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Animage restoration can be often formulated as an energy minimization problem. When an energy func-
tion is expressed by using the hamiltonian of a classical spin system only with finite range interactions,
the probabilistic model, which is described in the form of Gibbs distribution for the energy function,
can be regarded as a Markov random field (MRF) model. Some approximate optimization algorithms
for the energy minimization problem were proposed in the standpoint of statistical-mechanics. In this
paper, the approximate optimization algorithms are summarized and are applied to the image restoration

for natural image.
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1 INTRODUCTION

Recently, many authors have shown an interest in im-
age restoration using the Markov random field (MRF)
model, in which the configuration of a lattice site is
dependent only on the configurations of the nearest
neighbours®® The MRF model, can be regarded
as one of classical spin systems with finite range interac-
tions and ron-uniform external fields on a finite square
lattice. The MRF model can be regarded as a classical
spin system in statistical mechanics. The authors have
proposed a new method for systematically constructing
the energy function®, which is based on constrained op-
timization. In the image restoration, the constraints are
introduced as @ priori information on the original im-
age. By introducing a Lagrange multiplier for each of
the constraints, the image restoration is reduced to an
energy minimization problem™G-® In Ref. (7), we
described a classical spin system, which is applicable to
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gray-level image restoration.

In the search for an optimal solution of MRF model,
many authors applied the iterated conditional modes
(ICM) algorithm®, Though the ICM algorithm is sim-
ple algorithm and can erase noise when the noise is in
an isolated site, it is difficult to avoid the local minimum
and then it cannot erase noise when two or more succes-
sive sites are affected by the noise. to the search of the
minimum-energy configuration. In order to avoid the lo-
cal minimum, the cluster type Monte Carlo simulation®®,
and the cluster type mean field approximation!® are also
applied to the optimization of the MREF model. In the
statistical mechanics, we have some important fluctua-
tion effects to avoid the focal minimum. One of them is
thermal effect. In order to adopt the thermal fluctuation
effect as annealing procedure, we introduce a tempera-
ture in the form of Gibbs distribution. Geiger and Girosi
U0, and Zhang!!' 2! proposed a deterministic algorithm,
which is based on the mean-field approximation. On the
other hand, we have general methodology of construc-
tion of high-level effective-field approximation in statis-
tical mechanics, which is called cluster variation method
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(CVM)!', We gave a simple example of its application
to the MRF model!!. Moreover, in the standpoint of the
CVM, we proposed the methodology in the extension of
the ICM to the cluster type algorithm, which is called
the cluster zero-temperature process (CZTP) and is ob-
tained as the zero-temperature limit in the optimization
algorithm of the CYMU9),

In this paper, we clarify the mathematical structure of
the ICM, the CZTP and MFA aigorithms and compare
them with each others in some numerical experiments
for natural images. In Sec. 2, we explain the energy
function and the probability distribution constructed by
means of the mathematical framework of Ref.(7). In
Sec. 3, we summarize some approximate optimization
algorithms for the energy function. In Secs. 4 and 5, we
give some numerical experiments and some concluding
remarks, respectively.

2 ENERGY FUNCTION OF IMAGE
RESTORATION

In this section, we give the energy function of image
restoration for natural images with the aid of the mathe-
matical framework in Ref (7).

We consider a digital image with g gradesona M x N
finite square lattice

LE{(z’,j)’ i=1,2, M, j= 1,2,---,N},

with the periodic boundary condition. We express the
configurations of an original and a degraded images by
x={z; ;|({, 7)€L} and y={y: ;|(i, 7)€L}, respectively.
The variable ;; on a pixel (z,7) takes a value from
Az{0,1,2,--.,¢ — 1}. For the degradation process, we
assume that a degraded image y is obtained from the
original image x by changing the state of each pixel to
another state by the same probability p, independently
of the other pixel. The conditional probability for a de-
graded image y when the original image is x, P, (y|x),
is given by

Pya(y[x) -
= [[ (p st — gp+ pitesswia)
(i.7)€L
__ew(-ddey) "
S e~ i)
YEAMN
where
dxy) = 3 (1_5($i.ja'yi,j))a (D)
(i.J)EL
and
T = .,_]"—_. ................. (3}
p = ln(“p‘* )

In the present paper, we treat only the case in which T,
is positive such that p < 1/q.

In Ref.(7), it is assumed that we know the following
quantities for the true original image X:

0’2(}—{) = = Z (2m(5(ﬁi!j,£;‘.}.1,j)
(i,5)eL

- 5(ffi,j,5?i,j+1))1 < (4)

oaa®) = (5(ifi,j_-’5i+1,j§xn)

(1,7}l
+ 8(|%i; — Tajels ﬂ)),
mn=1,2,-k—1). -- (5

The image restoration in natural images is formulated as
the following conditional optimization problem:

-~ . r —~
X = ag xé!}\lgNid(x,y)|oz(X) = a3(%),

02,1L(x) = 0-2,11(5&) (ﬂ = 1, 2, e ‘,k - 1)}
............................... {6)

In order to ensure the constrained conditions oa(x) =
d2(X) and o3 1 (x) = 02,1 (X), we introduce the Lagrange
multipliers Jy and Ji — J,, (n = 1,2,--, K — 1). The
conditional optimization {(6) can be reduced to the fol-
lowing energy minimization problem:

X(Jl, JQ, sy Jk) W= arg min H(X),

XEAMN

where
H(x) = d{x,y)
k—1
+ Jioa (%) + > (Fn = Ji)oza(x).
n=1

Here the notation arg minf(z) means any minimizer
T

of a function f(z). The optimal parameters J,, (n =
1,2,- -+, k) should be determined so as to satisfy the fol-
lowing constraints;

O'g(x(jl,jz,---}jk)) =0'2(i), ......... 'C)]
Jgsﬂ(x(jl ? j27 Y jk)) = Jz,rl(i)a
(m=1,2,-- k—1) -+ (10)

The restored image obtained by using Eqgs. {7)-(10) is de-
noted by % = x(J;, Ja,- - -, Ji). The energy minimiza-
tion problem (7) is equivalent to the following probability
maximization problem:

X(Jla Jayey J-’») = arg xg‘]\ig}NH{x)’

where
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exp( - %H[x))

Z exp( - %—H(x)) ’

XEA‘”N

p(x) =

and T is a temperature. The probabilistic model de-
scribed by the probability distribution ([2) with Eq.(8)
can be reparded as the MRE model.

3 APPROXIMATE OPTIMIZATION
ALGORITHMS

In this section, we give three approximate optimization
algorithms for the energy minimization problem (7), such
that [CM®, CZTP!® and MFAUD, Both the ICM and
the CZTP are iterative algorithms at zero temperature and
the MFA is one at a finite temperature. The approximate
minimum-energy configuration obtained by means of an
annealing procedure is closer to the true minimum-energy
configuration than by means of the ICM.

First we explain the iterative algorithm at zero temper-
ature. The optimization problem (7) can be reduced to
the following iterative equation:

zig(Ji, o, Te)

= arg min H(z- ;
ga:;,,—ei\ ij

Ty g = mi’.j'(JlaJZ: R Jk)%

(&, 5)ELNG,5) ), -+ (13)

From the iterative equation, we can construct the ICM
algorithm™), which is the simplest algorithms for the op-
timization (7). Morita and the present author extend it to
the cluster version ICM algorithm, which is constructed
from the following iterative equation:

Xe(Ji, oy -+ Jk)
= arg min H(xc Ty jr = mir.jf(Jl, ,]2’ .. .,Jk)’
xcG.’\E'ﬂ
(itrjl)EL\C), ........ (E4)
where

XCE{.’C«;,j\(’E‘.,j)EC},
xe(r, Jay o Ty wes(T o, Jk)}(i,j)ec:}.

Morita and the present author cailed it CZTP('8, Here ¢
is a set of pixels, and the square CZTP can be constructed
by settinge = {(3,7),{#+1,7), (i +1,7+ 1), G i+ 1D}

Second, we explain the MFA algorithm which is the
most familiar deterministic annealing algorithm for the
optimization (7). The annealing algorithm is able to
avoid local minima. In order to adopt the MFA algo-
rithm for the search of minimum-energy configuration
x(J1,J2, -+, Jr), we introduce the one-body marginat
probability distributions:

11

2. A,

XEAMN

(neA, (i,§)EL). -+ --- (15)

Pi,j(”} =

In the mean-field approximation, the probability distri-
bution p(x) is approximately expressed as

H piglmeg). oo (16

(i.3ek

p(x) =

By substituting Eq.(16) into the free energy

Flo=Y_p(x) (Hx) + Tin(p(x)) ),

and by taking the first variation of the free energy
F{{pi;} withrespect to p; ;(n), the deterministic mean-
field equations for the set of one-body marginal distribu-
tion functions

{Pi.j(ﬂ)l(i,j)EL, neA}
are obtained as foltows [3]:
@i (Jisday e i) = arg illléiicpz"j{nL e (18)
where
exp( - %Hi,j(n))

Z exp( - %Hi‘j{ﬂ'l)) ’

meA

pii(n) =

H; j(n) = ~6(n,yi ;)
k-1

+ Z Z'Ln (pir 3 (n + m) + pi F (n —m))

(#.j)€e:,;m=1

g—1
D D e (ntm) + pep(n—m)),

(#.")€c; jm=k

By solving Eqs.(18)-(21) at a sufficiently small positive
value of T' by using the annealing procedure, we obtain
the approximate optimal solution of Eq.(7).

4 NUMERICAL EXPERIMENTS

In this section, we give some nwnerical experiments
for the original image X = {&;;} given in Fig.1. The
degradation process is subject to the probability given in
Eq.(1). Here, we set {g — 1)p = 0.1, 0.3 and 0.5 where
q = 8. The degraded images y obtained from the original
image % in Fig.1 are given in Fig.2. The quantities

5'2,11(}() = mg2,n(i) (n = 0) 1, g - 1)7
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are shown in Table | where g3 0(X)=1 — o2(¥). We
see that the quantities e o (%) and oy 1 {X) are especially
important in images with 8 grades. In the energy function
(8), we set k = 2. In Table 2, we give the values of
optimal parameters J; and Jo, and of quantities

Hx8) = od()
. 1 .
ga(%x) = mﬁz(x):
and
. 1 .
F21(X) = WJ2.1{X)7

in the restored image %, which is obtained by using the
ICM, the CZTP and the MFA. The obtained restored
images X are shown in Figs.3, 4 and 5. In the CZTP, we
set

¢ = {@G+LG+Li+ 106+ D)

5 CONCLUDING REMARKS

In this paper, we summarize some approximate opti-
mization algorithms based on the statistical-mechanical
techniques for the energy minimization problem formu-
lated for the tmage restoration in Ref.(7). In some nu-
merical experiments, we show that the algorithms are
applicable to the image restoration of natural image. We
remark that the ICM algorithm can erase when the noise
is in an isolated pixel, but it cannot erase when two or
more successive pixels are affected by the noise. On the
other hand, the MFA and the CZTP algorithms can deal
with this problem. However the MFA need a large mem-
ory. If we apply it to the image restoration of gray-level
image with 256 grades, we have to treat a 256256 x 256
dimensions for the one-body marginal probability distri-
bution p; ;(n}. The ICM and CZTP algorithms do not
need so many memory because most of the data stored
are in integer. The present author are still studying the
problem of finding a computer algorithm giving the same
results in much shorter time and in much smaller mem-
ory.
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Table 1. Value of quantity &, ,,(X) for the true original

image % given in Fig. 1.

Table 2. Value of optimal parameter J; and Ja, and
values of quantities d(X,X), d2(X) and 71 (X) in the
restored image %, which is obtained by using the ICM,
the CZTPand the MFA. (a) (g—1)p = 0.1. (b) (¢—-1)p =

k] 5’2,11 (i) n a’ln (5":)
0 (.7224 q 0.0039
1 0.2351 5 0.0031
2 0.0204 6 0.0033
3 0.0067 7 0.0051

0.3. ) (g— Vp =05

{a)

Ji o | di%,%) | F2(%) | F2u(®)

ICM |"0.2500 | 0.5015.| 0.0437 | 0.2782 | 0.2385

CZTP 0.2500 | 0.5600 | 6.0420 | 0.2750 0.2395

MFA | 0.2541 | 0.4511 § 0.0374 | 0.2772 | 0.2295

| =% 0 0.2764 | 0.2390
{b)

jl jz c?(}"c,i) 5’2(5&} 5’2'1(5{)

ICM | 0.2533 | 0.8800 | 0.1211 | 0.2769 | 0.2361

CZTP | 0.2500 | 0.6200 | 0.1187 | 0.2815 | 0.2356

MFA 0.2695 | 0.7631 0.1055 | 0.2734 0.2394

X=X 0 0.2764 0.2390
{c)

Ji Ja d(®. %) | 8a(%) | F2.(%)

CM 0.4611 | 1.4611 | 0.2793 1.2763 0.2416

CZTP | 0.2599 | 0.8899 | 0.2327 | 0.2632 | 0.2354

MFA 42785 | 0.7701 0.2210 | 0.2752 0.2394

X =R 0 0.2764 0.2390
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Fig. 1. Original image % (¢ = 8, M = N = 64).

Fig. 2. Degraded images (g = 8 M = N = 64).
(a} (7—1)p = 0.1(d(%, y)=~0.0947). (b) (¢—1)p = 0.3

(d(X,y)=0.2937). () (g—1)j = 0.5 (d(%, y)=0.4968).
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Fig. 3. Restored images % obtained from the degraded
image y given in Fig. 2a. (a) ICM. (b) CZTP. (¢) MFA.

Fig. 5. Restored images % obtained from the degraded
image y given in Fig. 2c. (a) ICM. (b) CZTP. (¢c) MFA.

Fig. 4. Restored images X obtained from the degraded
image y given in Fig. 2b. (a) ICM. (b) CZTP. (c}) MFA.
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