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Abstract 

Iron overload is an excessive accumulation of iron in the body and can be either inherited or 

acquired through chronic blood transfusions. Assessment of hepatic iron concentration (HIC) is 

important in the management and monitoring of iron overload. Despite liver biopsy being the 

gold standard method for assessing HIC, it is invasive, painful, unsuitable for repeated 

measurements, and carries the risk of bleeding and infection. Magnetic Resonance Imaging 

(MRI) methods based on transverse relaxation rate (R2*) have emerged as a non-invasive 

alternative to liver biopsy for assessing HIC. Multispectral fat-water-R2* modeling techniques, 

such as the non-linear square (NLSQ) fitting and autoregressive moving average (ARMA) 

models, have been proposed to provide more accurate assessments of iron overload by 

accounting for the presence of fat, which can otherwise confound R2*-based HIC measurements 

in conditions of co-existing iron overload and steatosis. However, the R2* estimation by these 

multispectral models has not been systematically investigated for various acquisition methods 

like the multiecho gradient echo (GRE) and ultrashort echo time (UTE) across the full clinically 

relevant range of HICs. To address this challenge, a Monte Carlo-based iron overload model 

based on true iron morphometry and histological data was constructed, and MRI signals were 

synthesized at 1.5 T and 3 T field strengths. This study compared the accuracy and precision of 

multispectral NLSQ and ARMA models against the monoexponential model and published in 

vivo R2*-HIC calibrations in estimating R2*. The results showed that, for GRE acquisitions, 

ARMA and NLSQ models produced higher slopes compared to the monoexponential model and 

published in vivo R2*-HIC calibrations. However, for UTE acquisitions for shorter echo spacing 

(≤ 0.5 ms) and longer maximum echo time, TEmax (≥ 6 ms), both multispectral and 

monoexponential signal models produced similar R2*-HIC slopes and precision values across 
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the full clinical spectrum of HICs at both 1.5 T and 3 T. The results from the simulation studies 

were validated using phantoms and patient data. Future work should investigate the performance 

of multispectral models by simulating liver models in coexisting conditions of iron overload and 

steatosis to investigate simultaneous and accurate quantification of both R2* and fat.  
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Chapter 1 – Introduction 

 

Significance 

Iron overload is a medical condition characterized by excessive accumulation of iron in the body, 

which can result from inherited genetic mutations or from treatments for certain diseases such as 

sickle cell anemia, beta-thalassemia, or cancer.1,2 Iron overload can cause various health 

problems, including liver disease, cardiomyopathy, joint pain, diabetes, and skin 

hyperpigmentation. Since the liver plays a key role in regulating iron homeostasis, it is often the 

organ most affected by iron overload, and excess iron in the liver can lead to chronic liver 

disease, cirrhosis, fibrosis, and hepatocellular carcinoma.3 

Liver iron stores increase proportionally with total body iron.4 Therefore, assessing the 

amount of liver iron is essential for effective treatment and management of iron overload. 

Traditionally, liver biopsy has been used to measure the amount of iron in the liver, but this 

procedure is invasive and carries risks of complications such as infection and bleeding. In recent 

years, magnetic resonance imaging (MRI) techniques based on effective transverse relaxation 

rate (R2*) have emerged as a non-invasive alternative to liver biopsy for estimating hepatic iron 

concentration (HIC) using clinically accepted R2* vs biopsy HIC calibration curves.5-7 Previous 

in vivo calibration studies have utilized multiecho gradient echo (GRE) imaging and 

monoexponential fitting model to estimate R2*.5,6 However, in the presence of concomitant iron 

and fat in the liver, the MRI signals do not follow a pure monoexponential decay due to 

oscillations induced by the fat signal.8 This limits the accuracy of existing MRI techniques that 

use monoexponential fitting in estimating HIC accurately since fat accumulation is a common 

condition, and patients suspected of iron overload may have presence of hepatic fat as well. To 

address this challenge, researchers have developed multispectral fat-water-R2* modeling 
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techniques such as non-linear square (NLSQ) fitting and autoregressive moving average 

(ARMA) that can account for the confounding effects of both iron and fat on MRI signals. Both 

NLSQ and ARMA signal models have been validated to perform well in mild and moderate iron 

overload, however they have been shown to fail in high iron overload conditions due to rapid 

signal decay that cannot be adequately captured using the current GRE acquisitions with TE1 ~1 

ms.8,9 Alternatively, multiecho ultrashort echo time (UTE) imaging, with TE1 ~0.1 ms, has been 

recently shown to improve the accuracy and precision of R2* estimation over a wider clinical 

range of HICs than conventional GRE acquisitions.10,11 Multispectral models have not yet been 

systematically investigated for UTE acquisitions and evaluated for accuracy and precision across 

the entire range of HICs. Kee et al. used NLSQ model for R2* quantification using a 3D UTE 

cones acquisition at 3T in one study, but this study only used mild to moderate iron overload 

patients.12 In this project, we aim to perform a thorough and systematic investigation of 

multispectral models in estimating R2* as well as FF under multiple GRE and UTE acquisitions 

throughout the full clinically relevant range of HIC. However, evaluating these models using 

multiple MRI acquisitions in phantoms or patients can be costly and challenging. Monte Carlo 

simulations, on the other hand, have been demonstrated in previous studies to produce realistic 

virtual liver iron overload models and synthesize MRI signals resembling in vivo behavior.13-15 

Therefore, for this study, we propose to construct Monte Carlo-based virtual liver models 

with varying iron overload conditions, synthesize MRI signals for different GRE and UTE 

acquisitions for varying sets of echo spacings (∆TE) and maximum echo time (TEmax) at 

magnetic field strengths of 1.5 T and 3 T, and estimate R2* using multispectral fat-water-R2* 

models. The goal of this study is to assess the accuracy and precision of multispectral fat-water-

R2* models in estimating R2* and FF under different GRE and UTE acquisitions and to validate 
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their results against reference monoexponential and published R2*-HIC calibrations. We also 

aim to validate the results from our simulation study using MRI images of phantoms and patients 

under multiple iron overload conditions. We believe that our study will be beneficial in the 

investigation and validation of quantitative MRI approaches for evaluation of iron overload and 

will contribute to the development of MRI as a non-invasive diagnostic tool for iron overload 

assessments. 

Objectives 

The main objectives of our study are to construct virtual liver models with varying HICs using 

Monte Carlo simulations for evaluating the performances of multispectral models for various 

GRE and UTE acquisitions and to validate the results using phantom and in vivo MRI data. The 

following are the specific aims of our research: 

Aim 1: Develop Monte Carlo-based iron overload model and simulate MRI signals to evaluate 

performance of fat-water-R2* signal models. 

Aim 2: Investigate and validate the results derived from simulation study, by utilizing MRI 

images of both phantoms and patients. 
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Outline of the Thesis 

 

Figure 1. An outline of the thesis. 

 

The remainder of thesis is organized as follows: 

Chapter 2 discusses about iron homeostasis in the body, pathophysiology of iron overload, 

treatment and management, and current available methods for assessment. Additionally, MRI 

principles are introduced, and the chapter describes how MRI techniques are utilized to assess 

iron overload, including the limitations of current MRI acquisitions and signal models. 

Chapter 3 outlines the development and implementation of a Monte-Carlo based iron overload 

model, which generates MRI signals. The chapter also describes the implementation of different 

signal models for predicting R2*. 
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Chapter 4 describes the methodology and results of a systematic comparison between the 

accuracy and precison of R2* and FF estimated by the different signal models using the Monte 

Carlo based iron overload simulations. 

Chapter 5 describes the methodology and results of a validation approach of the simulation 

results, using phantoms and patients. 

Chapter 6 concludes the thesis by discussing the main findings of the simulations, phantom, and 

patient studies, and presents some prospects for future research.  
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Chapter 2 - Literature Review 

 

Iron Homeostasis and Overload 

Iron overload is the excessive accumulation of iron in the body. Because the liver plays a key 

role in maintaining iron homeostasis, it is the organ most commonly impacted by iron overload. 

The heart and endocrine organs like pituitary gland, pancreas, gonads, etc. are among the other 

organs that can be affected by iron overload.1,4 Excess iron in the liver can progress to chronic 

liver disease, cirrhosis, fibrosis, and, eventually, liver failure.3 Other possible manifestations of 

iron overload are cardiomyopathy, arthropathy, cancers, diabetes, skin hyperpigmentation, 

etc.1,16 It is estimated that 16 million Americans suffer from some form of iron overload.1 Iron 

overload is more common in Europe, Australia, and other western countries where there are 

larger populations of people of Celtic origin.1 Further, white Americans are more likely to 

develop iron overload than black Americans.1 Men have been discovered to have a higher risk of 

developing iron overload than women due to the fact that women lose iron from blood during 

their monthly menstrual cycle.1 Patients of iron overload are often asymptomatic until they reach 

adulthood, but extreme fatigue, lethargy, and arthralgias are the most prevalent symptoms.  

The human body contains approximately 50 mg of iron per kg for men and 40 mg of iron 

per kg for women.17 Most of the iron in the body is bound to hemoglobin in red blood cells and 

the remainder is stored in different forms such as ferritin, hemosiderin, and transferrin.16-18 

Dietary iron is absorbed in the duodenum and transported by ferroportin to the bloodstream, 

where it binds to transferrin.19 Transferrin then transports the iron to the bone marrow for 

erythropoiesis and recycling, as well as to the liver and other organs for storage. Ferritin is a 

protein that stores iron in a stable form inside a hollow cage-like structure to prevent the 

oxidation of free iron and the production of harmful reactive oxygen species. When ferritin is 
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saturated with iron, excess iron can be stored in hemosiderin. Furthermore, iron can be excreted 

out by the liver via bile and be transported into the small intestine, where it can undergo 

enterohepatic circulation, or can be eliminated from the body via feces.1,3 The regulation of iron 

homeostasis in the body is controlled by hepcidin, a protein produced by the liver. Hepcidin 

reduces the number of ferroportin transporters in enterocyte cell membranes, lowering the 

amount of iron absorbed from food.18 Inflammatory cytokines, lipopolysaccharides, and the HFe 

protein stimulate hepcidin production, which also reduces the number of ferroportins in liver and 

spleen cell membranes to inhibit the release of iron into the bloodstream.20 

Iron overload is of two types: primary and secondary. Primary iron overload, also known 

as hereditary hemochromatosis, is an inherited genetic condition of a defective HFe gene.16 HFe 

gene, located on the short arm of chromosome 6, is responsible for the production of HFe 

proteins involved in sensing and regulating iron levels in the body and determining iron storage.1 

Secondary hemochromatosis develops as a result of chronic blood transfusions used to treat 

hematologic diseases such as sickle cell disease, beta-thalassemia or as part of cancer 

treatment.8,21 When there is excessive amount of red blood cells (RBCs) in the blood, the body 

absorbs excess iron by all the hemoglobin in the RBCs.1 Or when RBCs are fragile, like in the 

case of anemia, they die more easily, and when iron is recycled, it results in iron deposition in 

the body.1 Secondary hemochromatosis is also associated with the presence of underlying 

diseases such as thalassemia and spherocytosis.21 

A normal hepatic iron concentration (HIC) is considered approximately 0.2-2 milligrams 

iron per gram of dry weight of liver.17,22 Because our body lacks an active control mechanism to 

regulate iron levels, except for the passive elimination via urine and other waste products and 

menstrual cycles in women, excess iron caused by all the different types of hemochromatosis is 
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initially deposited in ferritin and hemosiderin.21 When ferritin and hemosiderin get saturated, the 

free iron begins to deposit in various organs, especially liver- the main organ for iron storage. 

Excess iron can deposit within hepatocytes, sinusoidal and portal macrophages, sinusoidal and 

portal endothelial cells, and biliary (ductal) cells, depending on the type of iron overload; the 

excess iron from intestinal absorption comes into the liver lobules through the portal vein and 

deposits within hepatocytes as fine granules.23 Excess iron can also be deposited in the Kupffer 

cells and portal macrophages, or in all the above cells causing massive iron overloading. 

Functional iron of the body, located in hemoglobin, myoglobin, iron-containing enzymes, and 

storage proteins ferritin and hemosiderin, remains unaffected and efficient, but the excess iron 

deposition is toxic and causes a variety of problems.21 

Treatment and Management 

Treatment and management of iron overload depends on the type and severity of the disease. For 

primary hemochromatosis, the go-to treatment method is phlebotomy.1,17 Patients must have 500 

mL blood drawn out periodically for the rest of their lives, progressively less frequently as iron 

concentrations return to normal. The aim is to reduce red blood cells, or hemoglobin, from the 

blood and lower iron level.17 Secondary hemochromatosis patients, on the other hand, cannot be 

treated with phlebotomy and must undergo chelation therapy, which is the administration of 

chelation agents to remove metals (such as iron) from the body.24 Deferasirox, deferiprone, and 

deferoxamine are the most commonly used chelation agents for iron overload.17 If the organs 

have already been severely affected, like in fibrosis and cirrhosis, the only treatment method is 

organ transplantation, which comes with its own set of risks.1 However, if iron overload is 

detected early enough, it can be reversed, and iron levels can be returned to normal. 
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Assessment of Hepatic Iron Overload 

Assessment of iron overload is an important part of treatment and management. Further, 

assessment helps in determining the type of iron overload and hence direct the form of therapy 

(phlebotomy and chelation).21 Liver iron stores increase proportionally with total body iron, so 

assessing hepatic iron concentration, abbreviated as HIC, is an effective way of monitoring iron 

overload for treatment management.4 Traditionally, HIC is assessed using liver biopsy, which is 

considered the gold standard for diagnosing liver disease. Liver biopsies can help quantify HIC 

and assess liver damage; however, they are invasive, painful, and have risks of infection and 

bleeding.5,6 As a result, noninvasive techniques for assessing iron overload are currently of great 

interest and are being extensively researched to replace biopsy.   

A noninvasive technique for measuring serum iron, ferritin, or transferrin is an easy and 

fast way to determine HIC. However, serum iron can be influenced by a variety of factors such 

as transfusions, inflammation, alcohol consumption and so on.16 So, despite its simplicity, this 

method is not as reliable as biopsies.16,17 Ultrasound is not able to quantify HIC; however, it can 

assess the extent of organ damage due to iron deposition. Similarly, Computed Tomography 

(CT) can also detect liver iron qualitatively; attenuation, or x-ray absorption, in liver is higher in 

iron overload. However, attenuation in liver is not specific to increase with iron content and can 

further be confounded by the presence of fat and other factors.21 In addition, CT is not useful for 

iron overload assessment because repeated CTs are harmful to our bodies and iron overload 

requires multiple assessments on a regular basis. The most reliable noninvasive technique that 

has gradually started to be accepted for assessment of iron overload is based on magnetic 

susceptibility of tissues. Magnetic susceptibility is a dimensionless quantity that indicates the 

degree of magnetization of a material in response to an applied magnetic field. Liver iron 
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susceptometry utilizes the difference in susceptibility between normal tissue which is 

diamagnetic in comparison to iron overload tissue that is paramagnetic.25 The device that can 

measure iron concentration, based on the difference in magnetic fields generated in response to 

an external magnetic field, is called a superconducting quantum interference device (SQUID) 

and its HIC quantification has been shown to exhibit excellent correlation with HIC determined 

by biopsy. However, because of its high cost and complexity, there are only four of these devices 

in the world and as a result, SQUID has not been used commonly in clinical field.2 Magnetic 

Resonance Imaging (MRI) also utilizes this concept of susceptibility for the assessment of iron 

overload, and over the last decade MRI has emerged as a clinically accepted method for 

quantifying HIC.6,8 

 

MRI based Iron Quantification 

A primary magnet, gradient magnets, radiofrequency (RF) coil, and the computer system make 

up an MRI machine. The magnetic strength of commonly used magnets in clinical MRI 

machines is 1.5 or 3 Tesla (T). Our body is composed of 70% water; in this way hydrogen atoms 

are present in all tissues and organs of the body. These H atoms each consist of one rapidly 

spinning proton in their nucleus, and one electron in orbit. The spin of the proton generates a 

magnetic field, called the magnetic moment. In normal conditions, all the H protons in our body 

are randomly oriented and hence there is no overall magnetic field due to the protons. On the 

other hand, protons orient and precess in the same direction as the magnetic field of the primary 

magnet (longitudinal z-direction) when the body is inside an MRI machine.16 At this point, if the 

RF coil in the MRI sends a wave of RF signals, then the protons get tipped off  and start 

precessing in phase in the transverse direction (xy-direction). According to the famous Lenz law, 
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when a wire is placed inside a rapidly changing magnetic flux, it induces an electrical signal in 

the wire. Similarly, in MRI, due to rapidly changing magnetic flux from the tipping of the 

protons, a signal is generated in the RF coil, which is detected by RF coils in the MRI machine. 

The signal generated does not last forever; the protons in transverse plane go from in-phase to 

out of phase and go back to realigning with the magnetic field in the z direction. This process of 

knocking spins repeatedly until enough signals are detected by the scanners is what produces the 

MRI image of different parts of the body. 

The time taken by the tipped protons to gain 63% of the net equilibrium magnetization is 

called T1 and the process is called T1 relaxation. The time taken for the excited protons in 

transverse plane to lose phase with each other and decay to 37% of the maximum transverse 

magnetization is called T2 and the process is called T2 relaxation. Additionally, the term T2* 

refers to T2 but it also takes into consideration the effects of local magnetic inhomogeneities in 

the field.16 T2 relaxation time varies between tissues and the presence of iron has been linked 

with decreasing T2. If a normal tissue without iron experiences MRI signal decay in a particular 

amount of time, iron causes the MRI signals to decay even faster due to the magnetic field 

inhomogeneities introduced by the iron particles. Therefore, there is an inverse relation between 

time taken by the MRI signals to decay and iron concentrations; higher the iron concentration, 

shorter the T2. Alternately, iron concentration has a direct relationship with R2, which is the 

inverse of T2, and additionally with R2*, which is R2 combined with the effects of local field 

inhomogeneities. Relaxometry-based MRI techniques utilize this concept of relaxation to 

estimate the concentration of iron in different organs.5   

Many studies on patients, phantoms, and simulations have been conducted to demonstrate 

the relationship between HIC and MRI-based T2, T2*, and R2*.5-7 Calibration curves have been 
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proposed to standardize these relationships after performing MRI scans on patients, and 

calculating relaxation values, followed by liver biopsies on the same patients and determining 

HIC. These calibrations have been criticized for differing by the range of iron overload degree 

and the number of patients used. Primarily, these published calibrations have used a 

monoexponential signal model.5,13 This means that they fit the MRI transverse signal decay to a 

monoexponential model and estimate R2*. Water signal follows a monoexponential fashion to 

dampen in the presence of iron only (Figure 2) and thus the monoexponential model can 

accurately estimate R2* in conditions of iron only.5,6 

 

Figure 2. Representative example of a patient with iron overload scanned using MRI. At each 

echo time, the representative ROI is darker due to loss of signal intensity with increasing echo 

time (TE). Signals decays in a monoexponential fashion in the presence of iron only. 
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Hepatic fat accumulation, or steatosis, is a common condition, similar to iron overload. 

Water and fat are the key molecules in the human body. Like R2*, fat fraction (FF) is used as a 

biomarker to measure fat accumulation in the liver. Due to the complexity of triglycerides, their 

hydrogen protons experience a lesser shielding effect to the magnetic field. As a result, hydrogen 

protons in triglycerides resonate slightly slower than those in water , resulting in a frequency 

difference of around 220 Hz at 1.5 T and 440 Hz at 3T between the fat and water peaks.8 When 

two signals have different frequencies, they oscillate in and out of phase, causing oscillations in 

the signal decay. When both iron and fat are present, the MRI signal shows oscillations that 

cannot be accurately described by a monoexponential model.8 Since it's not always immediately 

known if a patient has both fat and iron overload, a model that accounts for the spectral 

complexity of fat and its effects on water signal is more robust and can be standardized for 

quantifying both R2* and FF. 

Multispectral models such as NLSQ and ARMA have been proposed to account for the 

spectral complexity of fat and simultaneously quantify R2* and FF.26,27 NLSQ is a non-linear 

least squares fitting technique that uses published information about the relative frequencies and 

amplitudes of multiple lipid peaks to fit a common R2* for both water and fat peaks.26,28 

Although fat and water peaks have similar R2* behavior, assuming they have the same R2* is 

technically inaccurate. Another signal model called the autoregressive moving average (ARMA) 

fixes this problem by converting the MRI signal to a rational polynomial in the z-domain to 

detect individual fat and water peaks and estimate independent R2* values for each signal.8,27 

There is a void in our understanding for which signal model accurately estimates R2* and FF and 

is the best approach for simultaneous quantification. In this study, we aim to investigate the 

performance of these two signal models. Since the monoexponential model is accurate for iron-
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only conditions, it can serve as a reference model for comparing R2* estimation by NLSQ and 

ARMA.5,6 We will also assess if the models can accurately detect the absence of fat peaks and 

estimate FF as 0% in our purely iron model. 

Many MRI imaging sequences have been developed depending on the resolution of 

images, organs of interest, pathology of diseases, etc. Imaging sequences differ in their use of 

parameters like matrix size, field of view (FOV), storing of information in the k-space, echo 

times, etc. Echo time (TE), in simple terms, is the time taken by magnetic energy or 

radiofrequency (RF) pulse to return to the scanner after interacting with the body. The echo time 

refers to the time when MRI signals are gathered during every scan. The first signal is obtained 

at TE1, and subsequently, signals are collected at each echo, with a certain interval between them 

(ΔTE), until reaching TEmax. TE values differs based on the type of tissue and pathology being 

visualized. TE can be considered as a form of signal sampling that affects the quality of MRI 

images. The conventional MRI acquisition for quantifying iron overload is the Cartesian-based 

2D multiecho gradient echo (GRE) imaging sequence with initial echo time (TE1) at 

approximately 1 ms.11,29 However, this method may not accurately estimate R2* for moderate or 

massive iron overload cases when the signal decay is rapid and most of the signal might be lost 

before being captured by the initial echo of a GRE sequence. In contrast, the multiecho ultrashort 

echo (UTE) acquisition acquires data in a radial pattern, starting from the center of the k-space 

and moving outward. This method allows for a faster data acquisition and better motion 

correction. The use of a shorter TE1 in UTE acquisition that can go as low as 0.1 ms has been 

shown to increase the dynamic range of R2* quantification in some studies.10,11,29  

Previous studies have evaluated NLSQ and ARMA signal models in GRE acquisitions 

and found that both models accurately estimate R2* in mild and moderate iron overload 
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conditions.8,26 However, in high iron overload conditions, these models have been shown to 

produce inaccurate results in some studies.8,9 Additionally, the multispectral models till date have 

only been studied in GRE acquisitions, except for a recent study by Kee et. al that evaluated the 

NLSQ model in UTE acquisition at 3T UTE cones and found better performance compared to 

GRE.12 However, this study was limited to a small cohort of patients with mild and moderate 

iron overload. Therefore, a comprehensive and systematic investigation of the multispectral 

models in different GRE and UTE acquisitions, with varying echo spacings (ΔTE) and maximum 

echo time (TEmax), is necessary to accurately assess the performance of NLSQ and ARMA 

models throughout the full clinically relevant range of HIC in iron overload patients. 
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Chapter 3 - Monte Carlo-based Simulation and Multispectral Fat-Water-R2* Models 

 

Design of Virtual Iron Overload Model and MRI Signal Synthesis 

A Monte Carlo simulation model is a computational method for generating a large number of 

random samples to simulate a real-world complex process or system. Random inputs are 

generated for one aspect of the model, and the model is run repeatedly getting results for a 

variety of different conditions and the results of each simulation run are then aggregated to 

estimate the output of the model as a whole. They have been used in a variety of applications like 

modeling of nanoparticles, organs composition, modeling mechanisms like entropy, etc. Monte 

Carlo simulations can create realistic virtual liver models by utilizing published statistics of 

hepatic iron scale, distribution, and magnetic properties and simulate MRI signals mimicking in 

vivo proton-iron interactions.13 There is a void in our understanding of which fat-water-R2* 

model accurately estimates R2* and FF for the entire clinical range of iron overload. Further, 

since the MRI acquisitions used, especially in terms of echo times, play an important role in the 

performance of the signal models, it is also useful to see which acquisitions work the best for the 

signal models. Evaluation of fat-water models in multiple MRI acquisitions using patients or 

phantom models will be expensive and challenging. This gap can be bridged by simulation 

models that accurately illustrate the influence of varying iron content on MRI signals. 

Monte Carlo model developed by Ghugre et. al for simulating virtual liver models in 

different iron overload conditions has gained credibility and been proven useful in the 

investigation of iron mediated relaxivity behavior.13,31 Gamma Distribution Functions (GDFs) 

were used in this study to derive relations between HIC and size of iron deposits, nearest 

neighbor distance representing interparticle spacing between iron deposits (Figure 3), and 

cellular anisotropy representing different amount of iron deposits in different hepatocytes (Figure 
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4). Using these relations, GDFs for size, nearest neighbor, cellular anisotropy can be generated 

for any iron concentration. This Monte Carlo-based model was reproduced in our study to 

simulate virtual iron overload models mimicking realistic liver geometries. HICs ranging from 1 

to 40 mg/g of dry liver weight were chosen to represent the clinical range of liver iron overload. 

The volume fraction of iron deposits was calculated as a function of HIC (Table 1) and the 

homogenous iron spheres were placed inside the liver volume.  .13,15   

 

Figure 3. Electron micrograph for a representative patient with an iron burden of 16.6 mg/g dry 

tissue weight.15 The image shows iron-filled lysosomes are indicated to demonstrate the size 

range of iron deposits used in simulations. The red lines extending from the iron deposit on the 

right indicate the distance between it and its neighbors, with the nearest neighbor (NN) being the 

shortest of these distances.  
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Figure 4. Representative 2D slice of dimension 80 µm * 80 µm of the virtual iron overload 

model, with indication of the difference in simulated distribution of iron deposition between each 

hepatocyte (cellular anisotropy).13,15  

 

Table 1. Gamma distribution function (GDF) derived relations between HIC and volume 

fraction, size distribution, nearest neighbor, and cellular anisotropy of iron deposits.13  

 

Abbreviations: β, Scale parameter; γ, Shape parameter; RMSE, Root Mean Square Error; R, 

Correlation coefficient; VF, Volume Fraction of spheres (%); HIC, Hepatic Iron Concentration 

(mg/g dry tissue weight); [ ]: Dimensionless 
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MRI signals were simulated by generating an inhomogeneous magnetic field induced by 

the iron deposits and allowing 5000 protons to randomly move across the magnetic field. 

Superposition of phase accrual of all protons as they pass through the induced magnetic field 

gave the corresponding MRI signal. Susceptibility value of 1.6 E-6 m3/kgFe was set equivalent 

to the 4:1 mixture of human hemosiderin and ferritin.13 Expected magnetic field inhomogeneities 

induced by the iron deposits were modeled using:  

ΔB(𝑟, 𝜃) = (
𝐵0

3
) 𝜒 (

𝑅

𝑟
)

3

(3𝐶𝑜𝑠2𝜃 − 1) 

where B0 is the applied magnetic field, χ is the particle susceptibility, R is the 

sphere radius, r is the radial distance between the center of the iron sphere and proton position, 

and θ is the azimuthal angle to the magnetic axis. Proton mobility was modeled in terms of mean 

displacement given by: 

𝜎 = √2𝐷𝛿 

where D=0.76 µm2/ms is the diffusion coefficient and 𝛿=0.5 µs is the proton time step.32 

The phase accrual ϕ for each proton at the end of each time step t was calculated using: 

∅(𝑡) = 𝛾𝛿 ∑ (𝐵0 +△ 𝐵(𝑝(𝑖)))

𝑡

𝑖=1

 

where γ=2.675*108 rad s-1 T-1 is the gyromagnetic ratio and p(i) is the ith proton 

position. Finally, the complex MRI signal from each proton is given by: 

𝑆(𝑡) = 𝑆(0)𝑒−𝑡∗𝑅2,0+𝑗𝜙(𝑡) 

where S(0) is signal amplitude at t=0 and R2,0 is the relaxation in normal liver, assumed 

to be 20 s-1 at 1.5 T and 35 s-1 at 3 T.     
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Signal Models for R2* Estimation 

 

After the MRI signals were synthesized by varying echo times (TEmin, ∆TE, TEmax) for 

different acquisitions, they were fitted to monoexponential and multispectral models to obtain 

relaxivity values. Monoexponential model, implemented from Wood et. al. study, uses the 

relation 𝑆(𝑡) = 𝑆0 ∗ 𝑒(−
𝑡

𝑇2
∗) + 𝑐 to estimate R2*,5 where S(0) is the initial signal, S(t) is the 

complex MRI signal at that time, and R2* is the inverse of T2*. ARMA and NLSQ models, on 

the other hand, are more complex.8,27,28 The NLSQ model leverages prior information by 

utilizing published values for the relative frequencies and amplitudes of the lipid peaks.28 This 

model fits a single R2* value for both water and fat peaks to reduce model complexity.26,28 By 

using the following equation that represents mGRE signal acquired in a single voxel at each echo 

time (TEn), incorporating the provided parameters for amplitudes and relative frequencies, and 

assuming that the R2* values for water and lipid peaks are equal, the NLSQ model is able to 

estimate a common or single R2*.8 

𝑆(𝑇𝐸𝑛) = (𝐶𝑊𝑒−(𝑖2𝜋𝑓𝑊 + 𝑅2,𝑊
∗ )𝑇𝐸𝑛 +  𝐶𝐹  ∑ 𝛼𝑚𝑒−(𝑖2𝜋𝑓𝐹,𝑚+ 𝑅2,𝐹,𝑚

∗ )𝑇𝐸𝑛

𝑀

𝑚=1

) 

where, 𝐶𝑊 and 𝐶𝐹 are the amplitudes of the water and lipid signals, respectively. 

Additionally, 𝑅2,𝑊
∗  and 𝑅2,𝐹,𝑚

∗  denote the R2* values for water and lipid peaks, respectively. The 

variable M represents the number of lipid peaks, while 𝑓𝑊 and 𝑓𝐹,𝑚 represent the relative 

frequencies for water and lipid peaks, respectively. Finally, 𝛼𝑚 denotes the relative amplitudes 

of multiple lipid peaks, such that the sum of all 𝛼𝑚 equals 1. 
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On the other hand, the ARMA model estimates independent or dual R2* for water and fat 

peaks. It uses no prior information and estimates amplitude, R2*, and field maps of each detected 

peak by converting the MRI signal to a rational polynomial in the z-domain.8,27 The above 

equation of mGRE signal can be rewritten in the form of a autoregressive moving average by 

using a comb function as follows:8 

                    𝑆(𝑡) = (𝐶𝑊𝑒−(𝑖2𝜋𝑓𝑊 + 𝑅2,𝑊
∗ )𝑡 +  𝐶𝐹𝑒−(𝑖2𝜋𝑓𝐹+ 𝑅2,𝐹

∗ )𝑡) ∗  ∑ 𝛿(𝑡 − 𝑡𝑖) 

𝑇𝐸1+(𝑛−1)∆𝑇𝐸

𝑡𝑖=𝑇𝐸1

 

ARMA model then applies a z-transform to the mGRE signal, which can be rewritten as 

follows: 

      𝑆(𝑧) = ∑ 𝐶𝑊𝑒−(𝑖2𝜋𝑓𝑊 + 𝑅2,𝑊
∗ )𝑡

𝑇𝐸1+(𝑛−1)∆𝑇𝐸

𝑡𝑖=𝑇𝐸1

𝑧−𝑡 + ∑ 𝐶𝐹𝑒−(𝑖2𝜋𝑓𝐹+ 𝑅2,𝐹
∗ )𝑡

𝑇𝐸1+(𝑛−1)∆𝑇𝐸

𝑡𝑖=𝑇𝐸1

𝑧−𝑡  

Finite summation with the sum of the geometric series is approximated.8  

          𝑆(𝑧) =
𝐶𝑊

1 − 𝑒−(𝑖2𝜋𝑓𝑊 + 𝑅2,𝑊
∗ )∆𝑇𝐸𝑧−1

+
𝐶𝐹

1 − 𝑒−(𝑖2𝜋𝑓𝐹 + 𝑅2,𝐹
∗ )∆𝑇𝐸𝑧−1

    

This equation can be extended to N number of peaks and the mGRE signal can be 

represented in the z-domain as: 

𝑆(𝑧) =  
𝑃(𝑧)

𝑄(𝑧)
=

𝛼0 + 𝛼1𝑧−1 + ⋯ + 𝛼𝑁−1𝑧−(𝑁−1)

1 + 𝛽1𝑧−1 + ⋯ + 𝛽𝑁𝑧−𝑁
  

The iterative Stieglitz-McBride algorithm can calculate the coefficients α and β for the 

two polynomials P(z) and Q(z).8 Following this calculation, the poles are then derived from the 

roots of the denominator Q(z). Subsequently, the frequencies, R2* values, and amplitudes of the 

water and fat peaks can be extracted from the poles and coefficients using the following 

approach:  
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𝑓𝑘 =
𝐼𝑚[ln(𝜌𝑘)]

2𝜋. ∆𝑇𝐸. 𝛾𝐵0
 

𝑅2,𝑘
∗ =

𝑅𝑒[ln(𝜌𝑘)]

∆𝑇𝐸
 

𝐶𝑘 =  
𝑃(𝜌𝑘)

𝑄′(𝜌𝑘)
 𝑤ℎ𝑒𝑟𝑒 𝑄′(𝑧−1) =

𝑑𝑄(𝑧−1)

𝑑𝑧−1
 

where, Re and Im denote real and imaginary parts, respectively. γ is the gyromagnetic 

ratio and B0 is the main magnetic field strength.8 

 In our study, NLSQ model was implemented from the ISMRM Fat-Water Toolbox and 

ARMA model was implemented as an iterative approach with a maximum of 7 peaks.8,28 
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Chapter 4 - Simulation of a Virtual Liver Iron-Overload Model and R2* Estimation Using 

Multispectral Fat-Water Models for GRE and UTE Acquisitions 

 

Introduction  

Iron overload is a serious condition caused by hereditary hemochromatosis or due to receiving 

chronic blood transfusions for the management of hematologic diseases such as sickle cell disease, 

beta-thalassemia or as part of cancer treatment.1,2 Iron overload can cause hepatic fibrosis and 

cirrhosis, hepatocellular carcinoma, cardiac problems, and many other organ dysfunctions if 

untreated.1,33 Liver iron stores increase proportionally with total body iron, so assessing hepatic 

iron concentration (HIC) is an effective way of monitoring iron overload for treatment 

management.4 Traditionally, HIC is assessed using liver biopsy which is an invasive, painful, and 

risky procedure.5 Alternatively, over the last decade, magnetic resonance imaging (MRI) 

techniques based on transverse relaxation (R2*) have emerged as clinically accepted methods for 

quantifying HIC using published R2* vs. biopsy HIC calibration curves.4-7 Previous in vivo 

calibration studies estimated R2* by acquiring multiecho gradient echo (GRE) images and fitting 

a monoexponential signal model.5,6 However, pure monoexponential models can cause 

inaccuracies in R2* estimation in the presence of concomitant hepatic steatosis as fat introduces 

oscillations in the signal decay.8    

Over recent years, multispectral fat-water-R2* techniques based on non-linear square 

(NLSQ) fitting and autoregressive moving average (ARMA) modeling have been proposed for 

simultaneously quantifying R2* and fat fraction (FF) to account for both the confounding effects 

of iron and fat on the MRI signal.8,27,28 The NLSQ signal model assumes relative frequencies and 

amplitudes of the lipid peaks and fits a common R2* value to both the water and fat peaks to 

minimize model complexity,26,28 and has been validated for simultaneous quantification of iron 

and fat in simulations, phantoms and in vivo studies.9,33,34 The ARMA signal model, on the other 
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hand, detects signals based on the frequencies of water and lipid peaks and calculates independent 

R2* values and amplitudes for each detected peak.27 A previous study in phantoms and patients 

has shown that both ARMA and NLSQ models produced inaccurate R2* results in some conditions 

of high iron overload (R2* > 500 s-1) with and without steatosis, respectively; both methods 

potentially failing due to rapid R2* decay that is not adequately captured with the current GRE 

acquisitions with TE1 of ~1 ms.8   

Alternatively, multiecho ultrashort echo time (UTE) acquisitions with shorter TE1 (0.1-

0.19 ms) have been proposed for quantifying severe iron overload and demonstrated to improve 

the accuracy and precision in R2* quantification over a wider range of clinical HIC values at both 

1.5 T and 3 T using monoexponential models.10,11,29 To date, multispectral fat-water models have 

not been thoroughly investigated for estimating R2* for UTE acquisitions, except one study that 

incorporated NLSQ multispectral model for R2* quantification using a 3D UTE cones acquisition 

at 3 T.12 However, this study had only patients with mild to moderate iron overload (R2* < 550 s-

1), and the NLSQ R2* results were not validated with any reference monoexponential fitting model 

or biopsy HIC values. A thorough and systematic investigation of the multispectral fat-water-R2* 

models for different GRE and UTE acquisitions will be beneficial to assess their performances 

under various hepatic iron overload conditions before clinical use. But evaluating fitting models 

across multiple MRI acquisitions in phantoms or patients can be expensive and challenging. 

Instead, some previous studies implemented Monte Carlo simulations, based on published in vivo 

statistics of hepatic iron scale, distribution, and magnetic properties, and have been successful in 

simulating realistic virtual liver iron overload models and generating synthetic MRI signals 

mimicking in vivo behavior.13-15,31   
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The purpose of our study is therefore, to construct a virtual liver model with varying hepatic 

iron concentrations using Monte Carlo simulations to evaluate the performances of multispectral 

fat-water signal models for different GRE and UTE acquisitions and validate their accuracies 

against reference monoexponential model and published in vivo R2*-HIC calibrations.   

 

Methods  

Monte Carlo model developed by Ghugre et. al was implemented in our study for simulation of a 

virtual iron overload model and synthesis of MRI signals.13-15 An 80 µm * 80 µm * 80 µm liver 

volume with 64 hepatocytes, each with 20 µm dimensions, was simulated. Based on previously 

derived relationships, volume fraction of the iron deposits was calculated as a linear function of 

the desired HICs ranging from 1 - 40 milligrams Fe per gram of dry weight of liver (abbreviated 

as mg Fe/g). Iron deposits were modeled as homogeneous spheres, with their sizes, nearest 

neighbor distances, and cellular anisotropy across hepatocytes obtained from respective gamma 

distribution functions derived by Ghugre et al. as a function of HIC. The iron spheres were placed 

within hepatocytes in the cuboidal liver volume to create virtual iron overload models with 

different HICs until the corresponding desired volume fraction was reached for each HIC.13 

Iterative collision check was performed to ensure that no iron deposits overlapped.13  

MRI signals were synthesized at both 1.5 T and 3 T by calculating the magnetic field 

inhomogeneities induced by iron deposits, simulating the proton mobility, computing the phase 

accrual of protons, and finally converting the phase differences into MRI signal.  A total of 5000 

protons were randomly distributed in the liver volume and they all performed a random walk 

following unrestricted diffusion for a total duration of 10 ms. For each HIC, the synthetic complex 

MRI signal was produced by superimposing the phase accrual of all protons as they passed through 

the iron-induced magnetic field disturbances. Monte Carlo simulations for creating virtual liver 
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iron overload models and generating MRI signals at 1.5 T and 3 T for HICs ranging from 1 - 40 

mg Fe/g were all performed using an in-house script developed in Python (Python 3.8.8, Python 

Software Foundation, Wilmington, DE, USA.).   

Data Analysis   

MRI signals were synthesized for GRE and UTE acquisitions for varying sets of echo spacing, 

ΔTE (0.1, 0.5, 1, 2 ms) and maximum echo time, TEmax (2, 4, 6, 10 ms) for all iron overload 

models with HICs 1 – 40 mg Fe/g, incremented by 1 mg Fe/g. R2* values were calculated using 

monoexponential and multispectral fat-water signal models in MATLAB (R2020b, The 

MathWorks, Inc., Natick, MA, USA). A monoexponential model with constant offset was used to 

fit the magnitude data and estimate R2* values.5,13 An iterative ARMA model with a maximum of 

7 peaks and the NLSQ model from ISMRM Fat-Water Toolbox were applied on the complex MRI 

signal data to estimate R2* and FF values.8,28 In vivo R2*-HIC calibration curves published by 

Wood et al. and Hankins et al. were digitized and used as reference standards to compare the 

accuracies of our model estimated R2* vs. HIC relationships for comparable GRE acquisition 

parameters (ΔTE = 0.5 ms, TEmax = 10 ms).5,6,13  

Statistical Analysis  

For each signal model, R2* values estimated for different GRE and UTE acquisitions with varying 

sets of ΔTE and TEmax were analyzed across the entire range of simulated HICs. Simulation for 

each acquisition setting was repeated three times and the mean R2* and FF was taken in order to 

reduce bias introduced by random variations in the simulations. The precision of the fitting models 

was evaluated by using the coefficient of variation (CoV, %) of R2* values across the three 

simulations plotted against HICs. The accuracy of the signal models was evaluated by using linear 

regression analysis between the mean estimated R2* values and simulated HICs for the various 

GRE and UTE acquisitions.   



27 
 

Results  

Representative 3D virtual iron overload models created based on the published iron morphology 

and distribution for mild and moderate HICs and the corresponding MRI signals synthesized at 1.5 

T and 3 T are shown in Figure 5. The simulated MRI signals exhibited exponential signal decay 

with faster decay rates for higher HIC and at higher field strength. Figure 6 shows R2* values 

obtained using the monoexponential, ARMA, and NLSQ models for GRE acquisition at 1.5 T and 

comparison to in vivo R2*-HIC calibrations. The R2* values obtained using the monoexponential 

model exhibited an excellent correlation with HIC values, with slopes within 95% confidence 

interval of Wood et al. calibration. Both ARMA and NLSQ model estimated R2* values also 

exhibited an excellent correlation with HIC values, with slopes higher than monoexponential 

model and published R2*-HIC calibrations but within 95% confidence interval of Wood’s 

calibration except for the slope of the NLSQ model for higher HICs (> 20 mg Fe/g).   
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Figure 5. 3D virtual liver iron overload models (80 µm * 80 µm * 80 µm) for representative 

HICs of 5 mg Fe/g (a), 15 mg Fe/g (b), and corresponding MRI signals at 1.5 T and 3 T for a 

duration of 10 ms (c). The signals showed faster signal decay at higher HIC (R2* = 220 s-1 for 5 

mg Fe/g and R2* = 591 s-1 for 15 mg Fe/g at 1.5 T) and field strength (R2* = 433 s-1 for 5 mg 

Fe/g and R2* = 1032 s-1 for 15 mg Fe/g at 3 T ), as expected.  
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Figure 6. Linear regression between R2* values estimated using monoexponential, ARMA, and 

NLSQ models and simulated HIC values, in comparison to in vivo R2*-HIC calibrations for 

GRE acquisition at 1.5 T. R2* values estimated using the monoexponential model exhibited 

excellent correlation with HIC values; the R2*-HIC slope is same as Hankins et al. calibration 

and falls within 95% confidence bounds of Wood et al. calibration (dashed lines). ARMA and 

NLSQ model estimated R2* values also showed excellent correlation with HICs, with slopes 

higher than the monoexponential model and in vivo calibrations but within Wood et al. 95% 

confidence limits, with the exception of the NLSQ model at higher HICs (> 20 mg Fe/g).  
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The R2* values estimated using monoexponential, ARMA, and NLSQ models for GRE 

and UTE acquisitions for various ∆TEs and constant TEmax of 10 ms at both 1.5 T and 3 T for 

the simulated HIC values are shown in Figure 7 and the corresponding regression slopes are listed 

in Table 2. At 1.5 T, GRE acquisition produced similar R2* results for all ∆TEs for each of the 3 

signal models up to HIC < 15 mg Fe/g; however, deviation from the linear trend was observed 

with the increase in ∆TEs for higher HICs for all 3 signal models with the NLSQ model showing 

the greatest deviation at ∆TE = 2 ms. In comparison to GRE, the estimated R2* values by 

monoexponential and ARMA models for UTE acquisition at 1.5 T demonstrated relatively low 

sensitivity to variations in ΔTE for the entire HIC range (Table 2, Slope: 0.028-0.030, R2: 0.982-

0.991). NLSQ model also demonstrated to be less sensitive to variations in ΔTEs up to HIC ~20 

mg Fe/g for UTE, but greater deviations in R2* estimates were observed for ∆TE = 2 ms for higher 

HICs. At 3 T, the estimated R2* values by monoexponential and ARMA models for GRE 

acquisition demonstrated excellent linear correlation for lower HICs (≤ 12.5 mg Fe/g) at all ∆TEs 

but for higher HICs, the R2* values did not increase linearly with HIC for all ∆TEs (Table 2, R2: 

0.356-0.789). Similarly, NLSQ estimated R2* values for GRE acquisition at 3 T exhibited higher 

levels of deviations for all ∆TEs but from even lower HICs (≥ 10 mg Fe/g). In contrast, UTE at 3 

T produced similar R2* results for all ∆TEs using monoexponential and ARMA signal models, 

except that at ∆TE = 2 ms, estimated R2* values showed greater deviations at higher HICs (> 30 

mg Fe/g). NLSQ model estimated R2* values also exhibited excellent linear correlation for smaller 

ΔTEs (≤ 0.5 ms), however, for larger ∆TEs ≥ 1 ms, the R2* values deviated from linear trend, with 

ΔTE = 2 ms showing extreme divergence for HICs > 10 mg Fe/g (Table 1, R2 = 0.723).    
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Figure 7. Scatter plot demonstrating the effect of varying ∆TE (0.1, 0.5, 1, 2 ms) with constant 

TEmax (10 ms) on R2*-HIC relationship obtained using monoexponential, ARMA, and NLSQ 

signal models for GRE and UTE acquisitions at 1.5 T and 3 T. UTE acquisition with ∆TE ≤ 0.5 

ms produced accurate R2* results as well as similar R2*-HIC relationships (Table 2) for all three 

signal models across the full range of simulated HIC at both 1.5 T and 3 T.  
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Table 2. Linear regression analysis between R2* values estimated by different signal models and simulated HICs for GRE and UTE 

acquisitions for various echo spacings at 1.5 T and 3 T.  

Signal 

Model 

Parameter

s 

1.5 T 3 T 

GRE UTE GRE UTE 

ΔTE (ms) ΔTE (ms) ΔTE (ms) ΔTE (ms) 

0.1     0.5        1      2 0.1 0.5 1 2 0.1 0.5 1 2 0.1 0.5 1 2 

Mono-exp 

Slope 0.028 0.028 0.024 0.024 0.028 0.028 0.028 0.028 0.012 

0.01

1 

0.00

9 0.012 0.014 0.014 0.014 0.008 

Intercept 

-

0.572 

-

0.645 1.538 2.009 

-

1.260 

-

1.381 

-

1.246 

-

1.189 2.786 

4.01

3 

5.74

1 3.702 

-

0.990 

-

0.942 

-

0.448 5.606 

R2 0.958 0.965 0.897 0.865 0.990 0.991 0.991 0.985 0.789 

0.72

6 

0.73

7 0.618 0.986 0.986 0.971 0.778 

ARMA 

Slope 0.035 0.032 0.029 0.035 0.029 0.029 0.029 0.030 0.021 

0.01

8 

0.01

4 0.023 0.015 0.015 0.015 0.018 

Intercept 

-

2.075 

-

0.988 0.392 

-

2.905 

-

0.807 

-

0.841 

-

0.772 

-

0.991 3.154 

1.76

1 

5.31

9 0.057 

-

0.787 

-

0.676 

-

0.716 

-

3.156 

R2 0.964 0.963 0.934 0.956 0.988 0.990 0.990 0.982 0.356 

0.66

0 

0.56

7 0.480 0.985 0.986 0.973 0.945 

NLSQ 

Slope 0.038 0.035 0.036 0.051 0.032 0.032 0.032 0.036 0.243 

0.02

2 

0.02

4 0.005 0.016 0.016 0.019 0.038 

Intercept 

-

2.434 

-

1.269 

-

1.794 

-

5.946 

-

1.246 

-

1.295 

-

1.212 

-

2.138 

-

0.537 

0.55

3 

0.95

6 

18.14

4 

-

1.608 

-

1.642 

-

3.052 

-

9.353 

R2 0.954 0.952 0.942 0.853 0.977 0.981 0.981 0.927 0.532 

0.55

7 

0.41

4 0.004 0.978 0.969 0.942 0.723 

Abbreviations: Mono-exp, monoexponential model; ARMA, autoregressive moving average model; NLSQ, non-linear least squares 

model; GRE, gradient echo; UTE, ultra-short echo; ΔTE, echo spacing. 
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The CoV of estimated R2* values obtained using monoexponential, ARMA, and NLSQ 

models across different HICs and ∆TEs for GRE and UTE acquisitions (Figure 8) showed 

similar trends as the estimated mean R2* values in Figure 3. At 1.5 T, monoexponential and 

ARMA models for GRE acquisitions exhibited CoV < 20% for HICs < 20 mg Fe/g. The 

precision decreased at higher HICs (> 20 mg Fe/g at 1.5 T and > 10 mg Fe/g at 3 T) for all 

models for GRE acquisition, with NLSQ model showing relatively lower R2* precision than 

monoexponential and ARMA models. For UTE at 1.5 T, both monoexponential and ARMA 

models showed high precision (CoV < 15%) in R2* values throughout the range of HICs except 

for a few data points at ∆TE = 2 ms and higher HICs. NLSQ demonstrated similar high precision 

trends, except that the overall CoV of R2* values at all ΔTEs were higher than in the other two 

models, particularly for higher HICs (> 20 mg Fe/g). Similarly, at 3 T, all 3 signal models for 

UTE acquisition exhibited high precision (CoV < 20%) in R2* values when HIC < 20 mg Fe/g, 

except for NLSQ model at larger ∆TE of 2 ms. While precision decreased at higher HICs with 

increasing ∆TE, overall CoV remained less than 30% for all three models, except for a few data 

points at ∆TE of 2 ms.   
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Figure 8. Coefficient of variation (CoV, %) of R2* values obtained using monoexponential, 

ARMA, and NLSQ models plotted against HIC values for GRE and UTE acquisitions with 

varying ∆TE (0.1, 0.5, 1, 2 ms) and constant TEmax (10 ms) at field strengths 1.5 T and 3 T. All 

signal models produced high R2* precision (i.e., lower CoVs) for UTE acquisition with ∆TE ≤ 

0.5 ms across the full HIC range at both 1.5 T and 3 T, with ARMA and monoexponential 

models exhibiting slightly lower CoV values compared to NLSQ model.  
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Figure 9 shows R2* values obtained using monoexponential, ARMA, and NLSQ signal 

models and simulated HIC values for GRE and UTE acquisitions for various TEmax values at 

1.5 T and 3 T and Table 3 shows the corresponding linear regression results. For GRE 

acquisitions at both 1.5 T and 3 T, decreasing TEmax from 10 ms did not affect R2* vs. HIC 

regression trends until TEmax of 4 ms for all signal models. However, at TEmax = 2 ms, 

monoexponential model produced greater deviations in R2* values across the entire HIC range, 

whereas ARMA and NLSQ models exhibited greater R2* deviations at HIC > 20 mg Fe/g, with 

the NLSQ model producing higher deviations than the ARMA model. UTE at 1.5 T and 3 T, on 

the other hand, still demonstrated excellent linear correlation between estimated R2* values and 

simulated HIC for all signal models and at all TEmax values across the full HIC range.   
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Figure 9. Scatter plot demonstrating the effect of varying TEmax (2, 4, 6,10 ms) with constant 

echo spacing (0.5 ms) on R2*-HIC relationship obtained using monoexponential, ARMA, and 

NLSQ signal models for GRE and UTE acquisitions at 1.5 T and 3 T.  For GRE acquisitions, 

decreasing TEmax did not affect the R2*-HIC trends for all signal models until 4 ms but for 

TEmax = 2 ms all models showed considerable R2* deviations. In contrast, all signal models 

produced accurate R2* results for UTE acquisition for all TEmax values at both 1.5 T and 3 T.  
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Table 3. Linear regression analysis between R2* values estimated by different signal models and simulated HICs for GRE and UTE 

acquisitions for various TEmax values at 1.5 T and 3 T. 

Signal 

Model Parameters 

1.5 T 3 T 

GRE UTE GRE UTE 

TEmax (ms) TEmax (ms) TEmax (ms) TEmax (ms) 

2 4 6 10 2 4 6 10 2 4 6 10 2 4 6 10 

Mono-

exp 

Slope 0.025 0.027 0.028 0.028 0.029 0.028 0.028 0.028 0.008 0.011 0.011 0.011 0.014 0.014 0.014 0.014 

Intercept -1.782 

-

1.265 

-

1.005 

-

0.645 

-

2.120 

-

1.746 

-

1.553 

-

1.381 5.837 3.912 4.583 4.013 

-

1.425 

-

1.285 

-

1.153 

-

0.942 

R2 0.946 0.968 0.965 0.965 0.992 0.991 0.992 0.991 0.704 0.724 0.723 0.726 0.989 0.985 0.986 0.986 

ARMA 

Slope 0.029 0.031 0.031 0.032 0.029 0.030 0.029 0.029 0.015 0.017 0.016 0.018 0.015 0.015 0.015 0.015 

Intercept -1.225 

-

1.228 

-

0.783 

-

0.988 

-

1.331 

-

1.212 

-

0.976 

-

0.841 2.115 1.252 3.086 1.761 

-

1.378 

-

0.925 

-

0.764 

-

0.676 

R2 0.975 0.952 0.964 0.963 0.993 0.989 0.991 0.990 0.720 0.734 0.641 0.660 0.983 0.985 0.986 0.986 

NLSQ 

Slope 0.027 0.033 0.034 0.035 0.031 0.031 0.032 0.032 0.019 0.023 0.022 0.022 0.016 0.016 0.016 0.016 

Intercept 0.244 

-

1.262 

-

1.292 

-

1.269 

-

1.945 

-

1.444 

-

1.335 

-

1.295 0.105 

-

0.426 0.236 0.553 

-

1.944 

-

1.928 

-

1.763 

-

1.642 

R2 0.916 0.937 0.949 0.952 0.983 0.978 0.978 0.981 0.680 0.569 0.558 0.557 0.966 0.969 0.969 0.969 

Abbreviations: Mono-exp, monoexponential model; ARMA, autoregressive moving average model; NLSQ, non-linear least squares 

model; GRE, gradient echo; UTE, ultra-short echo; TEmax, maximum echo time.
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The trends in the R2* precision obtained from the CoV analysis of different TEmax values 

for GRE and UTE acquisitions (Figure 10) were comparable to the estimated mean R2* values in 

Figure 9. For GRE acquisitions at both 1.5 T and 3 T, using shorter TEmax values (2 ms, 4 ms) 

reduced R2* precision for monoexponential and NLSQ models for some HICs, but notably more 

for lower HICs (< 10 mg Fe/g) for monoexponential model. In contrast, using shorter TEmax in 

ARMA model still produced similar CoV results throughout the entire HIC range. For UTE 

acquisitions at 1.5 T, decreasing TEmax produced similar CoV results in all three models 

throughout the full HIC range, with the exception of monoexponential and NLSQ models at 

TEmax of 2 ms and 4 ms at lower HICs (< ~10 mg Fe/g). In contrast, for UTE at 3 T, precision of 

monoexponential and NLSQ models for shorter TEmax (2 ms, 4 ms) improved for smaller HICs 

compared to 1.5 T, and all the signal models exhibited high precision (CoV < 25%) throughout the 

HIC range.  
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Figure 10. Coefficient of variation (CoV, %) of R2* values obtained using monoexponential, 

ARMA, and NLSQ models plotted against HIC for GRE and UTE acquisitions with varying 

TEmax and constant ∆TE at field strengths 1.5 T and 3 T. For GRE acquisitions, shorter TEmax 

≤ 4 ms produced higher CoV values especially evident for monoexponential and NLSQ models. 

For UTE acquisition, all three signal models produced high precision in R2* values at both 1.5 T 

and 3 T across the full spectrum of HIC range for TEmax ≥ 6 ms, with ARMA model exhibiting 

similar precision trends as the monoexponential model.  
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Figure 11 displays the mean FF (%) values calculated using the NLSQ and ARMA models 

plotted against simulated HICs at 1.5 T and 3 T using one representative GRE and UTE acquisition 

(∆TE = 0.5 ms, TEmax = 10 ms). At both 1.5 T and 3 T, the NLSQ model failed to estimate 

accurate FF, especially for HICs > 10 mg Fe/g, for both GRE and UTE acquisitions. Estimated FF 

values by the NLSQ model ranged from -12 – 168 % with a mean bias of 30 %. ARMA, on the 

other hand, estimated FF values close to 0% throughout the HIC range for both GRE and UTE 

acquisitions and at both magnetic field strengths.
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Figure 11. Mean FF (%) values estimated by NLSQ and ARMA models plotted against 

simulated HICs for GRE and UTE acquisitions (ΔTE = 0.5 ms, TEmax = 10 ms) at 1.5 T and 3 

T. NLSQ model failed to estimate accurate FF content for GRE as well as UTE acquisition for 

HICs > 10 mg Fe/g. In contrast, ARMA model displayed true FF values close to zero throughout 

the HIC range for both GRE and UTE acquisitions. 
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Discussion  

In this study, Monte Carlo-based virtual iron overload models were developed to mimic realistic 

human liver morphology and distributions, MRI signals were synthesized for different GRE and 

UTE acquisitions, and the R2* values estimated by monoexponential and multispectral fat-water 

models were analyzed. R2* results obtained using the monoexponential model showed an 

excellent agreement with the established in vivo R2*-HIC calibrations, illustrating the accuracy of 

our Monte Carlo-based simulation model. Our results demonstrate that both multispectral fat-water 

models, ARMA, and NLSQ showed high R2* accuracy and precision for UTE acquisition with 

shorter echo spacing (≤ 0.5 ms) and longer TEmax (≥ 6 ms) across the full clinical spectrum of 

HIC at both field strengths, with ARMA model producing similar results as the monoexponential 

model.   

Most of the published iron simulation studies for R2* estimation generate synthetic MRI 

signals by just numerically varying the R2* values without considering the true dephasing effects 

of iron deposits on the simulated MRI signal.29,33 As the size and distribution of iron deposits might 

have different dephasing effects on the MRI signal relaxation, simulating the true in vivo 

morphometry of iron deposition and modeling the iron-proton interactions will provide realistic 

MRI signal observed in liver iron overload. In this study, histologically realistic liver iron overload 

models incorporating the in vivo sizes and intrahepatocyte and interhepatocyte clustering of iron 

deposits were reproduced from Ghugre et al. study.13,15 In our liver geometry, vascular sinusoids 

were not included and water protons were allowed to freely diffuse across hepatocyte boundaries 

as it was previously demonstrated that neither incorporating sinusoids, nor restricting proton 

diffusion alters R2* significantly.13 Our results demonstrate that the synthesized MRI signals 

decayed faster with increasing HICs and at higher magnetic field strengths with R2* values 
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showing almost a two-fold increase at 3 T compared to at 1.5 T, which is in agreement with 

previous simulation and in vivo studies.31,35   

The estimated R2* values obtained by fitting the monoexponential model to our simulated 

MRI signals at 1.5 T for GRE acquisition showed an excellent agreement with slopes close to 

published in vivo R2*-HIC calibrations. In contrast, multispectral fat-water signal models 

produced higher slopes, with the slope of the ARMA model still within the 95% confidence 

intervals of Wood et al. calibration while slope of NLSQ deviating outside of the confidence 

bounds for higher HICs. One reason for the discrepancies in slopes between multispectral fat-water 

models and published calibration studies that use monoexponential model may be the fact that fat-

water models perform fitting on complex data whereas monoexponential model uses magnitude 

data for fitting. Due to this, both models differ in the noise consideration especially at high HICs 

for GRE acquisitions because of low signal-to-noise ratio (SNR), hence, potentially causing 

differences in R2* estimation.33 Discrepancies in R2* estimation between signal models can 

strongly depend on the acquisition parameters chosen, particularly in terms of echo times.29,36 

Choosing the best set of echo times is crucial especially for higher HIC ranges for minimizing bias 

in model estimated R2* values.35 Hence, in this study, we systematically investigated the 

performance of multispectral models for different GRE and UTE acquisition parameters to 

determine their accuracy and precision in R2* quantification across the full clinical range of iron 

overload.  

Currently, multiecho GRE sequences are used for the diagnosis of iron overload in clinical 

practice.24 However, our simulations demonstrated that all signal models exhibited poor R2* 

accuracy and precision for GRE acquisitions at higher HICs (> 20 mg Fe/g at 1.5 T, > 12.5 mg 

Fe/g at 3 T) similar to other studies due to rapid signal decay before the first TE of 1 ms.10,12,29 
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Further, the results did not significantly improve even using shorter ΔTE (≤ 0.5 ms) or shorter 

TEmax (≤ 4 ms) for GRE acquisitions at higher HICs and at 3 T for either of the models. In 

contrast, accuracy and precision in R2* measurements substantially improved for UTE acquisition 

(TE1 = 0.1 ms) for both monoexponential and multispectral fat-water signal models similar to 

previous studies that used only monoexponential R2* model.10,11,29 More importantly, our results 

show that the R2*-HIC slopes for monoexponential and multispectral models are much closer for 

UTE acquisitions at both field strengths for shorter ΔTE (≤ 0.5 ms), hence, demonstrating that 

UTE method can minimize noise bias and produce similar R2* results across the full range of HIC 

for both magnitude and complex fitting models.   

Across the signal models, ARMA model showed similar R2* regression and precision 

trends as monoexponential model for GRE and UTE acquisitions when comparisons were made 

for the same ΔTEs, whereas NLSQ model showed comparatively more R2* deviation from 

linearity and lower precision than the other two models especially for ΔTE ≥ 1 ms. Decreasing 

TEmax from 10 ms to 6 ms while maintaining a ΔTE = 0.5 ms, did not have any significant impact 

on R2* accuracy or precision for all three signal models across the full HIC range for both GRE 

and UTE acquisitions. However, shortening TEmax to ≤ 4 ms caused bias in R2* estimation and 

produced higher CoVs for monoexponential and NLSQ models especially for lower HICs due to 

incomplete signal decay. The monoexponential model used in this study fits an additional constant 

parameter to account for noise floor but when shorter TEmax is used for lower HICs, the signal 

decay will not hit the noise floor and fitting the constant term can cause bias in R2* 

quantification.29 Similarly, NLSQ model fits for additional parameters and not acquiring sufficient 

echoes (~ 6 ms) to capture enough signal decay can cause uncertainties in the fitting and hence in 

the R2* estimation.35 In contrast, ARMA model seemed to be robust and produced similar R2* 
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values and CoVs even for shorter TEmax of 2 ms (3 echoes) and 4 ms (7 echoes), which is likely 

because ARMA behaves as a pure monoexponential model with no additional fitting terms in the 

absence of fat.8 Nevertheless, all signal models produced high accuracy and precision in R2* 

values for UTE acquisition with ΔTE ≤ 0.5 ms and TEmax ≥ 6 ms at both 1.5 T and 3 T across the 

full simulated HIC range.   

NLSQ model displayed random inaccuracies in FF estimation for HICs > 10 mg Fe/g for 

both GRE and UTE acquisitions at 1.5 T and 3 T even though these iron models did not have fat. 

These results agree with a previous study that showed that NLSQ model overestimated FF in 

phantoms and patients with high iron overload (R2* > 500 s-1) and no steatosis.8 Further, based on 

the recent empirical relationship derived for the NLSQ multispectral model using Cramer Rao 

Lower Bound calculations,9 FF estimates will be unreliable above R2* of ~473 s-1 at 1.5 T and 

642 s-1 at 3 T for the GRE acquisition used in our study, which aligns with our simulation 

results.  ARMA model, in contrast, consistently estimated FF values close to zero for both GRE 

and UTE acquisitions at 1.5 T and 3 T because it only accounts for fat in the model when fat peak 

is detected, otherwise it behaves as a pure monoexponential model.8   

There are some notable limitations to this study. First, our study relied solely on 

simulations and the R2* estimation by the signal models was not validated using phantom or 

patient data. However, performing MRI scans with various acquisition methods and parameters is 

quite challenging and expensive. In contrast, the simulation approach in this study can be applied 

for testing any acquisition technique and signal model while accounting for the true in vivo 

morphology of iron overload and helps to investigate the limits of the multispectral signal models 

for R2* quantification before applying them to real data. Another limitation of this study is that 

the multispectral signal models are not investigated in co-existing conditions of steatosis, which 
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will need creating realistic iron overload and steatosis virtual liver models mimicking true in vivo 

morphology,37 and thereby, requires future studies for thorough investigation. Further, the R2* 

accuracy and precision of signal models are not investigated under different SNR conditions, and 

this warrants future investigation as SNR can influence the performance of the signal models.29,33   

In conclusion, our study reproduced virtual iron overload models mimicking in vivo 

morphology, synthesized MRI signals and investigated the R2* accuracy and precision of 

multispectral fat-water models in comparison to monoexponential model for GRE and UTE 

acquisitions for various ΔTEs and TEmax values. In comparison to published in vivo R2*-HIC 

calibrations, monoexponential model produced similar slopes while ARMA and NLSQ models 

produced higher slopes for the GRE acquisition. All signal models produced similar R2*-HIC 

slopes for UTE acquisition for shorter echo spacing (≤ 0.5 ms) and longer TEmax (≥ 6 ms) across 

the full clinical spectrum of HICs at both 1.5 T and 3 T, with monoexponential and ARMA models 

producing similar R2* results. However, NLSQ model produced false FF values for high iron 

overload conditions (HICs ≥ 10 mg Fe/g) for both GRE and UTE acquisitions. Future work 

involves simulating liver models in coexisting conditions of iron overload and steatosis and 

investigating the performance of multispectral models for various acquisition methods for accurate 

quantification of R2* and fat.   
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Chapter 5 - Validation of Simulation Results Using Phantoms and Patient Data 

 

Introduction 

Liver biopsy is the conventional method used for diagnosing iron overload, but it has some 

drawbacks such as being invasive, painful, and having poor sampling variability.34 Fortunately, 

magnetic resonance imaging (MRI) has emerged as a reliable alternative for assessing iron stores 

in the liver of patients with iron overload. Noninvasive MRI-based biomarkers, such as effective 

transverse relaxation or R2*, have shown promise as a quantitative biomarker with high 

diagnostic accuracy for quantifying hepatic iron concentrations (HICs).5,34 

Currently, in vivo R2* vs HIC calibrations rely on a Cartesian-based multiecho gradient 

echo (GRE) sequence for imaging and a monoexponential model for fitting.5 However, when fat 

and iron coexist in the liver, the MRI signal no longer follows a purely monoexponential decay 

and instead exhibits oscillations due to the difference in resonance frequency between the fat and 

water peaks.8 To address this, researchers are exploring multispectral fat-water-R2* models, such 

as the NLSQ and ARMA models, which can recognize both water and fat peaks simultaneously, 

to achieve a more robust simultaneous quantification of both R2* and FF.8,26 While some studies 

have shown that both NLSQ and ARMA models start giving unreliable estimates of R2* at high 

iron overload when using GRE sequences, center out radial sampling-based UTE sequences have 

been found to expand the dynamic range of R2* quantification due to their short initial echo (~ 

0.1 ms).29 However, there is a need for a systematic and thorough investigation of multispectral 

NLSQ and ARMA signal models in both UTE and GRE sequences. 

To test the effects of the choice of signal models on R2*, researchers have been using 

MRI testing alternatives like phantoms and simulations that mimic the presence of hepatic iron 

or fat or both.34 While Monte Carlo simulations can make conducting research more feasible, the 
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results still need to be validated using phantoms and patient data from MRI exams before being 

used clinically. Therefore, the proposed study aims to validate the reliability of data collected 

using simulations by using MRI images of phantoms as well as patients with varying degrees of 

iron overload, scanned using GRE and UTE sequences. By validating the results obtained from 

simulations to those obtained from phantom and patient data, the proposed study will provide a 

comprehensive understanding of the performance of multispectral fat-water-R2* models and 

help pave the way for their eventual clinical use. 

Methods 

 

Phantom 

Ten cylindrical iron phantoms were created using 2 % agar-water mixtures and Magnefy iron 

particles. The phantoms had various iron concentrations (0, 0.0075, 0.025, 0.04, 0.06, 0.1, 0.2, 

0.4, 0.8, 1.4) (%) and no fat to cover clinically relevant R2* values. The phantoms were arranged 

in a 2 x 5 rectangular array and scanned at 1.5 T in the Diagnostic Imaging Department at St 

Jude Children’s Research Hospital in Memphis, TN (Avanto, Siemens Healthineers, Malvern, 

PA). Unfortunately, unavailability of source code for UTE at 3 T prevented scanning the 

phantoms at this magnetic strength. The sequences at 1.5 T were chosen so that the echo times 

matched those that yielded the best results in the simulation study. For the 1.5 T scan, the 

acquisition parameters were as follows: GRE: TE1 = 1.2 ms, ΔTE = 1.44 ms, TEmax = 9.84 ms, 

7 echoes, monopolar readout gradient, matrix = 128 x 104, flip angle = 25º, slice thickness = 5 

mm; UTE: TE1 = 0.1 ms, ΔTE = 0.5 ms, TEmax = 9.6 ms, 17 echoes, 5 interleaves, matrix = 192 

x 192, flip angle = 20º, slice thickness = 10 mm. The MRI images were obtained in DICOM 

format and analyzed using MATLAB (R2020b, The MathWorks, Inc., Natick, MA, USA). Ten 

circular ROIs were drawn manually on the phantom images, and R2* maps were calculated 
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using monoexponential with noise subtraction, ARMA, and NLSQ fitting models.6 Time 

constraints did not allow the development of monoexponential with constant offset model used 

in simulation studies to be optimized accurately for phantom and patient data.5 The performance 

of the fitting models was evaluated using regression analysis between the mean R2* ± SD values 

and Fe concentrations, and by studying the corresponding R2* maps. Finally, FF maps were also 

analyzed to determine the accuracy of the multispectral models in estimating the absence of fat 

in the iron-only phantoms. 

 

 

Figure 12. Vials of 10 phantoms of different iron concentrations arranged in a 2 * 5 rectangular 

array for imaging. 

 

Patients 

The in vivo data used in this study were obtained from an institutional review board (IRB) 

approved retrospective study conducted at the Diagnostic Imaging Department at St Jude 

Children’s Research Hospital, from patients diagnosed with transfusional iron overload and 

scanned between April 2013 and February 2017 using Avanto, Siemens Healthineers scanners. 

Due to limited availability of data, only three datasets each at 1.5T and 3 T were analyzed for 
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this study. Datasets were chosen such that the parameters used for imaging were comparable to 

those used in our simulation study. The imaging parameters for the patient data were as follows: 

For GRE: 

At 1.5 T: Monopolar readout gradient, matrix = 128 x 104, TE1 = 1.2 ms, ΔTE = 1.44 ms, 

TEmax = 9.84 ms, 7 echoes, slice thickness = 5 mm, flip angle = 45° for Patient 1, TE1 = 1.15 

ms, ΔTE = 1.72 ms, TEmax = 9.75 ms, 6 echoes, slice thickness = 5 mm, flip angle = 45° for 

Patient 2, TE1 = 1.07 ms, ΔTE = 1.38 ms, TEmax = 9.35 ms, 7 echoes, slice thickness = 5 mm, 

flip angle = 45° for Patient 3. 

 At 3 T: Monopolar readout gradient, matrix = 128 x 104, TE1 = 1.04 ms, ΔTE = 1.29 ms, 

TEmax = 8.78 ms, slice thickness = 5 mm, flip angle = 35° for Patient 4, TE1 = 1.1 ms, ΔTE = 

1.48 ms, TEmax = 9.98 ms, slice thickness = 5 mm, flip angle = 20°, for both Patient 5 and 6. 

For UTE at both 1.5 T and 3 T:  

TE1 = 0.1 ms, ΔTE = 0.5 ms, TEmax = 9.6 ms, 17 echoes, 5 interleaves, slice thickness = 10 

mm, flip angle = 20°, matrix = 192 x 192 for all six patients. 

Quantitative R2* maps were calculated using the magnitude-based monoexponential with noise 

subtraction, and complex domain-based fat-water-R2* NLSQ and ARMA models. Mean R2* 

values of the whole liver without blood vessels were extracted by applying a ROI mask, obtained 

by thresholding pixel values via histogram analysis (Figure 13). Finally, mean liver R2* values 

were converted to HIC estimates for each model using a previously published R2*-HIC biopsy 

calibration,6 and were compared for accuracy with the corresponding biopsy values obtained 

from the study conducted in St. Jude Children’s Research Hospital. FF maps were also analyzed 
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to determine the accuracy of the multispectral models in estimating the absence of fat in the 

patients diagnosed with iron overload only in our study. 

 

Figure 13. Manually selected ROI covering the whole liver area, excluding blood vessels based 

on histogram analysis for a representative patient scanned using UTE acquisition at 1.5 T. 
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Results 

 

Phantoms 

 

Figure 14 illustrates the results of regression analysis between Fe concentrations of Magnefy 

phantoms and mean R2* ± SD values estimated using monoexponential, ARMA, and NLSQ 

signal models for GRE and UTE acquisitions at 1.5 T magnetic strength. For GRE sequence, all 

three models failed to maintain linearity at higher iron concentrations of R2* greater than ~1500 

s-1 and exhibited high SDs. When compared to the GRE sequence, the 1.5 T UTE acquisition 

produced superior results for all three models, throughout the full range of Fe concentrations and 

reached beyond the 1500s-1 range that models using GRE acquisition could not quantify. The 

monoexponential and ARMA models showed similar mean R2* values, SD, and linearity trends 

for all Fe concentrations. Although the NLSQ model exhibited a comparatively greater SDs at 

the higher Fe concentrations and underestimated R2* for the highest Fe concentration (1.4 %), its 

performance significantly improved for the UTE acquisition compared to GRE. Analysis of the 

R2* maps revealed inhomogeneous regions at higher iron concentrations that did not increase 

linearly in all three models for GRE acquisitions (Figure 15). Maps at UTE acquisitions, on the 

other hand, revealed all three signal models demonstrated linearly increase in R2* values with 

iron concentrations, with some inhomogeneous region at the highest iron concentration for 

NLSQ model. Finally, FF maps revealed that NLSQ model was estimating false FF values for 

extreme iron concentration in some of the phantoms obtained with both GRE and UTE 

acquisitions (Figure 16). On the other hand, ARMA model accurately estimated FF values close 

to 0 % for all phantoms for both acquisitions.  
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Figure 14. Regression analysis between Fe concentrations of Magnefy phantoms and mean R2* 

± SD values estimated using monoexponential, ARMA, and NLSQ signal models for GRE and 

UTE acquisitions at 1.5 T. Performance of monoexponential, ARMA, and NLSQ models 

significantly improved for UTE acquisition compared to GRE acquisition, with monoexponential 

and ARMA models performing similarly for UTE acquisition.  
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Figure 15. Monoexponential, ARMA, and NLSQ R2* maps of the 10 vials of phantoms with 

different iron concentrations scanned at 1.5 T for GRE and UTE acquisitions. Performance of all 

three signal models significantly improved at UTE acquisition compared to GRE acquisition, 

with monoexponential and ARMA signal models exhibiting similar R2* maps.  
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Figure 16. FF maps of ARMA and NLSQ signal models for GRE and UTE acquisitions at 1.5 T. 

ARMA model displayed FF % close to zero for all iron phantoms whereas NLSQ model 

displayed inconsistent values of higher FF % for some phantoms.  

 

Patients 

Figure 17 and 18 show the R2* maps calculated using monoexponential, ARMA, and NLSQ 

models for GRE and UTE acquisitions at 1.5 T and 3 T, respectively. The monoexponential 

model estimated HIC exhibited excellent agreement with true biopsy HIC for all patients at both 

1.5 T and 3 T for both GRE and UTE acquisitions, with some degrees of deviations from biopsy 

HICs and inhomogeneous regions in the R2* maps, especially for Patient 4 diagnosed with a 

higher HIC (Figure 18). ARMA signal model estimated HIC values in agreement with biopsy 
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values for GRE acquisitions at both magnetic strengths in all patients, with some degrees of 

deviations. However, the degree of deviation from biopsy HIC increased relatively for ARMA 

model for UTE acquisitions at both 1.5 T and 3 T, especially with an increase in HIC. 

Additionally, NLSQ model estimated HIC values in agreement with biopsy values for both GRE 

and UTE acquisitions at mild iron overload for both magnetic strengths. However, NLSQ model 

exhibited higher deviations from biopsy HIC for patients with higher HIC (Patient 2 and 4), for 

both GRE and UTE acquisitions. Overall, monoexponential and ARMA signal model were more 

in agreement for GRE acquisition than UTE, for both fields. FF maps of all patients revealed that 

ARMA model exhibited FF values close to 0 % for all degrees of iron overload used in our 

study, whereas NLSQ model displayed varying degrees of false FF %. Figure 19 shows a 

representative example of FF maps of Patient 2 scanned at 1.5 T.  

  



58 
 

 

Figure 17. Monoexponential, ARMA, and NLSQ R2* maps of the three patients scanned at 1.5 

T for both GRE and UTE acquisitions, with corresponding biopsy-derived HIC values and 

model-estimated HIC values (provided on the side and R2* maps, respectively). For GRE 

acquisition, the monoexponential and ARMA models estimated HIC values that were in better 

agreement with the biopsy-derived values for all patients. Deviation from biopsy HIC increased 

for UTE acquisition using ARMA model and for higher HICs using NLSQ model.  

 



59 
 

 

Figure 18. Monoexponential, ARMA, and NLSQ R2* maps of the three patients scanned 

at 3 T for both GRE and UTE acquisitions, with corresponding biopsy-derived HIC 

values and model-estimated HIC values (provided on the side and R2* maps, 

respectively). The monoexponential and ARMA models for GRE acquisition showed 

better agreement with biopsy-derived HIC for all patients. Deviation from biopsy HIC 

increased for UTE acquisition when using the ARMA model and for higher HICs when 

using the NLSQ model.  
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Figure 19. FF map of representative Patient 2 (Biopsy HIC = 22.52 mg/g, Steatosis description = 

No evidence of steatosis) scanned at 1.5 T for both GRE and UTE acquisitions. ARMA model 

estimated FF close to 0 for both GRE and UTE acquisitions, whereas NLSQ model estimated 

inconsistent values of false FF %.  
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Discussion 

This study aimed to validate the results of simulation studies using phantoms and patient data to 

evaluate multispectral fat-water-R2* models for GRE and UTE acquisitions. Results from the 

phantom analysis revealed that all three signal models showed a significant improvement in 

performance for UTE acquisition with short ΔTE (≤ 0.5 ms) and longer TEmax (≥ 6 ms) 

compared to GRE acquisition with a longer TE1, validating the conclusions from the Monte 

Carlo simulation study. Additionally, similar to the findings from simulations, the 

monoexponential and ARMA signal models performed similarly for UTE acquisitions compared 

to the NLSQ signal model. Results from the patient study showed that the monoexponential and 

ARMA signal models provided accurate HIC estimations for GRE acquisitions. However, results 

for UTE acquisition demonstrated decreased reliability for all patients for the ARMA model; 

ARMA method potentially failed due to inconsistent echo spacing used for the UTE sequence. 

In the phantom study, the R2* values were underestimated for iron concentrations ≥ 0.4% 

for all three signal models at GRE acquisition, with larger SDs. It is worth noting that these high 

iron concentrations used in the study appeared very dark on the MRI images, which could have 

affected the accuracy of the GRE sequence with TE1 ~ 1 ms in quantifying their fast-decaying 

MRI signals (refer to the Appendix).8 Upon examination of their calculated R2* maps, it was 

observed that these iron phantoms (0.4, 0.8, 1.4 %) appeared to be more inhomogeneous in all 

three models, which seemed to have adversely affected the R2* values. In contrast to GRE, the 

use of center-out radial sampling method in UTE imaging, resulted in a significant improvement 

in the performance for all three models. Our findings are consistent with other research studies 

that have also demonstrated UTE acquisition to extend the dynamic range of HIC estimation at 

1.5 T.10,29  



62 
 

The patient study did not validate the results from our simulation study. The 

monoexponential model accurately estimated HIC for all patients in all acquisitions, with some 

degrees of discrepancies with the biopsy values and inhomogeneous regions in the R2* maps. To 

identify the root cause of these discrepancies and inhomogeneities, further examination of the 

accuracy of R2* maps and signal estimates used in the model is required, especially for Patient 4 

at 3 T.5,13 The performance of the ARMA signal model was similar to that of the 

monoexponential model for the GRE acquisition, as it accurately estimated HIC values for all six 

patients, with some deviation from biopsy HIC. However, for the UTE acquisition, the ARMA 

model estimated HIC with greater discrepancy from biopsy HIC compared to the GRE 

acquisition and did not show the similarity trends seen in simulations and phantoms with the 

monoexponential model. In contrast, the NLSQ model performed better than the ARMA model 

overall for the UTE acquisition for our patient study. However, the NLSQ model also did not 

validate the results from the simulation, as the estimated HICs did not closely match biopsy HICs 

for UTE acquisition for patients with high HIC. Upon examination of these results, several 

possible reasons were identified for the discrepancies observed. Firstly, the ARMA signal model 

assumes the echoes to be equidistant, but the UTE sequence used in our study had five 

interleaves with unequal echospacings, which may have contributed to the discrepancies 

observed.8 Secondly, the UTE sequence used in this study was a UTE fat suppressed sequence 

that is used to suppress signals coming from the subcutaneous regions of fat in the abdomen.11,29 

However, the use of this fat suppressed sequence to decrease the streaking artifacts in the MRI 

images could have caused inaccuracies in the R2* estimation for the NLSQ and ARMA signal 

models.29 Lastly, the low SNR in patients with high iron overload and rapidly decaying signals 
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may have contributed to the lack of sufficient signals for accurate HIC estimation with the 

multispectral models.  

In line with the findings of our simulation studies and a prior study by Tipirneni-Sajja et 

al,8 the NLSQ model estimated false fat fractions in our phantom and patient study as well. As 

previously discussed, the NLSQ model relies on prior knowledge about signal peaks and 

frequencies, which can sometimes result in inaccurate fat fraction measurements.8,28 This is 

because the model may mistakenly identify fat peaks where none exist, leading to false fat 

fraction estimates.8 On the other hand, since ARMA signal model identifies individual signal 

peaks, it behaves as a pure monoexponential model in the absence of fat.8 

Our study had several limitations that should be addressed in future research. First and 

foremost, we made several attempts to optimize the monoexponential with constant offset model 

used in our simulation study, but we were unable to achieve satisfactory results on the MRI 

images within the given time frame. As a result, we resorted to using the monoexponential with 

noise subtraction model proposed by Hankins et al.6 The difference between the two fitting 

models lies in their algorithm to account for fat; the monoexponential with constant offset 

assumes the MRI signal is the sum of a monoexponential decay and a constant offset due to 

background noise or other factors.5,37,38 On the other hand, monoexponential with noise 

subtraction model assumes that the noise in the data is random and uses regression analysis to 

estimate R2* value from the noise-subtracted signal.6,29,37 Therefore, it is important to consider 

that the monoexponential models used in the simulation study, and the patient and phantom 

study are not the same, when validating the results. Moreover, while liver biopsy is considered 

the gold standard for measuring iron overload, it is still subject to sampling variability since it 

does not provide a complete view of the liver.34 Therefore, the HIC values estimated from biopsy 
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results may not be completely accurate. It is important to note that the models used in our study 

estimate HIC values based on whole liver analysis, which may result in some degree of 

discrepancy when compared to the biopsy-derived values. One important factor to note is the 

presence of ghosting and aliasing artifacts due to breathing motion in some of the images at 1.5 T 

GRE, which may have affected R2* estimation by the models. To determine if artifacts 

influenced our results, a larger sample size of patients should be studied to assess the 

reproducibility of our findings. Another limitation is the difference in FOV between the GRE 

and UTE images, which may have introduced bias into our results. Due to technical difficulties 

and time constraints, we were unable to obtain phantom and patient data in the manner that we 

had initially planned. Future studies should use sequences with comparable FOV and echo 

spacing parameters to minimize this source of error.  

Future research should incorporate 3 T scanned phantoms to gain a more complete 

understanding of the potential impact of acquisitions on signal models. It is also obvious that the 

extreme SD for the 0.4 % phantom at 1.5 T GRE is unrealistic, so the vial of phantom, images, 

and iron particle used, could be reinvestigated. Lastly, ARMA and monoexponential signal 

models have the advantage of faster signal processing when compared to the NLSQ model. This 

highlights one of their strengths over the NLSQ model. Future research can focus on exploring 

the reasons behind the slower performance of the NLSQ model and identifying potential 

solutions to address this issue. Additionally, the performance of the ARMA signal model can be 

optimized in the future by using UTE sequences with equidistant echoes or modifying the model 

to account for interleaves. 
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Overall, this study is a work in progress and further data collection and analysis is 

necessary to draw definitive conclusions about the performance of signal models for assessing 

iron overload in phantoms and patient data. 
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Chapter 6 – Conclusion and Future Work 

 

As noninvasive approaches to assessing and treating diseases become more attractive and 

preferred, extensive research is being done on MRI techniques for evaluating iron overload. The 

current R2*-HIC calibrations, obtained using a combination of multiecho gradient echo (GRE) 

imaging and monoexponential fitting, work well for iron-only conditions,5,6 but a more robust 

combination of acquisition parameters and signal models is needed to account for the presence of 

fat in the liver.8,26 The multispectral fat water models are being tested in different acquisition 

settings of GRE and UTE imaging to extend the feasibility of quantitative MRI studies. 

Simulation and phantom results showed that iron overload models accurately mimic 

human liver morphology and realistic MRI signals can be synthesized for different acquisitions 

and field strengths that exhibit greater relaxivity with increasing iron conentrations. Both 

multispectral ARMA and NLSQ signal models had improved R2* accuracy and precision for 

UTE acquisition with shorter echo spacing and longer TEmax across the full clinical spectrum of 

HIC at both field strengths, with ARMA and monoexponential signal models performing more 

similarly than NLSQ. However, patient data did not yield definitive results for UTE acquisition, 

and future work should validate the simulation results using comparable UTE sequences for 

patients across the full range of iron overload.  
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Appendices 

 

 

Figure 20. The MRI image shown here displays 10 vials of Magnefy phantoms scanned at 1.5 T 

(with the top two rows featuring phantoms that were not used in our study and can be 

disregarded). Notably, the 0.4%, 0.8%, and 1.4% phantoms appear very dark in the images, 

indicating very high iron concentrations and helps explain why GRE sequence with a longer TE1 

may have been inadequate for accurately quantifying the R2* values. 
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