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Training of the Freehand Curve Identifier FSCI
Using a Fuzzy Neural Network

Sato SAGA*, Saori MORI* and Toru YAMAGUCHI*

(Accepted 31 August 2000 )

This paper demonstrates effectiveness of training of Fuzzy Spline Curve Identifier (FSCI) using a fuzzy
neural network. FSCI was proposed as a primitive curve identification system designed to establish
a general-purpose freehand interface for computer aided drawing (CAD) systems. It succeeded in
distinguishing a freehand drawing into seven kinds of primitive curves which are indispensable for
use in CAD. The key was the introduction of a fuzzy reasoning which embodied a strategy to try to
find the simplest primitive curves in drawing. A trainable version of FSCI was then proposed, by
introducing a structured fuzzy neural network, in order that it would acquire learning ability to adapt
itself to individual drawing manner. This paper sets up some experiment on FSCI and demonstrates
the effectiveness of the training by evaluating curve class recognition rates. Furthermore, through some
considerations on a concrete example of the training, it shows that the introduced fuzzy neural network

is informative for us to analyze users’ drawing manner and also the identification characteristics of
FSCI.

Keywords: Freehand Drawing, Pattern Recognition, Human Interface, Fuzzy System, Neural Network

1 INTRODUCTION

Usual CAD entities are drawn as combinations of
seven classes of primitive curves: line, circle, circular
arc, ellipse, elliptic arc, closed free curve and open free
curve. Accordingly, a general-purpose curve identifier
should be required to have a capability to classify a free-
hand drawing into the seven kinds of primitive curves.
However, the shape of a freehand drawing is not enough
information to determine curve classes due to the inclu-
sion relations among the primitive curve classes shown
in Figure 1: line is a kind of circular arc, circular arc is a
kind of elliptic arc, and so on.

The Fuzzy Spline Curve Identifier (FSCDH)™® has
overcome the difficulty by utilizing user’s drawing man-
ner as well as the curve shape. FSCI was designed to
tend to classify roughly drawn curves as simple primi-
tive curves, but carefully drawn curves as complex ones.

* Department of Computer Science and Systems Engineering

This implies that a user can intend to draw a rather sim-
ple curve by drawing roughly but a rather complex curve
by drawing carefully. Experimental results in (4) and (5)
showed that the strategy was effective for expert users.
However, since the strategy was realized as a fuzzy rea-
soning with a fixed fuzzy rule set, new users nceded quite
a little drawing practice to master the characteristics of
FSCI. A trainable FSCI was then proposed to adapt itself
to each user’s characteristics and reduce new user’s bur-
den in practice(é). This was actualized by replacing the
fixed fuzzy reasoning in the original FSCI with a com-
mon feedforward 3-layer neural network. The learning
of neural network carried plasticity into FSCI to improve
the curve class recognition rates for the experienced but
non-expert users. However, it lost FSCI the explicit rep-
resentation of the original strategy. In (7), a new version
of trainable FSCI was finally proposed by introducing a
structured fuzzy neural network into the original FSCI in
order that it would acquire learning ability while it would
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preserve the original strategy; and its fundamental func-
tion was confirmed. v

This paper sets up some experiment on FSCI proposed
in (7) and demonstrates the effectiveness of the train-
ing by evaluating curve class recognition rates. Then,
through some considerations on a concrete example of
the training, it shows that the introduced fuzzy neu-
ral network is informative for us to analyze both users’
drawing manner and the identification characteristics of
FSCIL.
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Fig. 1. Inclusion relations among primitive curve
classes.

2 OUTLINE OF TRAINABLE FSCI

First of all, this section gives the outline of the train-
able version of FSCI proposed in (7).

Given a freehand curve drawn by a user, FSCI per-
forms a sort of fuzzy reasoning to try to identify it as
one of the seven kinds of primitive curves, and outputs a
fuzzy primitive curve. The fuzzy primitive curve is con-
cretely composed of seven membership grades (which
are p(L), p(C), p(CA), u(E), n(EA), p(FC) and
#(FO)) and seven sets of curve shape parameters which
are associated with the seven primitive curve classes. It
can be also regarded as seven different classes of primi-
tive curve candidates ordered according to the grades.

The introduction of the fuzzy reasoning is essential
for FSCI to tell the difference among the seven curve
classes. The shape of a frechand curve is not enough
information to determine the curve classes because of the
inclusion relations shown in Figure 1: strictly speaking,
all freehand curves should be categorized into open free
curve as long as only the shape is taken into account.

In order to overcome the problem, FSCI utilizes the
drawing manner as well as the curve shape. So far as the
membership grades are concerned, the schematic pro-
cess of FSCI is illustrated as shown in Figure 2. First,
FSCI performs fuzzy spline interpolation and models a
freehand curve as a fuzzy spline curve which involves
vagueness (associated with roughness in drawing) in
their positional information. Secondly, it performs possi-
bility evaluation, where it estimates linearity, circularity,
ellipticity and closedness™ of the fuzzy spline curve tak-
ing account of the vagueness, and outputs four possibil-
1ty values: PLinea'r’ PCi'rc'u.lar’ PEll'iptic and PC’losed.

2 We use a term “closedness” to express the degree to which the
g
fllZZy spline curve is closed.
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Fig. 2. Schematic process flow by FSCI.

Thirdly, it performs curve class estimation. a sort of
fuzzy reasoning, where it tries to find the simplest pos-
sible primitive curves based on the four possibility val-
ues, and outputs seven membership grades: p(L), u(C),
w(CA), n(E), p(EA), p(FC) and pu(FO).

Because even a simple primitive curve can be possibly
found in the fuzzy spline curve when it is vague enough,
a user is now given a way to let FSCI identify a simple
primitive curve. This implies that a user can intend to
draw a rather simple curve by drawing roughly but rather
complex curve by drawing carefully (see Figure 3).

In the trainable version of FSCI, the curve class esti-
mation process is realized as a fuzzy neural network so
that it may be trained and, as a result, FSCI may adapt
itself to user’s drawing manner.

2.1 Fuzzy Spline Interpolation

A drawn curve is given to the system as a sequence of
a certain number of sampled points p, and time stamps
tx. However, the sampled points are not always con-
sidered to have accurate positional information exactly
reflecting the intention of the drawer. In general, the
more roughly a curve is drawn, the more vague its po-
sitional information will be. From this observation, each
sampled point p, is replaced by a conical [uzzy point
model p, =< py,Tp, > shown in Figure 4 (a), where
the fuzziness rp, is generated according to the rough-
ness in drawing. In FSCI, the value of r,, is simply set
as rp, = Qxayp,, where a,, is the acceleration at p, and
Q is a constant value. Then, the fuzzy spline curve that
interpolates to the fuzzy points p, is generated by the
method proposed in (1) and (2). The fuzzy spline curve
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(c) Fuzzy spline curve from (d) Fuzzy spline curve from
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(a) A rough drawing.
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(e) Four possibility values:  (f) Four possibility values:
PL'llnear PC"ircular PLinear PC"ircular

PEll'ipt'ic and PC’losed

PEllipt'ic and PClosed

from (c). from (d).

(g) Seven grades: u(L), (h) Seven grades: u(L),

w(C), w(CA), wE), wC), wu(CA), u(E),
w(EA), wu(FC) and uw(EA), p(FC) and
u(FO) from (e). p(FO) from (f).

Fig. 3. Examples of identification by FSCIL

(a) Conical fuzzy point.

(b) Fuzzy spline curve.

Fig. 4. Fuzzy spline interpolation.

is defined as an extension of an ordinary spline curve
and illustrated as a locus of a fuzzy point which travels
while changing its vagueness according to the roughness
in drawing, as shown in Figure 4 (b). It is utilized as a
fuzzy model of the drawing which may involves vague-
ness.

2.2 Possibility Evaluation®®

First, FSCI constructs three hypothetical fuzzy mod-
els: the linear fuzzy model, the circular fuzzy model and
the elliptic fuzzy model. They are obtained as fuzzy
Bézier curves™® whose parameters are adjusted so that
they fit the given fuzzy spline curve as well as possible.

"3 A fuzzy Bézier curve is defined as a special case of the fuzzy spline
curve.

Secondly, each hypothetical fuzzy model is compared
with the original fuzzy spline curve and its validity is
evaluated by a possibility value: pLinear pCircular op
PEliptic haged on the possibility measure® . In other
words, the degrees of linearity, circularity and ellipticity
of the drawn curve are evaluated by pLinear pCircular
and PPllrtic regpectively. Thirdly, the accordance be-
tween the fuzzy end points of the fuzzy spline curve is
checked and the closedness is evaluated by another pos-
sibility value PCtosed,

Now, it must be noted that three of the possibility val-
ues obtained in this process are always in a fixed or-
der. Namely, PLimear ig always less than or equal to
pCircular and pCireular jg always less than or equal
to PElrtic a5 shown in Figure 3 () and (f). This is
because of the inclusion relations among the primitive
curve classes.

2.3 Curve Class Estimation

Due to the fixed order among the three possibility
values, it is inconclusive to determine the curve class
by simply comparing them. In addition, the closedness
should be taken into account for FSCI to distinguish be-
tween closed primitive curves and open primitive curves
(for example, between circle and circular arc). There-
fore, FSCI performs the curve class estimation process
that is embodied as a fuzzy neural network shown in
Figure S; and calculates the seven membership grades:
u(L), p(C), u(CA), u(E), p(FA), n(FC) and p(FO)
from the four possibility values: PLinear pCircular
pEliptic and pClosed  In the fuzzy neural network,
each min-unit performs min operation that outputs the
minimum value. On the other hand, both 7.-units and
Fg-units are sigmoid units each of which has a func-
tion S(z) = 1/(1+ e *), and the " sigmoid unit out-
puts S(w; P; + 6;), where P; (¢ { plLinear pCircular
prEliptic . pClosed 1y ¢ the input to the unit, w; is the
weight factor to the input, and €; is the bias term.

Let us see how this fuzzy neural network plays a role
of fuzzy reasoning that tries to find the simplest possible
curve class. Letus set wp, (= 6.6) and 0, (= —3.3) to
w; and 0; respectively for all T -units as shown in Figure
6 (a); and set wp, (= —6.6) and Op, (= 3.3), for all F§-
units as shown in Figure 6 (b). Then, with this setting,
each T-unit acts as a fuzzy proposition “P is Ts,” where
T is fuzzy true shown in Figure 6 (¢); and each F-unit
acts as a fuzzy proposition “P 1s Fy,” where Fy is fuzzy

false shown in Figure 6 (d). Considering that the min-

unit can be regarded as a logical operator and, the fuzzy
neural network can be translated into the fuzzy rule set
which consists of the seven expressions shown in Fig-
ure 7, where A denotes the logical multiplication or the
min-operator and the fuzzy truth values shown as mem-
bership functions are 7 or [I'; respectively. Because
the fuzzy rules regarding rather complex curve classes
are severer than the ones regarding rather simple curve
classes, it is now understood that the the fuzzy neural
network embodies the fuzzy reasoning that tries to find
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'#(L) " (<) ll#(E) "u(EA)llu(FC)"#(FO)I

O : T,-unit @®: F,-unit B : min-unit

Fig. 5. Curve class estimation by a fuzzy neural network.

O » ®
S(wr, P + 01,) S(wrg P+ 6r,)

(a) Ts-unit. (b) Fs-unit.

pry (P) = S(wr, P+ 01,) pr, (P) = S(wr, P+ 0F,)

RS

T, = F, :\\

g
P P

(c) Fuzzy true Ty by Ts-  (d) Fuzzy false Fs by F-

unit. unit.

Fig. 6. Linguistic truth value by a sigmoid unit.

the simplest possible curve class.

The structure of the fuzzy neural network lets FSCI
preserve the basic strategy: “Try to find the simplest pos-
sible primitive curves.” On the other hand, the learning
ability of the neural network makes FSCI trainable, as
we discuss in the following section.

3 TRAINING OF FSCI

Given drawings and drawer’s intentions about curve
classes, the parameters w; and 6; of the fuzzy neural net-
work presented in Figure 5 are adjusted so as to adapt
FSCI’s identification results to the drawer’s intentions
as much as possible. The inputs to the neural network:
PLinear’ PCi'rcular’ PElliptic and PClosed are calcu-
lated from each of the given drawings by the possibility
evaluation process following the fuzzy spline interpola-
tion process shown in Figure 2. On the other hand, the
desired outputs from the neural network: u(L), p(C),
u(CA), p(E), u(EA), u(FC) and p(FO) are directly
set based on the drawer’s intention. (For example, when
the drawer’s intention is C A, we set 1 to u(C A) and 0 to
all other grades.) Therefore, the commonly used back-
propagation learning algorithm can be simply applied to

Pattern Pattern’ Pattern)
No.l No.2 No.3

ge
58
=

l
L

J4A\ /e

[l /|

Ok
D]
Ny

N e \,ZCKWQ

Fig. 8. Presented patterns.

train the network.
4 EXPERIMENTAL RESULTS OF TRAINING

This section demonstrates the effectiveness of the
training of FSCI by evaluating curve class recognition
rates, and then examines a concrete example of training
in order to show how the fuzzy rule set is adjusted.

4.1 Experimental Conditions

For the experiment, we gathered 840 drawing samples
from each of six different users (named A, B, C, D, E and
F). Each user was presented with the six kinds of patterns
(each of which have seven curve shapes and their corre-
sponding curve classes) shown in Figure 8 in turn; and
requested to draw primitive curves similar to the ones in
the patterns intending to let FSCI recognize the indicated
curve classes. A set of presentation consisted of the six
patterns of small size and the ones of large size (that is
12 patterns in total) and ten sets were presented to each
user. Out of the ten sets of presentation (that is 840 draw-
ing samples) to each user, seven sets (that is 588 draw-
ing samples) were used for training and the other three
sets (that is 252 drawing samples) were used for testing.
Because the fuzzy neural network has the explicit repre-
sentation as a fuzzy rule set, all the training could start
with the meaningful initial setting shown in Figure 7.

4.2 Improvement of Curve Class Recognition Rates
by Training

Table 1 shows the curve class recognition rates by
FSCI with the initial fuzzy rule set in Figure 7 and ones
by FSCI with fuzzy rule sets obtained after the training.
In the table, the column labeled “1% Candidate™ shows
the recognition rates regarding the curve classes given
the highest grades; “1¥-2"" Candidates,” the first and
second highest grades; and “1¥-3™ Candidates,” the first
through third highest grades. Although we evaluated the
curve class recognition rates using the testing samples
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Fig. 7. Initial fuzzy rule set.

Table 1. Curve class recognition rates.

Recognition Rates(%)
Fuzzy 15t 15tond 1sl:jrd
User | Rule Set Candid: Candids Candid
A Initial 78.869 91.369 94.345
Trained 80.932 97360 | 2.
B Initial 78.869 92.262 96.429
Trained 79.762 92.857 96.726
C Initial 62.500 80.060 88.095
Trained 68.155 36.012 92.857
D Initial 76.786 94.048 97.917
Trained 83.613 95.536 99.405
E Initial 91.071 98.512 100.000 |
Trained 93.451 99.405 99.702 |
F Initial 70.833 87.500 94.048
Trained 72.024 91.071 96.429

(without using the samples used for training), the results,
from all of the six users, demonstrates the improvement
of the curve class recognition rates after the training.

4.3 Considerations on a Concrete Example of
Training

Let us look at the case of the user D in detail. Figure
9 shows the fuzzy rule set obtained after the training for
the user D. Table 2 shows the curve class recognition
map by the trained fuzzy rule set, comparing it with the
one by the initial fuzzy rule set.

Now, Figure 9 tells us how the fuzzy rule set was ad-
justed so that it would adapt FSCI to the drawing manner
of the user D. When we pay attention to the propositions
with PC!esed for free curves (that is F'C and FO), the
fuzzy true got milder than the initial fuzzy true Ts while
the fuzzy false got severer than the initial fuzzy false F.
This implies that FSCI was trained so that the user D
would easily close free curves. Indeed, it was difficult
for the user D to get F'C when F'C was his intention as
shown in Table 2 (a). However, it was improved after the
training as shown in Table 2 (b). The drawing samples
labeled (a) or (b) in Figure 10 are concrete examples in
the case.

On the other hand, when we regard the propositions
with PCireular in Figure 9, we find that the fuzzy true’s
got severer but the fuzzy false’s got milder after the train-
ing. This means that the fuzzy rule set was adjusted to
get severer to C and C A; and, as a result, it came to tend
to recognize F or EA rather than C or CA. This ten-
dency obtained after the training considerably improved
the curve class recognition rates for £/ and F' A as shown
in Table 2, although the tendency slightly disimproved
the ones for C. The drawing samples labeled (¢) or (d)

Table 2. Curve class recognition maps for user D.

(a) By initial fuzzy rule set.  (b) By trained fuzzy rule set.

Intentional Curve Class Intentional Curve Class
“Recognized Results Recognized Results
(Nuimber of (Number of
Drawings) Drawings)
L CA] EA| FO T CA| EA| FO
L[4 0 0 0 L& 0 0 0
C E FC . C E FC
0 0 0 0 0 0
L CA| EA| FO T CA | EA[ FO
c[o 0 0 0 c 0 0 0 0
T E FC T E FC
ELS z 0 az 7 ]
T CA] EA] FO T CA] GA] FO
c 5| 4 T T o PREE 1 T
A C E FC A C E FC
§ 1 0 q 1 0
L CA] EA] FO L CA| EA| FO
E 0 0 0 0 2 0 0 0 0
C E FC C E FC
B | 3 5 | 3% 7
L CA| EA | FO T CA | EA | FO
E 0 T | A 7 [ 0 3 30 9
A C E FC A T E FC
1 3 0 0 3 0
T CA| EA| FO T CA | EA| FO
F 0 0 0 3 F 0 0 0 T
c C E FC < C E FC
4 3 33 0 4 43
L CA| EA| FO L CA | EA| FO
F 0 3 1 £ 3 0 2 T £
o T E FC b) C E FC
0 0 ] T 0 T

in Figure 10 are the cases improved by this effect; (e) or
(), the cases disimproved.

It will be noticed from these examples that the curve
class estimation process realized as the fuzzy neural net-
work tells us what was difficult for a specific user to deal
with and how the fuzzy rules were adjusted to relieve the
difficulties; and this will not only help a user to change
one’s drawing manner, but will also give us hints for fur-
ther improvement in the algorithms of FSCI.

5 CONCLUSIONS

This paper gave an outline of a trainable version of
FSCI, in which a fuzzy neural network was embedded
as the curve class estimation process. Then, experimen-
tal results, from six different users, demonstrated that the
training of fuzzy neural network improved FSCI in terms
of curve class recognition rates. Furthermore, through
some considerations on a concrete example of the train-
ing, we showed that the fuzzy ncural network (which has
an explicit expression as a fuzzy rule set) is informative
for us to analyze both users’ drawing manner and the
identification characteristics of FSCI. This is expected
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Fig. 9. Trained fuzzy rule set for the user D.

(a) Improved case (b) Improved case
([FC—FO] to (([FC—FO]to
[FC—FC)) [FC—FC))

(c) Improved case (d) Improved case
([E~C] to [E—E]) ([E~C] to [EmE])

(e) Disimproved case (f) Disimproved case
([C—C] o [C—E)) ([C—C] to [CHE))

Fig. 10. Drawing samples shown as fuzzy spline curves.
to be helpful for further improvement in FSCI.
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Approximate Optimization Algorithms in Markov Random Field
Model Based on Statistical-Mechanical Techniques
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An image restoration can be often formulated as an energy minimization problem. When an energy func-
tion is expressed by using the hamiltonian of a classical spin system only with finite range interactions,
the probabilistic model, which is described in the form of Gibbs distribution for the energy function,
can be regarded as a Markov random field (MRF) model. Some approximate optimization algorithms
for the energy minimization problem were proposed in the standpoint of statistical-mechanics. In this
paper, the approximate optimization algorithms are summarized and are applied to the image restoration

for natural image.
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1 INTRODUCTION

Recently, many authors have shown an interest in im-
age restoration using the Markov random field (MRF)
model, in which the configuration of a lattice site is
dependent only on the configurations of the nearest
neighbours(V23) The MRF model, can be regarded
as one of classical spin systems with finite range interac-
tions and non-uniform external fields on a finite square
lattice. The MRF model can be regarded as a classical
spin system in statistical mechanics. The authors have
proposed a new method for systematically constructing
the energy function®, which is based on constrained op-
timization. In the image restoration, the constraints are
introduced as a priori information on the original im-
age. By introducing a Lagrange multiplier for each of
the constraints, the image restoration is reduced to an
energy minimization problem®3)©_ In Ref. (7), we
described a classical spin system, which is applicable to

* Department of Computer and Mathematical Sciences, Graduate
School of Information Sciences, Tohoku University
**Department of Computer Science and Systems Engineering

gray-level image restoration.

In the search for an optimal solution of MRF model,
many authors applied the iterated conditional modes
(ICM) algorithm®. Though the ICM algorithm is sim-
ple algorithm and can erase noise when the noise is in
an isolated site, it is difficult to avoid the local minimum
and then it cannot erase noise when two or more succes-
sive sites are affected by the noise. to the search of the
minimum-energy configuration. In order to avoid the lo-
cal minimum, the cluster type Monte Carlo simulation®,
and the cluster type mean field approximation!? are also
applied to the optimization of the MRF model. In the
statistical mechanics, we have some important fluctua-
tion effects to avoid the local minimum. One of them is
thermal effect. In order to adopt the thermal fluctuation
effect as annealing procedure, we introduce a tempera-
ture in the form of Gibbs distribution. Geiger and Girosi
(1D and Zhang!2-(3 proposed a deterministic algorithm,
which is based on the mean-field approximation. On the
other hand, we have general methodology of construc-
tion of high-level effective-field approximation in statis-
tical mechanics, which is called cluster variation method
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(CVM)%), We gave a simple example of its application
to the MRF model!>. Moreover, in the standpoint of the
CVM, we proposed the methodology in the extension of
the ICM to the cluster type algorithm, which is called
the cluster zero-temperature process (CZTP) and is ob-
tained as the zero-temperature limit in the optimization
algorithm of the CVM1®),

In this paper, we clarify the mathematical structure of
the ICM, the CZTP and MFA algorithms and compare
them with each others in some numerical experiments
for natural images. In Sec. 2, we explain the energy
function and the probability distribution constructed by
means of the mathematical framework of Ref.(7). In
Sec. 3, we summarize some approximate optimization
algorithms for the energy function. In Secs. 4 and 5, we
give some numerical experiments and some concluding
remarks, respectively.

2 ENERGY FUNCTION OF IMAGE
RESTORATION

In this section, we give the energy function of image
restoration for natural images with the aid of the mathe-
matical framework in Ref.(7).

We consider a digital image with q grades ona M x N
finite square lattice ‘ '

LE{(i,j)‘i: 1,2,~-~,M,j=1,2,-~,N},

with the periodic boundary condition. We express the
configurations of an original and a degraded images by
x={z;;|(i,j)€L} and y={y; ;|(i, j) €L}, respectively.
The variable z;; on a pixel (i,j) takes a value from
A={0,1,2,---,q — 1}. For the degradation process, we
assume that a degraded image y is obtained from the
original image x by changing the state of each pixel to
another state by the same probability p, independently
of the other pixel. The conditional probability for a de-
graded image y when the original image is x, Py, (y|x),
is given by

Pyo(y]x)
= I (v w) (1 = gp+ p)lesw)
(i,7)€L

_ exp( - Tl,?d(x’y)) ............ )

Z exp( - Tlpd(x,y)) ,

yeAMN
where
d(x’Y) = Z (1_6(zi,jayi,]’))7 o (2)
(4,7)€L
and
1
T = —_— L i iieeteieieeas 3
T () ®
P

In the present paper, we treat only the case in which T},
is positive such that p < 1/q.

In Ref.(7), it is assumed that we know the following
quantities for the true original image X:

ga(X) = = Z (2 = 0(Zi 5, Tit1,5)
(i) €L
—5(57i,j,3~31‘,j+1))7 (@)
> (5(|53i.j = Ziv1,5],m)
(i,7)€L
+ 015 — Tijal, n)),

Gzyn(i) =

The image restoration in natural images is formulated as
the following conditional optimization problem:

X = arg minN{d(x,y)‘Uz(x)Zaz(i),

xEAM
02.0(X) = 02,0(%) (n = 1,2,k ~ 1))
............................... (6)

In order to ensure the constrained conditions oq(x) =
02(X) and o3 1(x) = 021 (X), we introduce the Lagrange
multipliers Jy and J, — J, (n = 1,2,--- K — 1). The
conditional optimization (6) can be reduced to the fol-
lowing energy minimization problem:

x(J1,d2,- k) = arg rrll\in H(x),
xEAMN
................. (7
where
H(x) = dxy)
k—1
+ Jkoa(x) + D (Jn — k)02 (%)
n=1
............................ (8)

Here the notation arg minf(z) means any minimizer
T

of a function f(z). The optimal parameters J,, (n =
1,2, .-+, k) should be determined so as to satisfy the fol-
lowing constraints:

0'2(x(j1,j2,"',jk)) :0'2(5'()’ ......... 9)

Uz,n(x(jlvj2> ER) jk)) = 02,71(5()7
(n=1,2,--,k—1).---- (10)
The restored image obtained by using Egs. (7)-(10) is de-
noted by X = x(J1, J2, -+, Ji). The energy minimiza-

tion problem (7) is equivalent to the following probability
maximization problem:

x(J1,J2,---,Jr) = arg min H(x),

XEAMN

where
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exp( - %H(x))

Z exp( - %H(x)) ,

XEAMN

plx) =

and T is a temperature. The probabilistic model de-
scribed by the probability distribution (12) with Eq.(8)
can be regarded as the MRF model.

3 APPROXIMATE OPTIMIZATION
ALGORITHMS

In this section, we give three approximate optimization
algorithms for the energy minimization problem (7), such
that ICM®), CZTP!® and MFAU!D. Both the ICM and
the CZTP are iterative algorithms at zero temperature and
the MFA is one at a finite temperature. The approximate
minimum-energy configuration obtained by means of an
annealing procedure is closer to the true minimum-energy
configuration than by means of the ICM.

First we explain the iterative algorithm at zero temper-
ature. The optimization problem (7) can be reduced to
the following iterative equation:

x5 (J1, I, k)

= arg min H(:ci;
z;;EA J

Lir gt = xi’,j'(‘]la J27 T Jk)a

(i',5)€LN ) oo (13)

From the iterative equation, we can construct the ICM
algorithm®), which is the simplest algorithms for the op-
timization (7). Morita and the present author extend it to
the cluster version ICM algorithm, which is constructed
from the following iterative equation:

XC(J17 J27 B ']k)

= arg min 'H (xc

Ty =Ty (Ji, Jo, o, Ji),
XcEAle

(#'.4)€L\e),

where

(i,5)ec},

XCE{.Z',;J‘

xe(J1, Jo, ) Jk)z{xi,j(Jl,JQ, . Jk)](i,j)ec}.

Morita and the present author called it CZTP('®), Here ¢
is a set of pixels, and the square CZTP can be constructed
by setting ¢ = {(4, /), (i+1,5), (i+1,5+1), (6,5 +1)}.

Second, we explain the MFA algorithm which is the
most familiar deterministic annealing algorithm for the
optimization (7). The annealing algorithm is able to
avoid local minima. In order to adopt the MFA algo-
rithm for the search of minimum-energy configuration
x(J1, Ja2, - -+, Jk), we introduce the one-body marginal
probability distributions:

p,-,j(n) = z p(x)é(xi,j7n)7
XEAMN

(neA, (i,5)€L). ------ (15)

In the mean-field approximation, the probability distri-
bution p(x) is approximately expressed as

H Pij(Tig). oo (16)

(i,5)€L

p(x) =

By substituting Eq.(16) into the free energy

Flol=Y_p(x) (H(x) + Tin(p(x)) ),

and by taking the first variation of the free energy
F[{pi,; }] withrespect to p; ;(n), the deterministic mean-
field equations for the set of one-body marginal distribu-
tion functions

{Pi,j(n)'(i,j)eL, neA}
are obtained as follows [3]:
;i (J1, 2y oo, Ji) = arg rrrllgj)\cpi‘j(n), —oe- (18)

where

pij(n) = ,

H; j(n) = —6(n,y: ;)

k—1
+ Z Z Im (pilyjr (n+ m) + pir (n— m))

(¢,5")€ci ym=1

q—1
+ Tk Y, Y (pi g (n+m) + pu y(n—m)),

(#,5")€ci,;m=k

By solving Eqs.(18)-(21) at a sufficiently small positive
value of T' by using the annealing procedure, we obtain
the approximate optimal solution of Eq.(7).

4 NUMERICAL EXPERIMENTS

In this section, we give some numerical experiments
for the original image X = {%; ;} given in Fig.1. The
degradation process is subject to the probability given in
Eq.(1). Here, we set (¢ — 1)p = 0.1, 0.3 and 0.5 where
g = 8. The degraded images y obtained from the original
image X in Fig.1 are given in Fig.2. The quantities

1

720 ) = Sarw

02,n(i) (n = 0’ 17 g — 1)7
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are shown in Table 1 where 02 o(X)=1 — 02(X). We
see that the quantities 03 ¢(X) and 09 1 (X) are especially
important in images with 8 grades. In the energy function
(8), we set £ = 2. In Table 2, we give the values of
optimal parameters Ji and Ja, and of quantities

. 1
d(x,%) = _M—]-V—d(i’i)’
. 1 N
g2(%) = maz(x),
and
5'%1(;() = W—NUQJ()A(),

in the restored image X, which is obtained by using the
ICM, the CZTP and the MFA. The obtained restored
images X are shown in Figs.3, 4 and 5. In the CZTP, we
set

c =
5 CONCLUDING REMARKS

In this paper, we summarize some approximate opti-
mization algorithms based on the statistical-mechanical
techniques for the energy minimization problem formu-
lated for the image restoration in Ref.(7). In some nu-
merical experiments, we show that the algorithms are
applicable to the image restoration of natural image. We
remark that the ICM algorithm can erase when the noise
is in an isolated pixel, but it cannot erase when two or
more successive pixels are affected by the noise. On the
other hand, the MFA and the CZTP algorithms can deal
with this problem. However the MFA need a large mem-
ory. If we apply it to the image restoration of gray-level
image with 256 grades, we have to treat a 256 X256 X256
dimensions for the one-body marginal probability distri-
bution p; j(n). The ICM and CZTP algorithms do not
need so many memory because most of the data stored
are in integer. The present author are still studying the
problem of finding a computer algorithm giving the same
results in much shorter time and in much smaller mem-
ory.
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Table 1. Value of quantity g5 ,(X) for the true original
image X given in Fig. 1.

n | d2.n(X) n | G2,n(X)
0 0.7224 4 0.0039
1 0.2351 5 0.0031
2 0.0204 6 0.0033
3 0.0067 7 0.0051

Table 2. Value of optimal parameter Ji and Js, and
values of quantities d(%, %), o2(%) and Go1 (%) in the
restored image X, which is obtained by using the ICM,
the CZTP and the MFA. (a) (¢—1)p = 0.1. (b) (¢—1)p =
0.3.(¢)(¢g—1)p=0.5.

(@)

J1 Ja d(f(,f() 62()?) 6’2’1(3()
ICM 0.2500 | 0.5015 0.0427 0.2782 0.2385
CZTP 0.2500 | 0.5600 0.0420 0.2750 0.2395
MFA 0.2541 0.4511 0.0374 0.2772 0.2295

X=X 0 0.2764 | 0.2390

J1 J2 d(%,%) a2(X) 72,1(%)
ICM 0.2533 | 0.8800 | 0.1211 | 0.2769 0.2361
CZTP | 0.2500 | 0.6200 | 0.1187 | 0.2815 0.2356
MFA 0.2695 | 0.7631 | 0.1055 | 0.2734 0.2394

X =% 0 0.2764 | 0.2390

J1 Ja2 d(x,%) G2(X) G2,1(X)
ICM 0.4611 | 1.4611 | 0.2793 | 0.2763 0.2416
CZTP | 0.2599 | 0.8899 | 0.2327 | 0.2632 0.2354
MFA 0.2785 | 0.7701 | 0.2210 | 0.2752 0.2394

X=X 0 0.2764 | 0.2390
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Fig. 1. Original image X (¢ = 8, M = N = 64).

Fig. 2. Degraded images (¢ = 8, M = N = 64).
(@) (q— 1)p = 0.1 (d(%, y)~0.0947). (b) (g— 1) = 0.3
(d(X,y)~0.2937). (c) (g—1)p = 0.5 (d(X,y)~0.4968).
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(@) (b)

Fig. 3. Restored images X obtained from the degraded
image y given in Fig. 2a. (a) ICM. (b) CZTP. (c) MFA.

(@) (b)

Fig. 5. Restored images % obtained from the degraded
image y given in Fig. 2c. (a) ICM. (b) CZTP. (c) MFA.

Fig. 4. Restored images % obtained from the degraded
image y given in Fig. 2b. (a) ICM. (b) CZTP. (c) MFA.
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Nonlinear deterministic dynamical structure of the normal phonation of Japanese
vowels is studied by the method of surrogate. The surrogate analysis exploits Way-
land translation error and nonlinear deterministic predictability as the discriminating
statistics. The results imply that the vowel signals have strong nonlinear dynamical
characteristics that can not be detected by conventional linear dynamical systems

analyses of speech.

Keywords: Nonlinear Dynamics, Vowels, Pitch-To-Pitch Variation, Surrogate Analy-
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1 Introduction

In the studies of human speech, linear dynami-
cal systems analyses such as the power spectrum
analysis and the linear predictive coding modeling
are the most popular and standard methodologies
(1:2,3) " This is because the acoustical characteris-
tics of human speech is mainly due to the resonances
of the vocal-tract, which forms the basic spectral
structure of the speech signals. Although the lin-
ear dynamical systems analyses have been widely
applied to speech, human speech is, strictly speak-
ing, nonlinear dynamical phenomena which involve
nonlinear aerodynamic, biomechanical, physiologi-
cal, and acoustic factors. Some of the important
characteristics of speech may not be detected only
by linear dynamical systems analyses. For a deeper
understanding of speech, nonlinear dynamical sys-

*" Department of Computer Science and Systems Engineer-
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ing, Hirosaki University

***Department of Mathematical Engineering and Informa-
tion Physics, University of Tokyo
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tems analyses might be indispensable. In fact, there
are a variety of recent studies of analyzing nonlinear
a))qz?or;ﬁcs such as chaotic dynamics in human speech

The aim of the present paper is to re-examine the
efficiency of linear dynamical systems analyses of
speech and to consider the limitation of character-
izing the speech only by the linear statistical quan-
tities. Our approach is based upon surrogate test
of speech. The surrogate test (1112 13) s a kind
of statistical hypothesis testing which is to detect
nonlinear dynamical structure in a time series data.
The results imply that in the normal phonation of
Japanese vowels there seem to exist some important
nonlinear dynamical characteristics that can not be
detected by the conventional linear dynamical sys-
tems analyses of speech.

2 Speech Data

For our analysis, speech signals of 5 Japanese vow-
els /a/, /i/, /u/, /e/, and /o/ recorded from 5

subjects are exploited. The subject group is com-
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posed of 3 male speakers (mau, mms, mmy) and 2 fe-
male speakers (fsu, fyn) with no evidence for any
laryngeal pathology. The speech data are in the
standard ATR (Advanced Telecommunications Re-
search Institute International, www.ctr.atr.co.jp)
database. The speech signal is low-pass filtered with
a cut-off frequency of 8 kHz and digitized with a
sampling rate of 20 kHz and with 16 bit resolution.
For the analysis of speech, the initial transient phase
and the final decay phase are removed from each
data and the stationary part of the data is extracted.

Fig. 1 (a) shows speech signal {z;, : ¢t =
1,2, .., Ngata} (Ngata = 2048) of vowel /a/ recorded
from a male speaker mau.

.

o Mol W’
{Z = = o ime ™
o b

time

Fig. 1. (a): Original speech signal of a vowel /a/
and (b): its iterative surrogate.

The vowels are known to have irregularity in the
pitch-to-pitch variation (1) and they are indispens-
able for the speech signals to be perceived as natural
human sound (%), Although considerable amount of
works has been devoted for the analysis and syn-
thesis of natural pitch-to-pitch variation, no sat-
isfactory understanding of its statistical property
has been obtained yet. There might be some non-
linear dynamical structure underlying the pitch-to-
pitch irregularity and such nonlinear dynamics in
the vowel signals is investigated in the subsequent
sections.

3 Surrogate Analyses

3.1 Iterative Surrogate Algorithm

Let us study the nonlinear dynamics of speech by
the surrogate test (11,12,13)  The surrogate test is
a kind of statistical hypothesis testing. First, we
set a null hypothesis Hy that the speech signal is
generated from some non-deterministic dynamical
process. Then, we artificially create many sets of
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surrogate data which agree with the null hypoth-
esis. By computing a discriminating statistic 7' of
the original and surrogate data and by observing the
difference between the original and surrogate statis-
tics, we can test the null hypothesis Hy.

The surrogate test has the property of
“constrained-realization,” (12) which is to ran-
domize the original data by strictly preserving
some of the original statistical properties. It has
been empirically known that the surrogate test
is effective for statistical hypothesis testing when
non-pivotal discriminating statistic T' is utilized.

For the nonlinearity test of speech, we consider
the following null hypothesis,

Hy: “The speech signal {z;} is generated from a
linear Gaussian process

q
zy = ag + E g Ttk + e,
where e; represents Gaussian noise.”

We consider this null hypothesis, because this is the
standard hypothesis when linear dynamical systems
analysis is applied to speech ®),

For the null hypothesis Hy, the surrogate data is
generated by the Schreiber-Schmitz iterative algo-
rithm (!3), The iterative algorithm generates sur-
rogate data which exactly preserves the amplitude
distribution and approximately preserves the power
spectrum of the original data.

Fig. 1 (b) shows an iterative surrogate signal gen-
erated from the speech signal of the vowel /a/ of
Fig. 1 (a). Although the waveform structures of the
original and surrogate data seem to be rather dif-
ferent from each other, they have exactly the same
amplitude distribution and approximately the same
power spectrum (see Fig. 2).

power [dB]
0
e . Original
20 —— . Surrogate
l |
40
|
50 A )
n Tt ™ '
| i} R / | |
-80 N "‘ jl‘.“,\“
-100
10

0 2.5 s
‘ frequency [kHz]

Fig. 2. Power spectra of the original speech signal of
the vowel /a/ (bold line) and its iterative surrogate

(thin line).
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3.2 Wayland Translation Error

By computing a discriminating statistic 7" of the
original data and the surrogate data set, we can test
the null hypothesis Hy. If the T-value of the original
data is far from the distribution of the T-vales of the
surrogate data set, we can reject the null hypothe-
sis Hy. As the discriminating statistic 7', Wayland
translation error and nonlinear deterministic predic-
tion error are exploited.

As the first discriminating statistic 7', Wayland
translation error is computed as follows (16), First,
we reconstruct the geometric structure of the speech
data in a delay-coordinate space (!” 18)

y Te—(d-1)7 )Tv (1)
where T' denotes transposition and d and 7 stand
for the reconstruction dimension and the time lag,
respectively. Then, the Wayland algorithm assumes
that the reconstructed data trajectory {(t) : ¢t =
1+ (d = 1)7,..,Ngata} is generated from a continu-
ous map f : R* - R as &(t + 1) = f(=(t)) and
hence “nearby” data points, e.g., ®(t) and ®(s), are
mapped to nearby T-step future points, e.g., ®(t+7T)
and &(s + T). With respect to the assumed deter-
minism, the translation error, etrans, can be calcu-
lated as follows.

First, for a fixed data point &(tg), we find its k-
nearest neighbors as @(t1),.., ®(tx). With respect to
the translation horizon T, the translation vectors are
computed as v; = ®(t; + T) — (t;) for j =0,.., k.
Then the translation error is calculated as

k 2

1 [lvj— < v > |
e = E , (2
trans k+l - ||<v>”2 ( )

ZB(t) - ( Tty Tp—7y oo

with <v > = 15 Y v;.

Fig. 3 shows the result of the Wayland analysis
applied to vowel /a/ (subject: mau). Translation er-
ror curves of the original speech data and 39 sets
of its surrogate data are drawn with a solid line
with circles and solid lines with no circle, respec-
tively. The translation error, eirans, is averaged over
20 sets of 300-randomly chosen translation centers
«(tg), other parameters are set as 7 = 10, k = 4,
T = 10, and the reconstruction dimension is varied
asd=1,..,15.

Clear difference between the original speech data
and its surrogate data is discernible in the figure,
where the original data exhibits relatively lower er-
ror level than the surrogate data.

In Table 1, rejection level a is summarized for 5
Japanese vowels (/a/, /i/, /u/, /e/, /o/) and for
5 subject speakers (mau, mms, mmy, fsu, £yn). The
rejection level a means that T-value of the original
data is out of 100(1 — a)% confidence range of the
surrogate distribution and hence the null hypothesis
Hj can be rejected with the a-level. For all 5 vowels
and for all 5 subjects, the null hypothesis Hy is re-
Jjected with the level of & = 0.05. This is in general
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Fig. 3. Result of the Wayland analysis of vowel
/a/ (subject: mau). Translation error curves of the
original data and 39 sets of its surrogates are drawn
with a solid line with circles and solid lines with no
circle, respectively.

a strong rejection level for statistical test and the re-
sults seem to be independent of the vowels and the
subjects. Therefore the results imply that the vow-
els are not generated from a simple linear Gaussian
process. There might be some nonlinear dynamics
underlying the irregular structure of the vowels and
such nonlinear characteristics have been destroyed
by the surrogate shuffling.

3.3 Nonlinear Prediction Error

As another discriminating statistic T', we compute
nonlinear deterministic prediction error as follows.

First, we divide the time series {z; : t = 1,.,,
Ngyato} into first and second halves. From the first
data, a nonlinear predictor f: R* - R¢ which ap-
proximates the data dynamics as =(t + 1)~f(=(t))
is constructed. For the predictor, the local opti-
mal linear-association map (19) js exploited with the
embedding condition of (d,7) = (6,2). Then, for
the latter data, nonlinear prediction is carried out.
Forecasting procedure is that, for a give initial state,
z(t), the s-step further state @(t+ s) is predicted as
f’(z(t)) using the s-iterate of the predictor f For
each s-prediction step, accuracy of the predictions is
evaluated with the correlation coefficient », between
the actual and prediction data.

The results of the nonlinear prediction of vowel
/a/ (subject: mau) is shown in Fig. 4. Prediction
curves of the original speech data and 39 sets of
its surrogate data are drawn with a solid line with
squares and dotted lines with no square, respec-
tively. We clearly see that the original data exhibits
better nonlinear predictability than the surrogate
data.
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In Table 1, rejection level « is summarized for 5
Japanese vowels and for 5 subject speakers. The
prediction step is fixed at s = 2. For vowel /o/
from female subjects, relatively high rejection level
a was computed. This might be caused by strong
constriction of the vocal tract shape that dissipates
nonlinear dynamics of the vocal folds and produces
relatively simple harmonic speech sound. For such
a harmonic signal, detection of nonlinear dynamics
becomes difficult. For other vowels except for fe-
male vowel /o/, the null-hypothesis Hp is rejected
with the strong level of a = 0.05 (for few samples,
a = 0.1). Hence the results imply that nonlinear de-
terministic predictability of the vowels is destroyed
by the surrogate shuffling.

0.9

Correlation
(=]
00

0.7
——0— : Original

: Surrogate

0.6

1 2 3 4
Prediction Step

Fig. 4. Results of the nonlinear deterministic pre-
diction of vowel /a/ (subject: mau). Prediction
curves of the original speech data and 39 sets of its
surrogates are drawn with a solid line with squares
and dotted lines with no square, respectively.

Table 1.
Rejection level a of the surrogate test of 5 Japanese vow-
els (/a/, /i/, /u/, /e/, /o/) from 5 subject speakers
(mau, mms, mmy, fsu, fyn). As the discriminating statis-
tic T, Wayland translation error ey;,,s and nonlinear
prediction error r2 were exploited.

| T /a/ | /i/ | /u/ | /e/ | /o/ |
mau || €trans || 0.05 | 0.05 | 0.05 | 0.05 | 0.05
T9 0.05 | 0.05 | 0.10 | 0.05 | 0.05
mms || €grans || 0.05 | 0.05 | 0.05 | 0.05 | 0.05
Ty 0.05 | 0.05 | 0.05 | 0.05 [ 0.05
mny || €grans || 0.05 | 0.05 | 0.05 | 0.05 | 0.05
T9 0.05 | 0.05 | 0.05 [ 0.05 | 0.10
fsu || etrans || 0.05 | 0.05 | 0.05 | 0.05 | 0.05
T9 0.05 | 0.05 | 0.05 | 0.05 | 0.20
fyn || etrans || 0.05 | 0.05 | 0.05 | 0.05 | 0.05
Ty 0.05 | 0.05 | 0.05 | 0.05 | 0.40
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4 Conclusions and Discussions

Nonlinear dynamical structure of the normal
phonation of Japanese vowels has been tested by
the method of surrogate. For a null hypothesis
that the speech signal is generated from a linear
Gaussian process, surrogate data is generated by
the Schreiber-Schmitz iterative algorithm. As a dis-
criminating statistic T, Wayland translation error
and nonlinear deterministic prediction error are ex-
ploited. The surrogate analysis has shown that the
null-hypothesis was rejected for almost all vowel sig-
nals with a level of a = 0.05. The results seem
to be independent of the vowels, male or female
subjects, and the nonlinear discriminating statis-
tics. This implies that there definitely exist some
important nonlinear dynamical characteristics that
has been destroyed by the surrogate data shuffling
in the vowel signals. Nonlinear dynamical charac-
teristics may provide us with useful information on
speech signals such as individual speaker’s charac-
ter, speaker’s emotional condition, and the laryngeal
condition.
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Nonlinear deterministic dynamical structure of the normal phonation of Japanese vowels is studied
by the method of surrogate. The surrogate analysis exploits Wayland translation error and nonlin-
ear deterministic predictability as the discriminating statistics. The results imply that the vowel
signals have strong nonlinear dynamical characteristics that can not be detected by conventional
linear dynamical systems analyses of speech.
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Firstly, intelligent control (diagnosis by system identification) for a small-scaled
system using computational intelligence (soft computing and numerical processing)
is described. A novel fuzzy neural network with general parameter learning is devel-
oped, which needs remarkably less computational time resulting in realizing real time
fault detection of an automobile transmission gear with a DSP-integrated RISC pro-
cessor. Then, for a large-scaled and complex system, contemporary intelligent control
using extended soft computing is proposed. Extended soft computing (ESC) which is
the fusion/combination of fuzzy, neuro, genetic and chaotic computings and immune
network theory in order to explain, what they call, complex systems and cognitive
and reactive Als is introduced. Then, contemporary intelligent system concept is
discussed while the ESC is promising to realize it. Finally, a decision making robot
with multi-agents (immune networks), fuzzy inference and reinforcement learning is
described, as an example. It is confirmed that the ESC plays an important role in
constructing intelligent robots.

Keywords: Computational Intelligence, Soft Computing, Intelligent Control, Fuzzy
System, Neural Network, Immune Network

1 INTRODUCTION

Soft  computing is  proposed by Dr.
L.A.ZadehV®®) o construct new generation
Al (machine intelligence quatient) and to solve
nonlinear and mathematically un-modelled systems
problems (tractability). It is the fusion or com-
bination of fuzzy, neuro and evolutional (genetic
algorithm) computings. The advantages of soft
computing (computational intelligence) for control
and diagnosis of systems are

1. Nonlinear and comblicated problems, problems

for which mathematical models are defficult to

"Department of Computer Science and Systems Engineer-
ing
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obtain.

2. Human knowledge (recognition, understanding,
learning, inference and other human intelli-
gence) can be introduced. Therefore intelligent
systems such as autonomous (self-organizing
controllers), self-tuning systems and automated
designed systems can be constructed.

Now, only the combination of fuzzy systems and
neural networks are considered. It has been proved
that any nonlinear mappings obtained by neural net-
works can be approximated, to any accuracy, by
fuzzy systems using Stone-Weierstrass’s approxima-
tion theory®. From the application point of view,
each approach has some advantages. Since a neural
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Human Being like Al

Cognitive Distributed Al
(static)

Reactive Distributed Al
(dynamic)

Behavir—based Al

Fig. 1. Soft computing in Al

network has learning capabilities, it is easy to design
automatically controllers.

On the other hand, for fine-tuning, in using neural
networks, it is difficult, since it is difficult to explain
logically the cause and the result in the input-output
relation ships. Due to these difficulties, a novel lo-
cal based function neural network with a general
parameter learning algorithm was developed®. It
is experimentally applied to fault detection of auto-
mobile transmission gears by nonlinear system iden-
tification in Section 2.

Then, in Section 3 by adding chaos computing
and immune network theory, extended soft comput-
ing (ESC) is defined for explaining, what they call,
complex systems and cognitive and reactive Als as
shown in Fig.1. In Section 4, contemporary intelli-
gent control for a large-scaled and complex system
is considered from the view point of bioinformatics
and cognitive and reactive distributed AIs while the
ESC is promising to realize it. Especially, cognitive
and reactive distributed artificial Als are discussed.

In Section 5, control of an intelligent agent robot
is described. Robots can behave more intellectually
in a group even though each robot has a little
intelligence, since they can interact in cooperation
with each other. The following methods using
soft computing to construct intelligent multi agent
robot systems have been reported.

1. Immune networks, fuzzy inference and GA (re-
active distributed AI, IFAR)(®)()

2. Neural networks and evolutional computing (re-
active and cognitive distributed AI)(perception
and motion are non separable, IFAR)(®)

3. Fuzzy associate memories, chaos computings
and evolutional computoings (cognitive dis-
tributed Al)(each agent has intelligence in this
case, IFAR)(®)

4. Fuzzy inference and random parameter search
method (reactive distributed AT, MAIR)(10)(11)
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An artificial decision making robot behaving as in-
teractions(fuzzy inferences) among antibodies in an
artificial immune network with perceptions of anti-
gens is described. It is confirmed that the ESC is
promising to realize intelligent agent robots like this.

2 REAL TIME FAULT DIAGNOSIS

2.1 Nonlinear Model Identification

A necessary basis for any diagnostics approach
is a reliable and accurate model of the operational
process. Therefore, fault detection/diagnostics pro-
cedures typically consist of the following two steps:

1. Off-line determination of the model structure
and its parameters under normal operation con-
ditions.

2. On-line determination of operational faults by
using the identified model.

We use the GP-approach for both of the above steps.
The nonlinear time-series model is first expressed as:

z(n) = Flz(n—=1),--- ,z(n— N)]+n(n) (1)

where F[-] is a nonlinear function and n(n) repre-
sents the modeling error.

In the identification stage, the general parameter
(B) expectation and variance are indicators of the
current accuracy of the normal process model. In
the diagnostics stage, the mentioned values are in-
dicators of process normality. The GP-based model
identification procedure is described below

1. Model initialization:
w;(0) =0; B(0)=0
E{f}=0; Dg=0

2. Sample z(k),k € [1, N]

3. Caluculate the one-step-ahead predictive GP-
RBFN output z(k + 1)

4. Sample z(k + 1)
5. Adapt B with the algorithm(®

6. Compute general parameter’s
E{B(k)} and variance Dg(k)

expectation

7. Determine expectation’s and variance’s possible

stability:
AE{B}) = |E{B(k+ 1)} - E{B(k)}| < 6,
ADﬁ = IDg(k-rl)——D[j(k‘” <(52

where, 61,d2 are appropriate threshold levels.

8. If stability is achieved in Step 7, then go to Step
10, else continue.

9. k=k+1, go to Step 3.
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10. w; = E{B(k)}

11. k=k+1

12. Caluculate the new GP-RBFN output.
13. Sample z(k + 1)

14. Accuracy justification:

ek+1) = zk+1)—2(k+1)
D(k+1) = E%De(k)+ki162(k+1)

15. If D, < é. = const > 0, then go to Step 18, else
continue.

16. Individual adaptation of RBFN weights.
17. Go to Step 11.

18. Memorizing of the new weight values
’1121'0 = lb,(k)

19. Zeroing of the general parameter value 8 = 0.

2.2 Process Abnormality Detection

After identifying the model structure and its pa-
rameters of the plant for normal operation condi-
tions, the fault detection problem can be solved us-
ing the following procedure: n

1. Initialization:

w;(0) = ;o = const

B(0) =0; E{f} =0;D3 =0
2. Sample z(k),k € [1, N].
3. Calculate GP-RBFN output.

4. Sample z(k + 1).

(21

Adapt (8 with the algorithm(?).

6. Estimate the general parameter expection
E{p(k)} and variance Dg(k).

7. Justification of operation normality:
|[E{B(k)}] < Ay,Dg(k) < Ay, where
Ay,Ay = const > 0 are predetermined

threshold values.

8. If the conditions of Step 7 are not satisfied, then
fault is detected, else continue.

9. k=k+1, go to Step 3.
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2.3 Fault Detection Experiment

We consider a fault detection problem of automo-
bile transmission gears by means of acoustic data
modeling. The input data was collected using a
sound level meter. First, the normal model was
identified by the conventional RBFN and then by
the new GP-RBFN (fuzzy neural network). Both
networks were trained off-line. Fig. 3 illustrates
the approximation errors of the RBFN and GP-
RBFN after an equal number of training steps. It
is seen from these plots that the prediction error
is significantly lower and more consistent with the
GP-RBFN. This is due to the considerably faster
learning rate of the GP-RBFN.

During the on-line fault detection stage, the reg-
ular weights of the GP-RBFN were fixed, while the
scalar general parameter was adapted. In Fig. 4,
illustrative results are shown, where the general pa-
rameter expectation value allows to easily recognize
an abnormal condition in the automobile transmis-
sion system. This experiment was carried out us-
ing the following parameters (Fig. 2): the number
of delay elements was 10, the number of Gaussian
functions was 7, and the width of each Gaussian
function from the center was 0.2.

h + X

R, (V)

Rz (U)

Rx (U)

Fig. 2. Nonlinear time series identification system

3 EXTENDED SOFT COMPUTING

Soft  computing is proposed by Dr.
L.A.Zadeh®W® ) {5 construct new generation
AT (machine intelligence quatient) and to solve
nonlinear and mathematically unmodelled systems
problems (tractability) especially for cognitive
artificial intelligence by adding chaos computing
and immune network theory.

Extended soft computing is defined for explain-
ing, what they call, complex systems, cognitive and
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Fig. 3. Prediction with RBFN
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Fig. 4. Fault detection with general parameter

reactive Als. Immune networks are promising ap-
proaches to construct reactive artificial intelligence
and as illustrated in Fig.1. Industrial and commer-
cial applications of NN/FS/GA/Chaos in 1990s is
discussed in (1203,

3.1 Reactive Distributed Al

Reactivity is a behavior-based model of activity,
as opposed to the symbol manipulation model used
in planning. This leads to the notion of cognitive
cost, i.e., the complexity of the over architecture
needed to achieve a task.

Cognitive agents support a complex architecture
which means that their cognitive cost is high. Cogni-
tive agents have internal representation of the world
which must be in adequation with the world itself.
The process of relating the internal representation
and the world is considered as a complex task.

On the other hand, reactive agents are simple,
easy to understand and do not support internal rep-
resentation of the world. Thus, their cognitive cost
is low, and tend to what is called cognitive economy,
the property of being able to perform even complex
actions with simple architectures. Because of their
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complexity, cognitive agents are often considered as
self-sufficient: they can work alone or with a few
other agents.

On the contrary, reactive agents need compan-
ionship. They can not work isolated and they usu-
ally achieve their tasks in groups. Reactive agents
can not work isolated and they usually achieve their
tasks in groups. Reactive agents do not take past
events into account, and can not foresee the future.
Their action is based on what happens now, how
they sense distinguish situations in the world, on
the way they recognize world indexes and react ac-
cordingly.

Thus, reactive agents cannot plan ahead what
they will do. But, what can be considered as a weak-
ness is one of their strengths because they do not
have to revise their world model when perturbations
change the world in an unexpected way. Robustness
and fault tolerance are two of the main properties of
reactive agent systems. A group of reactive agents
can complete tasks even when one of them breaks
down. The loss of one agent does not prohibit the
completion of the whole task, because allocation of
roles is achieved locally by perception of the envi-
ronmental needs. Thus, reactive agent systems are
considered as very flexible and adaptive ('),

4 CONTEMPORARY INTELLIGENT
SYSTEMS

This section introduces contemporary intelligent
systems using the extended soft computing de-
scribed in the previous section and bioinformatic
knowledge.

It is interactive among human beings, environ-
ment and artificial intelligence. The relations among
each method of the extended soft computing are
important rather than the methods themselves. It
should be self-organized emergent intelligence rather
than embeded by a designer. It is emergent, self-
organized and reflective in each granularity level like
bioiformatic processing. Learning should be embe-
ded by situated cognition and situated action. Per-
ception and motion are not separable!!®{16)  Thig
is illustrated in Fig.5.

To explain this, bioinformatic cybernetic is com-
pared with conventional cybernetics in Table 1.

Table 1. Comparison of conventional and bioinfor-
matics ¢ybernetics
Conventional cybernetic
Expicit (Object & observa-
tion are separated)

Bioinformatic
Implicit (perception & mo-
tion are not separated)

Homeostasis (stability) Diversity

Topdown Bottomup

Close system (feedback) Open (feedforward)
Determinstic Emergent

Optimization (product) Adaptive learning

Evolution (process)
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Learning is achieved as shown in Fig.6 and Fig7.
Human beings is sometimes in intelligent
systems!7).

Kansei information processing is now popular in

Japan.

Fuzzy, Neuro

and Genetic Comlzgglgi

Reactive Distributed Al Immune Network

and Chaos Computing

Fig. 5. Contemporary intelligent system concept

Self-referential System

l Others-referential System a

Fig. 6. Bi-referential model

Behavior Learning

Fig. 7. Learning algorithm

5 DESISION MAKING ROBOT WITH
MULTI-AGENTS (ANTIBODY) AND
PERCEPTION (ANTIGENS) IN
IMMUNE NETWORK USING FUZZY
INFERENCE AND
REINFORCEMENT LEARNING(#)

‘immunoid’ by interactions among antibodies in
artificial immune networks is considered. In this
simulated environment, there are following three k
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An artificial decision making robot inds of objects:
1)predator 2) obstacles 3) food. It is assumed that
prespecified quantity of initial energy is given to the
immunoid at the beginning of each simulation. For
quantitative evaluation, the following assumptions
are made.

1. If the immunoid moves, it comsumes energy
E,..

2. If the immunoid is captured by a predator, it
comsumes energy .

3. If the immunoid collides with an obstacle, it
losses energy F,.

4. If the immunoid picks up food once, it obtains
energy Ey.

The predators attack the immunoid if they de-
tect the immunoid within the prespecified detectable
range. Therefore, in order to survive as long as
possible, the immunoid must select a competence
module (antidody) suitable for the current situa-
tion(antigen). The immunoid equipped with exter-
nal and internal detectors. External detectors can
sense eight directions as shown in Fig.8.

front

right front

pre;;ator

left back

Fig. 8. Simulated environment

Each can detect the distance to the objects by
three degrees, near, mid and far. The internal detec-
tor senses the current energy level. The immunoide
moves in his eight directions.

The detected current situation and prepared com-
petence modules work as antigens and antibodies,
respectively. To make a imunoido (antibody) select
a suitable antibody against the current antigen. It is
highly important how the antibodies are described.
Moreover, it is noticed that the immunogical arbi-
tration mechanism selects an antibody in bottom up
manner by communicating among the antibodies.
To realize the above requirements, the description
of antibodies are defined as follows. The identity of
a specific antibody is generally determined by the
structure of its paratope and idiotope.

As shown in this Fig. 9, a pair of precondition
action to paratope, the number of disallowed anti-
bodies and the degree of disallowance to idiotope
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Parat Idiotope
I . i R I ldt of disallowed miji s
Precondition Action -degree of disallowanc:

-Paratope is described -This parameter is modifi
in advam’e‘ during learning process

Definition of Parame
[ Object l Directionl Distance l Action I

Predator Front Near Forward
Food Back Niddle Backward

Obstacle Left Far Right
Energy and etc. Left and etc

Fig. 9. Depicts the representation of antibodies.

are respectively assigned. In addition, the structure
of paratope is divided into four portions: objects,
direction, distance, and action.

For adequate selection of antibodies, one state
variable called concentration is assigned to each an-
tibody. The selection of antibodies is simply carried
out in a winner-take all fashion. Namely, only one
antibody is allowed to activate and act its corre-
sponding its action to the world if its concentration
surpasses the prespecified threshhold. The concen-
tration of the antibody is influenced by the stim-
ulation and suppression from other antibodies, the
stimulation from antigen, and the dissipation factor
(i.e. natural death). The concentration of i-th anti-
body, which is denoted by a;, is calculated by eq(2).
a and f are the rate of interaction among antigens

and antibodies.
dA;(t)

dt

N N
Domiiai() Y maa(t)
J=1 k=1

«a 5 -« ~ + fm; — k; | ai(t)
iji Z mik
j=1 k=1
1
at+l)= — (3)

1+ exp(0.5 — A;(t))

where N is the number of antibodies, and m;
denotes matching ratio between antibody ¢ and
antigen, m;;, that denotes degree of disallowance of
antibody j for anti-body i. The first and second
terms of right hand sidedenote the stimulation and
suppression from other antibodies, respectively.
The third term represents the stimulation from
antigen, and the forth term the natural death.

Simulation results:

100 simulations are carried out with # of predators:
5, # of obstacles:5, # of foods: 10, and # of
antibodies:91.

Average life time:

A. Immunoid’s random walk: 313.14

B. Without interactions among antibodies: 564.86
C. With interactions among antibodies: 621.46

(2)
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Table 2. # of collides against predators and obsta-
cles and obtaining foods:

predators | obstacles | foods
A 19.91 1.84 0.54
B 9.04 5.92 4.27
C 7.84 5.23 5.02

This approach is promising for decision making
in autonomous mobile robots (one of multi-agent
robots). However, two disadvantages exist. One
is how to cope with environment changes, and the
other is how to design agents. It is required in the
future to devise some real time reinforcement learn-

ing.
6 CONCLUSIONS

This paper proposes a comtemporary intelligent
multi-agent robot using extended soft computing.
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A fault diagnosis scheme for nonlinear time series recorded in normal and abnormal
conditions is proposed. The fault is first detected from regression lines plotted for the
raw time series. Model for the normal time series is estimated using a Finite Impulse
Response (FIR) neural network. The trained network is then used for inverse filtering
of abnormal time series. The fault is further confirmed/analyzed using the regression
lines of the predicted normal and inverse-filtered abnormal conditions time series.

The proposed scheme is tested with a fault diagnosis problem using acoustic data

obtained from moving parts of an automobile.

Keywords: Fault diagnosis, linear regression, neural network.

1 INTRODUCTION

In many scientific, economic, and engineering ap-
plications there arises the problem of system identi-
fication and modeling of nonlinear time series. Once
the model is made it can be used either for predic-
tion, fault diagnosis, pattern recognition, or pattern
classification.

The information about a dynamic process is of-
ten only partial and incomplete. In many real-world
problems, data are masked by noise and some dy-
namic processes are described by chaotic time series
in which the data seem to be random without appar-
ent periodicity (). The Neural Network (NN), be-
ing able to acquire knowledge by a learning process
and store in massively parallel /distributed synaptic
weights, can solve complex problems that are in-
tractable. The NNs are successfully used in fields
like modeling, time series analysis, pattern recogni-
tion, signal processing, and control.

A kind of neural network, that has short-term

* Division of Computer Science and Systems Engineering
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memory in the form of tapped delay lines, known as
time delay neural network (TDNN) has been used in
speech processing (* ) A class of TDNN, that uses
finite-duration impulse response (FIR) filters in its
synaptic connections between the layers, known as
FIR network has been used in time series prediction
(4, 5), System identification is also performed using
general parameter (GP) neural networks (& 7).

In this paper a fault diagnosis scheme for nonlin-
ear time series data is proposed. The fault is de-
tected from regression lines of the raw and filtered
time series where FIR network is used for modeling
and inverse filtering of the time series. The proposed
scheme is applied to a fault diagnosis problem using
acoustic data obtained in normal and abnormal con-
ditions from moving parts of an automobile.

The paper is organized as follows: Details of linear
regression modeling are given in Section 2. Section
3 introduces neural networks and its type FIR net-
work used in this study. Section 4 elaborates the
scheme of fault diagnosis using FIR network and
its application to acoustic data recorded from mov-
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ing parts of an automobile. Section 5 concludes the
paper after discussing the results and future work.
Finally, Section 6 summarizes the whole study.

2 LINEAR REGRESSION MODEL

In many problems two or more variables are in-
herently related, and it is necessary to explore the
nature of this relationship. Regression analysis is
a statistical technique for modeling and investigat-
ing the relationship between two or more variables.
In the case of simple linear regression a single re-
gressor or predictor x and a dependent or response
variable y is considered. Supposing true relationship
between y and z as a straight line and that the ob-
servation y at each level of z is a random variable,
the observation y can be described by the model

Y=Bo+B1T+€ i (1)
where intercept G and the slope (; are unknown
regression coeflicients, and € is a random error with
mean zero and variance o2. The criterion for esti-
mating the regression coefficients is called as method
of least squares. The fitted or estimated regression
line or trend from ® is therefore

_ where Bo=7 - Bz,

B = [0 ws = 2)2)/[ 0 (2~ £)2), 4 is the es-
timated linear regression line values, § = % > o Yis
and 2 =1 Y0 | ;.

3 NEURAL NETWORKS APPROACH

Neural networks are typically used in pattern
recognition, where a collection of features (such as
an image) is presented to the network, and the task
is to assign the input feature to one or more classes.
Another typical use for NN is (nonlinear) regres-
sion, where the task is to find a smooth interpola-
tion between points. The time series modeling in-
volves processing of patterns that evolve over time,
i.e. the appropriate response at a particular point
in time depends not only on the current value of the
observable but also on the past.

The main advantage of the neural network is that
it enables us to approximate or reconstruct any non-
linear continuous function F'(.), therefore such a
model is more general and flexible. A general view
of a neural network is given in Fig. 1. Many re-
searchers (® !9 have used NN for time series pre-
diction. In all these cases, temporal information is
presented spatially to the network by a time-lagged
vector (also called tapped delay line).

3.1 Time Delay Neural Network

The neural network having tapped delay lines
placed between the input and hidden layers of a neu-
ral network is generally known as a time delay neural
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Input Units

Hidden Units

Output Units

Fig. 1. A typical neural network with one hidden
layer.

network (TDNN). The TDNN maintains a history of
its n most recent values, and these values are avail-
able to the next layer. A typical connection between
input and hidden layers of a TDNN is shown in Fig.
2, where u; and h; are the ith and jth neurons of
input and hidden layers respectively, and d,, shows
the nth times delayed input data. For the latest in-
put in time the delay tag is not shown in Fig. 2.
Separate weights are used for each delay line. The
TDNNs have been used in speech recognition 3.

Fig. 2. A typical synaptic connection between input
and hidden layers of a TDNN.

3.2 FIR Network

In case of TDNNs the combination of unit delay
elements and associated weights may be viewed as
a finite-duration impulse response (FIR) filter. The
networks having such filters are called as FIR net-
works. In this section training procedure ) of FIR
network is described.

In order to understand clearly, a single neuron ex-
tracted from the [th layer of an L-layer static feed-
forward neural network is represented in the Fig. 3.
The output of the neuron, zg“, is taken as a sigmoid
function of the weighted sum of its inputs:

:L‘l]»+1 =f (Z u)iy]ﬂ;i—) ................. (3)

)

where ! and wﬁj are inputs and weights of the
neuron, respectively.

A modification of the basic neuron can be accom-
plished by replacing each static synaptic weight by
a FIR linear filter as shown in Fig. 4. By FIR



Fault Diagnosis from Nonlinear Time Series using Time Delay Neural Network

we mean that for an input excitation of finite du-
ration, the output of the filter will also be of finite
duration. The most basic FIR filter can be modeled
with a tapped delay line as illustrated in Fig. 5. For
this filter, the output y(k) corresponds to a weighted
sum of the past delayed values of the input:

T

y(k) = > wmz(k—n)............. . (4)

n=0

Fig. 3. Static neuron model (feedforward path).

FIR filters

Fig. 4. FIR neuron model (feedforward path).

It may be noted that this corresponds to the mov-
ing average component of a simple auto-regressive
moving average (ARMA) model 19,

O W gq--9--q

] xk-n I ) S ] *¢-D

x(k)

w(0)

k)

Fig. 5. FIR filter model.

The weight vector for the synaptic filter connect-
ing neuron ¢ to neuron j in layer [ is denoted by
wh; = [wh;(0),w};(1),. .. ,wi;(T")]. Similarly the
vector of delayed inputs along the synaptic filter is
i (k) = [zl;(k),zl;(k — 1),... ,zl;(k — T")]. Hence
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the operation of the filter can be expressed as dot
product w! ;-z(k). The feedforward response of the
FIR network can be written as,

(k) = f (Z wi#:ﬂ(k)) ........... (5)

where m;“ (k) is the output of a neuron in layer !

at time k taken as the sigmoid function of the sum
of all filter outputs that feed the neuron. Compar-
ing Equations (1) and (3) it may be observed that
the scalars are replaced by vectors. As contrast to
standard error backpropagation (1) used in static
feedforward neural networks, temporal backpropaga-
tion is used in FIR networks. The feedback path of
selected static and FIR neurons are shown in Figs. 6
and 7, respectively. The final algorithm of temporal
backpropagation can be summarized as:

wi(k +1) = wl;(k) — nott' (k) - zi(k) .. (6)

0']' l(k) =
—2e (k) (s (k) =L
Nija
frsER)) - Y8 (k) cwim 1<1<L-1

where e;(k) is the error at an output node,
f'() is the derivative of the sigmoid function, and
8L(k) = [0L,(k)SL,(k + 1)...8L (k + T 1)) is a
vector of propagated gradient terms. It may be
noticed that these equations are seen as the vector
generalization of the familiar backpropagation algo-
rithm. Complete derivation of the above algorithm
is given in (4,12),

6|I+I(k)

l
0i(k=T)
6, (k)

. 63/+l(k)

Fig. 6. A static neuron model (feedback path).

4 FAULT DIAGNOSIS SCHEME

A fault diagnosis scheme (13) using nonlinear time
series is proposed in which the fault is first detected
using regression lines of the raw time series recorded
in normal and abnormal conditions. Both of the
time series are then normalized for the range -1 to
+1. The normalized normal condition data are used
to train a FIR network. The trained network is
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Fig. 7. A FIR neuron model (feedback path).

then used for inverse filtering the abnormal condi-
tion data. The regression lines plotted for predicted
normal condition data and inverse-filtered abnormal
condition data are used to further diagnose the fault.

The proposed scheme is tested with a fault di-
agnosis problem using acoustic data recorded from
moving parts of an automobile.
4.1 Fault Diagnosis
Acoustic Data

The proposed scheme is applied to a fault diagno-
sis problem using normal and abnormal conditions
acoustic data recorded from moving parts of an au-
tomobile. Regression lines of the raw data plotted
using the least square method described in section
2 are shown in Fig. 8. The difference in the ampli-
tude and behavior of these lines clearly indicate the
existence of a fault. ~

Before model estimation, the two time series are
passed through a moving average filter, of window
size 3, to remove the noise without loosing the peaks.
Initial 100 values of raw and filtered normal and
abnormal conditions data are shown in Figs. 9 and
10, respectively. Both of the filtered time series are
then normalized for -1 to +1, as shown in Figs. 11
and 12, respectively.

80 !

Scheme applied to

—normal abnormat I

Intensity
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- o

3
@«

—
=
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76’»

155
°

o

100

o o g < g Py
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< 2 < 2 B4 3
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Fig. 8. Regression lines of the raw time series.

In this study the FIR network is used to estimate
the model for normal condition data reason being
its short-term dynamic memories available in the
form of FIR filters. While using FIR networks selec-
tion of number of layers and taps per layer is quite
critical. After performing several simulations the
best network structure is selected when the mean
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squared error (MSE) is low and prediction is good
after 10,000 epochs of training.

»

8

----» Filtered

Fig. 9. Initial 100 values of raw and filtered normal
condition data.

< Filtered

-~
©
o

Intensity

-
@
w

Fig. 10. Initial 100 values of raw and filtered abnor-
mal condition data.

The selected set of layers/taps for the normal con-
dition data modeling is given in Table 1. The MSE
after 10,000 epochs of training at different set of
taps are shown in Fig. 13 where hidden node taps
are set to 3. The FIR network with the best set of
layer/taps is then trained for up to 30,000 epochs.
Initial 900 points of normal condition data are used
for training and the next 100 data are used for vali-
dation. The input and predicted output of a trained
network for normal condition data are shown in Fig.
14. It can be noticed from this figure that the pre-
dicted data follow the training data but for the vali-
dation data set the error becomes high but it follows
the pattern. Good learning for the training data set
is of prime importance in the proposed scheme. The
trained network is then used to predict the normal
condition data. The trained network is also used
to inverse-filter the abnormal condition data. The
inverse-filtered abnormal condition data are shown
in Fig. 15. The regression lines are plotted for pre-
dicted normal and inverse-filtered abnormal condi-
tions data as shown in Fig. 16. A significant differ-
ence in the two lines confirms the existence of the
fault that is first detected from the observation of
the regression lines for the raw time series (see Fig.
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Fig. 12. The normalized abnormal condition data.

8). The fault is more clearly visible in Fig. 16, so
it can be said that the sensitivity of the fault de-
tection using regression lines increases by the use of
FIR network.

Table 1. FIR Network structure for acoustic normal
condition data

Network Parameters | Value
Layers 2

Input Node 1

Input Taps 10/node
Hidden Nodes 30

Hidden Taps 3/node
Output Node 1

Epochs 30,000
MSE 0.000113998

5 CONCLUSION

A fault diagnosis scheme is proposed where the
fault is first detected from the regression lines of
the raw time series. The fault is then confirmed
and analyzed from the regression lines of the pre-
dicted normal and inverse-filtered abnormal condi-
tions time series. The process of inverse filtering the
abnormal condition data, through the FIR network

©.0002

H1 Taps = 3

\,,__\/\//

0.00016
0.00012
0.00008

0.00004

Input Taps

Fig. 13. MSE after 10,000 epochs training of normal
condition data.

——Input Normal Data
..... Predicted Normal Data

e © o o
Q_aN&.)&

Intensity

&

Fig. 14. Input and predicted output of the network
trained with normalized normal condition data.

trained for normal condition data, is adopted in or-
der to make sure that the two available time series
are different from each other. It provides more de-
tailed information about fault.

The selected set of layers and taps for the FIR
network is good for only this application. To esti-
mate model for any other time series new simula-
tions would be needed. Window size 3 for the mov-
ing average pre-filter is selected randomly. A bigger
window size would result in better filtering hence
better modeling.

6 SUMMARY

In this paper a fault diagnosis scheme for nonlin-
ear data set recorded in normal and abnormal condi-
tions is proposed. The fault is first detected from re-
gression lines, plotted using least square method, for
the raw time series. Model for the normal time series
is then estimated using a FIR network. The trained
network is used for predicting the normal condition
data and inverse filtering the abnormal condition
data. The fault is further confirmed/analyzed using
the linear regression lines of the predicted normal
and inverse-filtered abnormal conditions time series.

The proposed scheme is successfully applied to a
fault diagnosis problem using acoustic time series
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16. Linear regression lines of the predicted nor-

mal and inverse-filtered abnormal conditions data.

obtained from moving parts of an automobile.
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This paper presents a method of building maps of the unknown workspace for autonomous
mobile robots using self-creating and organizing neural network. By this method, the topo-
logical maps which roughly express the workspace can be self-organized from the relative
distance data between robots and walls in the workspace only using ultrasonic distance sen-
sors. However, when the shape of the workspace is complicated, an unsuitable map with dead
nodes or dead links may be generated. In this paper, in order to cope with this problem, we
propose a new building maps algorithm which consists of two learning stages.

Keywords:
Creating and Organizing Neural Network

Autonomous Mobile Robot, Workspace Recognition, Building Map, Self-

1 INTRODUCTION

For the unknown workspace recognition, the method
of building maps of workspace for autonomous mo-
bile robots using self-organizing neural network is
proposed’®® By this method, the topological maps
of the workspace can be self-organized from the relative
distance data between robots and walls in the workspace
The relative distance data are collected only using ultra-
sonic distance sensors.

This method uses self-organizing neural networks
called self-organizing feature map® or self-creating and
organizing neural network® to learn maps of workspace.
The inputs of the neural networks are the relative dis-
tance data between robot and wall at many places of the
workspace. After a sufficient learning, a topological map
of the workspace can be built on the self-organizing layer
of these neural networks The topological map consists
of nodes and links. The nodes on the map are the rep-
resentative positions of the workspace and the links on

*Department of Computer Science and Systems Engineering
**Department of Electrical and Electronic Engineering
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the map are the relations of the representative positions.
Thus, the topological map can roughly express the work-
space.

However, when the shape of the workspace is com-
plicated, some dead nodes and dead links may be gen-
erated on the maps. In this paper, in order to cope with
this problem, we consider the problem of the workspace
maps generated by the method, and we propose a new
building maps algorithm which consists of two learning
stages: the nodes learning and the links learning.

2 CONDITIONS OF ROBOTS AND
WORKSPACE

In this study, the following three conditions are as-
sumed about the workspace and the autonomous mobile
robot. (1) The workspace is a closed space with obsta-
cles. (2) The robot has no information about the work-
space beforehand. (3) The robot has two or more ultra-
sonic distance sensors arranged in the uniform direction
as in Fig. 1.
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Fig. 1. Autonomous mobile robot.

And it is specified that this autonomous mobile robot
behaves in the following procedure shown in Fig. 2.

At the first step, the robot behaves in inquiry in the
unknown workspace, and collects the relative distance
data between the robot and the wall at many places in the
workspace for every fixed distance moving. This inquiry
behavior consists of the combination of the straight-line
moving and the random direction conversion carried out
when the distance value from the wall becomes smaller
than a fixed value. By inputting the collected relative
distance data to a self-creating and organizing neural net-
work and computing the learning algorithm described in
the following chapter, a topological map which consists
of nodes and links of the workspace can be generated on
the self-organizing layer of the network. At the second
step, the robot work out path-planning between the given
destination with its present position using the map. At
the third step, the given task (that is, moving to the des-
tination) is achieved by moving along the planned path.

In this paper, we mainly discuss the first step: building
maps of workspace.
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3 SELF-CREATING AND ORGANIZING
NEURAL NETWORK (SCONN)

3.1 NETWORK STRUCTURE

In order to implement the maps of the workspace,
we use the self-creating and organizing neural network
(SCONN) with the structure shown in Fig. 3.

self-organizing layer

A

N

input layer

Fig. 3. The network structure of self-creating and orga-
nizing network (SCONN).

This SCONN consists of two layers. One layer is an
input layer and another is a self-organizing layer.

Each neuron on the input layer and on the self-
organizing layer has joined mutually. The learning of
this network is carried out based on the competitive
learning algorithm. Therefore, a neuron on the self-
organizing layer which has the weight vector with the
minimum distance from the input vector is selected as
the winner neuron. At the initial state, there is only one
neuron on the self-organizing layer. And the neurons
on the network is self-created and organized, according
to the change of the feature of input vectors, and then
the topological map with a tree structure is generated
on the self-organizing layer. Since the neurons on the
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Fig. 4. A block diagram of the learning algorithm for the
SCONN.

self-organizing layer express the nodes on the topologi-
cal map, 'neuron’ and ’node’ are equivalent. Therefore,
we describe uniformly *neuron’ as *node’ after this.

3.2 LEARNING ALGORITHM

Fig. 4 shows a block diagram of the learning algo-
rithm for the SCONN, and the detailed steps of the learn-
ing algorithm are as follows:

At the first step, there is only one node on the self-
organizing layer with small random weight at the prim-
itive stage and its activation level is set large enough to
respond to any input stimuli. At the second step, new
input vector is presented randomly or sequentially. At
the third step, distances d; between the input and each
output node j are calculated using (1).

N

de = Z{l‘l(t) — w,-j(t)}z .............. (])

i=1

where z;(¢) is the input to node ¢ at time ¢ and N is
the demension of the input and w;;(t) is the weight from
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input node % to output node j at time ¢. At the fourth step,
an output node with the minimum distance is selected as
the winner node. At the fifth step, it is decided using (2)
whether the winner node is active or inactive.

__ [ isactive,
Yuwj is inactive,

if dyj < 0(t)
otherwise

where ., is the output of the winner node, d.,; is the
distance between the inputs and the winner node, and
6(t) is an activation level that is sufficiently wide at a
primitive stage and decreases with time. In this study,
we use (3) as the activation level.

O(t) =crexp(—cot) +¢3.cvvevninnnin... 3)

where cy, ca, c3 are constant. At the sixth step, the
weights of an active winner node is adapted using (4).

’wz‘)w]'(t + 1) = U)i,wj(t>
+ a(t) {zi(t) — wiw;(t)} - 4

where w; ,,;(t) are the weights from the inputs to an
active winner node and «/(t) is the gain term that can be
constant or decrease with time. At the seventh step, a son
node is created from a mother node (an inactive winner
node) using (5) and (6). and the son node is linked the
mother node.

s;] = sj+1
’wi’s]‘(t + 1) = wi,sj(t)
+ B(t) {zi(t) — wiwi(t)} -~ (6)

where sj is the current number of total output nodes,
wj,s;(t) are the weights from the inputs to a son node
created from a mother node, and 3(t) is the resemblance
factor that varies from O to 1.

In this algorithm, there can be three criteria to stop
the program. Those criteria are iterations ¢, number of
output nodes s;j and activation level 6(¢).

4 BUILDING MAPS OF WORKSPACE USING
SCONN

There are some problems on the maps of workspace
built using directly the above-mentioned learning algo-
rithm of SCONN. In this section, through a simulation
case study, we consider the problems and propose a new
improved learning algorithm.

4.1 SIMULATION CASE STUDY

We use the workspace shown in Fig. 5 as the unknown
workspace in this simulation case study. The robot be-
haves in inquiry in the unknown workspace and mea-
sures the relative distance data from walls as shown in
Fig. 6, and then the topological map of the workspace is
built by the learning algorithm of SCONN.
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Fig. 5. The shape of the unknown workspace used in the
simulation case study.

Fig. 6. Inquiry behavior of autonomous mobile robot.
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Fig. 7 shows an example of simulation results of an
autonomous mobile robot with eight sonar sensors(N =
8) by the conventional learning algorithm of SCONN.
This map is projected the topological map on the real
(2D) space. Simulation parameters are a = 0.085, § =
0.85, c; = 450000, ¢z = 0.001, ¢3 = 50000. It is con-
firmed by Fig. 7 that the workspace has been divided
roughly.

Fig. 7. The map generated by the conventional learning
algorithm of SCONN.

However, there are two problems on this map. The
first problem is that the links have the thin tree struc-
ture and there is no link between the nodes that can actu-
ally move in the workspace, that is, there are some dead
nodes on the map. The second problem is that there are
some dead links that can not actually move in the work-
space.

4.2 DISCUSSION ABOUT THE PROBLEMS

In the first place, we try to solve the former prob-
lem that there are few links on the map by changing the
structure of the map into graph structure from tree struc-
ture. And if the distance between the inputs and the win-
ner node is smaller than the activation level (that is, if
dw; < 6(t)), we not only adapt the weights of the net-
work but link to the winner node and the previous winner
node.

The total number of links could increase by these im-
provements, but number of dead links also increase on
the other hand. A simulation result by this improved
learning algorithm is shown in Fig. 8. Therefore, the
algorithm which decreases the number of dead links is
needed.

Then, considering a generation factor of a dead link,
we found out that the link which generated at the begin-
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ning of learning becomes a dead link in many cases. The
basic function of the SCONN is generating representa-
tive nodes from input vectors and determining weights
of the representative nodes. As the weights is not stabi-
lized at the initial learning stage, the links which is gen-
erated at the time will extend by movement of the nodes
and tend to grow into the links over an obstacle of the
workspace as shown in Fig. 9.

4.3 IMPROVED LEARNING ALGORITHM

Based on the above-mentioned consideration, we pro-
pose a new improved algorithm as follows. In this algo-
rithm, at the beginning of leaning, only determination of
representative nodes of the workspace (so-called vector
quantization) is carried out. That is, at the first lean-
ing stage, the movement of the representative nodes can
converge and the rough division of the workspace can
be done. And after this, at the second leaning stage, we
generate the links on the map in the same way of the
above-mentioned method. A Block diagram of this new
improved learning algorithm is shown in Fig. 10.

Fig. 11 shows a simulation result by this new im-
proved learning algorithm. And Fig. 12 shows a simula-
tion result with the limitation of number of links which
one node has. It is confirmed by Fig. 12 that the dead
links can be completely eliminated with the limitation of
the number of links.

5 CONCLUSIONS

In this paper, it is confirmed that there are two prob-
lems on the topological maps built using directly self-
creating and organizing neural network, when the shape
of the workspace is complicated. In order to cope with
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Fig. 9. A generation factor of a dead link.
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these problems, we propose a new learning algorithm di-
vided into the two learning stages. At the first stage, only
representative nodes are learned, and at the second stage,
links between the nodes are generated. As a result, the
proper maps are built in these two stages. This algo-
rithm was tested by the simulation for an autonomous
mobile robot with eight ultrasonic distance sensors, and
it was demonstrated that the algorithm is useful for the
purpose.
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Segmentation of Natural Images
Using Fuzzy Region-Growing Algorithm
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We present a new method that integrates intensity features and a local fractal-dimension feature into
a region growing algorithm for the segmentation of natural images. A fuzzy rule is used to integrate
different types of features into a segmentation algorithm. In the proposed algorithm, intensity features
are used to produce an accurate segmentation, while the fractal-dimension feature is used to yield a
rough segmentation in a natural image. The effective combination of the different features provides
the segmented results similar to the ones by a human visual system. Experimental results demonstrates
the capabilities of the proposed method to execute the segmentation of natural images using the fuzzy

region-growing algorithm.

Keywords: Image Segmentation, Region-Growing Algorithm, Fuzzy Rules, Local Fractal Dimension,

Natural Images

1 INTRODUCTION

The purpose of this paper is to segment natural images
with different precision. For a natural image containing
houses and trees, we execute an accurate segmentation
for a part of the houses and a rough segmentation for a
part of the trees. We would like to regard the part of
trees including many branches and leaves as the same
region as much as possible, while keeping high-precise
segmentation at the part of the houses.

It is known that the fractal dimension (FD) of the im-
age is a powerful measure for natural images, since it
has been shown that the FD has a strong correlation with
human judgement of surface roughness("). Although sev-
eral results of segmentation based on the FD have been
reported, the FD alone does not perform a good segmen-
tation because of the low resolution of the FD in natural
images®®),

Proposed in this paper is a new segmentation algorithm
that integrates intensity features and a FD feature into a

* Department of Computer Science and Systems Engineering
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fuzzy region-growing algorithm in segmenting natural
images. In the proposed method, the intensity features
are used to produce an accurate segmentation at the part
of non-texture regions such as the houses, while the FD
feature is used to yield a rough segmentation at the part
of texture regions such as the trees. The low resolution
of the FD becomes advantageous in performing a rough
segmentation. In this paper we use a blanket method
to estimate the local FD®-(-©), Furthermore, we have
estimated an optimum number of the blanket suitable for
the local estimation of the FD. We have used a fuzzy set
theory in order to integrate different types of features into
a region growing algorithm™®),

The paper is organized as follows. The second section
provides the background on estimating the FD and dis-
cusses an optimal estimation of the local FD. Section 3
introduces new fuzzy rules to integrate the different fea-
tures based on the region growing algorithm. In section
4, we present some results of computer simulations that
demonstrate the capabilities of the proposed segmenta-
tion algorithm in segmenting natural images. Finally,
conclusions are made.
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2 ESTIMATION OF LOCAL FRACTAL
DIMENSION

In the blanket method, an upper and lower blanket are
grown from the image surface®. If ¢ is the number of the
blanket, and u, and b, are the upper and lower blanket
surfaces at position (4, j), then the surface area of the
blanket is calculated as follows:

A(E) — ZE (ue(i72.72 — be(ZaJ))

On the other hand, the area of a fractal surface behaves
like®

Ale)=Fe?>™P ... 2)

where F' is a constant and D is the FD of the image.
Therefore, the FD can be estimated from the slope of
the straight line if A(e) versus ¢ is plotted on a log-
log scale. However, the actual plot is not a straight
line but a nonlinear curve especially for the small local
area or window. Therefore, the value of the estimated
FD will change according to the maximum number of
the blanket to be used in the estimation. Since it is
desirable to use the local area as small as possible for the
purpose of image segmentation, it is necessary to decide
the optimum number of the blanket for a small window.

We have evaluated the behavior of the local FD when
we change the number of the blanket in calculating the FD
for several sizes of window. We have used the window
of the following sizes: 3x3, 5x5, 7x7, and 9x9. For a
certain size of a window, we estimate each local FD for
a fixed number of the blanket by calculating the average
of 200 samples taken from a texture image. We have
evaluated the sum of the difference (SOD) between the
global FD (GFD) and the local FD (LFD) for the several
sizes of the window as a function of €:

SOD(e) =Y |GFD(e) = LFD;(e)| ... (3)

=1

where ¢ corresponds to the four sizes of the window and
global FD means the use of 256x256 window. Figure 1
shows the examples of the estimated LFD and GFD for a
certain texuture image that demonstrate the variation of
the estimated value of FD for four sizes of local windows
when we change the maximum number of the blanket (¢).
Figure 2 represents the minimum values of the sum of
the difference (SOD) between the global FD and the local
FD when we change the maximum number of the blanket
for 40 kinds of texture images from Brodatz album{9,
This figure shows that the number of the blanket between
30 and 58 demonstrates a minimum variation from the
global FD in estimating the local FD. Thus we use 44 as
the optimum number of the blanket to calculate the local
FD in our algorithm.
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3 FUZZY REGION-GROWING ALGORITHM

The segmentation procedure in the present investiga-
tion is the fuzzy region-growing algorithm that is based
on a fuzzy rule. Our final objective is to split an origi-
nal image I into a number of homogeneous but disjoint
regions R;:

I=|JR;, RiNRe=0 j#k.... 4)
j=1

The region growing is essentially a grouping procedure
that groups pixels or subregions into larger regions in
which the homogeneity criterion holds. Starting from a
single pixel, a segmented region is created by merging
the neighboring pixels or the adjacent regions around a
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current pixel. The operations are repeatedly performed
until there is no pixel that does not belong to a certain
region.

Since our strategy in segmenting natural images is an
effective combination of an accurate segmentation by the
intensity features and a rough segmentation by the FD
feature, it is inevitable to employ a technique of infor-
mation integration. We adopt fuzzy rules to integrate the
different features. We use the following criteria where
each fuzzy rule has a corresponding membership func-
tion. The intensity features are the intensity difference
and the intensity gradient.

In the proposed fuzzy rules, we set a stronger merging
rule for the fuzzy set from the FD feature than the one
from the intensity features in order to achieve a rough
segmentation, that is to create a large region, at the part
of the trees. Since the local FD provides broad edges
around the true strong edges, however, we employ the
boundary edge®-(!D) as the intensity gradient to protect
the unnecessary growth of regions around the true edges
at the part of the houses.

[Rule 1] The first intensity feature is the difference
between the average intensity value ggye(Ry) of a re-
gion Ry, and the intensity value of a pixel ¢(i,j) under
investigation:

DIFFERENCE = | gave(Rx) — 9(i,5)| ... (5)

The corresponding fuzzy rule for fuzzy set SMALL is

R1: IF DIFFERENCE IS SMALL THEN
PROBABLY MERGE (PM) ELSE PROBABLY
NOT_MERGE (PNM).

[Rule 2] The edge information in the region growing
algorithm plays an important role. A new pixel may be
merged into a region if the gradient between the pixel and
the adjacent neighboring region is low. If the gradient is
high, the pixel will not be merged. The second intensity
feature is the GRADIENT, or the value of boundary edge
between the pixel and its adjacent region. We employ
the boundary Sobel operator® to calculate the gradient
and to achieve an accurate segmentation at the part
of the houses. The fuzzy rule for fuzzy set LOW becomes

R2: IF GRADIENT IS LOW THEN PROBABLY MERGE
(PM) ELSE PROBABLY NOT_MERGE (PNM).

[Rule 3] We incorporate the FD feature that is simi-
lar to DIFFERENCE in Rule 1. The difference here is
taken between tthe average LFD value Dg,.(Ry) of a
region Ry and the LFD value D(i,j) of a pixel under
investigation:

DIMENSION = | Doye(Ri) — D(i,5)| ... (6)

The corresponding fuzzy rule for fuzzy set SMALL?2 is
the following one that is a stronger merging rule than
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Rulel and Rule2, because the role of the FD feature
should be emphasized in the proposed algorithm.

R3: IF DIMENSION IS SMALL THEN MERGE (M)
ELSE NOT_MERGE (NM).

[Rule 4] The smaller regions, especially regions that
consist of one or two pixels, have to be avoided in the
region growing algorithm, since it is preferable to remain
few large regions instead of many small regions. Thus a
fourth rule is the fuzzy set TINY that has the following
simple rule:

R4: IF SIZE IS TINY THEN MERGE (M).

Figure 3 shows the four membership functions corre-
sponding to each fuzzy rule. After the fuzzification by
the above four rules, min-max inference takes place using
the fuzzy sets shown in Fig. 4. Then the conventional
centroid defuzzification method is applied. A pixel is re-
ally merged when the homogeneity criterion is satisfied
to an extent of 50 % after defuzzification.

The final procedure is the merging of two regions that
is not a fuzzy rule but a crisp rule after the grouping
procedure by the fuzzy inference. Two regions R; and
Ry, are recursively merged if

|gave(Rj) - ga«ve(Rk)l S T....cc.oo..... (7)

is satisfied, where T is a predetermined threshold.

HSMALL HLow

DIFFERENCE GRADIENT

HSMALL2

DIMENSION

0 50 100 150

Fig. 3. The membership functions for four fuzzy rules.

4 EXPERIMENTAL RESULTS AND
DISCUSSION

To assess the performance of the proposed segmenta-
tion method, we have executed the simulated experiments
using natural images. We have decided the values of the
parameters in the segmentation algorithm empirically,
and segmented results are represented by the boundaries
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Fig. 4. The fuzzy sets used for inference.

of segmented regions. Figure 5(a) is an original natu-
ral image that has 400x400 pixels and 256 gray levels
and contains a part of a house and a part of trees. The
estimated local FD map by using the blanket method
with 3x3 window and 44 blankets is shown in Fig. 5(b)
(this image is shown after the linear transformation from
2.0~3.0 to 0~255). The estimated FD demonstrates
nearly the same value at the part of the trees that is well
suited for a rough segmentation in the proposed method.

We have performed the conventional segmentation
method that uses only the intensity features and the pro-
posed method that uses both the intensity and the fractal
features. The conventional method is a region growing
algorithm that uses the grouping procedure based on a
crisp rule. The segmented images by the conventional
algorithm and by the proposed algorithm are shown in
Fig. 5(c) and 5(d), respectively. The result in Fig. 5(d)
faithfully reflects the low accuracy of the local FD and
provides a rough segmentation at the part of the trees
while keeping an accurate segmentation at the part of the
house. The portions of the trees in Fig. 5(d) are roughly
regarded as the same region in comparison with the result
in Fig. 5(c) in which the part of the tree yields a large
number of small regions. The result by the proposed
method coincides with one of the functions of the human
visual system that considers a few trees including lots
of branches and leaves as one region. The numbers of
segmented region of the resultant images in Fig. 5(c)
and 5(d) are 4478 and 101, respectively. The substantial
reduction in the number of regions, together with the ap-
pearance of the segmented images, clearly indicates the
effectiveness of the proposed algorithm in segmenting
natural images.

The results of the second experiment are shown in Fig.
6. Figure 6(a) is the second natural image and 6(b) is
the estimated local FD. The segmented results by the
conventional algorithm and by the proposed algorithm
are shown in Fig. 6(c) (no. of regions: 2586) and 6(d)
(no. of regions: 79), respectively. The result in Fig 6(d)
also demonstrates a rough segmentation at the part of
the trees and an accurate segmentation at the part of the
house. ’
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5 CONCLUSIONS

In this paper we have proposed a method for the seg-
mentation of natural images that integrates the intensity
features and the local FD feature into the fuzzy region-
growing algorithm. We have estimated the optimum
number of the blanket in calculating the local FD by
the blanket method. We have investigated the fuzzy-rule
based algorithm for integrating different features in the
segmentation procedure. Experimental results demon-
strates the capabilities of the proposed method to execute
the segmentation of natural images with different preci-
sion, that is, a rough segmentation at texture regions and
an accurate segmentation at non-texture regions simulta-
neously.
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Fig. 5. Experimental results of segmentation for a natural image: (a) original image; (b) local FD map by using the
blanket method; (c) segmented image by the conventional region growing algorithm; (d) segmented image by the proposed
algorithm.
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(a) (b)

Fig. 6. Experimental results of segmentation for a natural image: (a) original image; (b) local FD map by using the
blanket method; (c) segmented image by the conventional region growing algorithm; (d) segmented image by the proposed
algorithm.
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Absorption Spectra and Insulator-to-Metal-to-Insulator Transitions
of One-Dimensional Platinum Complex at High Pressures

Keiki TAKEDA, Ichimin SHIROTANI and Kyuya YAKUSHI

(RS2 H FR124- 4 A28H

am CSZEEH P24 8 A31H)

Electrical resistivities and absorption spectra of one-dimensional bis(1,2-benzoquinone-
dioximato)platinum(II), Pt(bqd),, have been studied in detail at high pressures. The resistivity along the
c-axis of a single crystal abruptly decreases with increasing pressure up to 0.9 GPa at room temperature.
The pressure-induced insulator-to-metal-to-insulator(IMI) transitions in the complex have been found
at around 0.8 and 0.9 GPa, respectively. The absorption spectra were measured with a diamond-anvil
cell up to 3 GPa at room temperature. The absorption spectra of Pt(bqd), markedly change at around the
pressures which show the IMI transitions. The pressure-induced IMI transitions and the resistivity mini-
mum arise from the change of the electronic states of Pt(bqd), at high pressures.

Keywords: one-dimensional platinum complex, Electrical resistivity, Absorption spectra, Insulator-to-

metal-to-insulator transition, High pressure

1 v

HE&E - X2VUF /oo FF < — MK
(Pt(bad) IZ+2M D HB A1 F I 2 D F Do\
JF ) O FF T Alo-bad] DR U 7K B O 8
EHFT. ALNEBRAICEMICE S L 72— KT
G eFD, KREEFICBT5Pt(bad), DESIH
PRI SHREN AT T3X102QemTH BV, Fi-H
&D5d M5 6p,\DES LIRES N5
8000cm ICEN 5@, 5 DOEITEMOAE—

1 BRET LR
*2 S TREDIRA

CHIFF I MEKROPTHRBEN,
Pt(bad) i d@ELE N TP T L LR LICH
HTDHDT, REBEZRGIHELZENTES,
ZFOHBEOE FIREIZTTITHZEIN TN
(D, Ptbad)EED 1 F ALEM134.96eV &, B
FEEARE LU TL A S NTTFERE(S.0e V) D%
NEDBOLTNIT/NI NG, [BEHAR_E ORI R E
EOBZKEHRIZI0*Qem T, &BESHEKRDEERE
ELTREBEWEERF> TN,
AREETICHBT BPt(bad) DBk & D X i 8
LT TICHZEE N T30, Ptbad), D544
BWIIR AR T, 2B EIbam, KT EKIZ
a=20.68 A, b=9.743 A, c=6.346 A, V=1279A3,



KH 4%, B8 —R, ¥ X5

7=4TH %, ® 1alcPtbad),Dabii Dk EkEE %
RY. Ptbad), 2 FIdEEF A OEEK T, »F
\Zab T2 RICIICEE ST %, 1biz
Pt(bad), D clli Fm D FE L 2~ 7, Ptbad) s
F1390° [Bl#E LN S REATER D, PtO—RKICH
25, P-PUEE#ES.173ATH Y, &F ¥
FoTVFF - MEEROHRTRDEN,

Pt(bad), D eHik#E & DEPIRIIEN L EHITA
BT L, 1GPafhETEIBILT 5. X 5IThE
% E<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>