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ABSTRACT

Baggett, Brandon, R., Ph.D., University of South Alabama, December 2023. Remote
Side-Channel Disassembly on Field-Programmable Gate Arrays. Chair of Committee:
Todd R. Andel, Ph.D.

Over the last two decades, side-channel vulnerabilities have shown to be a major

threat to embedded devices. Most side-channel research has developed our understanding

of the vulnerabilities to cryptographic devices due to their implementation and how we can

protect them. However, side-channel leakage can yield useful information about many

other processes that run on the device. One promising area that has received little attention

is the side-channel leakage due to the execution of assembly instructions. There has been

some work in this area that has demonstrated the idea’s potential, but so far, this research

has assumed the adversary has physical access to the device. In recent years, researchers

have developed methods for remote side-channel attacks using power monitors

implemented in reprogrammable hardware.

In this work, we test if similar power monitors are capable of disassembling code

running on a general purpose processor on the same chip die as the reconfigurable

hardware fabric. We train a sequence of decision tree classifiers to first predict which

group an instruction belongs to, then its type, and finally, the individual instruction.

viii



Our results demonstrate that our field-programmable gate array-based power

monitors are correlated to the executed instructions and correctly classify individual

instructions at about 13-15% depending on the clock rate. This is better than randomly

guessing but far from being useful in practice. We also train coarse-grain models for

classifying instructions based on their functional unit utilization. This approach improves

the accuracy to about 20-30% depending on the clock rate and grouping used.
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CHAPTER I

INTRODUCTION

New technologies are often adopted to address the limitations of existing systems.

System designers must consider the vulnerabilities they may introduce when

implementing these technologies. One emerging technology with great potential is hybrid

general purpose processors (GPPs) packaged with field-programmable gate array (FPGA)

fabric on the same chip die. These products are readily available from Intel and AMD.

FPGAs are reprogrammable hardware in which the designer can implement arbitrary

circuits. The FPGA fabric consists of many interconnected look-up tables (LUTs) that can

be programmed with a bitstream to specify their input and output to simulate virtually any

circuit design [1].

Thompson and Spanuth [2] argue that due to the rapid advancements in GPPs,

specialized processors have not had the opportunity to emerge. As shown in Fig. 1(a),

GPPs have been in a positive feedback loop where their rapid improvements led to more

users buying new processors, which gives companies more money to continue improving

their devices. However, as technological advancements slow, users are less inclined to

upgrade their processors, which means less money for development, further slowing the

technological
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advancements. This has created a negative feedback loop for GPPs (Fig. 1(b)), which

creates a space for specialized processors to fill.

Figure 1. Feedback loops for general purpose processor advancements [2].

Creating specialized processors is expensive, and many applications do not have

enough users to adopt the technology to justify the development cost. We believe that

hybrid GPP/FPGA processors could address this limitation by allowing a single chip die to

be used for many applications. The individual applications can benefit from the speedup

offered by implementing their design in the FPGA fabric without going through the

fabrication process. This concept is supported by Intel’s acquisition of Altera in 2015 [3]

and AMD’s recent acquisition of Xilinx [4]. Both companies talk about how these hybrid

devices will enable more flexible options for developers.

Despite the benefits that hybrid processors offer, it is crucial to understand the

vulnerabilities these devices introduce so that we can protect against them. A major vector

for attacking FPGAs is their bitstream. Potential vulnerabilities exist in the entire

bitstream lifecycle from generation to end-of-life [5]. If attackers compromise the

bitstream, they can upload any design and compromise other processes running on the
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same chip. Researchers have shown that lightweight FPGA-based power monitors are

capable of performing side-channel attacks [6]. A natural extension of this work would be

to see what other information can be leaked through these on-chip power monitors.

In this research, we introduce a system and methodology to implement power

monitors in the FPGA fabric and test if we can disassemble code running on a GPP on the

same chip die using power side-channel data. Side-channel disassembly has shown to be

viable [7]–[9]. However, these approaches have assumed the attacker has physical access

to the device. The emergence of hybrid processors potentially introduces a new threat that

system designers must address. That is, remote side-channel disassembly attacks. This

research is primarily focused on determining the feasibility of the attack, so our approach

has a few limitations that should be considered. First, we are using a softcore GPP, which

operates at a much lower clock rate than a hardcore processor. Additionally, we are only

considering the executed instructions and not the registers. In Chapter V, we outline

potential solutions to address these issues if this design proves feasible.

Our results show that there exists a correlation between our power monitors’ data and

the executed instructions. Our models’ accuracies range from approximately 13% to 30%.

Even in the best-case scenario, where we use a coarse-grained model that groups similar

instructions based on their suspected functional unit utilization, our approach is still far

from being a salient threat. However, this does not mean the threat is nonexistent. As

FPGA power monitors inevitably continue to improve, this threat will become more

feasible.
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The rest of the paper is organized as follows. In Chapter II, we discuss previous

side-channel research and various FPGA power monitors. In Chapter III, we present our

research objectives, proposed system, and methodology for evaluating FPGA-based

side-channel disassembly. In Chapter IV, we discuss the results of our tests. Finally, in

Chapter V, we conclude this dissertation by discussing the implications of our research and

outlining potential future works.

4



CHAPTER II

BACKGROUND

Over the last few decades, side-channel research has received a lot of attention from

the academic and professional community. This is primarily due to the threat they pose to

cryptographic hardware. Although cryptographic side-channels are among the most

promising applications of side-channel research, we should not limit our understanding to

just cryptographic side-channels. Other promising side-channel applications have

emerged, such as malware detection and code disassembly. These areas have received

varying levels of attention from the academic community, with side-channel code

disassembly receiving little attention. However, due to recent advancements in remote

side-channel attacks, we believe there is new potential for side-channel disassembly.

2.1 Side-Channels

A side-channel is any unintended leakage of information. This can be anything from

using the flashing lights in someone’s window to detect that they are home watching TV to

measuring the electromagnetic (EM) emanations from a monitor to reconstruct the image

[10]. However, the most commonly discussed side-channels are those that leak

information about secret cryptographic keys. Any measurable physical property that varies
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based on the secret key can potentially be used in a side-channel attack to break a

cryptographic implementation. The most exploited side-channels are power and EM.

2.1.1 Cryptographic Side-Channels

Fig. 2 (based on the work by Zhou and Feng [11]) gives a basic overview of

cryptographic side-channel attacks. In the traditional understanding of cryptography, a

message is passed through an encryption algorithm with a key to output a ciphertext. If

anyone intercepts this ciphertext, it should be indistinguishable from random data unless

they have the corresponding key to decrypt the message. However, it was shown in the late

1990s that there are measurable physical changes in the device’s behavior based on the

secret key that can be used in a side-channel attack to break the encryption [12].

The most commonly discussed side-channels are power and EM. Fig. 3 [13] shows

the basic steps for performing power and EM side-channel attacks. First, the attacker

calculates an intermediate step of the algorithm (such as an S-box output in DES) for

multiple messages and key candidates. These key candidates are smaller than the full key

since the attacker only needs to iterate over the key bits that are directly affecting the

targeted intermediate value (such as the 6 bits going into a DES S-box). Then, the attacker

uses a power model, such as Hamming Weight, to approximate the consumed power for

each calculated intermediate value. Next, the attacker measures the side-channel leakage

from the device under test (DUT) when encrypting the same messages from step 1.

The next step is to use statistical analysis to compare the results from the physical

device against the hypothetical power consumptions. This will yield the final results
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matrix that shows which key guess best matches the true power measurements. The two

most popular statistical methods are differential power analysis (DPA) and correlation

power analysis (CPA). The underlying math used in these approaches differ, but in both

cases, the attacker is looking for a result that is significantly better than the others. Due to

noise, the results will never be perfect, but as the attacker increases the number of traces,

the correct result will start to differentiate itself from the others.

Figure 2. Side-channel attack model [11].

Functionally, power and EM attacks work very similarly. However, they differ in how

they collect their side-channel data [13], [14]. Power attacks monitor the power

consumption of the entire device. In EM attacks, the attacker scans each part of the device

to look for hotspots and then measures the localized EM emissions from the region with

the most activity. EM attacks require more sophisticated equipment, but their localized

nature allows them to isolate the collection from most of the noise from other activities on

the chip.
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Figure 3. Side-channel analysis steps [13].

2.1.2 Side-Channel Malware Detection

Another application for side-channel research is malware detection. Since

side-channel leakage is due to the physical properties of the device, in theory, malware

cannot conceal itself from a side-channel-based detection mechanism. This is a desirable
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option for malware detection since the detection system can be outside the influence of the

infected system, so the malware cannot interfere with it [15].

Clark et al. [16] introduce WattsUpDoc, a system for detecting malware on medical

devices using power side-channels. Using system-wide power measurements, their

approach detected about 94% of known malware and 85% of zero-day attacks. They used

various binary classification algorithms but had the highest results with the 3-nearest

neighbor, multilayer perceptron, and random forest classifiers. Dawson et al. [15] used a

nonlinear phase-space algorithm to detect rootkits based on power measurements.

Malware can also be detected using EM side-channels. Khan et al. [17] demonstrated

that they could detect malware on embedded devices based on their EM side-channel

leakage. They used a neural network to detect when the device was behaving abnormally

with an accuracy of nearly 100% for DDoS attacks, ransomware, and code modifications.

EM side-channels are better at detecting localized variations than power side-channels.

Other researchers [18] used this property to detect hardware Trojans in FPGA-based AES

and RSA cores. Using a k-means clustering algorithm, they accurately classified about

80% of hardware Trojans.

There have been other proposed side-channel-based malware detection systems that

work similarly. Although these goals are different from breaking cryptographic

implementations, they further demonstrate the many uses of side-channel research. Since

all applications run on hardware, there will be physical byproducts leaking information

about the application. We can try to minimize the variance between different applications

9



and data, but unless we can completely remove these changes, a dedicated adversary can

exploit this leakage.

2.1.3 Side-Channel Disassembly

One of the earliest forms of side-channel analysis was simple power analysis (SPA)

[12]. There are multiple versions of this attack that leak different information about the

encryption algorithm, but the SPA attack on RSA is of particular interest. In a naı̈ve

implementation of RSA, the algorithm iterates through each bit of the secret key. For

every loop iteration, a square operation is performed. When there is a 1-bit in the secret

key, a multiplication operation is also performed. Since multiplications consume more

power than squares, an attacker can easily extract the key after a single encryption, as

shown in Fig. 4 [19].

Figure 4. Simple power analysis attack on RSA [19].

This SPA attack on RSA is still a cryptographic side-channel attack, but it reinforces

the idea behind side-channel disassembly by demonstrating that different assembly

instructions have measurable power variations that are exploitable in side-channel analysis.

Although side-channel disassembly is similar to the side-channel malware detection

10



discussed previously, it has a few key distinctions that will make it more challenging.

In malware detection, the goal is to detect suspicious behavior, whereas in

side-channel disassembly, the goal is to classify each of the assembly instructions. This

introduces two main obstacles. The binary classification of malware detection means that

the analysis can look at the power consumption trend and compare it against the baseline.

On the other hand, disassembly needs to accurately classify the instruction based on a

single clock cycle’s power trace. Not only is this a shorter window for analysis, but the

number of classes is much higher.

Until recently, there has been little research on side-channel disassembly despite its

potential. The earliest work was by Eisenbarth et al. [7], where they used power

side-channels to reconstruct the code running on a microcontroller. Their work

empirically demonstrated the feasibility of the idea. They used a frequency analysis to

model the distribution of instructions and common instruction tuples. They then made a

template for each instruction and built a Markov model. They were able to correctly

classify about 70% of the instructions when they knew the instructions’ distribution.

When evaluating other applications, their classification accuracy dropped to approximately

58%. Although these results are not great, they provide a good starting point by showing

that side-channel data leaks information about the executed assembly code.

In the last two years, there has been an influx of side-channel disassembly research.

Although it is still a young research area, this further demonstrates its potential. However,

there is still more work to be done. Most of these studies have had a high classification

accuracy (ą90%), but so far, no work has demonstrated the work is feasible in practice.
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Many of these works have begun exploring the potential of using EM side-channels for

disassembly [9], [20]–[23]. Although EM analyses are more sophisticated, their localized

nature is beneficial since they can place probes over each functional unit. However, EM

side-channels require more sophisticated setups than power analysis attacks. As with most

decisions in computing, there are trade-offs that prevent one approach from being the

objective best.

Another trend that has emerged is the use of hierarchical models. The first was by

Park et al. [8], in which the authors used a hierarchical approach to first classify a power

trace into different groups based on the operands that it used. Next, the instruction was

classified from within that group, and finally, the operands were classified. Using this

approach, they were able to achieve an accuracy of 99%. Then, Glamočanin et al. [24]

used a 3-tiered model where the first layer classifies the instruction’s group based on the

structure of the instruction. The second layer classifies instructions within the group, and

the final layer predicts the bits of the operands of the instruction. A bit-level approach was

also used by Cristiani et al. [20], where they achieved an accuracy of „99% in predicting

the instruction and its operands based on EM side-channel data. This was further

corroborated by Lie et al. [25], [26] where they found that the processed data (i.e., the bits

in the instructions and operands) had a larger impact on the power consumption than the

instruction did. These works also highlight one of the major limitations of the current state

of side-channel disassembly research. Most research is only concerned with disassembling

the instructions, but not the operands.

12



Most of the previous side-channel disassembly research has only dealt with

disassembling the instructions. This intuitively makes sense for a starting point since it

stands to reason that the operations would have a larger impact on the side-channel leakage

than the operands. In addition to the papers mentioned previously, Maillard et al. [23]

trained models for 3 levels of granularity. Their most coarse-grained model classified EM

side-channel data into the functional unit it used. Their second model aimed to reconstruct

the opcode, and their fine-grained model aimed to reconstruct the entire instruction with

its operands. Their coarse grained-models had near 100% accuracy, but the fine-grained

model only achieved an accuracy of 53-64% (some bits had a higher accuracy than others).

This is consistent with the work bt Krishnankutty et al. [27] where the authors used two

granularities for training. Their coarse-grained model grouped instructions based on the

functional units they used and achieved an accuracy of 92-100% depending on the target

processor. Their fine-grained model, which predicted the instruction (but not the

operands), achieved an accuracy of 90-91%.

Some researchers are using a side-channel disassembly-like approach to detect the

integrity of software [25], [26]. These authors propose “side-channel programming,” in

which parts of a program are rewritten so that modifications can be detected using the

side-channel leakage of individual instructions. This work is similar to side-channel

disassembly but differs since their goal is to detect changes to the software and not

reconstruct the program itself.

Until now, one area that has remained unaddressed in this field is that side-channel

attacks traditionally require physical access to the device. If an attacker has direct access,

13



then there are simpler methods to extract the code than performing a side-channel attack.

However, some remote side-channel attacks have emerged that could potentially address

this limitation, allowing for remote code disassembly.

2.2 Remote Side-Channel Attacks

Originally, the main limitation of side-channel attacks was that they required physical

access to the device. Over the years, techniques for remote side-channel attacks have been

developed. Timing variations were especially conducive to remote side-channel

monitoring, with the timing differences due to cache hits/misses being one of the most

targeted vulnerabilities. However, FPGAs have introduced a new avenue for remote

side-channel attacks due to their ability to implement on-chip power monitors.

2.2.1 Timing Side-Channels

Timing side-channel attacks rely on the slight variations in timing characteristics due

to different program inputs. This concept was introduced by Kocher [28], where he

demonstrated that the modular exponentiation algorithm used in many RSA and

Diffie-Hellman implementations is vulnerable to a timing attack. Similar to the SPA attack

described in Fig. 4, this attack exploits the differences between a square and multiplication

operation in hardware. The authors point out that other timing variations, such as those

due to cache hits, processor instructions, branching statements, or performance

optimizations, could also lead to timing side-channel leakage.
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Since then, more sophisticated versions of this attack have been developed. In the

Flush and Reload attack [29], the attacker infers information about a targeted process that

is running shared code. Many processes use the same code (i.e., two programs accessing a

standard library). This shared memory is read-only, so the two processes should be

isolated in theory. However, the timing differences between cache hits and misses can leak

information to the attacker. In this attack, the attacking process empties (flushes) the cache

and waits a predetermined amount of time before running the shared code. If the access

happens relatively quickly, that means the code has been reloaded into the cache, which

tells the attacker that the targeted process has used that code. If there are segments of code

that only run based on secret data, then the attacker can use these timing variations to infer

the secret value.

A similar attack is the Prime and Probe attack [30]. The main difference in this attack

is that the attacker loads their own data to completely fill the cache, waits for the targeted

process to run, and then reloads all the data into the cache again. If the data loads quickly,

then the targeted process did not access any addresses that would load into that cache line.

This can leak information about the structure of the data access of the targeted process. If

a secret value determines the data access, then the attacker can use this side-channel to

infer that secret value.

Spectre [31] and Meltdown [32] are other forms of timing side-channel attacks.

These attacks are functionally very similar. They try to access protected memory with a

conditional statement; if the statement is true, then the process will load some arbitrary

value to memory. Functionally this code cannot work since the processor will not allow

15



the process to access the protected memory. However, these protections are not enforced

during speculative execution. The attacking process can then attempt to load in the same

data that would have been loaded if the conditional statement was run. If the data loads

relatively quickly, then it was already loaded into the cache, which implies that it was

accessed during the speculative execution stage for the blocked conditional statement. An

attacker can use this to deduce a password by trying each character for the nth char of a

password until the arbitrary data has been loaded into memory. Similar methods can leak

information about other protected data.

2.2.2 Power Side-Channels

Although, power side-channel attacks originally assumed the attacker had physical

access to the device. Zhao and Suh [6] evaluated the effectiveness of FPGA-based ring

oscillators (RO) as power monitors for remote side-channel attacks (ROs will be discussed

in greater detail in section 2.3 below). In their first attack, they implemented a naı̈ve

implementation of RSA (similar to the one discussed in Fig. 4) in the FPGA fabric. As the

power consumption of the device increases, the oscillation rate will decrease. Fig. 5

demonstrates how they used this setup to break RSA. They summed the RO counts for a

given period, and a lower count corresponds to higher power consumption. Since a 1-bit in

the secret key causes the extra multiply operation, an attacker can deduce the secret key

based on the RO outputs. However, due to noise on the device, it would sometimes take

additional traces to find the key. If they assumed that the attacker had complete control

over the placement and routing of the power monitors, then they could break the key in at

most five traces. In the worst-case scenario, if the attackers had no control over the
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placement and routing, it could take up to 22 traces to break the key.

Their research focused on SPA, but other works have extended this idea for more

sophisticated attacks. Schellenberg et al. [33] used delay lines (also referred to as time

delay counters (TDC)) to attack an AES core implemented in the FPGA fabric. Gravellier

et al. [34] proposed a modified RO design that addresses some of the limitations of RO

that led many designers to use TDC power monitors instead. Their new RO design can

perform a CPA attack on an AES core running in the same FPGA fabric. Since the quality

of FPGA-based power monitors continues to improve, we believe this approach is ideal for

remote side-channel disassembly.

Figure 5. SPA power trace from FPGA ring oscillators [6].

2.3 FPGA-Based Power Monitors

Although previous studies have focused on cryptographic side-channels, these works

demonstrated the feasibility of FPGA-based power monitors. A natural extension of these
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works is to see what other information can be detected through these on-chip power

monitors. In particular, side-channel disassembly would benefit from the remote

possibilities of on-chip power monitors.

Both ROs (Fig. 6) and TDCs (Fig. 7) work on the same fundamental principle; that

is, the device’s power consumption affects the propagation delay of its signals. ROs work

by having an odd number of inverter gates in series that get fed back into an AND gate

with an enable signal. Every time the signal propagates through the inverter chain, its

output will switch between a 0 and a 1. At the end of the inverter chain is a counter for

how many times the RO has gone through a complete cycle. As the device consumes more

power, the oscillation rate will decrease, so the counter will be lower for the given period.

This means that a lower count corresponds to higher power consumption.

Figure 6. Ring Oscillator based power monitor circuit diagram [34].

TDCs work similarly, but instead of measuring the oscillation count, they measure the

propagation depth through a series of inverters. In TDCs, the clock initializes the inverter

chain. The signal will propagate through the chain based on the power consumption of the
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device. At the next clock cycle, the TDC register records how far down the inverter chain

the signal propagated to determine the power consumption of the device.

Figure 7. Time Delay Counter based power monitor circuit diagram [34].

Both TDCs and ROs can measure a device’s power, but neither is objectively superior

since they each have their tradeoffs. ROs are a simpler design and can measure at

theoretically any frequency, but as their sampling rate increases, their accuracy decreases.

TDCs do not have this accuracy/frequency tradeoff, but they cannot sample at a higher rate

than the clock. Additionally, TDCs require more resources and are more susceptible to

placement and routing than ROs.
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CHAPTER III

METHODOLOGY

The goal of this research is to develop a system for remote power monitors on FPGAs

using ring oscillators and to determine if it can be used to disassemble code running on a

softcore processor on the same chip die. This chapter proposes a methodology for

completing these objectives and gives an overview of the required resources, system

design, and evaluation metrics.

3.1 Research Objective

Previous research has shown that different assembly instructions have measurable

power variations that are exploitable by side-channel analysis. However, these studies all

assumed the adversary has physical access to the device, which limits the threat of this

attack. In recent years, researchers have demonstrated that FPGAs allow for remote

side-channel attacks since an adversary can modify the bitstream without physical access

to the device. This development introduces new threats that must be considered when

designing secure systems. Up to this point, these attacks have focused on cryptographic

side-channels. Since remote power monitors can measure and exploit the minute power

variations due to the secret key’s bits, then it stands to reason that they can measure other
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side-channel leakages on the device. In particular, we suspect they can detect power

variations caused by different assembly instructions.

This research aims to determine if side-channel data collected from FPGA-based

power monitors can be used to disassemble code running on a GPP on the same chip die.

We propose a system that uses four RO-based power monitors placed around the perimeter

of a softcore Microblaze processor running in the FPGA fabric on a Diligent Genesys 2

Kintex-7 FPGA Development Board [35]. There is another Microblaze processor on the

same chip die that is responsible for collecting the RO power data and scheduling the

testing programs to run on the target processor.

Since our goal is to determine if programs can be disassembled using FPGA-based

ROs, we perform the classification training and testing on our desktop instead of the

development board. If the approach proves feasible, then future works will involve refining

the technique to be applicable in real-world scenarios. The controller dynamically creates

the training code during the data collection stage. Table 1 outlines the major objectives of

this research.

For this project, we evaluate the feasibility of remote side-channel disassembly. Due

to this scope, there are some limitations of the work that should be considered. The first is

that we are using a softcore processor to run the target assembly code. We chose a softcore

processor since it gives us more control when configuring the processor and minimizes the

background signal noise that would be generated by a hardcore GPP. A more practical

implementation of this attack would be a hybrid device that uses a hardcore GPP running

with FPGA fabric on the same chip die. For these devices, the hardcore processors
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generally run at a much higher clock rate than the FPGA fabric. This would increase the

complexity of attacks when using either TDC or RO-based power monitors. Another major

limitation is that we are only considering the executed instruction and not the registers.

Table 1. Research objectives for side-channel disassembly.

Objectives Description
1 Configure hardware design

1.1 Configure Target processor
1.2 Configure custom IP
1.3 Configure Controller
2 Create embedded software

2.1 Create Target C code
2.2 Create Controler C code
3 Train the machine learning algorithms

3.1 Create pre-processing data script
3.2 Train the models
3.3 Evaluate the models’ accuracy

If this study shows that the approach is feasible, then both of these limitations could

potentially be addressed by using more robust power monitors and machine learning

techniques that account for the system’s specifics. For example, we could try accounting

for instruction distributions or microarchitectural differences, such as different length

pipelines.

3.2 Design Overview

Our design is implemented on a Genesys2 Kintex-7 FPGA [35] using the Xilinx

Vivado Design Suite 2018.2. The target is the Xilinx Microblaze 32-bit softcore
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processor. Specifically, we are targeting Vivado’s “Real-time Preset” Microblaze

configuration for the attacked processor. Our implementation of the Microblaze uses a

3-stage pipeline (Fetch, Decode, and Execute), has 8kB for both the instruction and data

caches, and keeps all other settings at their default values.

We use a second Microblaze as a controller for reading the power monitor counts,

writing them to memory, and scheduling the code to run on the target processor. The

controller is responsible for generating the training data, scheduling when the target

processor runs the code, and recording the values from the power monitors. The training

and evaluation of the classification models are performed off-device. The controller is

another 32-bit Microblaze softcore processor. It is configured using Vivado’s

“Microcontroller” preset with the optimization set to “Performance.” Using placement and

routing constraints, we place the ROs, Target processor, and Controller as shown in Fig. 8

and let Vivado manage the placement of the rest of the Intellectual Property (IP).

We chose ROs for our power monitors since they have sufficient resolution for

performing side-channel attacks, so they should also work for code disassembly.

Additionally, they require less stringent placement and routing constraints when compared

to TDC power monitors, which is a more realistic representation of an attacker’s

capabilities. Although ROs have lower accuracy at higher clock rates, we do not anticipate

this being an issue for our design since we are considering a softcore processor that runs at

the same clock rate as the power monitors.

The system’s sequence is shown in Fig. 9. The ROs continuously send their data to

the controller. First, the controller generates the next code snippet. Next, it sends the
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program to a shared BRAM memory region, and then interrupts the Target. Next, the

target freezes the Controller Clock, unfreezes the RO, and then waits for 100 µseconds to

clear out the RO counts and let the heat from the Controller dissipate. Next, the target runs

the code snippet. It then freezes the RO so that their data is not replaced before their

values are saved. Next the Target unfreezes the Controller Clock. Then,the controller

sends the data to the main computer. Finally, the system loops back to step 1 until all of

the data is collected.

Figure 8. Processors and power monitors placement diagram.
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In a real-world scenario, the target processor would not aid in data collection. Our

approach is similar to cryptographic side-channel research, where a trigger is used to help

with the data collection. By using this approach, we know that our power data corresponds

to the training data and reduces the amount of data preprocessing required when training

our models.

Figure 9. Sequence of events for side-channel data collection.

To facilitate this design, we created four custom AXI peripherals. The first is a RO,

but unlike other works where the ROs were either measuring at clock rates faster than the

targeted circuit or were measuring for entire program executions, our ROs need clock

cycle accuracy. To account for this requirement, we modified the design of the ROs used in

[36]. Fig. 10 shows this design. The actual RO is in the top left corner, and its output is

fed into two 16-bit counters. We use a D flip flop that switches states every clock cycle as a
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counter selector so that while one counter is recording the output of the RO, the other is

put into a reset state. This dual-counter setup was chosen so that we do not lose any data

while a counter is resetting. Finally, the outputs are OR’d together and fed into a chain of

50 16-bit D flip flops acting as an output buffer (only 1 flip flop is shown for simplicity).

When the counters are in their reset state, their output is set to 0, so the inactive counter

does not have an effect on the OR gate.

Figure 10. Custom ring oscillator.

We made a gated clock IP that is a simple AND gate combining an enable signal with

the clock signal so that we can effectively freeze certain IP in their current state by

disabling the gated clock. We used two of these in our design. The first is to freeze the

controller while the target processor is running the code snippets so it does not affect the
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power consumption. The second is for the ring oscillators so that we can hold their output

buffer values while the controller sends them to the main computer.

We also created an Interrupt Scheduler IP, which is two AXI writable D flip flops

that are linked to the interrupt signals for each processor. Our design uses interrupt

handlers as the handshaking mechanism for passing control between the processors. In the

final design, only the Target interrupt is used, but both were used for testing purposes.

Fig. 11 shows the RO sync IP with some mock data. The RO sync IP is a buffer of 50

D flip flops. This IP is triggered by the target processor immediately before running the

code snippets and then deactivated immediately following the code snippet’s execution.

The data from this IP signals which RO output values correspond to the code snippets

running and which can be trimmed during the data pre-processing stage.

Figure 11. RO Sync IP.
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Fig. 12 shows the Vivado block diagram for the final design. The IP in red boxes are

the most significant IP for the design, and the others are clocking infrastructure, AXI

interconnects, and memory IP added by Vivado to facilitate the design. The highlighted

green path shows the Controller clock signal, and the purple path is the RO gated clock

signal. These paths show which IP are frozen when the gated clocks are triggered.

3.3 Evaluation

For data collection, we follow a similar approach to previous works [7], [9] and

generate a set of instructions as shown in Fig. 13. For each instruction, we generate 1,000

assembly code snippets. The code snippets follow the pattern outlined in Fig. 13, that is,

two or-immediate instructions to randomize the data in registers R8 and R9, which serve

as the operands for the test instructions. Then, two instructions are randomly selected to

precede and follow the targeted instruction. Finally, there is a branch instruction to return

to the interrupt handler. There are slight modifications to this snippet for branching and

memory access instructions to ensure proper code execution.

In this work, we are only disassembling the instructions, but as shown in [8], the

registers also affect the power consumption. We use the 54 instructions that are used in the

Dhrystone benchmark for our configuration of the Microblaze. The instructions are listed

in Appendix A [37]. We chose to use the subset of instructions for the benchmark since, as

previous works have shown, there is often a difference between testing done on training

data and a real application. The Dhrystone benchmark was chosen since it is readily

available and does not use floating point instructions, allowing it to work with the reduced

28



Fi
gu

re
12

.S
id

e-
ch

an
ne

ld
at

a
co

lle
ct

io
n

sy
ste

m
bl

oc
k

di
ag

ra
m

.

29



instruction set as implemented in the Microblaze. If our approach proves feasible, then our

next step will be to test its accuracy on the benchmark and compare the results.

Figure 13. Microblaze instruction’s training code snippet example.

Most of the instructions are single clock-cycle instructions, but a few are multi-cycle.

Multi-clock-cycle instructions are split into pseudo-instructions. Mul and muli are 3-cycle

instructions, so we split the second and third cycles into separate instructions mul 1 and

mul 2. These instructions are classified as A-type arithmetic instructions since the power

difference in A and B type should come from the initial stage when the data is read into the

functional unit and not during the later clock cycles that are exclusively computations.

Similarly, the barrel shifting instructions (bsll, bsrli, bsrai, bslli) take two clock cycles so
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the second cycle is labeled as an Arithmetic B-type instruction bs 1. We chose B-type for

bs 1 since three of the four barrel shifting instructions are B-tpye. Finally, the memory

access instructions (lw, sw, lhui, lwi, swi, sbi, shi) cause a 1-clock-cycle delay, so this delay

slot is split into the pseudo instruction mem stall.

To account for the static power consumption of the device and the power consumption

of the controller, the ROs, and the communication between the different cores, we filter the

results. We use a similar approach to [6]. After implementing the design and uploading it

to the FPGA, we generate 1000 random code snippets. Everything on the device is

enabled except for the target processor. We then average the counts for each sensor. We

can model the system’s power consumption by:

Ptotal = Pstatic + PRO + Pcontroller + Ptarget + Pnoise

Ptotal is the total power consumed by the device, Pstatic is the baseline power

consumption of the device when nothing is running on it, PRO is the power consumed by

the ROs, Pcontroller is the power consumption of the controller core, Ptarget is the power

consumed by the target processor, and Pnoise is the noise in the power consumption traces.

By running the system as described above, we can filter out the average power

consumption of the ROs, and the controller by subtracting the averaged values from the

RO counts when the whole system is enabled.

To generate the classification model, we use three layers of decision tree classifiers on

the instructions but not the registers. This approach is partially based on the work in [8].

First, we classify the instruction based on its class as defined in Appendix A (arithmetic,
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logical, branching, memory access, and other) [38]. From there, we classify the

instruction as either an A or B type for arithmetic, logical, and memory access

instructions. All branching instructions are B-type, so their second tier is based on

conditional vs. unconditional instructions. The other instructions do not have a type or a

natural way to divide them and only have two tiers. The final tier classifies the individual

instructions. The full model can be seen in Fig. 14.

We chose a hierarchical approach since it is consistent with the work in [8], is

representative of how we suspect the instructions should affect the power consumption,

and leads to a natural way to evaluate a partially correct guess. We expect that the different

classes of instructions should be one of the main contributors to the power variations. For

example, we suspect that an “OR” and “XOR” instruction should be more similar than an

“OR” and “LW” instruction. Even if we cannot accurately classify individual instructions,

this approach gives an easy way to evaluate partial accuracy by considering the accuracy

of the models at each tier. We use an 80/20 train/test split for training and evaluating the

models. We also train a single-layer model that takes the power data and directly predicts

the instructions to use as a baseline.
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CHAPTER IV

RESULTS

In this section, we give an overview of the cost of implementing our countermeasure

and outline the results of the analysis. Since the initial results show that our approach

works but is not feasible in practice we also introduce some ad hoc tests and their results.

4.1 Implementation Cost

New designs will always incur overhead in resource utilization, which could make the

proposed model prohibitively expensive regardless of its accuracy. Fig. 15 shows the

system resource utilization for the final design, with the most important resources

highlighted. LUTs are the basic building block of FPGAs, and the total system used less

than 3%. Additionally, all of the resources were less than or equal to 10% utilization on

our Kintex-7. The only resources that use a noteworthy amount of resources (by

percentage of total utilization) are the BUFG, MMCM, and BRAM. The BUFG and

MMCM are clocking resources and would remain mostly the same regardless of the design

complexity unless more clocks were added. However, their relatively high utilization is

mostly independent of our power monitoring system. The BRAM is also high since we

have two processors and a shared memory region that accounts for most of the BRAM
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utilization. These regions have little to do with RO power monitors and are there to make

testing easier.

Figure 15. System under test resource utilization.

Things begin looking even better when we consider the utilization of just the ROs.

Fig. 16 shows the resource utilization for a single RO. The LUT utilization is at .15%

utilization. The IO utilization is higher here since Vivado tied all of the IO for the RO to

physical pins on the device, but these would normally be tied to its control IP. Based on

these utilization percentages, we can conclude that individually, the ROs have a minimal

impact on the overall resource utilization. In a real-world scenario, one of the major

concerns is that there is enough remaining logic to implement the power monitors and
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their control logic. These low utilization percentages show that this should not be a

concern for most targets.

Figure 16. RO resource utilization.

4.2 Disassembly Results

As outlined in Section 3.3, we trained a series of decision tree classifiers to match the

model in Fig. 14. We also trained a single-layer decision tree classifier that takes the RO

counts and directly predicts the instructions. All parameters are kept at their default

values, except for the variable weights, to account for the split multi-clock-cycle

instructions that are unequally represented in the training data.

There are 58 instructions in our model, so randomly guessing would yield an

accuracy of 1/58 = 1.72%. Since our data is unequally represented in the training data set,

we also need to ensure that the models are not just selecting the largest class every time.

Each true instruction has 1000 samples in the training data set, but the multi-clock-cycle

instructions are overrepresented. The total number of samples in the dataset is 69,000, and

the most represented instruction is the mem stall instruction with 7,000 samples. So if the
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models are exclusively selecting mem stall then we would expect the accuracy to be

7,000/69,000 = 10.14%. Anything higher than this number suggests that the approach is

working.

Fig. 17 gives a summary of the results from running our system at 100 MHz (The

maximum clock rate for the Kintex-7 FPGA). The red numbers on the right are the

accuracy of each model, and the black numbers on the left are the percentage of

instructions going to each model that belong to that model. This number is an upper bound

to the accuracy of each model since a model cannot accurately predict an instruction that

belongs to a different branch. At the top level, we can see that our model only predicts

class correctly 32.36% of the time, and this error propagates through the model. Due to

this propagation of errors, our combined model achieves an accuracy of 15.14%, which is

almost the same as the single-layer model’s accuracy of 15.12%.

These results are not great, but they are better than randomly guessing and are a good

starting point to try and refine our approach. Since ROs have a strong tradeoff between

measurement frequency and accuracy, we also tested the system at 50 MHz. Fig. 18 shows

these results. The combined 50 MHz model has an accuracy of 13.09%, and the single

layer model has an accuracy of 13.01%. Surprisingly, lowering the clock rate does not

improve accuracy but makes the models worse. We have two hypotheses for what could be

causing this. The first is that the RO accuracy loss for 100 MHz to 50 MHz is so small that

it doesn’t significantly affect the results. The other possibility is that the additional logic

used to divide the clock frequency is codependent with the power monitors and affects the

results. Further testing needs to be done to isolate this cause. For both frequencies, we ran
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a 5-fold cross-validation on the single-layer model and found that the results were within

+-.7%. This suggests that the results were representative of our data and not due to

overfitting the data.

Naturally, some of the models are more accurate than others. For example, of the data

correctly sent to the Other models, almost all of it is classified correctly. Of the data the

conditional branching models correctly receive, they can only classify about 10%

correctly. Most of the models are somewhere between these two extremes. This difference

is most likely due to the similarities of some instructions. Although we do not have access

to the source files for the Microblaze, we can make assumptions on which instructions

share resources based on their semantics and knowledge of other processors.

4.3 Binning Results

Similar to previous works [23], [27], we decided to train coarse-grained models based

on the instructions’ hardware utilization. As mentioned previously, the Branching

Conditional models have the worst accuracy. We don’t know specifically how these

instructions are implemented, but it stands to reason that they all use the same circuit to

compare the numbers and then update the program counter. This could explain why those

models are only slightly better than randomly guessing. To test this, we create two

coarse-grained datasets by grouping similar instructions that we suspect are using the

same functional units.

The first grouping is outlined in Table 2, the instructions not listed were kept as

individual instructions. We chose these groupings based on the instructions we suspect are

39



Fi
gu

re
18

.C
la

ss
ifi

ca
tio

n
ac

cu
ra

ci
es

fo
rt

he
50

M
H

z
te

st
sy

ste
m

da
ta

.

40



using the same functional unit within each type (i.e., we keep Type A and Type B

instructions separate even if they share functional units.) This approach reduced the total

number of instructions to 18, with the most over-represented group being the conditional

pseudo-instruction with 12,000 samples. For this group, randomly guessing would yield

an accuracy of 1/18 = 5.56%, and exclusively picking the largest class has an accuracy of

12000/69000 = 17.39%.

The results for the 100 MHz Group 1 data can be seen in Fig. 19. Unlike with the

original data, there is a large difference between the accuracy of the combined model at

20.52% and the single-layer model at 28.68%. The 50 MHz Group 1 results are shown in

Fig. 20. These results were much closer at 20.51% for the combined model and 20.62%

for the single-layer model. This gives seemingly contradicting implications. For the 100

MHz data, it suggests that the single-layer model scales better than the combined model.

This seems to be the case since the top level model that predicts class only achieves

accuracies in the low to mid 30s, and the errors propagate from there. However, the 50

MHz data suggests that the models grow similarly. Further testing needs to be done to

fully understand these discrepancies and discover the true relationship.

For the second grouping, outlined in Table 3, we group the instructions by their

functional unit utilization, but this time we ignore the instruction’s type. Grouping 2

reduces the total number of instructions down to 13, which puts the accuracy of randomly

guessing at 1/13 = 7.69%, and the pseudo-instruction with the largest percentage of

representation is still the conditional branching pseudo-instruction at 17.39%. For this

grouping, we only use the single-layer model since removing the Type makes the
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Table 2. Microblaze instructions: grouping 1 summary.

Original Group 1
add, addk, rsub, addc, cmp, cmpu, rsubk add

mul, mul 1, mul 2 mul
addi, addik, rsubi add i

bsrli, bsrai, bslli, bs 1 barrel shift
and, or, xor logic

andi, ori, xori logic i
srl, sra shift

bra, brald, bri, brai, bird, brlid unconditional
rtid, rted, rtsd return

beqi, beqid, bgei, bgeid, bgti, bgtid, blei, bleid, blti, bltid, bnei, bneid conditional
lhui, lwi load i

sbi, shi, swi store i

Table 3. Microblaze instructions: grouping 2 summary.

Original Group 2
add, addk, rsub, addc, cmp, cmpu, rsubk, addi, addik, rsubi add

mul, mul 1, mul 2, muli mul
bsll, bsrli, bsrai, bslli, bs 1 barrel shift
and, or, xor, andi, ori, xori logic

srl, sra shift
bra, brald, bri, brai, bird, brlid unconditional

rtid, rted, rtsd return
beqi, beqid, bgei, bgeid, bgti, bgtid, blei, bleid, blti, bltid, bnei, bneid conditional

lhui, lwi, lw load
sbi, shi, swi, sw store

combined model unusable. This grouping achieves an accuracy of 29.90% for the 100

MHz data and 23.66% for the 50 MHz data. For both groupings, we used 5-fold

cross-validation and found that all folds produced the same results within +-1.3%,

suggesting that this is representative of our data and not due to overfitting.
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4.4 Results Summary

A summary of our findings our outlined in Table 4. Our data proves that assembly

instructions have a noticeable effect on the output of our ring oscillator power monitors.

However, our combined three-tiered model offers little to no benefit over using a

single-layer model for the original data and the 50 MHz Group 1 data and is about 8%

worse than the single-layer model for the 100 MHz Group 1 data. In all cases, the models

are better than randomly guessing and exclusively selecting the most represented

instruction. We also created two coarse-grained models that combined instructions based

on their suspected functional unit utilization. The first grouping preserved the instruction’s

type, while the second did not. Using the first group offered a substantial improvement

over the original data, and using the second group offered slight improvements over the

Group 1 model. The implications of this work and potential improvements will be

discussed in the next chapter.

Table 4. Comparison on instruction classification accuracies of each model.

Original Group 1 Group 2
Random guess 1/58 = .0172 1/18 = .0556 1/13 = .0769
Largest class 7/69 = .1014 12/69 = .1739 12/69 = .1739

100 MHz: single layer .1512 .2868 .2990
100 MHz: combined .1514 .2052 -
50 MHz: single layer .1301 .2062 .2366
50 MHz: combined .1309 .2051 -
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CHAPTER V

CONCLUSION AND FUTURE WORK

5.1 Conclusions and Key Contributions

As new technologies continue to emerge, it is important that we consider the security

vulnerabilities that they may introduce. With the recent acquisitions of Alterra by Intel

and Xilinx by AMD, we are likely to start seeing more hybrid GPP/FPGA processors.

Although these devices can offer many benefits to developers, they can also introduce new

vulnerabilities. In this work, we tested to see if FPGA-based RO power monitors can be

used to disassemble code running on a GPP on the same chip die.

Our fine-grained models that classify individual instructions achieved accuracies

from about 13-15%. The coarse-grained models that grouped instructions based on their

suspected functional unit utilization achieved accuracies ranging from about 20-30%.

These are all better than randomly guessing but are far from being useful in practice.

There are limitations to our approach. First, our design used a lot of control logic to

make the data collection easier, which an attacker would not have access to. The gated

clocks and the RO sync are the primary culprits. For this work to be feasible in practice,

an adversary would need to be capable of collecting the power data in real time and

trimming the RO counts that don’t correspond to the targeted code. Additionally, our
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models only consider the instruction and not the registers or immediate values they

process. Some works [25], [26] suggest that these values have a significant effect on the

power consumption, but for full code disassembly, the models would need to be updated.

Finally, This design used a softcore processor running at the same clock rate as the

ROs. We chose this approach since it gave us more control of the target processor for

testing the system and reduced the background signal noise compared to a hardcore GPP.

However, a more realistic scenario would be a hardcore GPP as the target processor, but

these tend to run at much higher clock rates than FPGA fabric. For example, on the

Zedboard, which runs a Zynq processor, [39] the GPP operates at 667 MHz while the

FPGA fabric operates at 100 MHz. This means sampling the RO like we did once per

clock cycle would cause each data point to correspond to 6 2/3 instructions. Creating

further issues with implementing this attack.

Despite these limitations and low accuracies, this work still highlights that an

attacker can create an FPGA-based power monitor whose output is correlated to the

executed instructions. Although the threat is not feasible at the moment, it could become a

salient threat as the technology matures. The following section outlines future works for

improving the attack and potential countermeasures.

5.2 Future Works

Even though our approach is not currently feasible, it does not mean that we should

ignore the threat. In this section we outline future works to refine the attack and potential

countermeasures to protect against it.
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The largest hurdle for implementing this attack is the quality of the power monitors.

Future works could explore ways to improve the quality of their data. Also, in this work,

we looked at ROs, but future works could test if TDC-based power monitors yield better

results. Researchers could also look at offsetting the clock for sampling. For example,

sampling two power monitors on the rising clock edge and the other two on a falling clock

edge. With this approach, the falling clock edge-triggered power monitors would be

covering two instructions, but they could also help with capturing power variations that

occur in the first/last half of the clock cycle.

More robust machine learning could also improve the results. Similar to the work in

[7], future works could identify common instruction tuples and work those into a Markov

Model or Recurrent Neural Network. We manually grouped instructions based on their

suspected functional unit utilization, but clustering could be used to identify better

groupings to improve accuracy for coarse-grained models. As mentioned previously, the

operands/immediate values also need to be incorporated into the model for it to be useful

in practice.

Finally, this is the perfect opportunity to begin researching countermeasures so that

we have strategies to protect against the attack as it matures. However, protecting against

this attack will be challenging. Traditional side-channel countermeasures like masking

[40] could work, but protecting the entire processor would likely be prohibitively

expensive in terms of money and performance. Future works need to look into methods to

protect against this attack.
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APPENDIX

Microblaze Instructions

A full list of Microblaze instructions can be found in the Microblaze Processor

Reference Guide [37]. For this research, we are only using the instructions that are in the

Dhrystone benchmark for our configuration of the Microblaze processor. The classes

(arithmetic, branching, logical, memory access, and other) are based on the divisions

outlined by Lund University [38]. Microblaze instructions are divided into two types [37].

Type A instructions are used for register-to-register instructions. Type B instructions are

for register-immediate instructions. The Microblaze is a reduced instruction set

architecture (RISC), so all instructions are 32 bits. The subset of instructions that are used

in this research are listed in Table 5.
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Appendix Table 5. Microblaze instructions Summary.

Instruction Type Class Description
add A Arithmetic Add
addc A Arithmetic Add with carry
addk A Arithmetic Add with keep carry
addi B Arithmetic Add immediate
addik B Arithmetic Add immediate and keep carry
and A Logical And
andi B Logical And with immediate
beqi C Branching Branch immediate if equal
beqid C Branching Branch immediate if equal with delay
bgei C Branching Branch immediate if greater or equal
bgeid C Branch Branch immediate if greater or equal with delay
bgti C Branch Branch immediate if greater than
bgtid C Branching Branch immediate if greater than with delay
blei C Branching Branch immediate if less or equal
bleid C Branching Branch immediate if less or equal with delay
blti C Branching Branch immediate if less than
bltid C Branching Branch immediate if less than with delay
bnei C Branching Branch immediate if not equal
bneid C Branching Branch immediate if not equal with delay
bra U Branching Branch absolute
brald C Branching Branch absolute with link and delay
bri C Branching Branch immediate
brai C Branching Branch absolute immediate
brid C Branching Branch immediate with delay
brlid C Branching Branch and link immediate with delay
bsrli B Logical Barrel shift right logical immediate
bsrai B Logical Barrel shift right arithmetic immediate
bslli B Logical Barrel shift left logical immediate
cmp A Arithmetic Compare (signed)
cmpu A Arithmetic Compare (unsigned)
imm NA Other Immediate
lbui B Memory Load byte unsigned immediate
lhui B Memory Load halfword unsigned immediate
lw A Memory Load word
lwi B Memory Load word immediate
mul A Arithmetic Multiply
muli B Arithmetic Multiply immediate
or A Logical Or
ori B Logical Or immediate
rsub A Arithmetic Subtract
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Table 5 cont.

Instruction Type Class Description
rsubk A Arithmetic Subtract and keep carry
rsubi B Arithmetic Subtract immediate
rtid U Branching Return from interrupt
rted U Branching Return from exception
rtsd U Branching Return from subroutine
sbi B Memory Store byte immediate
sext8 B Logical Sign extend byte
shi B Memory Store halfword immediate
sra B Arithmetic Shift right arithmetic
srl B Arithmetic Shift right logical
sw A Memory Store word
swi B Memory Store word immediate
xor A Logical Xor
xori B Logical Xor with immediate
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