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Abstract

Despite Generative AI’s rapid growth (e.g., ChatGPT, GPT-4, Dalle-2, etc.), generated

data from these models may have an inherent bias. This bias can propagate to downstream tasks

e.g., classification, and data augmentation that utilize data from generative AI models. This thesis

empirically evaluates model bias in different deep generative models like Variational Autoencoder

and PixelCNN++. Further, we resample generated data using importance sampling to reduce bias

in the generated images based on a recently proposed method for bias-reduction using

probabilistic classifiers. The approach is developed in the context of image generation and we

demonstrate that importance sampling can produce better quality samples with lower bias. Next,

we improve downstream classification by developing a semi-supervised learning pipeline where

we use importance-sampled data as unlabeled examples within a classifier. Specifically, we use a

loss function called as the semantic-loss function that was proposed to add constraints on

unlabeled data to improve the performance of classification using limited labeled examples.

Through the use of importance-sampled images, we essentially add constraints on data instances

that are more informative for the classifier, thus resulting in the classifier learning a better

decision boundary using fewer labeled examples.

ii



Table of Contents

List of Tables iv

List of Figures v

1 Introduction 1

2 Background 6
Variational Autoencoders (VAEs) 6
PixelCNN 7
Importance Sampling 8
Semi-Supervised Multi-Class Classification 9
Augmented Loss Function using Symbolic Knowledge 9

3 Related Work 11

4 Importance Sampling for Deep Generative Models 13
Bias in DGMs 13
Computing the Importance Weights 14
Importance Resampling using the Gumbel Approximation 16
Improving Downstream Classification with Generated Data 18

5 Implementation 21
Implementation 21

6 Experiments 23
Experiment Setup 23
Image Generation 24
Importance Weights 26
Evaluating Generated Samples 28
Semantic-Loss Augmented Semi-Supervised Classification 30

7 Future Work 32

8 Conclusion 33

References 35

iii



List of Tables

6.1 Performance comparison on CIFAR10 25
6.2 Various performance metrics of a classifier 27
6.3 Performance metrics to assess the quality of images generated by different genera-

tive models 30
6.4 Test accuracy measure of an augmented semi-supervised multi-class classifier 31

iv



List of Figures

1.1 Sampling Importance Resampling, adopted from [24] 3

2.1 Variational Autoencoder (VAE) workflow for our generated samples 7

4.1 ResNet-based semi-supervised multi-class classifier for labeled and unlabeled_resampled
CIFAR10 data using Semantic loss function 19

6.1 Grid of real samples 24
6.2 Grid of VAE generated samples 25
6.3 Grid of PixelCNN++ generated samples 26
6.4 Calibration plot 28
6.5 weights distribution 29

v



Chapter 1

Introduction

Generative learning using deep neural networks [41] has gained significant attention over the last

several years. Specifically, in generative learning, the goal is to model the data distribution, and

thus, in theory, generative models can generate unlimited samples that can be used in downstream

tasks such as classification. Deep generative models (DGMs) have been successful in generating

realistic images [11], videos [20], text [5], audio [43] etc.

In the last decade, several types of DGMs have been developed. Prominent among those

include Variational Auto Encoders (VAEs) [22], Generative Adversarial Networks (GANs) [11],

Autoregressive models (ARMs) [38] and normalizing flow models (NFMs) [8]. All of these

models use different approaches to model the data distribution. Specifically, VAEs learn a latent

variable model using deep network layers to encode and decode the latent vectors. GANs use a

likelihood-free approach where the idea is to train a generator-discriminator pair in an adversarial

manner with the generator learning better representations of the data to generate samples for the

discriminator and the discriminator learning to discriminate between real and generated samples.

ARMs generate sequential data based on autoregessions that was widely used for predictions in

time-series models. ARMs can compute the likelihood in a tractable manner since they assume

the autoregressive property. On the other hand, VAEs cannot compute the likelihood tractably but

rather use variational inference to approximate the likelihood using deep encoders and decoder

layers. This allows VAEs to learn complex feature representations. In NFMs, the idea is to
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combine the properties of both VAEs and ARMs. Specifically, NFMs can compute the likelihood

in a tractable manner and at the same time, they can also learn complex feature representations

like VAEs. This is done by using simple density functions with tractable likelihoods and then

mapping them to more complex probability distributions using the data samples.

Regardless of the type of generative model, it is infeasible for the model to learn the data

distribution exactly [36]. That is, each type of generative model makes underlying assumptions

about the data that may or may not be always valid. For instance, in VAEs, to make variational

inference feasible through the neural network layers, we assume that the latent vectors that

represent the underlying characteristics of the data are normally distributed [22]. In general, if the

data distribution is simple enough, then clearly, we can sample directly from the distribution and

may not need complex approaches such as DGMs. Therefore, there is a need to improve the

quality of samples that are generated from DGMs. In particular, one way to quantify the quality

of samples generated by a DGM is based on the bias in the model’s distribution. This type of bias

can result in problems such as mode-collapse [37, 29, 33] where the DGM samples from a single

mode of a multi-modal distribution and this results in generating samples that are very similar. A

recently proposed approach by Grover et al. [13] addressed this problem and tried to reduce the

bias of the samples generated by a DGM. Specifically, here, the main idea is to use an approach

called importance sampling [25] to generate weighted samples instead of unweighted samples.

The importance weights encode the importance of the generated samples with respect to the true

distribution. For example, as shown in Fig. 1.1, if the goal is to generate samples from a complex

distribution that is hard to sample, in importance sampling, we instead generate samples from a

simpler distribution called the proposal distribution and weight these samples based on a ratio of

probabilities. Specifically, for each sample, we divide the probability of the sample original

distribution with its probability in the proposal distribution. This ratio acts as the importance

weight for a sample. In [13], using the idea of importance sampling, we draw samples from the

DGM and weight it based on the data distribution which is the true distribution from which we

want to draw samples from.
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Figure 1.1: Sampling Importance Resampling, adopted from [24]

Unfortunately, to compute importance weights, we need to compute the ratio between the

probability of a sample in the true distribution and its probability in the proposal distribution.

This is infeasible in DGMs since we do not know how to compute this probability in a tractable

manner, i.e., the data distribution is assumed to be a complex unknown distribution. In [39], a

clever trick was proposed to weigh samples based on a calibrated probabilistic classifier [31, 14].

That is, this classifier is trained to compute the importance weights for samples that are generated

from a DGM. While this approach seems generally applicable to any DGM, depending on the

type of samples that are generated by the DGM, the trained probabilistic classifier could obtain

very different results. Thus, the quality of the importance weights depends on how well we can

train the probabilistic classifier.

In this thesis, we train a calibrated probabilistic classifier to perform importance sampling

for images generated from VAEs and ARMs. Specifically, we use the well-known CIFAR10

image dataset [23] to train the generative models. We use convolutional VAEs as our VAE model

for image generation and for ARMs, we use the most well-known image generation model called

PixelCNN++ [38]. We implement sample importance resampling (SIR) [26, 9] as suggested in

[13] to resample from the distribution learned by the probabilistic classifier for the generated

samples. However, in [13], it was suggested that SIR can be implemented using a standard

Multinomial roulette sampling method. in our experiments, we observed that for the weights that

were generated, this approach failed to scale and yielded poor results. Therefore, we implemented

a novel SIR where we approximate the Multinomial distribution over importance weights which
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are probability ratios (computed from the probabilistic classifier) using a Gumbel-softmax

distribution [19, 27]. This allows us to resample images from the importance distribution more

efficiently. To empirically compare the quality of the the generated images with and without

importance sampling, we use different standard metrics such as the inception score [37], the

Fretchet distance [17] and the kernel inception distance [4].

Next, we develop a novel approach to use the generated images to improve downstream

classification. Specifically, in [44], a loss function called the semantic loss was proposed to add

symbolic knowledge to deep network training. Here, we add exactly-one constraints (as specified

in [44]) over generated images. Specifically, the idea is that we want each generated image to

belong to exactly one class (among all possible classes). Thus, as in semi-supervised learning, we

can now treat the generated images as unlabeled data and add a limited number of labeled

examples to train the classifier. The semantic loss function learns to separate the labeled examples

and at the same time assign classes to the unlabeled examples. Thus, assuming that the unlabeled

examples has information about the classes, this will result in a more general classifier even using

limited labeled examples. Further, by adding constraints on informative generated images, we can

learn a more effective classifier. Using our SIR approach, we resample the generated images

which are the most informative for the classifier. We evaluate our approach by comparing the

performance of classification on CIFAR10 using limited labeled and a large number of generated

images. Our results show that utilizing the importance sampling, we are able to learn a more

accurate classifier trained on the semantic loss funtion as compared to using the generated images

directly.

To summarize, our contributions in this thesis are as follows.

• We empirically evaluate the approach proposed in [13] to understand how well importance

weights can be estimated for VAEs and PixelCNN using the CIFAR-10 dataset.

• We implement the Gumbel-softmax sampling to efficiently perform SIR based on the

importance weight distribution from a calibrated probabilistic classifier.
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• We apply the semantic loss function proposed in [44] to add constraints over images

generated (and resampled) from generative models such that the unlabeled generated data

can augment labeled examples within a semi-supervised classifier.

• We develop an open-source implementation in Pytorch that integrates the semantic loss

function with importance sampling for generative models for image datasets.
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Chapter 2

Background

Variational Autoencoders (VAEs)

Autoencoders are a general architecture that tries to reconstruct the input data. Thus, the loss of an

autoencoder is measured by the difference between the original data and the reconstructed data.

In VAEs, the main idea is to approximate the data distribution with a variational approximation.

That is, we assume that there is a simpler distribution that can approximate the true distribution.

In regular variational inference, we can compute the parameters of the distribution by minimizing

the distance (KL-Divergence) between the original distribution and the variational approximation.

The main idea in VAEs is to use deep network layers to perform variational inference.

Specifically, the VAE architecture consists of an encoder and a decoder each of which can contain

multiple deep network layers. The encoder learns the approximate distribution that encodes the

input into a latent-vector space. Thus, each input can be represented as a combination of the latent

vectors. The decoder learns to reconstruct the input from a sample in the latent-vector space. The

closer the decoder is in reconstructing the original input from the latent space, the smaller is its

loss. The entire encoder-decoder is trained end-to-end. To ensure that the KL-divergence is

minimized, the distribution learned by the encoder for latent-vector space is assumed to be

Gaussian. Thus, it has mean and covariance as the parameters to define this distribution.
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However, it turns out that neural networks cannot be trained directly since backpropagation does

not work when sampling with random variables is needed. Therefore, a reparameterization trick is

used to change the Gaussian to one with 0 mean and an identity covariance and this allows us to

apply backpropagation to train VAEs. For generating images, the encoder uses convolutional

layers that extract image features and the decoder uses deconvolutional layers that reconstruct the

image. Fig. 2.1 illustrates a VAE architecture for image generation.

Figure 2.1: Variational Autoencoder (VAE) workflow for our generated samples

PixelCNN

PixelCNN is a generative model for images that is based on generating an image pixel-by-pixel.

Specifically, we assume that each pixel is based on pixels that were previously generated. Thus,

the image is generated from the top-left corner pixel all the way to the bottom-right corner pixel.

PixelCNN formulates the joint distribution over pixels in an image as a product of conditional

distributions.
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P (x) =
∏
i

P (xi|x1 . . . xi−1) (2.1)

Each conditional distribution is the probability of a pixel value conditioned on the values

of pixels that appeared before it. This assumes an ordering over pixels such as starting from the

top-left to ending at the bottom-right corner of the image. PixelCNN uses convolutional layers to

predict the pixel value from masked images. Specifically, the masks are generated to ensure that

while generating a pixel, the convolutional layer only has access to pixels that were generated

before itself in the ordering. All pixels that are to be generated later are masked in the image.

Thus, we have a stack of convolutional layers, each of them trying to predict a pixel value from a

masked image. During training, these predictions can be made in parallel which speeds up

training. However, to generate images, the prediction needs to be performed in sequence. That is,

we generate the image one pixel at a time. Thus, PixelCNNs are slow in generating images

compared to approaches such as VAEs.

Importance Sampling

Importance sampling is a general sampling technique that can be used to sample from

distributions that are hard-to-sample from. Specifically, let us suppose that we want to sample

from a distribution P (x) but cannot do so directly since P (x) is a complex distribution. We

instead sample from a simpler distribution Q(x) which is called as the proposal distribution. To

account for the fact that we sampled from a different distribution, we weight the sample x as w =

P (x)
Q(x)

. This is called as the importance weight for the sample x. We can now compute the expected

value for any function w.r.t distribution P (·) based on samples drawn from Q(·) using the

importance weights. That is, suppose we want to compute EP [f(x)], we can approximate it with

T samples from Q(·), x1 . . . xT and compute the approximate expectation as,

ÊP [f(x)] =
1

T

T∑
i=1

w(xi)f(xi) (2.2)
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w(xi) =
P (xi)

Q(xi)

The proposal distribution plays a major role in the type of estimates obtained through

importance sampling. Specifically, if the proposal distribution is close to the true distribution,

then the estimates computed through importance sampling have a smaller variance. The

requirement for the proposal distribution is that it must be non-zero for all samples for which the

probability of the true distribution is also non-zero. It can be shown that the estimates obtained

through importance sampling are asymptotically unbiased.

Semi-Supervised Multi-Class Classification

Semi-supervised learning is a machine learning technique in which the training data set contains

both labeled and unlabeled data. On the other hand, the goal of multi-class classification is to

categorize a set of input data into one of several classes. All of the data points in the training set

are labeled in traditional supervised learning, which means that each data point has a

corresponding output value. In contrast, semi-supervised learning trains only on a subset of the

data points are labeled, leaving the remainder unlabeled. It has been used successfully in a variety

of applications such as speech recognition, natural language processing, image classification,

anomaly detection, etc.

Augmented Loss Function using Symbolic Knowledge

Current limits of deep learning include but are not limited to the need for large data, poor

generalization on unseen data, lack of reasoning in best fitting the data, and explainability of the

trained models [10]. Robust learning can be achieved by integrating additional knowledge into

deep learning. Additional knowledge could be scientific, or experiential as identified in the survey

study [6]. Experiential knowledge can be represented in logical rules, knowledge graphs, and
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probabilistic relationships as surveyed in the [6] and integrated at any different steps in the deep

learning pipeline–Data-level, architecture-level, training-level, and decision-level. In the

training-level integration, the model can be regularized with regularization terms or loss terms

derived from the knowledge. [44] introduced a novel methodology for adding symbolic

knowledge at the training level in the form of a special loss function to regularize or constrain the

model. The symbolic knowledge is in the form of propositional logic and can be as simple as

exactly-one constraint in the case of classification and as complex as structured output prediction

constraint in the applications like preference ranking, sub-graphs, or paths as demonstrated in

[44]. Conceptually, this proposed loss function is based on a semantic similarity measure between

the neural network’s output i.e., class prediction (vector of probabilities) p = [p1, ..., pn] and

symbolic knowledge in the form of a logical sentence α consists of variables X = {X1, ..., Xn}

where n is a number of classes in a classification problem.

loss = existing loss+ w · semantic loss (2.3)

where w is the weight that encodes the degree of importance attached to the semantic loss

LS . Formally semantic loss can be defined as follows.

LS(α, p) ∝ −log
∑
x|=α

∏
i:x|= Xi

pi
∏

i:x|≠=Xi

(1− pi) (2.4)

A semantic loss function that is typically used for classification problems is to enforce a

exactly-one constraint. That is, we want each example to belong to exactly one class (out of all

possible classes). Thus, given unlabeled examples, the model is forced to assign each example to

a class to minimize semantic loss.
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Chapter 3

Related Work

The importance sampling based approach proposed in [13] is quite general since it can be applied

to any DGM. Specifically, it estimates importance weights (ratio between distributions) through a

binary probabilistic classifier. Similar ideas have also been explored in other DGMs. For instance,

in GANs [11], the discriminator acts as a classifier that tries to classify samples from the

generator with samples from the real data. Thus, it learns parameters for the generator based on

the classifier learned in the discriminator. A similar idea has also been applied in contrastive

learning [15]. Importance sampling has also been used to identify the key samples in a dataset. In

[21, 7], importance sampling was used to weight points in the dataset to reduce bias in training.

Further, importance sampling has also been used to scale up deep learning. For instance,

Katharopoulos et al. [21] proposed to use of importance sampling to identify key data instances

that are more beneficial when training the model. Thus, instead of training the model over all

instances, we could train the model over a smaller subset with similar results. To estimate these

weights, Katharopoulos et al. used a pre-sample of the points and estimated the effects of the

pre-sample on the gradients when training the model. Other well-known sampling approaches can

also be applied to DGM sampling as well. For instance, an MCMC sampler was proposed in [42]

for sampling from DGMs. However, MCMC samplers usually are slower in terms of convergence.

Another approach is to use rejection sampling which was explored in [1]. However, the use of a

classifier to compute importance weights makes the approach in [13] much more general.
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The use of symbolic knowledge within deep networks is a fast-growing area of research

under the umbrella of Neuro-Symbolic AI [10]. In general, deep neural networks are augmented

with symbolic knowledge to address their limitations of strong reliance on data, limited

interpretability i.e., lack of reasoning, weak generalization, etc. In Neuro-symbolic AI,

experiential knowledge (common knowledge gleaned from longtime observations) in the form of

symbolic AI such as logic rules, knowledge graphs, or probabilistic dependencies is encoded into

deep neural networks at various stages as constraints. Further, the same can also help add specific

domain knowledge. For instance, in physics-informed deep learning [6], deep neural networks are

guided by theoretical scientific knowledge present in the form of well-established laws pertaining

to domains that control how target variables in data behave.

In the Neuro-Symbolic AI paradigm, deep learning techniques enforce arithmetic

constraints [34, 28] or logical constraints [35, 18] on neural network outputs by reducing them

into differentiable functions. Other methods, such as encoding logic into a factor graph[30], face

issues with complex logical constraints. Additionally, some methods use real-world label

structures with entropy penalty terms[12]. The semantic loss function proposed in [44] is a fairly

general approach that can be used to encode a variety of different constraints into deep network

learning. Here, we apply the semantic loss function to add constraints on data from generative

models which helps us learn more effective classifiers.
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Chapter 4

Importance Sampling for Deep Generative

Models

Bias in DGMs

In DGMs, the goal is to learn a model from which we can obtain samples similar to those

obtained when we sample from the data distribution. Specifically, suppose p represents the data

distribution, the DGM will approximate pdata by learning pθ (where θ represents the model

parameters learned by the DGM). Thus, the closer pθ is to pdata, we can obtain samples from the

DGM that are similar to samples in the data. This way, we can in theory, have access to unlimited

number of samples using the learned DGM. However, since pθ is not the same as pdata, there is a

bias in the samples generated by the DGM. By reducing this bias, we can obtain more realistic

samples from the DGM, i.e., samples that reflect the true data distribution.

The approach proposed in [13] uses the idea of importance sampling (IS) to weight the

samples generated by the DGM which can in turn be used to reduce bias in any downstream task

where these samples are used. Specifically, in IS, we compute the ratio between the probability of

a sample in true distribution to its probability in the proposal distribution. Similarly, here, suppose

we treat the distribution learned by the DGM (pθ) as the proposal distribution, we need to
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compute the ratio pdata(x)/pθ(x) for a given sample x. Next, we discuss a use-case where using

this ratio, we can improve a task. Specifically, consider a model-based data augmentation. That is,

data is generated by a generative model which can be useful to enrich the dataset to provide

sufficient training data for a classification or regression task. The optimization problem in the task

of learning a classifier is to minimize expectation of loss over the observed dataset. We define

some notation as follows. f(x) is the loss used in the task, e.g., cross entropy loss. Epdata [f(x)] is

the expectation of the loss under the data distribution. By using samples from the DGM, we

introduce a bias in the training since Epdata [f(x)] ̸= Epθ [f(x)]

When we augment the data with samples from the DGM, we are essentially sampling

from a distribution that is different from the target distribution. Using IS, we can weight the

samples using their importance weights. Thus, the expectation can be rewritten as Epθ [w(x)f(x)]

where w(x) = pdata(x)
pθ(x)

. In practice, we approximate the expected value with a Monte Carlo

estimate. Specifically, suppose we estimate the expectation using T samples, we have the

following estimator.

Êpθ [f(x)] =
1

T

T∑
i=1

w(xi)f(xi)

We can show that the expectation that is approximated using the samples from pθ is

asymptotically unbiased. That is, as the number of samples T →∞, Êpθ [f(x)] approaches

Epdata [f(x)]. Thus, by using IS, we can reduce the bias of samples generated by the DGM.

Computing the Importance Weights

While IS provides a general framework for weighting the samples, it turns out that applying it to

DGMs is not as straight-forward. Specifically, the main issue is that it is often infeasible to

compute w(x) = pdata(x)
pθ(x)

. This is because, in the typical case, the actual data distribution does not

have a specific form (e.g., Gaussian, etc.). Further, even the DGM distribution pθ is often

intractable to compute. Therefore, in [13], inspired by techniques that compute density ratios
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using classifiers [39], the idea is to compute the importance weights by converting it into a

classification task.

The main idea is that instead of explicitly computing the probabilities to compute the

importance weights, we can estimate the weights based only on samples from the DGM as well as

samples from the real data. Such an approach to compute weights is called likelihood-free since

we do not compute the probabilities explicitly. To estimate the weights, we formulate a

classification problem as follows. We want to learn a binary classifier that classifies a sample

from the real data as 1 and a sample from the DGM as 0. More specifically, we learn a

probabilistic binary classifier that outputs the probability of belonging to the positive class, i.e.,

the input sample is from the real dataset. Suppose, cϕ(x) denotes the probability output by the

classifier (with parameters ϕ) that the sample x is from pdata, the importance weight can now be

approximated as follows.

w(x) =
cϕ(x)

1− cϕ(x)

Note that the classifier used to estimate cϕ(x) should output accurate probabilities. That

is, the classifier needs to be a well-calibrated classifier. This means that if cϕ(·) outputs a

probability p when roughly p% of the training data used to learn cϕ belongs to the positive class,

i.e., in this case they correspond to real samples from the dataset. To learn such a calibrated

classifier, we can once again use a neural network. It is shown in [31] that a neural network with

a single hidden layer is well-calibrated [14]. Thus, we can train a single hidden layer neural

network over a balanced dataset that consists of both real and samples generated by the DGM. We

can then compute the importance weights of a new sample generated by the DGM by predicting

its probability by the trained neural network. Naturally, the type of samples generated by the

DGM has a major influence on the quality of the probabilistic classifier we learn which in turn

influences the bias. That is, if the probabilistic classifier produces accurate probabilities, then the

importance weights learned are optimal and therefore any downstream task that uses these

weights have smaller bias and vice-versa.
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Importance Resampling using the Gumbel Approximation

Sample Importance Resampling [26, 9] (SIR) is a technique where the importance weighted

samples are resampled according to their normalized importance weights. Specifically, suppose

the DGM generates samples x1 . . . xn, i.e., we assume that these samples are generated from the

model distribution pθ. Let w(x1), w(x2) . . . w(xn) be the importance weights computed by the

probabilistic classifier over the samples x1 . . . xn. We now resample xi with probability

proportional to w(xi)/Z, where Z =
∑n

i=1w(xi). Thus, the weighted samples are drawn from a

multinomial distribution based on their importance weights. If we compute the probability

density over the resampled data, we have the following:

p̂θ(x) ∝ pθ(x)w(x)

In [13], it is shown that the KL-divergence between p̂θ(x) and the data distribution pdata(x) is

smaller than that between the original DGM distribution pθ(x) and pdata(x). In other words, SIR

helps us obtain a better fit for the data distribution as compared to using the DGM generated

samples directly.

To implement SIR, we have different options. The basic approach also known as roulette

sampling is implemented as follows. We compute the cumulative sum of the probabilities for the

samples (since we are dealing with very small numbers, these are computed in log-space). Thus,

the cumulative weight for the i-th sample is given by
∑i

j=1w(xj)/Z. We now want to draw a

sample from this cumulative distribution based on a uniformly distributed random number. That

is, if we draw a random number U and this number lies in the interval between the cumulative

probabilities that are computed for samples xi and xi+1, we sample the data instance xi+1. To

search for such an interval, we can use binary search for improving efficiency. However, with this

approach, the samples depend upon the random number generator. Further, since in our case, it

turns out that the numbers are very small, they need to be maintained in log-space to avoid
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underflow. When we take sums in log-space, the resulting sum (in log-space) is an approximation

that results in errors when computing the cumulative distribution. Thus, the samples generated

from this approach do not closely correspond to the true distribution that we need to sample from.

Instead, we utilize another approach to sample from the importance distribution based on the

Gumbel approximation.

The Gumbel-softmax function is used to sample from a Multinomial distribution with log

probabilities. Specifically, note that when we sample from the distribution, for each sample

drawn, we are essentially computing the following function.

max
i

((
i−1∑
j=1

w(xj/Z)

)
≤ U

)

That is, we are computing the index of the instance to sample based on the generated

random number U . The Gumbel-softmax function approximates this using a continuous function

known as the Gumbel function. Specifically, the standard Gumbel distribution is given by the

following equation.

Gumbel(0, 1) = exp−(x+exp(−x))

Using Gumbel(0, 1), we can now approximate the sampling as follows.

max
i

(Gumbel(0, 1) + log(w(xi/Z))

Next, we can approximate the max in the above function with a smooth, differentiable

approximation that is commonly used, called as softmax. Thus, the Gumbel-softmax probability

approximation is given as follows:

p̂(xi) =
exp(Gumbel(0, 1) + log(wi))/τ∑
j exp(Gumbel(0, 1) + log(wj))/τ

where wi is an abbreviation for w(xi/Z) and τ is called as a temperature parameter. As τ → 0,
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the softmax approximation more smoothly approximates the max function. The Gumbel trick is in

fact widely used to sample from discrete multinomial distributions in Neural Networks. For

example, for a neural network that generates language, the network typically learns a discrete

distribution over words. To sample the words to generate, we need to sample from this

distribution and the Gumbel trick helps us rewrite this as a continuous discrete distribution which

is differentiable [32]. This is a necessary condition for neural network learning algorithms such as

backpropagation. Similarly, in reinforcement learning, when we want to sample an action from a

set of discrete actions, once again the Gumbel trick is used to perform this sampling [19]. In our

case, we use this to sample from the log importance distribution. Thus, once we compute the

importance weights for the samples generated by the DGM, we reparameterize the importance

weights as a Gumbel-softmax probability and then sample from this new distribution. The

samples from this distribution constitute the resampled data for the DGM.

Improving Downstream Classification with Generated Data

The main idea is to use generated images as unlabeled examples to improve classifiers.

Specifically, as is shown in [44], unlabeled examples can help guide the decision boundary of the

classifier to improve generalization. Thus, in cases where labeled examples are limited/expensive

but unlabeled examples are cheap, we can provide the model with a large number of unlabeled

examples along with a smaller number of labeled examples (semi-supervised classification).

Here, we use the semantic-loss function to add constraints into the deep model based on the

unlabeled examples. Specifically, we use the exactly-one constraint where each unlabeled

example is to be assigned a single class. Thus, the decision boundary of the classifier using the

semantic-loss will be optimized to both correctly classify the labeled examples and also to adapt

itself to the structure within the unlabeled examples resulting in better generalization. However, it

is important to choose informative unlabeled examples on which we add the exactly-one

constraints in the semantic loss function. To do this, we use the importance-sampled images since
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these correspond to the ones that have most information (according to the probabilistic classifier)

and add exactly-one constraints for all these resampled images.

The block diagram of our architecture is shown in 4.1. Specifically, we implement a

ResNet-based [16] semi-supervised multi-class classifier consisting of several key components.

Figure 4.1: ResNet-based semi-supervised multi-class classifier for labeled and unla-
beled_resampled CIFAR10 data using Semantic loss function

The input to the network is a set of labeled and unlabeled images from the image dataset

and resampled images drawn from importance sampling framework respectively, which are

passed through a series of convolutional layers to extract features. The ResNet architecture is used

to enable deeper networks with residual connections, which can help alleviate the problem of

vanishing gradients in deep networks. The standard supervised loss function; Cross entropy loss

has used for the labeled data, and an augmented loss function i.e., Semantic loss that incorporates

the unlabeled data. The semantic loss represents how close output probabilities–normalized logits

(applied Sigmoid activation function)–are to satisfying the constraints. Here, constraints are set of
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one hot encoded binary variables. Further, semantic loss is having associated weight of

w = 0.0005, best suggested through hyperparameter tuning experiments in [44]. To update the

model parameters, we use backpropagation through the entire network, including the augmented

loss and constraint terms. This is done using the Adam optimizer.
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Chapter 5

Implementation

Implementation

Another goal of this thesis is to investigate the effectiveness of importance sampling on more

complex datasets than MNIST, so we chose the CIFAR10 dataset. It contains color images of

various objects, has greater variation in terms of object appearance, color, and orientation, and the

dataset includes 10 different classes of objects (such as airplanes, horses, dogs, ships, etc). We

have used a Python development environment for implementation. The models are built using the

machine learning framework Pytorch version >=1.1.0, and TensorFlow version 1.14.0. Pytorch

was chosen for this thesis due to its ease of use, functionalities, flexibility, and strong community

support. Due to the requirement of computational resources, all experiments are conducted in

Google’s Colab pro+ [3] on the Google Cloud Platform for hardware acceleration. Standard

NVIDIA GPUs like P100 and V100 get assigned dynamically and recently they have introduced

premium GPU A100 which is more powerful. For experiment tracking and logging, we have used

a WandB [2] tool, which has a simple interface for visualization artifacts, logging output, system

utilization, tracking of all runs, etc. For efficient storing and reading images into deep neural

networks, Pytorch supports abstract Dataset and Dataloader class respectively to inherit later. In

our case, we had to generate many samples of size 150K · 3 · 32 · 32 from each deep generative
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model and save them to an NPZ (numpy zipfile) file. Due to the non-trivial dataset, we had to

inherit these abstract dataset classes to concatenate real (CIFAR10) and generated data from

different files, and apply transformations. Next, according to our needs, we had to engineer a

Dataloader abstract class (which efficiently iterates different batches in every epoch) to create a

customized batch of half of the real data and half of the generated data by making sure real data is

balanced, and this process repeats for varying sizes of real data e.g., 1000, 4000 as shown in the

table 6.4. Moreover, We implemented knowledge-augmented Semantic loss function1 in Pytorch

in the functional programming style. The original codebase has a few missing parts, to our

knowledge we have engineered and streamlined an end-to-end workflow from implementing deep

generative models to generate a large set of samples, integrating tools like WandB, implementing

the SIR algorithm using a Gumbel Max Trick to analyze the methodology in a detailed manner

for the first time. Our code is available on GitHub at

https://github.com/jprachir/resampling_dgms.git

1Originally written in Tensorflow for different dataset at https://github.com/UCLA-StarAI/Semantic-Loss.git
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Chapter 6

Experiments

Experiment Setup

Our goal is to empirically evaluate the utility of importance sampling in DGMs that generate

image data. Specifically, we use one of the most widely-used benchmarks called CIFAR10 [23] in

our evaluation. CIFAR10 is a labeled, colored image dataset, consisting of 60000 images in total.

The dataset consists of 10 classes and each image is labeled with its class. Each class has 10,000

images. Fig. 6.1 is a grid consisting of example CIFAR10 images. The dimension for each image

is 32x32x3 (height x width x channels). The train/val/test splitting proportion of data is

45k/5k/10k.

We use two different DGMs in our evaluation. The first is a convolutional VAE. Here, the

architecture consists of an encoder and a decoder. The encoder has three convolutional layers and

generates a latent vector of size 180 dimensions. The latent vectors are distributed according to a

Gaussian distribution. The decoder samples a latent vector and decodes it back into the image

through deconvolutional layers. We train the VAE on the training portion of the CIFAR10 dataset

for 500 epochs on the Google Colab+ environment with a single GPU. To generate images, we

sample the latent vectors from the standard Gaussian distribution and then use the decoder to

generate the images according to the distribution learned by the VAE.

23



Figure 6.1: Grid of real samples

The next DGM we use in our evaluation is PixelCNN++ [38], which is a state-of-the-art

open-source model; its implementation is based on the PixelCNN autoregressive model for image

generation. Here, since training the network is considerably expensive even with a GPU, we use a

pre-trained network. The pre-trained model1 of PixelCNN++ is taken at epoch 889, learning rate

0.0004, 160 filters used across the model, and 5 blocks of residual blocks at each stage of the

PixelCNN++ model. In PixelCNN++, the images are generated pixel-by-pixel.

Image Generation

We show examples of the images generated by VAE and PixelCNN++ in Fig. 6.2 and 6.3

respectively. Note that, the quality of images generated by PixelCNN++ is far superior to those

generated by VAE. In general, it is a known drawback of VAEs that they generate images that are

quite blurry as can be observed in the examples shown in the figures. Table 6.1 showcases various

1https://github.com/pclucas14/pixel-cnn-pp
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Table 6.1: Performance comparison on CIFAR10

Model Data Training Time generation(250 samples) time NOP GPU
VAE Cifar10 63mins 0.7mins <2M T4
PixelCNN++ Cifar10 Pretrained 57mins <54M P100

elements of deep generative models. Each model was trained on CIFAR10 dataset with respective

training times. The sampling time required to generate a batch of 250 samples has been provided.

Clearly, the sampling process for VAE is faster than PixelCNN++ since in PixelCNN++ inference

is done pixel by pixel. NOP is an abbreviation for the total number of parameters to be trained to

draw inferences in each respective model. Inference is done using different accelerators due to the

dynamic allocation of the Google cloud platform (they both have the same configurations).

Figure 6.2: Grid of VAE generated samples
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Figure 6.3: Grid of PixelCNN++ generated samples

Importance Weights

We use a calibrated probabilistic classifier to compute the importance weights for the generated

images. To do this, first, we extract features for images using a well-known pre-trained model

called as the Inception V3 model [40]. On top of the extracted features, there is a dense layer of

size 1000 nodes which act as the hidden layer for the classifier. Finally, this is connected to a

single output (binary classifier) which is trained using the cross-entropy loss. To train the model,

we use a balanced dataset, i.e., we have 45K image samples from the real dataset and 45K

generated samples. Further, we added a random image baseline just as a sanity check.

Specifically, instead of training the classifier with generated images from VAE/PixelCNN, we just

train it with random grayscale images. The accuracy results of training the classifier are shown in

Table 6.2. As expected, the classification accuracy is higher for VAEs since the images are

blurrier than real images. Thus, the probabilistic classifier can distinguish between real and
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generated images quite easily. On the other hand, PixelCNN++ produces very realistic images.

Therefore, when the classifier tries to distinguish between real images and those generated

through PixelCNN++, it has much lower accuracy.

Table 6.2: Various performance metrics of a classifier

Model Data training acc testing acc training time
VAE Cifar10 99.33% 99.89% 66mins
PixelCNN++ Cifar10 80.92% 84.46% 69mins

Since our goal is to estimate importance weights through the probabilities of the classifier,

more important than the accuracy of the classifier, we want to know how well-calibrated is the

classifier. That is, does it produce probabilities that reflect the true probabilities since only then

will our resulting importance weights be more accurate. To analyze this, we plot calibration

curves. In these curves, we measure the average probability output by the classifier as we evaluate

on varying proportions of instances belonging to the positive class (in our case, this corresponds

to images from the real dataset). Thus, if we use p% of the data in our evaluation to be the real

images, then the average probability output by a well-calibrated classifier over all instances used

in the evaluation is equal to p. We use a total of 20K images (10K real images and 10K generated

images) to plot the calibration curve shown in Fig. 6.4. The x-axis shows the proportion of

positive samples and the y-axis shows the average probability. As shown here, for the

perfectly-calibrated classifier, we should obtain a straight line (shown as a dotted line) since the

average probability is exactly equal to the proportion of positive samples. As seen from our

results, the classifier trained on real and PixelCNN++ samples (blue curve) in fig 6.4 indicates

that it’s a well-calibrated model as visually it’s close to the diagonal. An orange curve for a

classifier trained on real and VAE-generated samples is quite not as consistent and has a worse

calibration. The Green curve is for a model trained on random noise that is obviously far from the

diagonal since it is poorly calibrated. Thus, in summary, training with the PixelCNN++ samples

gave us the most calibrated classifier to estimate the importance weights. The Gumbel

approximated weights are visualized in Fig. 6.5. As shown here, the distribution of weights has a
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similar shape for both VAEs and pixelCNN++.

Figure 6.4: Calibration plot

Evaluating Generated Samples

To evaluate the generated samples, we use three standard metrics that measure the quality of the

generated samples, Inception Score (IS), Frechet Inception Distance (FID), and Kernel Inception

Distance (KID). To compute these metrics, we use the Tensorflow implementation of the

Inception V3 Network. All images are transformed i.e. resized to 299x299 to the size of the

original training data of the Inception model. The standard errors for each score are computed for

100K DGM-generated data over 10 runs. In each of these metrics, the generated images are

passed through the inception V3 network to extract features. Then, the images are classified based

on labels in the inception network. The idea is that if the generated images are of high quality,

then the inception network should predict the labels more confidently over the generated images.
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Figure 6.5: weights distribution

In terms of the metrics, better-quality images have higher IS and lower FID/KID scores. Table 6.3

shows the results over different metrics comparing the images generated by VAE/PixelCNN++

with images resampled using the importance distribution with the Gumbel approximation. In the

table, the Reference value indicates the best possible scores that can be achieved, i.e., these are

computed using the images from the real data (the true data distribution). As shown from the

results, in both VAE and PixelCNN++, importance weights based resampling has a significant

impact on the quality of images. Overall, since PixelCNN++ generates better quality images, they

have better scores over all metrics. However, as it turns out, the resampling helps improve the

quality of VAEs by a relatively large margin (as seen in the massive decrease in the FID value).

Thus our experimental results suggest that resampling has a larger impact when the generated

images are of lower quality. This is an interesting observation since, when the images are of lower

quality, then naturally, it is more important that we select the right samples for a downstream task.
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Table 6.3: Performance metrics to assess the quality of images generated by different generative
models

Model Evaluation IS(↑) FID(↓) KID(↓)
- Reference 11.16 ± 0.021 7.60 ± 0.017 0.010 ± 0.0001
PixelCNN++ No Importance Sampling 4.39 ± 0.0550 64.16 ± 1.4722 0.318 ± 0.0055

Importance Sampling 6.73 ± 0.0233 42.95 ± 0.0320 0.121 ± 0.0008
VAE No Importance Sampling 1.14 ± 0.0285 418.11 ± 5.032 0.755 ± 0.0068

Importance Sampling 2.56 ± 0.2514 301.09 ± 18.47 0.330 ± 0.0005

Semantic-Loss Augmented Semi-Supervised Classification

We used the well-known ResNet (Residual Network) model2 for performing image classification

in CIFAR10. In a ResNet, a residual block contained multiple convolutional layers, batch

normalization, and rectified linear unit (ReLU) activations. ResNet is trained using

backpropagation, and Adam stochastic gradient descent. The semantic loss function specified in

Eq. 2.4 is used to train our model. Other fixed hyperparameters include 20 epochs, a learning rate

of 0.001, batch size of 32. Labeled data is always a balanced dataset with equal number of images

for each of the 10 classes. On average each set took around 140 minutes to train the model. The

accuracy is reported on the test data which has associated labels. Table 6.4 shows the performance

measure of the classifier on the varying size of labeled and unlabeled data for different DGMs.

Dreal +Dgen: model trained on CIFAR10 & generated data

Dreal +Dgen + IS: model trained on CIFAR10 and importance resampled generated data

If we take 1K labeled and 45K unlabeled data (Importance resampled data) the accuracy improves

by 1.26% for VAE and 1.41% for PixelCNN++ model against just generated 45K samples. Again,

if we take 4K labeled and 42K unlabeled (Importance resampled data) the accuracy improves by

1.03% and 0.09% for VAE and PixelCNN++ models respectively. We compared with the baseline

accuracy which is calculated over an entire 46K CIFAR10 labeled data. As seen from our results

in 6.4, when we use SIR to resample the generated images (as our large set of unlabeled data) the

classifier accuracy improves. This is true for both VAE and PixelCNN++ generated images. We

2Implementation referenced from https://pytorch-tutorial.readthedocs.io/en/latest/
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noticed that the improvement is more pronounced in VAEs compared the PixelCNN++. This is

because in VAEs, the quality of generated images is poor and therefore, it is important to choose

the right type of generated images on which we add the exactly-one constraints in the semantic

loss function. Thus, using importance sampling helps us obtain such images. On the other hand,

PixelCNN++ generates very high quality images (but at a high computational cost compared to

VAEs). Therefore, it is less important to add constraints on the most informative images. Thus,

we can envision this approach as being useful in cases where we have access to a large number of

lower quality generated images from an inexpensive generative model and we want to boost the

downstream classifier for which limited labeled examples are available using the generated

images. In future, we can perform more studies in real applications that have these settings.

Table 6.4: Test accuracy measure of an augmented semi-supervised multi-class classifier

Model Dataset
No. of used labels

1000 4000 ALL
VAE Dreal +Dgen 66.69 73.65

81.48
Dreal +Dgen + IS 67.53 74.41

PixelCNN++ Dreal +Dgen 68.03 75.55
Dreal +Dgen + IS 68.99 75.62
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Chapter 7

Future Work

A potential future direction is to extend this work to flow-based and energy-based generative

models. Further, we could also explore other more advanced approaches to estimating the

importance weights (apart from the probabilistic classifier). The proposed approach can also be

used in applications such as Multimodal AI (Visual Question Answering, Image Captioning, etc.)

to sample images for training more efficiently. More generally, the idea of importance sampling

can also be used to scale up training.

Another possible future direction is to use importance weights to explain model behavior

(explainable AI). Specifically, we can understand which images are critical to training the model

based on the importance weights which will also offer insights into how the model works. We can

also extend the framework for semi-supervised learning by adding more complex constraints

during training. For instance, constraints that are related to a domain such as images of X-rays for

disease detection. Finally, we can extend this work to other types of data including language

datasets and graph datasets.
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Chapter 8

Conclusion

Deep generative models are capable of generating realistic and diverse samples, allowing for tasks

such as data augmentation, semi-supervised learning, and unsupervised feature learning among

the most important ones. Deep generative modeling learns an approximation of the data

distribution that captures the main characteristics of the data and generates new samples that are

similar to the real data. However, the quality of generated samples affects because samples do not

represent the full distribution of the real data.

In addition to importance sampling, other sampling techniques like Markov chain Monte

Carlo, and rejection sampling have been employed to perform an extra operation on the generated

sample like transforming or rejecting it to ensure the sample’s quality. However, these methods

demand high computational power and are slower to converge. And other methods focuses on

learning the model parameters unlike the following case, where the quality of samples is

quantified in the form of bias in the model’s distribution. [13] proposed a bias reduction

framework that uses the standard approach of importance sampling to generate weighted samples

instead of unweighted samples. Essentially, this weight for each sample encodes the related

importance with respect to the true distribution. Weight is estimated by using a shallow, dense

neural network making sure it’s a calibrated one.

In this thesis, we analyzed and compared the importance weights learned by the calibrated

probabilistic classifier for two different DGMs specifically VAEs and PixelCNN++. Next, we
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deployed a Gumbel softmax sampling trick to efficiently perform resampling, based on the

importance weight distribution. We developed an open-source implementation in Pytorch of the

probabilistic classifier architecture. Measures of better quality samples like Inception score, FID,

and KID suggested improved scores for both methods. In addition to that we demonstrated

improved performance of the augmented semi-supervised multi-class classifier with the semantic

loss for simple constraint when we select images through importance sampling.

In essence, the workflow of importance sampling followed by sampling importance

resampling using the softmax Gumbel trick provides us with better quality samples and is

generally applicable to any DGM. As a result, we believe this work can serve as the foundation

for future work validating performance in different domains e.g., healthcare where labeled data is

limited.
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