅2,𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑𝑠)

initialize set 𝑅=𝑅2 // output of algorithm11

initialize set 𝑠𝑘𝑙𝐿𝑖𝑠𝑡=∅2

for (each point 𝑝 ∈ 𝑅) do3

insert 𝑝.𝑑𝑖 to 𝑡𝑟𝑒𝑒𝑖4

initialize any 𝑝.𝑓𝑒𝑞=0, 𝑚𝑎𝑥𝑓𝑟𝑒𝑞=05

eliminate the points from each 𝑡𝑟𝑒𝑒𝑖 by SQM-filtering or 𝜀-filtering6

for (any list 𝑥𝑖 in 𝑡𝑟𝑒𝑒1, 𝑡𝑟𝑒𝑒2, ⋅ ⋅ ⋅ , 𝑡𝑟𝑒𝑒𝑘) do7

for (𝑗=1; j ≤ 𝑘; 𝑗++) do8

𝑡𝑒𝑚𝑝𝐿𝑖𝑠𝑡 =𝑡𝑟𝑒𝑒𝑗 .𝑥𝑖9

for (each point 𝑝, 𝑞 ∈ 𝑡𝑒𝑚𝑝𝐿𝑖𝑠𝑡 ∪ 𝑠𝑘𝑙𝐿𝑖𝑠𝑡) do10

if ((p.freq>0)&&(p 𝑖𝑠 𝑑𝑜𝑚𝑖𝑛𝑎𝑡𝑒𝑑 𝑏𝑦 q)) then11

insert 𝑝 to 𝑑𝑒𝑙𝐿𝑖𝑠𝑡12

for (each point 𝑝 ∈ 𝑡𝑒𝑚𝑝𝐿𝑖𝑠𝑡 ) do13

𝑝.𝑓𝑟𝑒𝑞++14

if(𝑝.𝑓𝑟𝑒𝑞 > 𝑚𝑎𝑥𝑓𝑟𝑒𝑞) then15

𝑚𝑎𝑥𝑓𝑟𝑒𝑞=𝑝.𝑓𝑟𝑒𝑞16

𝑐𝑠𝑠𝐿𝑖𝑠𝑡 = 𝑡𝑒𝑚𝑝𝐿𝑖𝑠𝑡− 𝑑𝑒𝑙𝐿𝑖𝑠𝑡17

𝑠𝑘𝑙𝐿𝑖𝑠𝑡 = 𝑠𝑘𝑙𝐿𝑖𝑠𝑡 ∪ 𝑐𝑠𝑠𝐿𝑖𝑠𝑡18

if (𝑚𝑎𝑥𝑓𝑟𝑒𝑞==𝑘) then19

Break20

emit 𝑠𝑘𝑙𝐿𝑖𝑠𝑡21

17



0 50 100 150 200 250 300
0

50

100

150

200

250

300

(a) independent

85 90 95 100 105 110 115
280

285

290

295

300

305

310

315

320

(b) correlated

85 90 95 100 105 110
280

285

290

295

300

305

310

315

320

(c) anti-correlated

Figure 5: Data Distributions

6. EXPERIMENTAL345

In this section, we experimentally evaluate the efficiency of the proposed

subspace skyline algorithm, and we also discuss its pruning capabilities. All

algorithms mentioned in Section 5 are implemented with MapReduce in Hadoop.

In addition, the existing parallel algorithm MR-BNL [9] is used as a reference

to evaluate the efficiency of our algorithm. In the SSQ algorithm, we implement350

the two filter methods mentioned above and compare their experimental results.

All experiments were performed on a homogeneous cluster consisting of 12

nodes. Each node had one AMD Opteron 2212 2.00 GHz dual-core processor,

a 80 GB SCSI hard drive and an Intel 82551 10/100 Mbps Ethernet Controller.

Each machine is connected to a 100 Mbps Ethernet switch and runs the version355

of Hadoop 0.20.2. On each node, we installed the Ubuntu 10.10, 64-bit, server-

edition operating system. One TaskTracker and DataNode daemon ran on each

slave node. A single NameNode and JobTracker ran on the master node. The

DFS chunk size was set to 64 MB, and 2 GB of memory was allocated for each

Hadoop daemon.360

We used a real dataset in our experiments. This dataset contains 4887 hotels

from a city. We also used synthetic datasets with three different distributions,

which are correlated, independent and anti-correlated, as shown in Figure 5.
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Figure 6: Vary the cell size for pruningFigure 7: Pruning on different datasets

These three types of datasets are used to evaluate the performance of the algo-

rithms. The number of synthetic datasets varied from 20, 000 to 500, 000, 000,365

and the size of the datasets ranged from 269 KB to 6.42 GB.

The first set of experiments evaluate the pruning capabilities on the real

dataset. We examine the impact of the size of the grid cell on the pruning

capabilities. We use the real dataset with 4887 records when the size of the

grid cell varies from 1 to 9. The results are shown in Figure 6. As shown in370

this figure, the smaller the grid cell size is, the greater is the pruning efficiency.

When the size of the grid cell is set to 1, the number of records after pruning is

only 752, which is approximately 1/7 of the raw data.

To evaluate the effect of the data distribution on the pruning capabilities,

we use the synthetic datasets. The number of points ranges from 40, 000 to375

200, 000. Figure 7 presents the effects of different distributions on the prun-

ing capabilities when the grid cell size is set to the same value. The results

indicate that the pruning capability is sensitive to the data distribution. We

observe that the pruning efficiency for correlated datasets scales better than

the others. This result is because in correlated datasets, the points are densely380

distributed in the grids, which are dominated by each other. Therefore, we can

obtain only 9 records after pruning when the dataset contains 40, 000 records.

Similar results were observed for uniformly distributed datasets. Evidently, for

the anti-correlated datasets, the performance of pruning is worse than for the

above two data distributions. Because in anti-correlated datasets, the points385
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are distributed in the cells that are rarely dominated by each other. The exper-

iment results show that the pruning algorithm can prune the redundant points

effectively and improve the query efficiency.

Table 3: Running time on synthetic dataset (4𝑒8 records)

Data distribution TPG(sec) TCI(sec) TSSQ(sec) Total Time(sec)

Correlated 3715.4 523.7 4.4 4243.5

Independent 3266.5 2156.4 120.2 5543.1

Anti-Correlated 3629.5 2814.6 299.1 6743.2

In the following experiments, we use the synthetic datasets with 400, 000, 000

points to further analyze the execution time of SSQ on datasets with different390

distributions. The cost of the proposed algorithm consisted of three parts, which

are shown in Table 3. TPG is the time for constructing the inverted grid index.

TCI is the time for pruning by comparing the dominance relationship of cells.

TSSQ is the response time of the subspace skyline query. The TSSQ is clearly

very short compared to TPG and TCI. This result occurs because it must scan395

the entire dataset to cells. When the scale of the dataset is very large, the TPG

cost is high. TCI is the running time for pruning and constructing the index,

which is shorter than the first process. Because the subspace skyline query

process only scans a part of the index file to acquire the results, TSSQ has a

lower cost. The results show that the correlated dataset has the fastest response400

time compared with the other two data distributions, which occurs because the

correlated dataset has the most powerful pruning capabilities and removes more

non-qualified records.

Next, we compare the overall execution time of SSQ on all datasets when

the cardinality of the dataset varies. The existing algorithm MR-BNL [9] is405

used as a reference. We vary the cardinality from 1, 000, 000 to 500, 000, 000.

The average execution time of SSQ for all datasets are shown in Figure 8. As

expected, the running time of the algorithms increases as the cardinality of

the datasets increases on different distributions. SSQ is always better than

20



1e+06 1e+07 1e+08 5e+08
10

100

1000

10000

100000

Cardinality

E
x
e

c
u

ti
o
n

 t
im

e
(s

e
c
)

 

 

MR-BNL

SSQ with SQM-filter

SSQ with  -filter

(a) anti-correlated

1e+06 1e+07 1e+08 5e+08
10

100

1000

10000

100000

Cardinality

E
x
e

c
u

ti
o
n

 t
im

e
(s

e
c
)

 

 

MR-BNL

SSQ with SQM-filter

SSQ with  -filter

(b) independent

1e+06 1e+07 1e+08 5e+08
10

100

1000

10000

100000

Cardinality

E
x
e

c
u

ti
o
n

 t
im

e
(s

e
c
)

 

 

MR-BNL

SSQ with SQM-filter

SSQ with  -filter

(c) correlated

Figure 8: Varying the Cardinality for skyline processing

MR-BNL because it can remove more non-skyline points using the grid-based410

pruning strategy. Furthermore, this trend becomes more evident as the size of

the dataset increases because the pruning strategy has a greater effect for larger-

scale datasets. As mentioned above, in Table 3, the first two parts of the total

time are the preprocessing time of the algorithms. Because the preprocessing

phase requires considerably more time compared with querying, particularly415

when the data size is small. The first two steps of SSQ with the SQM-filtering

are the same as for SSQ with the 𝜀-filtering. The difference is that the former

can filter out some points by thresholds during the final query step. Compared

to the SSQ algorithm with the 𝜀-filtering, the execution time of SSQ with the

SQM-filtering does not exhibit a significant improvement, but it can return the420

subset of subspace skyline points. By threshold filtering, the SSQ can reduce

the cost of the query in the final step. Notably, as shown in Figure 8 (a),

for the anti-correlated dataset, the effect is more obvious than for the other

distributions because the SSQ algorithm can filter out more data points using

the thresholds.425

From the results in Figure 8, we observe that the algorithms with the anti-

correlated datasets can require more execution time than those of the inde-

pendent datasets and the correlated datasets. Because the number of skyline

points in the anti-correlated datasets is generally larger than those in the other
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Figure 9: The size of result sets

(a) HDFS I/O cost (b) Map output bytes

Figure 10: I/O cost of different data distributions

datasets. The performance of the pruning strategy is the worst for the anti-430

correlated dataset.

In the following set of experiments, we examine the size of the result set using

the SSQ algorithm with the 𝜀-filtering and compare it with that obtained using

the SSQ algorithm with the SQM-filtering. We use the independent synthetic

datasets to analyze the two filtering methods: SQM-filtering and𝜀-filtering. We435

vary the number of input points from 100, 000, 000 to 500, 000, 000, and the

filtering range of each threshold can be set to 5. As shown in Figure 9 shown,

the 𝜀-filtering method can return a smaller subset of skyline points compared

with the SQM-filtering method.

We fix the cardinality of the synthetic datasets to 5𝑒8. We measure the cost440
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on datasets of three different distributions with the dimension varying from 2

to 6. The HDFS I/O cost includes read/write bytes upon HDFS (Hadoop Dis-

tributed File System) which is a fault-tolerant file system designed to run on

commodity hardware. Figure 10 (a) shows the HDFS I/O costs of different dis-

tributions. With respect to the HDFS I/O cost, the cost for the anti-correlated445

distribution greatly exceeds those of the other distributions because it must

read and write more records from the HDFS. The correlated dataset is exactly

the opposite by entailing the fewest I/Os. Figure 10 (b) plots the map output

bytes during pruning as the dimension increases from 2 to 6. The map output

bytes include the number of bytes of uncompressed output produced by all of450

the maps in the job. As 𝑑 becomes larger, the map output bytes continuously

increase. The correlated dataset requires the least I/O cost. Furthermore, the

output bytes of the anti-correlated distribution increase faster with increasing

𝑑. For the independent dataset, its curve lies between the those of the other

two distributions.455

7. CONCLUSION

In this paper, we present a system model for supporting subspace skyline

query in mobile distributed environments. The subspace skyline query algorithm

can report the meaningful subset of skyline points from the full set of skyline

points. To reduce network communication and to shorten response time, we pro-460

pose a pruning strategy for reducing the amount of data prior to computing the

skyline points. To support subspace skyline query, we construct a global index

according to value of each dimension using MapReduce. During the processing

of skyline query, we extract the attributes of interest from the entire index.

Finally, we eliminate some tuples that are worse in the important attributes us-465

ing the SQM-filtering method or 𝜀-filtering method. Our scheme alleviates the

problem of there being too many skyline points to perform a manual evaluation.

The experimental results indicate that the subspace skyline algorithm is highly

efficient.
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