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Holley and Liggett gave good bounds on critical value and survival probability for the
basic contact process in one dimension by a suitable renewal measure. On the other
hand, the same bounds can be obtained by assuming a class of correlation inequalities
holds. In this paper we give numerical evidence for validity of some of the above

correlation inequalities.
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1 INTRODUCTION

In this paper we consider correlation inequalities which
give upper bound on the critical value and lower bound
on the survival probability of the basic contact process
in one dimension. These bounds were obtained by Hol-
ley and Liggett()) using a different method based on
the Harris lemma.(? Concerning the Harris lemma, see
Chapter 3 in Konno,(® for example. In the present pa-
per we call their method the Holley-Liggeit method.

First we introduce some notations. The dynamics of

the basic contact process in one dimension is as follows.
For any = € £ with £ C Z?,

£ —¢u{z-1} at rate A,
£ —£fu{z+1) at rate A,
£ — &\ {z} at rate 1.

Let €2 be the basic contact process starting from the
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origin. We define the survival probability for this process
by
pr=P{&) # ¢ foranyt >0}

The critical value on the basic contact process can be
defined by

Ae =inf{d > 0:p) > 0}.

The best estimated value of this critical value is 1.648912
given by Jensen and Dickmann.(*) Concerning upper
bound on A, and lower bound on py, Holley and Liggett(!)
gave the following good bounds by choosing a suitable
renewal measure:

e < /\EHL) —2,
and

1
—  for A > 2.

HLy _ 1
pr > P,(x = P )

+

no | —

We call these bounds Holley-Liggett bounds from now
on. On the other hand, if we assume the following corre-
lation inequalities hold: for m,n > 1, J(0,0)J(m,n) <
J(m,0)J(n,0), then we can obtain the same Holley-
Liggett bounds, where J(m, n) is the probability of hav-
ing 1 at m and 0’s at all other sites in [1,m+n+ 1] with
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respect to vy which is the invarinat measure of the ba-
sic contact process starting from the state Z*. If o and
e represent 0 and 1 respectively, then we can write

J(m’n):yl\(o...ogo...o’_

For example,

J(0,0) =w{n:n(l) =1} =wa(e) = ps,
J(1,2) =un{n:n()=0,7(2)=1,
n(3) = n(4) = 0} = va(o e 00).

The above mentioned approach is different from the
Holley-Liggett method. The problem is that it is not
known whether the above correlation inequalities hold
or not for any m,n > 1. At the present stage, the
only known thing is that there are m,n > 1 such that
J(0,0)J(m,n) < J(m,0)J(n,0), as shown by Liggett.(5)
So the main purpose of this paper is to check whether
J(0,0)J(m,n) < J(m,0)J(n,0) holds for small m,n >
1 by Monte Carlo simulation. In fact, even when m =
n = 1, this correlation inequality is interesting. The
reason is as follows. I'rom the Harris-FKG inequality,
we have

va(ee) > vy ()?, (1.1)
and

I/,\(OO] > Z/,\(O)z. (12)
Concerning the Harris-FKG inequality, see Chapter II
in Liggett,(®) or page 21 in Konno.(® We can rewrite
Eqs.(1.1) and (1.2) by using the conditional probability:

va(ele) > va(e), (1.3)

and
V,\(OIO) > U,\(O), (14)

where
va(efe) = va{n : n(1) = 1|n(0) = 1},

va(olo) = va{n : n(1) = 0]n(0) = 0}.
Moreover, in our setting, the following correlation in-

equalities were proved by Belitsky, Ferrari, Konno and
Liggett recently:(") for any 4, B.C Z!,

PA(ANB)pA(AU B) 2 5,(A4)p(B),  (1.5)

where g, (A) = va{n(z) = O for any z € A}. In partic-
ular, if we take A = {<1,0} and B = {0,1}, then we
have

ua(o)a(000) > 1a(00)?, (1.6)
so this becomes

va(o] 0 0) > va(olo), (1.7)

where

va(el o o) = va{n : n(1) = 0[n(0) = n(-1) = 0}

On the other hand, when m = n = 1 for the correlation
inequalities we consider 'in this paper, we have

¢

vA(s)vals o #) S va(se)?, (18)

that is,
va(e] o o) < va(e]e), (1.9)
where

vi(s] e o) =wa{n:n(1) = 1n(0) = n(-1) = 1}.

The interesting thing is that a direction of inequality
(1.9) is different from those of inequalities (1.3), (1.4)
and (1.7). From the attractiveness (see page 72 in
Liggett(®)), we can easily expect that inequalities (1.3)
and (1.4) hold, moreover, inequality (1.7) also holds.
However, concerning inequality (1.9), we can not easily
conclude which direction of inequality is correct. Our
estimation by Monte Carlo simulation suggests that in-
equality (1.9) holds. This is one of the interesting con-
clusions of this paper.

This paper is organized as follows. In Section 2, we
briefly review the results of the Holley-Liggett method.
In Section 3, we show how we can derive Holley-Liggett
bounds from correlation inequalities. Section 4 treats
numerical evidences on some of correlation inequalities.
Moreover we give results on oriented percolation. Sec-
tion 5 is devoted to conclusions.

2 HOLLEY-LIGGETT METHOD

First we introduce the following renewal measure p
on {0, 1}% with density f is given by

n na Nk

p(eo...ceo. .. ceoc...0e0---0e) =

flu + ) f(ra+1)---f(ne + 1)
Lim=1 mf(m),

where pu(ni, ng,...,ni) be the probability of having 1’s
atmy+1,ni+n2+2,...,m+ne+---+np+k-1
and 0’s at all other sites in [1,n1 +no+---+n +k —1]
with respect to the renewal measure g, for £ > 2 and
n; > 0(i=1,...,k). Let Y the collection of all finite
subsets of Z! and for any 4 € Y,

ar(A) = P{&} #¢ for anyt >0},

where £/ be the basic contact process starting from A.
By using the Harris lemma, the following theorem is
obtained, see Chapter VI of Liggett,(®) for example.

Theorem 2.1. Let /\EHL) = 2. Then for X > ,\Q’”),
hHD(A) <or(A)  forallA€Y,
where
hf\HL)(A) =p{y:n(z) =1 for some z € A},
for a renewal measure p on {0,1}% whose density f is
given by Q*h{')(A)= 0 for all A of the form {1,2,...,n}

(n > 1), and Q* is the generator of dual process for the
basic contact process in one dimension.

Note that the above f is given as follows: for n > 1,
f(n) = F(n)— F(n+1), and
oy = (2(n = 1!
Py = )il (2A)r-1

Applying Theorem 2.1 to A = {1} gives Holléy-Liggett
bounds:
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Corollary 2.2.

Ae S AFD) =2,
(HL) _ 1 1 1
> == S
PA 2 Py 5T Vi— oy 122

3 CORRELATION INEQUALITIES

In this section, we review how we can derive Holley-
Liggett bounds from the correlation inequalities. A sim-
ilar argument appeared in Chapter 4 of Konno.(®) Com-
pared with the Holley-Liggett method, we can easily
obtain Holley-Liggett bounds by assuming these corre-
lation identities hold.

Here we introduce the following correlation functions:
for m,n > 0, we let J(m, n) be the probability of having
1’s at m and 0’s at all other sites in [1,m + n + 1] with
respect to vy which is an invarinat measure starting from
all sites are covered by 1’s. That is,

J(m,n) =vy(o--.0ceo---0).

From the definition of the basic contact process in one
dimension, we have the following correlation identities:

AR, 1, nh) = B{L, - nh)] +
ApaldL - mn 1) = AL n )] +
[P ) =B ({L )] =0,
k=1

where 5 (A) = wa{n(z) =

0 forany z € A}. So the
definition’ of J(m, n) gives )

Lemma 3.1. Forn > 1,

=% Jk=1,n-k),
k=1

20J(n,0)

that is,

VNG oo) = Zux(o 5-9).

Next we introduce the following conjecture to get
Holley-Liggett bounds. This was conjectured by Konno(®)
(see Conjecture 4.5.2).

Conjecture 3.2. Form,n > 1,
J(0,0)J(m,n) < J(m,0)J(n,0),
that is,

m " n m n
N

A($)Va(5 0067 10) < vx (67 - 0e)wa(6 - D).

When m or n is equal to 0, this inequality becomes
equality. Define

_ (06570 J(m,n)
J(m,n) = e (0,0

for A > ). and m,n > 0. Note that the definition of A,
gives J(0,0) = va(e) = p» > 0 for A > X.. By using
J(m,n), we can rewrite the above conjecture as follows.

Conjecture 3.3. For A > A, and m,n > 1,
J(m,n) < J(m, 0)T(n,0).

Here we introduce the generating function of the se-
quence J(n,0):

p(u) = Zj(n, 0)utl.

n=0

By using this, Lemma 3.1 can be rewritten as

227 (n,0) = ZJ(L - 1,n—k). (3.1)

From the definition of ¢(u), we see that

i [7(”, 0)u"+1] = (u) — u. (3.2)

n=1
Assume Conjecture 3.3. So we have

n

(o]
Z (k— 1,n— k" <

iiﬁ(k— 1,0)7¢(

n=1k=1
The definition of p(u) and Eq.(3.3) give

n— k0wt (3.3)

i ; T(k—1,n—k)u"t < p(u)?. (3.4)
=1

By Egs.(3.1), (3.2) and (3.4), we have
0 (u) — 22 p(u) + 22w > 0. (3.5)

Note that if A > A, then

1
p(1) = ZJ(n 0) (0 5§ = o (3.6)

n=0 PA

For A > A, the second equality follows from

i(ﬂm _
S -} =

n=0

1— lim V)‘(o-no) =1
n—oo

From Eq.(3.5) with « = 1 and Eq.(3.6), we have
22pf —2Xpy +1> 0. (3.7)

So the properties of continuity and monotonicity for py
imply

o> 1 + 1 L

2 22 v

We should remark that the continuity caomes from

Theorem 1.6 in Chapter VI of Liggett(®) and the re-

sult by Bezuidenhout and Grimmett.(8) Concerning the

for A > 2. (3.8)
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monotonicity, it can be easily obtained, for example,
see page 265 in Liggett.(5) The lower bound on py in

Eq.(3.8) is nothing but the Holley-Liggett one on the

survival probability. Moreover, Eq.(3.8) gives Holley-
Liggett bound on the critical value:

Ae S AHD) =9,

Therefore from the argument in this section we can ob-
tain the following theorem:

Theorem 3.4. Assume that for any m,n > 1,

m n m n
U,\(.)VA(O"-0.0"'O) S U,\(O”‘O.)V,\(O"'O.).

Then we have

Xe XD =9,
1

oLy _ 1 1 1

4 NUMERICAL RESULTS

The simulations were conducted as follows: particles,
occupying sites of a lattice in one dimension, correspond
to a distribution of 1’s (particle) and 0’s (empty site) on
Z'. At each step we take a particle, and either try to cre-
ate another particle on a randomly chosen nearest neigh-
boring site (with probability p = A/(A + 1), succeeds if
the neighboring site is empty) or remove the particle
leaving an empty site (probability 1 —p = 1/(A + 1)).

The system size L was 10000 sites, with the initial
configuration taken as all sites occupied. 4000*L steps
were taken, the numbers of 01 (no1), 10 (n10), 010 (n010)
and 1 (ny, corresponds to the number of occupied sites)
have been summed over the last 2000*L steps. We
checked that for all p values considered after the initial
2000*L there are no systematic changes in the concen-

“tration of particles, indicating that the system is in a
stationary state.

The results are plotted in 2 ways: as
7010 = (no1 * n10)/(no10 * 1) versus p (Fig.l), and as
do1o = (no1 * n10)/(ny * n1) — noro/ny versus p (Fig.2).

Taking no1 /L as an approximationof J(1,0) = v,(oe),
and making similar assumptions for ny,ng; and n;o ane
can write the statement of Conjecture 3.2 withm =n =
1 as

No10 * N1 < Moy * Ny,

which implies that rg;0 > 1 and dgyo > 0.

When interpreting the graphs note, that because the
density of empty sites is close to 0 for big enough p,
the numbers of configurations involving 1’s are low and
the relative error is high, so that plots for » look rather
bumpy as p approaches 1. Plots for d are much smoother,
but hide some information, since for big enough p d ap-
proaches zero much faster than r.

Other combinations were treated in a similar way
(Fig.1,2). No violations of the inequalities were de-
tected, apart from the cases when non-compliance can
clearly be attributed,to statistical error. For obvious
symmetry considerations, configurations 0100 and 0010

should lead to the same » and p values, deviations in the
graphs reflect the computational error involved.

Similar calculations were performed for the oriented
site percolation, with p as the occupation probability.
For oriented percolation the system size was 10000, 10000
steps were taken, with statistics summed over the last
5000 steps (Fig.3,4). For oriénted percolation, similar
conclusions as for basic contact process can be drawn,
although at the moment we are unable to provide a the-
oretical explanation.

Note that for the basic contact the threshold point is
at p = 0.767324 (Ref.(*)) while for oriented site perco-
lation it is at p = 0.705489 (Ref.()), which defined the
range of the p values used in the simulation.

1.5 T T T 010 Y
1.4 » *
1i | % 0010  x
- * 0100 o ]
1.35 - " 00100 %
13} * .
2 *
- 125 [~ BE *x . 7
12+ g *x -
115 F ¢ Wy %X
.15 F ++++ uﬂﬂ K, -
1.1 F +++++EEE8 * ¥ ~
1.05 |- Pl .
+++
1} 2,
0.95 : . L
075 08 085 08 095 1
p

Fig 1. Basic contact process, r versus p. For 0100,
0010 and 00100 only points with p < 0.95 are
shown, for bigger values of p the error is too big,
so that data looses all meaning.
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Fig 2. Basic contact process, d versus p.
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Fig 3. Oriented site percolation, r versus p. Asin
Fig.1 and Fig.3, for 0100, 0010 and 00100, points
too close to p = 1 have a huge statistical error and
have been ominitted.
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I'ig 4. Oriented site percolation, d versus p.

5 CONCLUSIONS

In this paper we consider the correlation inequalities
(Conjecture 3.2) 'which give the same bounds on critical
value and survival probability for the one-dimensional
basic contact process, as those derived by the Holley-
Liggett method. Our results by Monte Carlo simula-
tions suggest that Conjecture 3.2 holds for (m,n) =

(1,1),(1,2),(2,1),(2,2). Moreover a similar conclusion

is obtained in the case of oriented site percolation. The

next stage could be to give a proof of Conjecture 3.2 for
any m,n > 1.
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