
Semantic Analysis of a Declarative Language
Based on Knowledge Representation

著者 BABA Hiroyoshi, SUGIOKA Ichiro
journal or
publication title

Memoirs of the Muroran Institute of
Technology. Science and engineering

volume 41
page range 87-106
year 1991-11-11
URL http://hdl.handle.net/10258/788

Semantic Analysis of a Declarative Language

Based on Knowledge Representation

Hiroyoshi BABA， Ichiro SUGIOKA

Abstract

The objective of this research is analyzing and understanding the deep machanism of a declarative language， for

example Prolog， by adopting time-state， hypothetical and multi-u日iverseinferences in such a symbolic processing

We coded the analysis system in Automated Reasoning Tool (ART・)and LISP. The main part of the system is sepa

rated into three parts， namely， the first part is 'syntax tree construction'， the second part is 'attribute evaluation'

and the final part is 'viewpoint network simulation'. The input to the system is source codes of Prolog. Then， after

passing through inside the system， the result of processing is outputted. The result means the simulated variable at

each stage， that are temporary， hypothetically and hierarchy.

This paper describes the peculiarity of declarative language， the methodologies for representing incomplete know

ledge that related to the programming of our system. Then， about the implementation of the syntax and semantic ana.

lyzer， some considerations regarding the system are described.

1. Introduction

In the researches of the field of artificial intelligence (AI)， it was since the last decade that some

AI researchers have started to study knowledge representation including the concepts of temporal

processes.

Compilers， in the other words， language processors， consists of two parts ωan analysis part and

a synthesis part. In the analysis part， it is necessary to formalize the semantics of the languages

for their semantic analysis and context analysis. Usually， semantic analysis are divided into static

analysis and dynamic analysis. The former plays a role of verifying the correspondence between

the usage of names and their declarations， inspecting the information of types， and checking

whether each definition is duplicated or not. To fulfill such analysis， the attribute grammar of

each programming language are basically introduced. But we still don't have the unified methodo-

logies for the latter， dynamic analysis. Theoretically， an attribute grammar is also able to analyze

the semantics of programming languages dynamically， but we tried from a different direction

simulating the processes of a program to apply temporal， hypothetical and multi-universe reason-

ing. Partly because temporal infεrence is related to nonmonotonic reasoning while hypothetical one

related to monotonic reasoning， they are the main topics of the recent researches of knowledge

• ART is the trademark of Inference Corp

87

Hiroyoshi BABA， Ichiro SUGIOKA

representation，

Monotonic implies that the number of facts in the database is always increasing， but nonmonoto-

nic is not always increasing_

As concerns knowledge， there are four different kinds of ambiguities U ncertainty incomplete-

ness， polysemy and fuzziness. In our study， we focused on specially the incompleteness of know

ledge to analyze the language processing. In incomplete knowledge， it is possible to be denied pre

vious true facts concluded by some inferences at the time new facts are loaded in a knowledge

base. So this situation has nonmonotonic characteristics. Some AI researchers have been studying

the logic for incomplete knowledge， also the other establishing dynamic inference systems that can

update a set of the truth in a knowledge base in real time (or， in each step of changing conditions)，

effectively_ The representatives of the former are nonmonotonic logic and a default reasoning， and

the ones of the latter are a truth maintenance system， and an assumption但basedtruth maintenance

system_ We put the essence of their concepts in the analyzer.

There are many classes in attribute grammars. Originally. an attribute grammar stemmed from

an context free grammar as its semantics. Even though many researchers presented their theories

and systems using an attribute grammars， it is hard to find the relationship between non-procedu

ral languages， like Prolog or LISP， and their attribute grammars. Under such a situation， we de-

cided to attempt analyzing Prolog language. Prolog is one of the norトprocedural，namely， declara-

tive languages_ In analyzing Prolog symbolically， we considered its attribute grammars from the

context free grammars as the processes of static semantic consulting.

2. Declarative Language

There are two different categories in the programming languages --a procedural language and a

declarative language. In a procedural language like FORTRAN and Pascal， programmers show ex-

act steps of processing. In other words， they have to implement HOW to solve problems in their

programs. On the contrary， we just write codes WHAT to solve programs in a declarative lan

guage like Prolog. A declarative language is sometimes called a relational language as they only

describe the relationship among different predicates and clauses.

Nondeterminism is another peculiarity of a declarative language. It is the theoretical concept for

the definition of abstract calculus models. Intuitively， a true nondeterministic machine is the one

that can choose the next proper way at each alternative. We hardly realize such a machine truly，

but we might simulate， or resemble its machanism. A logic programming model is a good tool for

doing it， and the model of the programming language is declarative. Technically， a generate-and-

88

Semantic Analysis of a Oeclarative Language Based on Knowledge Representation

test method is the representative strategy for simulation. However， a don't.know nondeterminism

is more difficult to figure out the right choice at each alternative than a don't.care nondeterminism

as it's not always true to reach the goal through each division in a don't.know nondetermin.ism and

the latter one is opposite any different decisions never fail. The former nondeterminism has a

limitation that we cannot find the way should be proceed to next at the each time.

Some simulation programs are suitable examples for application of the nondeterministic prog-

ramming， and especially， to simulate the transition of an nondeterministic finite automaton (NDFA)

is better instance for a don't-know nondeterminism. It is very easy to implement the interpreter

for various kinds of automata in Prolog so that we programmed NDF A in the declarative language

as a material for verification of our simulator.

We implemented the dynamic semantic analyzer for a deciarative language as its simulation of a

don't-know nondeterminism_ We don't think it is valid to simulate the meaning of a procedurallan-

guage simply because the language is quite deterministicー thesequences of each different process

has been determined in advance.

The nondeterminism of Prolog is deeply related to its recursion in the program. Sometimes it is

very complicated the transitions of variables in Prolog because the both characteristics are in-

volved tightly each other. Therefore， we constructively applied hypothetical reasoning to Prolog's

nondeterministic characteristics， and simultaneously， we also did temporal and multi-universe

reasoning to its recursive functions --to inspect the language multiply --or， in a sense， three

dimensionally.

3. Knowledge Representation

In this chapter， mainly， the methodologies for representing an incomplete knowledge， and temp-

oral reasoning are described and discussed briefly.

3.1 Frame Problem

In [1]， one of the few philosophical problems in artificial intelligence ¥'{as pointed out --the

frame problem. The frame problem implies such a truth that the quantities of the descriptions

might be enormous and intractable in a trial to express all the changes of eonditions in the world

only by logic. This is an essential problem of the complexity， and the frame problem suggested

that we describe or process only a partial information in a huge world. More concretely， the prob-

lem is separated into two classes : the frame problem for description and that for processing. The

former is an approach to attract the best conciusion by describing the situation partially in incom

plete information. The concept of complexity is related to both space and time， that is to say， pro-

89

Hiroyoshi BABA， Ichiro SUGIOKA

cessing and description.

In [2]. an another direct approach toward the frame problem， the unless operator， is described.

This trial contains two ideas : the one is for properties and one for actions. In the former， an ob

ject retains its property until the property is explicitly changed. In the latter， an action is keeping

until it is explicitly discontinued by another action.

3.2 Default Reasoning

A default type of reasoning is to formalize the inferences logically under an incomplete informa-

tion. More concretely， it appoaches to expand the first order predicate logic so that the logic can

accepts some exceptions and such an intuitive semantics. Default reasoning [3] and nonmonotonic

logic [4] are the representatives of trials to deal with calculating the situation in incomplete know

ledge from the side of logic approach. Both realize the impossibilities of proofs for some facts by

an original modal symbol. The difference between them， however， is that in default reasoning， the

sentences include its modal symbol appear only in the inference rules， while in nonmonotonic logic，

the modal symbol itself is admitted as an formative element f{)f logical expressions. Truth mainthe-

nance system， it may be described later， inplies some methodologies how to realize such modal

logical formalizing instead of the difficulties for apply their concept on a computer.

3.2.1 Default Reasoning and Nonmonotonic Logic

The default logic consists of a set ofaxiom and a set of default. It introduced a modal symbol，

called consistent， for the inference rules. Default rules are supposed to indicate what conclusions

to]ump to

In default reasoning， it is always possible that an inspection of its noncontradictory for judging

whether a logic expression is a theorem or not fails into an infinite loop. It is because the infer-

ence rules show defaults unable to exist in the range of the countable and finite number. The se-

rious defects of such an default type reasoning comes from the difficultly of talking into considera-

tion the concept of time --its mono-directional characteristics. We m ust consist the symbolic sys-

tem and computational system that adapt the structure of our understandings under the temporal

transition in a world. That is， the main problem is how to build the ontology of time and world

into a logical machinery

3.2.2 Truth Maintenance System

Truth maintenance system (TMS) realized to attract the facts as conclusion of default inference

under incomplete knowledge， and to modify such conclusions dynamically and timely when they

have been proved to be failures. In TMS， each fact has the attributes to show the condition : 'in' or

'out'. If a certain fact is believed at this time， its attribute is 'in¥and if not， the attribute is 'out'

90

Semantic Analysis of a Declarative Language Based on Knowledge Representatio日

This concept independents that the fact is true or false.

So the keypoint of default reasoning on a computer is how to figure out the default value caused

a contradictory effectively and efficient1y. Every fact if TMS consists of a node， a statement and a

justification --a node is a time tag for the fact and a justification contains the reasons of the

knowledge

3.2.3 Assumption-based Truth Maintenance System

An assumption-based truth maintenance system (A TMS) is originally based on the theory of

hypothesis-based reasoning. In hypothesis-based reasoning， hypothesis generation is defined as a

symbolic process to infer a hypothesis "H" which is unrecognized knowledge from a observed fact

"0" that is experienced knowledge and a known axiom "H I ー一0"that general knowledge. The sym-

bol " I -" means an provability

ATMS is a truth maintenance system which determines what nodes are believed in the current

situation. A particular situation in A TMS is called context. Also， the fundamental function in

A TMS is to maintain consistency and non四contradictoryin the whole of knowledge bas'e. In ATMS，

a fundamental unit of data is called node and a node consists of three parts --datum， label， and

justifications.

A datum is the contents of data and justifications is the same as that in TMS. A label contains

several hypothetical lists called environment. Environment is a set of hypotheses and every en-

vironment is recorded in the label of each node. The fact doesn't depends on any particuJar

reasons is called promise. At the time when we retracting on the processing of each inference， we

will reach a fact or a hypothesis finally. As a resu1t， ATMS is designed to function in tandem with

a problem solver as part of an overall reason system， and the problem solver records all the infer

ences they make justifications and all the hypotheses make assumptions目

3.3 Temporal Reasoning

In the researches of AI， there are two standpoints toward the concept of time : the law of causal-

ity and an event. Most1y， time is regarded as the changes of a situation. The law of causality com

es from the definitions of the natural transition among situations. In.other words， it is the relation-

ship of the causality from a situation to a situation. This approach aims to understand the time，

that means a kind of projection from the past to the future， by predicting a dynamics in the world.

On the other hand， an event is a sort of incident that causes the change of situation and it happens

at a certain time. Especially， the event by the specific people is called an action. This point of view

formalizes the time stream as a sequential relation of 'precedence' or 'earlier-later'.

The formal model of time is mostly established with predicate logic : to formalize the expessions

91

Hiroyoshi BABA， Ichiro SUGIOKA

and reasoning of temporal transition in the world by using predicate logic. But unfortunately， the

world of predicate logic is inadequate to describe the change of situation caused by time. To over田

come such a defect， people try to expand predicate logic.

In [5]， time is a set of states that are instantaneous universes and there is temporal sequence

among all the states. The set of state which corresponds to a time stream from the past to the fu

ture is called chronicle. Facts are the static element of its temporal representation and events are

the dynamic one. This idea approaches to the inference of causality， sequential transition with rep

resenting such facts and events.

The other temporal reasoning based on time intervals is supposed in [6[

These temporal inferences realize the concepts of causality， persistency and sequentially， and

rich environment with the elements for representation， but it seems to. be considered， somehow， the

expansion of predicate logic attaches limitations.

4. Analysis System Implementation

We coded the analysis system in the Auotmated Reasoning Tool (ART) and LISP. ART is so far

called the second generation tool for expert systems. Its syntaxes are quite similar to those of

LISP and it has some feathers for realizing expert systems schemata， logic dependencies and

viewpoints. Therefore， ART is like the preprocessor of LISP language.

Prolog

Source Code

Fig.1 The analysis system

92

Semantic Analysis of a Oeclarative Language Based on Knowledge Representation

Fig.l shows the whole structure of our analysis system we implemented.

The input to this sytem is source codes of Prolog. The main part of the system is separated into

three parts， the first part is to do symbolic processing from the inputted codes into tree structure

('syntax tree construction')， the second part， 'attribute evaluation' checks the static semantics of

the tree， and the final part， that is， 'viewpoint network simulation' is for the processing of dynamic

semantic analysis. Then， after passing through inside the system， the result of processing is out-

putted. The result means the simulated variable at each stageー temporary，hypothetically and

hierarchy. Or， otherwise， some error messages may appear as result in turn， if the Prolog source

codes have initially some syntax or semantic problems. The first step， 'syntax tree construction'

relies its processes on the knowledge base， Backus N our Form (BNF) rules. Also， the next process

for evaluating the attributes of Prolog has another database called 'attribute grammar semantic

rules'. These two previous sections access the part， 'error processing¥The error processing divi-

4.1 Syntax Analysis

sion can be regarded as the other database

The original idea in this analyzing is the unique way to convert Prolog into a LISP-like list

structure.

4.1.1 Backus Nour

Form

BNF is another form

of context free gram-

mars (CFG). CFG is the

unified theory or metho-

dology for designing

programming language

or some tools that have

their original languages.

Of course， CFG exists in

a declarative language

because the grammar is

also the production

rules from the start

symbol toward all the

terminal symbols via

<clause> ::= <fact>. <rule> .

<fact> ::= <relational-expr>
<relational-expr> ::= <n四 .e> <termlist>
<n白隠> ::= <srnall-letter> <srnall-letter> I } *
<termlist> : : = <terrn> <terrn> <termlist壬一
<terrn> ::= <nurnber> <list> <variable>
<cornpoundterrn>
<n国nber> ::= <digit> { <digit> } *
<list> ::= <e1ernentlist>
<e1e踊 nt1ist> ::= <term> <terrn> I <terrn>

<terrn> <e1回nent1ist>
<cornpoundterrn> ::= <n国胆> <terrn1ist>
<variab1e> ::= <capita11etter> <n出陣>

<rule> ::= <relational-expr> ー <subgoal-list>
<subgoal~list> ::= <subgoa1> <subgoal>
<subgoal-list>
<subgoa1> ::= <relationa1-expr> <cornparison>
<cornparison> ::= <variable> <cornpare> <variable>

くarithrnetic><cornoare> <arithn田tic>
<arithrnetic> ::= <rnu1t-exp> <adding> <mult-exp>
<rnult-exp>
<rnult-exp> ::= <nurnber>

<arithn担tic>
〉qd
n

・
1vd

司ムロ&ー
+し司よu

m

〈〉
e

唱よh
u
 a

l

p
訂

h

v

b
〈
a

l

r

a

v

〈

<cornpare> ::= i s¥< > <=
>=
<adding> : : = +
<rnultiplyi珂> ::= /

<digit> ::= 0 2 8 9
<srnall-letter> ::= a b x y z
<capital-letter> ::= A B X Y Z

Fig.2 The Backus Nour From for Prolog

93

Hiroyoshi BABA， Ichiro SUGIOKA

nonterminal symbols. The start symbol is also categorized in nonterminal. Fig.2 shows the BNF of

Prolog.

We should keep in mind not to confuse between several terminal symbols that peculiar to each

language and the meta symbols for BNF. Especially， the symbols， a vertical bar and left.and.right

brackets. In BNF， a vertical bar expresses the alternation in the body parts of the each sentences

while in Prolog， that is a division in the list. The other meta symbols in BNF and their intentions

are as follows : .. :: =." (production)，" (..)" (nont巴rminalsymbols)，" 1...1・..(repetition)， " [… J"
(possible to omit). In the rules， we can

easily find out all the symbols except

meta symbols and the name surrounded

by " () .. are the terminal symbols that

appear at each leaves in the tree.

Fig.3 and Fig.4 are the hierarchical

structures of Prolog's BNF rules. In a

bottom-up parsing， the analysis starts

from the terminal symbols and traverses

inside the tree from downside to upside

along branches， then， checks whether can

arrive at the root of nonterminal， "clause"

or not. If it succeed， the Prolog source

sentences are proved as syntactic okay.

On the other， a top-down parsing begins

with the root then passes down toward

each leaf， terminal symbol. We designed a

bottom-up parsing for syntax analysis at

this time with the LISP-like lists. Next， we

explain the algorithms how to make the

LISP-like lists from source codes.

Fig.5 is an example of ordinary syntax

tree. In every programming language，. its

sentence is able to be drawn to such as a

tree once the context free grammars of

the language has been established.

<clause>
s戸戸、、事

<fact> . <rule>

<f8ct>

占
<relatlonal-expr>

+
<name> (<termlist>)

derf〈ニご?deMtsb

<ter町、〉

/¥¥、

<name> (<termllat>)

<ter何百> . <elementlist>

Flg.3 The tree structure for BNF of Prolog's fact

<rule>

〈閉山nat-expp J 4ubqEaMl副〉
<subgoal> 、‘

<subgoal> • <subgoal-1I8t>

〈…~七エニ:--1

<srlthmetic> <compare> <arlthm剖 Ic

幅イ子者ち¥>= …b
<mult-ex酔〈ad?にmult叫〉〈mulMxp〉

<mu比-exp> +
〆-----¥<vartsble><multlplら><arithme

<number> <varlable> /、、
tlc>

* /

Fig.4 The tree structure for BNF of Prolog's rule

94

Semantic Analysis of a Declarative Language Based on Knowledge Representation

Obviously, all the leaves of the tree keep terminal symbols while the nodes are occupied with non-

terminal ones.

member (X, [Y I Ys I) m ember (X, Ys), X is X + 1

<clause>

<fule::-"---. ---1- -.
<relational-expr> • <subgoal-llst>
.//~.- ___ 1------

<narfle> (<term list> > <subgoal>, <subgoal-list>

me~b:v1~liSt> ~ <~gOal>
<term>' / <relational-expr> \ I <tefm> / / ~ <comparison>

<variable> I.lt <name> «te~list> >/;
/ ~'i~ ~

X [<elementlist>] member \
~/~ X, Ys

<term> I <term>
/ / <arithmetic>

<variable> <variable> ~ <compare>

/ I </t-exp> /arithmetiC>

Y Ys <variable> iS~m';ill::exp>
/ <mult-exp> / <numJer>

X <vari~ <adding> \
/ / <digit>

X + /
1

Fig.5 The traditional BNF system tree for Prolog's rule

4.2 Semantic Analysis

Semantic sanalysis can be divided into two components, analyzing static semantics and dynamic

semantics. We originally designed the structure of intermediate codes from the BNF tree of source

programs. The LISP-like list structure is useful to detect the nature of attributes of the each ter­

minal symbol and helps to convert the codes into the mechanism of dynamic semantic analysis.

4.2.1 Static Semantic AnalYSis

The main part of analyzing static semantics of Prolog relies the fundamental concepts on attri-

bute grammars. Namely, the system achieves its purpose, checks whether the declaration 'of terms

and their usages have been matching correctly, by attributes.

4.2.1.1 LISP-like Lists

The essence of LISP-like lists is simple: reflecting the depth from the root in BNF tree of each

terminal symbol to the depth of the nest in the list. In Fig.6, each number from 1 to 5 intends the

depth of terminal symbols. Now we ignore the configuration of nonterminal symbols. As shown in

Fig.6, for example, " . " is in the depth" 1", the name "member", " (" and") " are located in the

95

Hiroyoshi BABA， Ichiro SUGIOKA

First， we changed all the symbols them

depth '2'， and the syinbols " [" and " I " are in the ' 4¥Then， Fig.7 may be able to construct.

member (X • [X I Xs])
selves， except the names which have

alphabetical notation initially as "mem.

b巴rぺintotheir English notations such as

from .. I .. to " bar へItis not convenient
to keep their symbolic notations still in.

side a nested list. Also， we must avoid

confusing between the parentheses for

signs of the beginning and the end of list

and "left parenthesis" or "right parenth.

" eSls

Then， we arranged the terminal sym.

bols horizontally at each nest from the

left to right in order， reflected the posi.

tion in BNF tree. the new tree drawn at

the boUom in Fig.7 shows the nesting

situation of each terminal symbol by

hierarchical structure. This is not the tree

that simplycome from the BNF rules.

This is the original. All the nonterminal

symbols are hidden in the rectangles in

the tree. Apparently， every leaf of th~

tree has been occupied by terminal sym.

<fa石ア¥・ +ー 1
/ー<relatjonal-expf>

____ t、ご~一一
，:::~am~'::_1I (<ter叩ist>) ~ー・ 2

ber ‘/卜¥........_-ー【
<ter~ 1I 5l:> ;，:s

X" .• <list>

4 一一ー f〈石耳石ET1L __

<terrr、 <terrr、〉
5 -一--t-惨 "X" "XslI

Fig.6 The first approach for the L.L.L. from the BNF tree

(The expression L.L.L. is the abbreviation of LISP.like lists)

member (X. [X I Xs]

8

8

8

h

n

e

同

阿r

e

h
u
 m

e

m

，s・、

，，、
2

1

period)
right 、
paげenthesis

3 ("X" comma
I left right 、

4 l bracket bracket
5 ("X" bar "Xs")

Fig.7 The initial L. L. L. structure and its supplemental tree

bol and this tree shows the depth of nesting of the symbols exactJy.

Fig.8 shows more elegant structure compared with the previous pictures in both the.original list

and tree. As it is troublesome and there aren't any serious reasons to keep "left.and right司parenth

esis" separately， we combined them like "parentheses" or "brackets". AIld we have rearranged the

position of these terminal symbols so that nonalphabetical symbols appear at the left.most side in

each nested list. The reason is simple it is easier to control the list processing in LISP by the

functions such as "car" or "caddr". In addition， the tree below LISP.like lists has changed the loca.

tion of its leaves correspondingly.

Fig.8 and Fig.9 are almost final stages for designing the LISP.like lists from BNF tree. The Pro

96

Semantic Analysis of a Declarative Language Based on Knowledge Representation

log sentence in Fig.9 is a rule while the one in Fig.8 a fact. In the latter， the nonalphabetical sym-

bol" :一"appears as the English word " if ". Plus， we finally prepared the list as if it were LISP

programs. The element in the Iist consists of six different nonalphabetical symbols and the English

names depends on the programmer "period" " if '¥" parentheses '¥comma " " brackets

bar " ， and so on. The fact described here is all caused by the Prolog's grammar， and is figured

member (X ， [X I Xs])

(period

(parentheses "m自mb自r"))

(comma "X")

(brackets)
(bar

"Xs"

Fig.8 The goal of L. L. L. and its supplemental tree

member (X ， [Y I Ys 1) mem ber (X ， Ys) .

(period
(if (parentheses "member"

(comma "X"

(brackets
(bar "Y" “Ys"))))

(parentheses "member"

(comma "X" "Ys"))))

"yn nYsrl

Fig.9 An another example of the L. L. L. using Prolog's rule

97

Hiroyoshi BABA， Ichiro SUGIOKA

out by the symbolic illlalyzing with LISP-Iike Iists and their supplemental tree structure.

4.2.1.2 Attribute G rammars

The attribute grammar is proposed to describe the semantics of context free grammars (CFG). In

Prolog. we found out the several rules of semantic checker that are out of the range of CFG. other.

wise BNF rules of Prolog. Remark the sequential ordering of nonalphabetical terminal symbols

shown in the supplemental tree. and we might notice the priorities of the appearance from a root

of the tree. First. the symbol "period " must be appeared. Second. if the specific sentence of Prolog

is a rule. the symbol " if " should be followed. If the sentence is just a fact. " if " never show up

We show the order vertically from up to down with an arrow in Fig目10.

Even though the rule shown in Fig.10. only the

symbol " comma " is exception that is no rules for

the " comma " regarding the order of its appearance.

For instance. sometimes the " comma " is followed by

the " parentheses " and the other sometimes the vice

versa. The reason of such a strange behavior in the "

comma is rather serious and important it is an ex

plicit fact that the different kinds of " comma " have

been existing. The one plays a role of dividing be-

(period I element1)

if element1 element2

(parentheses element1 element2)

(comma element1 element2)

(brackets element1

bar element1 element2

Fig.10 The sequential priority of the appear-

ance of symbols

tween the variables contained by the specific one predicate. and the other does between predicates

themselves that in the body part of the rule sentence in Prolog. Therefore. we may not make the "

comma " join to such an attribute rule directly without consideration unless we introduce the spe.

cial treatm巴ntonly for the " comma .¥like as defining the two different commas. "the meta comma"

and "the ordinary comma".

In addition to that. we checks the attributes from another point of view with the LISP-like lists

At first. each nonalphabetical symbol has the datermined number of arguments. As an example. the

"period" attracts one argument while "parentheses" and "comma" must have two. Secondly. the dec

laration of arguments in the different Iist is also a target to be examined as follows :

(rule 1)

(parentheses argumentl argument2

一)The argument1 must be the name of predicate. not be variables

(rule 2)

(operator argument1 argument2)

一)Both the argumentl and argument2 must not be the name

98

Semantic Analysis of a Declarative Language Based on Knowledge Representation

They should be arithmetical operands.

In th巴 rule2，the meaning of "operator" is the mathematical symbols such as "十'¥"一"and so

forth. The most of thεtime in Prolog， it is obvious that those arguments should be a integer num

ber. Fig.ll shows an example of the attribute checking.

The original Prolog code of the supplemental tree in Fig.ll as follows :

fib (N，F) :-Nl is N - 1， Nl >= 0，

N2 is N - 2， N2 > = 0，

fib (Nl，Fl)， fib (N2，F2)， F is Fl + F2.

The bold or plain text rectangles that surround some sets of leaves， or some of the subtrees，

shows the necessity of the rule2 ("minus N 1" or " plus Fl F2" etc.) and the unpredicatability of

the appearance the "comma".

All the arguments of arithmetical operators such as "minus" or "plus" must be integers or vari.

ables. Also， as the rulel， the first argument of the "parentheses" must be the name of the specific

predicate something like "fib"ー

4.2.2 Dynamic Semantic Analysis

The purpose of a trial to analyze the Pro.

log language's semantics dynamically is to

examine the nondeterministic characteris

tics behind its syntax as a background. As

technological problems， we had to rely our

original idea of analysis on a practical tool

the ART. The fundamental objects in im.

plementing with ART is to construct some

kinds of expert systems. More specifically，

the ART has a peculiar feather called view.

points that is able to realize the temporal

and hypothetical reasoning simultaneously.

Fig.11 The supplemental tree for an attribute grammer

Fortunately， some theoretical approaches toward knowledge representation have implied the posi

tive flexibility in the tool in the field of mono一directiveinferences such as time stream and in that

of assumption-based inferences such as hypothetical-based reasoning.

The function of viewpoints in the ART is to help updating a set of the structured facts. These

flexible facts is a¥so stored in the fact database in the system. Additionally， it is possible to modify

such facts dynamically and drastically with transiting inferences. Concretely， viewpoints multi-

99

Hiroyoshi BABA， Ichiro SUGIOKA

plies the fact database constructs a fact network where facts can easily be connected and taken

apart. Originally， these are two types of viewpoints called time-based and hypothetical-based， but

we have put some essences to accomplish the multi-universe reasoning， too.

4.2.2.1 Temporal and Multi副universeViewpoint

At first， we describe the usage of viewpoint without the hypothetical one， only the concept of

jOlillilg both temporal and multi-universal transition. Fig.12 explains visually the changing the

situation under the two different criteria in an example of the Prolog rule sentence. The above pic

ture in Fig.12 shows that the head or the left一handside of the rule is in the standard "Time-l &

Universe-l"， then the body or the right-hand side is in the "Time-2 & Universe-l" at the top-level

or at the most outside's standpoint. We can notice that the body part has been nested by the con

dition "Time-l & Universe-2

This definition is not so hard to under

stand : the transition from the left-hand to

the right-hand might be recognized as

time passing， and in thεbody part， it

might be necessary to、 restandardizeat

the universal point of view in order to re-

set a time. That's why the inside situation

in the left-hand is in "Time-l that means

the time resetting & Universe-2'¥

On the other hand， the below chart in

Fig.l1 shows the same concept by the

LISP-like lists of the Prolog rule. In this

case， the supplemental tree for the lists is

omitted. The upper nested list starts by

no_double (Xs， Ys) no_doubles Xs， [1 ， Ys) .

1
-
e
-
a
M
-
r
-
e
-
M
u
-
-

l

t

l

n
一e
d
s

U
一一回

Y

一U
旬

1
-
o

直
一

d
-
f

明

H
-
O
L£

刊
一
明
、
，

Time-2 Universe-1
E・Ime-lUniverse-~ 国.
"no doubles"
"Xs" "[]" "Ys"

(period (if heses no double

(comma Xs Ys))

(parentheses no doubles

(comma xs

(comma
(bracket nil) Ys)))

))

Fig.12 How lo apply the temporal and multi-universe view-

pOlnts

"parentheses no_doubl巴"is analogy of the head of the rule while the lower sublist corresponds the

body so that it is in the both "Time-2 & Universe-l" and "Time-l & Universe-2'¥

Fig.13 describes the different situation. This is also the rule sentence in Prolog， but the body

contains two independent predicates. Those predicates are joined by a comma so that we introduce

the temporal transition from before to after comma. This chart is quite understandable that the

first predicate in the left令handside， "member" in the situation defined "Time-l & Universe-2"， that

show the time criterion at this point in the nested level. Then， the second predicate exists in the

world "Time-2 & Universe-2" where the one time interval from the first have been passed

ハり(

l

Semantic Analysis of a Declarative Language Based on Knowledge Representation

no_doubles ([X I Xs]， Ans， Ys) :-mem回r(X，Ans)
n o_doubles (X， Ans ， Ys)

Tlme-1 Universe-1 Timeー2 Untverse-1

"no_doubles" I -・' lm9-2 UnlversEト2
"no doubles"

(X I xs]" "Ans" "Ys" "Ys"

Fig.13 An second example of the two viewpoints

4.2.2.2 Hypothesis-based Viewpoint

The hypothesis-based viewpoint is called only when the heads of plural sentences of the rule

happen to coincide. In Fig.14， the heads of both rule sentences are the same : the name of predi-

cate， the number of arguments those predicates contain， the contents of the three argument. This is

a real don't-know nondeterministic situation. At this point， we have no keys or priorities which

body should be selected at first. Therefore， we labeled the both alternatives from the upper

"Hypothesis-1" and "Hypothesis-2" respectively. Other determination for setting conditions at each

predicate is all followed by the rule described at the previous section 4.2.2.1

no_doubles ([X I Xs 1， Ans ， Ys) :-member (X， Ans) ，
間一d山 bles (X ， Ans ， Ys)

no_d印刷9S([X I Xs 1 ' Ans ， Ys) :-nonmember (X， Ans) ，
叩，_d凹 bles(X， [X I Ans 1 ' Ys) .

HYPOTHESIS-1 Time-2 Universeイ
ITime-1 Universe-2 1I1me 1 ~2 Unlv唱目@ベ

Time-1 Universe-1 "me町・ 1+1 "no_d山 b闘"
'焚， "Ans"

"no doubles"

"[XIXsl阿川nsl!"VSII HYPOTHESIS-2 Time-2 Univers渇-1
l1ime-1 UniVe陪e-2 1ime[一 -2Universe-
可100fT四n帥ド..r1......1 0 dou制闘"
明，"Ans" I -lX""[X I Ans 1" "Ys'

Fig.14 A fundamental concept of the hypothetical viewpoint

As a result of these definition， the temporal and multi-universal position are determined all the

predicates， the head and the body， the fact and the rule， but whether the hypothetical reasoning is

101

Hiroyoshi BABA， Ichiro SUGIOKA

no_doubles([XIXs]，Ans，Ys) :-membe r(X，Ans)，

no_doubles(X，Ans，Ys)
no_doubles((XIXs]，Ans，Ys) :-nonme mber(X，Ans)，

円。，_doubles(X，(xIAns] ，Ys).

(period(if

(comma (bracket (bar X Xs))

(comma Ans Ys)))

s

n

A
 x

a

m

m

o

c

e

h
u
 m

e

m

e

s

e

h

n

e

a

門∞
(paie而扇面可証;己記bles

(comma X (comma Ans Ys)))

(period (if

(comma (bracket (bar X Xs))

(comma Ans Ys)))

戸元(…aXAns))
au e

h
u

、、，，

H

u

c

u

o

n

A

U

'

a

A

H

一
e

(

n

v

b

a

n

、，

円

前

首

沼

町

b

s

k

{

(

e
一

ι
a

m
旧

m

n
H

ヤ
・
内
川

間

m
町

a
o
c

p
c
(

(

(

) Ys))))

))

Fig.15 An example clauses for applying three viewpoints

no_doubles([XIXs]，Ans，Ys)ーmembe r(X，Ans)，
no_doubl田 (X，Ans，Ys)

no_doubles([XIXs].Ans，Ys) :. nonme mber(X，Ans)，
no _ doubles(XがIAns] ，Ys)

(comma (bracket (bar X Xs))

(comma AnsYs)))

(comrna (bracket (bar X Xs))
(comma AnsYs)))

Fig.16 How to apply the two viewpoints to the

L.L.L

no_doubles(lXIXs]，Ans，Ys) :-m4mbe r(X，An司，
I I no_doub1es(X，Ans，Ys)

no_doubles([XIXs]，A惜，Y司自 noト mber(X，An司，
no_doubl曲(X，[X]Ans] ，Ys)

Fig.17 How to apply three viewpoints to the

L.L.L

102

Semantic Analysis of a Declarative Language Based on Knowledge Representation

required or not is quite depends on the Prolog source code. It is because some Prolog programs do

not need a don't-know nondeterministic processing， just enough to process procedurally.

This time， we describe the relationship among these different viewpoints from standpoints of the

LISP-like list. Fig.15 is an instance of the two Prolog rules and their conversion into the lists. All

the rectangles appeared on the lists. And we show another two independent lists in Fig.16 and

Fig.17. Fig.16 presents the relationship between the temporal and multi-universal viewpoints. 1n

each sentence of Prolog， the first argumenu of the "comma" list is regarded in the situation

"Universe-2 & Time-l"， and the second one is in "Universe-2 & Time-2'¥Because of the "comma"

list itself has been regarded as the second argument of the list "if". The depth of the "comma" is

incremented from the top-Ievel， that is why the level of "universe" is 2. AIso， the time is counted

in each transition of the situation， so the level of "time" is incremented by passing from the first

argument of the list "comma" to the next.

Fig.17 describes the relationship when the hypothesis-based viewpoint has been also consi-

dered. Both of the first argument of the list "if" in the two Prolog sentence are coincided exactly

(Fig.15)， so that the second arguments of the "if" list are determined as "Hypothesis-l" and

"Hypothesis-2" from up to down， respectively. 1n addition， the first arguments of the list "if" are

both in "Universe-l (that means they are in the top.level) & Time-l" and the second argument of

the "if" list are considered as "U niverseー1& Time-2" in the each sentence. These definitions stand

along at each sentence. Remember， the hypothesis viewpoints are not always defined in Prolog

programs

Finally， we reexamine the methodology of time， hypothesis， and universe viewpoints by using

the tree structure (Fig.18 and Fig.19). These are not the BNF syntax tree but the supplemental

tree for the LISP-like lists. Fig.18 shows how to apply both concepts of time and universe to the

tree. The flow of time can be drawn as the horizontal arrow while the nesting of universe as the

vertical arrow. For example， the node "par巴nthesesnodoubles" where the first argument of "if" is

in "T-l" (Time-l)， and the node "comma" that is located the right side of the "parentheses" node，

we can also say this is the second argument of the list "if" by observing the tree horizontally at

the third level from the root， is in the position "T .2" (Time.2). These time .flowing are both in the

depth "Universe-l". AIso， we can find out another time flowing on the "Universe-2" where all

nodes are the children of "Universe.l". Be careful that there are not any realtions among the time

points in the different universes. Once we traverse the tree toward its leaves， the time arrange

ment in the previous depth might be all void. We must initialize the time interval again at that up

dated depth. Fig.18 is presenting another aspect as regards these viewpoints as a two-dimensional

103

Hiroyoshi BABA， Ichiro SUGIOKA

space.

On the other hand， Fig.19 is irnplernented the concept hypothetical苧basedviewpoint. This tree

intends the foliowing discovery : if the structure of the subtree that is recognized as the first argu-

rnent of the "if" list is exactly the sarne as that in the other tree， the w hole structure of the next

subtree as the second argurnent of the "if" list should be regarded as the one of hypotheses. The

no_doubles([X I Xs 1 ，Ans， Ys) :-member (X， Ans) ，
no_double s (X， Ans ， Ys)

ーTime
G豆~

。
的
』

ω〉一
c
コ
Flg.18 Two-dimentional relation between time and universe

no_doubles([X I Xs 1， Ans， Ys) :ー member(X， Ans) ，
no cb.創e 5 (X ， Ans ， Ys)

G豆量〉
一① if

• Time

。
e
Q)
〉

c
コ
Fig.19

Hypothesis圃 1

Three-dimentional relation among time， universe and hypothisis

104

Semantic Analysis of a Declarative Language Based on Knowledge Representation

subtree surrounded by a bold polygon is in the situation "Hypothesis-l". And the "Hypothesis-2"

condition must exist in the part of (or the subtree of) some different trees. Each Prolog sentence

either a fact or a rule has such a LISP-like list's tree， and if we try to pile the plural trees one

another， we might discover the fact such that some subtrees located on the first argument of the

"if" list have coincided perfectly and these on the second argument are consist of the different

structures. The latter must be defined as hypotheses. Therefore， as the final conclusion of the

estimation concerned with multi viewpoints， we have found out that the tree independent view-

points these are time， universe and hypothesis are developed to form a three-dimentional world of

the tree. That is， time viewpoint is spread out horizontally， the universe spread out vertically， and

the hypothesis viewpoint grown toward the abovεby piling on the hypotheses

5. Conclusion

As the final remark of this paper， we conclude the research as follows

We proposed an algorithm， such as how to construct the LISP-like list from a target language

Prolog， that asserts the dynamics of semantic analysis as the central part of compliers for design

ing a declarative language processor.

When we design a new programming language， once we determine the precious grammar， its

peculiar context free grammar， we can adopt the concepts of our algorithm. Of course， the reserved

words of each independent language are peculiar. But imaging the analogies from the idea in this

paper is not so hard. We believe it might be one of the most optimal method that to analyze the

language， especially， a nondeterministic language， symbolically such as using dynamic and simple

data structures in LISP

We did rather stress on the relationship between the field of "semantic analyzer" and that of

"knowledge representation'¥

The validities of applying reasoning deal with the concept of time，hypothesis and multi-universe

to the processing and the result of the symbolic analysis of a nondeterministic calculus model via

Prolog are gotten in this research. But， these are omitted on account of limited space unavoidably

Moreover， it is much to be regretted that there are still unsolved matters for the some phrase in a

compiler such as error consulting

105

Hiroyoshi BABA， Ichiro SUGIOKA

References

[1[McCarthy， J.， et al. : Some Philosophical Problems from the Standpoint of Artificial Intelligence， Machine In

telligence， Vo1.4， pp.463.502， 1969

[2[Sandewell， E. An Approach to the Frame Problem and its Implementation， Machine Intelligence， Vol. 7，

pp.195.204，1972

[31 Reiter， R. : A Logic for Default Reasoning， Artificial Intelligence， Vo1.13， pp.81.132， 1980

[41 McDermott， D. V.， Doyle， J.， : Nonmonotonic Logic 1， Artificial Intelligence， Vo1.13， pp.41.72， 1980.

[51 McDermott， D. V. : A Temporal Logic for Reasoning About Processes and Plans， Cognitive Science， Vo1.6，

pp.101.155， 1982

[61 Allen， J. F. : Towards a General Theory of Action and Time， Artificial Intelligence， Vol.23

[71 ART Refernce Manual， Inference Corp

ART Programming Tutorial， Inference Corp.

106

