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Thesis Statement and Contribution

Summary

Farming and animal husbandry has benefited from recent developments in automated harvesting, scientific

studies in plant genomes, and recent reproductive cycle research. However, even with these recent advances,

the industry is still heavily dependent upon human specialists with many years of experience to limit the costs

associated with insemination and to maximize the probability of pregnancy associated with insemination. To

address this issue, this thesis poses the question of how can the dependence on human experts be decreased

through the application of machine learning techniques? To begin to answer this question, this treatment

focuses on object detection and segmentation using thermal images. Specifically, this research focuses on

the problem of detecting the sow’s vulva. This thesis also poses the question of whether current research

results can contribute to an automated process of determining the estrus cycle and ovulation in sows? This

thesis assembles and presents research and results that begin to address these questions.

The contributions of this thesis may be summarized as follows:

1. Development of machine learning techniques to reduce the farming industry dependence on human

experts.

2. Development of segmentation results for vulva detection and localization.

3. Derivation of a new feature extractor based on concatenating two feature extractors.

4. Evaluation of traditional semi-supervised ML techniques on infrared images

iv



Table of Contents

Acknowledgements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ii

Abbreviations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . iii

Thesis Statement and Contribution Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . iv

List of Figures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ix

List of Tables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . x

Abstract . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1 Introduction 3

2 Object Detection Using Machine Learning 5

2.1 Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

2.1.1 Histogram of Oriented Gradients . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

2.1.2 Histogram of Oriented Gradients (HOG) Calculation . . . . . . . . . . . . . . . . . 6

2.1.3 Gabor Filter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

2.1.4 Support Vector Machine . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

2.1.5 Infrared Images and applications . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

2.2 Method Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

2.2.1 Vulva Localization Using HOG with 12 Gabor filters . . . . . . . . . . . . . . . . . 17

2.2.2 Vulva Localization Using 96 Gabor filters . . . . . . . . . . . . . . . . . . . . . . . 18

3 Object Detection Implementation Using Deep Learning 27

3.1 Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

3.2 Method overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

3.2.1 Image annotation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

v



3.2.2 Set up Google Colab . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

3.2.3 Training . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

4 Image Segmentation Using U-Net 35

4.1 Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

4.1.1 Image segmentation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

4.1.2 U-Net semantic segmentation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

4.2 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

4.3 Method overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

4.3.1 Color threshold . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

4.3.2 Training masks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

4.3.3 Intersection Over Union . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

4.3.4 Minimum area rectangle . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

5 Thesis Results 45

5.1 Results of machine learning model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

5.1.1 Using HOG with 12 Gabor filters . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

5.1.2 Results using 96 Gabor filters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

5.2 Results of YOLOv3 model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

5.3 Conclusion and future work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50

vi



List of Figures

2.1 Thermal image of pigs in barn. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

2.2 Pixel values for the patch . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

2.3 Resized image to 64*128 after cropping the RIO . . . . . . . . . . . . . . . . . . . . . . . 9

2.4 Final vectors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

2.5 Resultant vector calculation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

2.6 The calculated HOG descriptor for an image. . . . . . . . . . . . . . . . . . . . . . . . . . 13

2.7 Different Gabor responses for two different Gabor kernels . . . . . . . . . . . . . . . . . . 13

2.8 A demonstration of linear SVM. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

2.9 Math behind SVM . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

2.10 A demonstration of nonlinear SVM. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

2.11 The light spectrum shows both visible light and infrared light . . . . . . . . . . . . . . . . . 17

2.12 A sample is taken from the dataset. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

2.13 An overview of our classification system construction. The First stage contains collecting

thermal RGB images dataset. Then, we extract features using Gabor filter bank followed by

feature selection via PCA. Consequently, our SVM classifier is trained using the resulting

features. Finally, we employ a series of Gaussian pyramids with sliding windows to

establish the vulva locations through the trained SVM. . . . . . . . . . . . . . . . . . . . . 19

2.14 Image in (a) presents a sample training set image that contains only the pig’s vulva. Images

such as these construct our positive training dataset. Images such as the one shown in (b)

are representative of the images defining our negative training dataset . . . . . . . . . . . . 20

2.15 Data Augmentation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

2.16 Various sizes of image (layers) achieved by using scale down pyramid . . . . . . . . . . . . 24

vii



2.17 Various sizes of image (layers) achieved by using scale up pyramid . . . . . . . . . . . . . . 25

2.18 Overlapping of bounding box . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

3.1 The structure of Darknet53. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

3.2 Structure detail of YOLOv3. It uses Darknet-53 as the backbone network and uses three-

scale predictions. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

3.3 Duplicate predictions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

3.4 The labeling interface for vulva dataset . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

3.5 Set up Google Colab . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

3.6 connect Colab with our Google Drive . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

4.1 Semantic segmentation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

4.2 Instance segmentation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

4.3 U-Net architecture . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

4.4 An overview of the segmentation model used in this chapter. The first stage contains extract

masks of a region of interest. Then train grayscale images along with extracted masks in

U-Net semantic segmentation model. Finally, using the center of mass for optimizing the

predicted mask to get better Intersection over union (IOU) values. . . . . . . . . . . . . . . 40

4.5 Segmented image and its mask. The lower and upper limits for HSV are (161, 155, 84) (179,

255, 255) respectively . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

4.6 Intersection Over Union. The first left image is the ground truth mask. The first right image

is the predicted. The second left shows the intersection between the ground truth and the

predicted mask, while the second right represents the union . . . . . . . . . . . . . . . . . . 43

4.7 Bounding rectangle with the minimum area . . . . . . . . . . . . . . . . . . . . . . . . . . 44

5.1 Results using HOG without Gabor filters . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

5.2 Final results after incorporating Gabor responses in the feature maps. . . . . . . . . . . . . . 46

5.3 Gabor filter accuracy. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

5.4 The resultant confusion matrix of our trained system. . . . . . . . . . . . . . . . . . . . . . 47

viii



5.5 A qualitative results of the Vulva detection system. The results cover a wide range of sce-

narios indicating the robustness of our system. Results show in infrared as they appear in

the camera. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

5.6 The results of the CNN model [43] on our dataset. The results show that CNN is unable to

address the dataset limitation of these types of problems in a wide range of scenarios. . . . . 49

5.7 Model inference time for the varying number of filters . . . . . . . . . . . . . . . . . . . . . 49

5.8 YOLOv3 results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50

ix



List of Tables

3.1 Comparison of backbones. Accuracy, billions of operations (Ops), billion floating-point

operations per second (BFLOP/s), and frames per second (FPS) for various networks . . . . 33

4.1 U-Net architecture. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

5.1 Comparison between models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

x



Abstract

The objective of computer vision research is to endow computers with human-like perception to enable

the capability to detect their surroundings, interpret the data they sense, take appropriate actions, and learn

from their experiences to improve future performance. The area has progressed from using traditional

pattern recognition and image processing technologies to advanced techniques in image understanding such

as model-based and knowledge-based vision. In the past few years, there has been a surge of interest

in machine learning algorithms for computer vision-based applications. Machine learning technology has

the potential to significantly contribute to the development of flexible and robust vision algorithms that

will improve the performance of practical vision systems with a higher level of competence and greater

generality. Additionally, the development of machine learning-based architectures has the potential to reduce

system development time while simultaneously achieving the above-stated performance improvements. This

work proposes utilizing a computer vision-based approach that leverages machine and deep learning systems

to aid the detection and identification of sow reproduction cycles by segmentation and object detection

techniques. A lightweight machine learning system is proposed for object detection to address dataset

collection issues in one of the most crucial and potentially lucrative farming applications. This technique

was designed to detect the vulvae region in pre-estrous sows using a single thermal image. In the first

experiment, the support vector machine (SVM) classifier was used after extracting features determined by

12 Gabor filters. The features are then concatenated with the features obtained from the Histogram of

oriented gradients (HOG) to produce the results of the first experiment. In the second experiment, the

number of distinct Gabor filters used was increased from 12 to 96. The system is trained on cropped image

windows and uses the Gaussian pyramid technique to look for the vulva in the input image. The resulting

process is shown to be lightweight, simple, and robust when applied to and evaluated on a large number

of images. The results from extensive qualitative and quantitative testing experiments are included. The
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experimental results include false detection, missing detection, and favorable detection rates. The results

indicate state-of-the-art accuracy. Additionally, the project was expanded by utilizing the ”You Only Look

Once” (YOLO) deep learning Object Detection models for fast object detection. The results from object

detection have been used to label images for segmentation. The bounding box from the detected area was

systematically colored to achieve the segmented and labeled images. Then these segmented images are used

as custom data to train U-Net segmentation.

The first step involves building a machine-learning model using Gabor filters and HOG for feature ex-

traction and SVM for classification. The results discovered the deficiency of the model, therefore a second

stage was suggested in which the dataset was trained using YOLOv3-dependent deep learning object detec-

tion. The resulting segmentation model is found to be the best choice to aid the process of vulva localization.

Since the model depends on the original gray-scale image and the mask of the region of interest (ROI), a

custom dataset containing these features was obtained, augmented, and used to train a U-Net segmentation

model. The results of the final approach show that the proposed system can segment the sow’s vulva region

even in low-rank images and has excellent performance efficiency. Furthermore, the resulting algorithm

can be used to improve the automation of estrous detection by providing reliable ROI identification and

segmentation and enabling beneficial temporal change detection and tracking in future efforts.
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Chapter 1

Introduction

Although significant progress has been made toward more precise object localization in recent years, state-

of-the-art object detectors have become increasingly expensive. For example, one of the latest Amoeba

Net-based NASFPN detector [29] requires 167M parameters and 3045B FLOPs to achieve state-of-the-art

accuracy (30x more than Retina Net [21]). Large model sizes and high processing costs prevent them from

being used in many real-world applications where model size and latency are critical, such as robotics and

self-driving cars. As a result of these real-world resource constraints, model efficiency becomes increas-

ingly important for object detection. Several previous studies attempted to develop more efficient detector

architectures, such as one-stage [21, 22, 28, 29] and anchor-free detectors [18, 39, 44], as well as compress

current models [14, 23]. In the previously mentioned examples, the additional procedural efficiency is fre-

quently accompanied by a requisite sacrifice in accuracy. Furthermore, most previous research has focused

on a single or limited set of resource requirements. This holds true despite the fact that a large array of

real-world applications, ranging from mobile devices to data centers, frequently necessitate a wide variety

of resource limits. Object detection in animal farming is one of these applications [2]. Humans have devised

several algorithms and approaches in this area to support farming industry production goals.

Farmers breed animals for various reasons, including increased productivity, disease resistance, effective

reproduction, and climate adaptation, with heat and drought being the most common. Highly productive

animals use a more significant portion of their nutritional intake to produce desired items such as milk or

meat rather than simply maintaining their bodies. Increased longevity and reproductive success mean that

feed calories are concentrated among the most productive animals, lowering the number of replacement
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animals needed in a herd. In recent years, technology has made this much more manageable. Therefore,

models were built to make use of the recent advances in machine learning and their associated libraries and

methodologies. However, despite the recent inventions of advanced machine learning techniques (e.g. [1, 3,

16,17,32,38,45]), the majority of these models require a large amount of training data, are computationally

expensive to train, or are accompanied by model dependent inference processes that are prohibitively long.

Additionally, applying these advanced techniques to problems where datasets are scarce, such as sow’s

vulva detection, is largely unachievable even after significant data augmentation efforts. Therefore, building

a lightweight model with enhanced accuracy as an intuitive solution to this problem is complex and was

established as one of the goals of this research. Specifically, the model requires a lightweight machine and

deep learning classifier that requires annotated or segmented dataset prior to training. In an effort to address

these issues, initial efforts attempted to make use of transfer learning or fine-tune the pre-trained model. The

problem with these approaches is that most of the existing models were trained on and applicable to RGB-

based color images. The proposed estrous detection model in this treatment is based on thermal images and

thus the number of channels available for feature detection and extraction is effectively reduced by a factor

of 3. The direct effect of the channel reduction is decreased performance for thermal imagery even after

fine-tuning the model.

The summarized difficulties in object localization, application of machine learning to farming produc-

tion, small datasets, and infrared transfer learning all support the goals of the research presented in this

thesis. The study aims to develop a lightweight object localization model that can be used to classify pigs

from other entities in a scene, such as humans. The model can also be used to detect/classify regions within

a particular animal such as the vulva area of the sows. Specifically, the model will detect Regions Of Interest

(ROI) where temperature changes indicate the current phase of the sow’s estrous cycle.

The first step involves building a machine-learning model using Gabor filters and HOG for feature ex-

traction and SVM for classification. The results discovered the deficiency of the model, therefore a second

stage was suggested in which the dataset was trained using YOLOv3-dependent deep learning object detec-

tion. The resulting segmentation model is found to be the best choice to aid the process of vulva localization.

Since the model depends on the original gray-scale image and the mask of the region of interest (ROI), a

custom dataset containing these features was obtained, augmented, and used to train a U-Net segmentation

model. The results of the final approach show that the proposed system can segment the sow’s vulva region

even in low-rank images and has excellent performance efficiency.
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Chapter 2

Object Detection Using Machine Learning

This chapter will provide an in-depth discussion of a machine learning-based object detection approach

applied to images captured in the infrared spectrum. Details will include how the model incorporates a

support vector machine (SVM) [37] classifier after extracting features using Gabor [20] filters. An SVM is

chosen in this system because it outperforms other simple supervised machine learning classifiers across a

wide range of applications [41]. The system is trained on cropped image windows and uses the Gaussian

pyramid technique to locate the vulva in the input image, making it lightweight, simple, and robust to test

on a hugely different number of images.

2.1 Background

This section summarizes some of the current and relevant approaches to segmentation and classification in

the infrared with a specific focus on applications in animal husbandry. Additionally, given the dependence of

the results presented in this chapter on Histogram of Oriented Gradients (HOG), Gabor filters, and Support

Vector Machines (SVMs), these topics and some of their applications in the infrared will also be covered in

depth.

2.1.1 Histogram of Oriented Gradients

Machine learning is a widely suitable approach with numerous benefits to many applications. That widespread

applicability results in current machine learning algorithms that evolve quickly over time. Once-optimal
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algorithms are frequently updated to make way for more efficient implementations. For example, a His-

togram of Oriented Gradients (HOG) is an algorithm that can expand its range of applicability and evolve its

originally intended purpose through the inclusion of some common machine learning algorithms. The com-

bination of the two enables the approach, which was initially focused on human detection, to be extended

to provide benefits to many other arenas. Further, this additional support is easily obtained and is one of the

multiple reasons for the longevity of HOG and its associated excellent results.

The histogram of oriented gradients (HOG) [8] is a feature descriptor used in object recognition and im-

age classification procedures in machine vision and image processing. Feature descriptors simply refer to a

representation of an image that only pulls valuable information from the image and ignores the rest.

The HOG descriptor characterizes an object’s structure or form by extracting the orientation and gradi-

ent of the edges because the magnitude of gradients is large around edges and corners ( regions of abrupt

intensity changes ) and that edges and corners pack in a lot more information about object shape than flat

regions. The gradients and orientations are computed in ’localized’ segments. The entire image is split into

smaller sub-regions, with each region’s gradients and orientation determined separately. Finally, the HOG

process creates distinct histograms for each of these sections.

2.1.2 Histogram of Oriented Gradients (HOG) Calculation

This section details the steps required to calculate HOG feature descriptors. To begin the illustration of the

calculations required for each step, refer to the thermal image shown in figure 2.1. The image shows multiple

sows separated in individual pens. It depicts an environment with characteristics typical of the initial step

in the estrous detection process. The separation into individual stalls permits observation of sow activity

and physical changes to physical changes to the sow’s ears, head, and vulva. Thus, the need for effective

segmentation and the extraction of relevant features is underscored.

Preprocessing in HOG

The pre-processing steps for the histogram of oriented gradients consist of 2 key components. The first step

is to resize the image to 64 × 128 pixels. This is due to the features being extracted by splitting the image

6



Figure 2.1: Thermal image of pigs in barn.

into 8*8 and 16*16 patches. As a result, having this size made all of our computations a lot easier.

Calculate Image Gradients

This section summarized the methods used to calculate the pixel intensity gradients in the image. Gradients

quantify image intensity changes in the x and y coordinate directions. For this research, the gradients were

estimated using subsections from the image as shown in figure 2.2.

For this patch, the estimated gradient values were achieved using the Sobel operator in OpenCV with kernel

size 1, The same results were obtained as well in [5].

The gradient estimation process at the pixel denoted P (x, y) may be summarized as follows. The pixel

intensity value x1 to the left of P (x, y) should be subtracted from the pixel intensity value x2 to the right to

of p(x, y) to calculate the gradient (or change) in the x-direction. In the same way, the pixel intensity value

y1) below the selected pixel should be subtracted from the pixel intensity value y2 above it to compute the

gradient in the y-direction. Hence the resultant gradients are:

Gradient in the X direction: G(x) = x2 − x1

7



Figure 2.2: Pixel values for the patch

Gradient in the Y direction: G(y) = y2 − y1

Now two new matrices were obtained, one in the x-direction and the other in the y-direction, as a result of

this operation. The same procedure was followed for each of the image’s pixels. After that, the Pythagoras

theorem was used to compute each pixel’s gradient magnitude and direction based on the previous phase’s

gradients.

(Total Gradient Magnitude) = [
√
(Gx)2 +

√
(Gy)2]

Next, for the same pixel, the direction θ was calculated.

tan(θ) = [Gy/Gx] θ = atan(Gy/Gx)

8



Figure 2.3: Resized image to 64*128 after cropping the RIO

Histogram Creation Using Gradients and Orientation

A histogram is a graph that can be used to depict the frequency distribution of continuous data. For the pur-

poses of this study, the histogram is constructed with the angle or orientation on the x-axis and the frequency

on the y-axis. The pixel’s θ value was calculated as described above and used to indicate the orientation of

the pixel and to update the frequency table. The frequency table representing angles and their presence in

the image is constructed by repeating the gradient orientation calculation for all pixels under consideration

and summing the number of orientations satisfying the specified number of ranges. With the specified angle

range values on the x-axis and the number of orientations satisfying the criteria on the y-axis, this frequency

table may be used to create a histogram.

Histogram of Gradients Calculation in 8×8 cells

Refer to the image in Figure 2.3 The image was split into 8×8 cells in this stage. A histogram of gradient

orientations was created for each of the 8×8 cells according to the method summarized in the previous

section. As a result, a collection of orientation histograms for the smaller patches are obtained and can then

be used as features to represent the entire image.
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Normalize gradients in 16×16 cell

The Histogram of Oriented Gradients (HOG) for the image’s 8×8 patches was created. However, because

the image’s gradients are sensitive to overall lighting, the histograms had to be ”normalized” to reduce the

effect of lighting differences. A 16×16 block was made by joining four 8×8 cells. Additionally, each of

the 8×8 cells has an associated 9×1 histogram matrix. As a result, four 9×1 matrices or a single 36×1 was

collected.

Each of these values was divided by the square root of the sum of squares of the values to normalize this

matrix. Mathematically, for a given vector V:

V = [a1, a2, a3, . . . .a36]

The root of the sum of squares were calculated:

L2norm = [
√

(a1)2 + (a2)2 + (a3)2 + ....(a36)2]

normalize vector = ( vector / L2norm)

The resultant vectors

As shown in Figure 2.4, in one 16*16 patch, there are 4 histograms, and the vectors in 8*8 patch represent

the 9 bins histogram. Each bin represents a specific orientation, and the length of the vector represents the

vector’s magnitude.

To find the resultant vector for one 16*16 patch, we need to break down each vector into its main

components. The resultant vector formula consists of two parts: magnitude and direction. As shown in

Figure 2.5 where
∑

x is the x-component of the resultant, which is the sum of the x-components of each

single vector and
∑

y is the y-component of the resultant, which is the sum of the y-components of each

single vector. The angle of the resultant vector with the positive x-axis, can be found by taking the inverse

tangent of the slope of the resultant.
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Figure 2.4: Final vectors

The Complete Image

As shown in Figure 2.6, the result ended up with a final image of 105(15 * 7) blocks, Each of these 105

blocks has an associated 36X1 vector that can be used as a descriptive feature. As a result, the total number

of features in the image would be 105 x 36×1 = 3780. These features will be used later to support a machine-

learning approach for classification.
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Figure 2.5: Resultant vector calculation

2.1.3 Gabor Filter

A Gabor Kernel is a convolution filter representing a combination of Gaussian and a sinusoidal term. The

Gaussian component provides weights to limit the spatial extent of the kernel and the sin component provides

the direction and periodicity component. Mathematically, the 2-dimensional Gabor kernel is given by:

g(x, y;λ, θ, ϕ, γ) = exp

(
− x′2+γ2y′2

2σ2

)
cos

(
2π x′

λ + ϕ

)
Where

x′ = x cos θ + y sin θ, y′ = −x sin θ + y cos θ.
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Figure 2.6: The calculated HOG descriptor for an image.

Figure 2.7: Different Gabor responses for two different Gabor kernels

The following parameters are present in the filter:

Wavelength: The number of cycles/pixel is specified by λ.

Orientation: The angle of the normal to the sinusoid is θ.

Phase: The offset of the sinusoid is ϕ.

Aspect Ratio: Ellipticity is produced with γ ̸= 1.

The spatial envelope of the Gaussian, σ, is controlled by the bandwidth, which at unity gives σ = 0.56λ.

Figure 2.7 demonstrates two different Gabor responses for a sample image to two kernels with different

σ, and γ. The concatenation of the responses acquired by the different Gabor filters was utilized to generate

better texture feature maps, which will be used to enhance the classification of different regions of the sow.
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2.1.4 Support Vector Machine

SVM, or SUPPORT VECTOR MACHINE, is a linear model for classification and regression issues. It can

handle linear and nonlinear problems and is useful for a wide range of applications. The algorithm creates a

line or hyper-plane that divides the information into classes. Figure 2.8 shows one example to classify two

different classes via linear SVM.

Figure 2.8: A demonstration of linear SVM.

How does it work?

Assume having two tags, red and blue as shown in figure 2.8, and two features, x and y, in our data. We

want a classifier that can determine if a pair of (x,y) coordinates is red or blue. A support vector machine

uses these data points to calculate the optimum hyperplane for separating the tags. This line represents

the decision boundary: everything on one side will be classified as blue, and anything on the other will be

classified as red. The most efficient hyperplane is the one that maximizes the margins from both red and

blue tags for SVM. In other words, the hyperplane with the greatest distance to the nearest element of each

tag. Figure 2.9 shows how the greatest distance is achieved mathematically.
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Figure 2.9: Math behind SVM

SVM for nonlinear data

What if we have data like shown in figure figure 2.10. Note that in this instance a linear hyperplane sep-

aration of the two classes is not possible. So here we are going to create a third dimension. up until this

point, we have only made use of the two dimensions x and y. In this new development, we establish a new z

dimension and specify that it be computed in the following manner: z =
√
x2 + y2 . Our decision boundary

is a radius z perimeter that divides both tags using nonlinear SVM. At this point, a procedure similar to the

one used to calculate the distance from the linear hyperplane is employed to determine the radius and center

of the derived nonlinear hyperplane.

Selecting a kernel function

Now that we have the feature vectors, the only thing left is to select a kernel function for our model. Every

problem is unique, and the kernel function is decided by the data.
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Figure 2.10: A demonstration of nonlinear SVM.

Using SVM in our experiment

To detect/classify pigs in the input scene, this research focused on the use of the Supporting Vector Machine

(SVM) method. The system swiftly and accurately classifies pigs from other animals/targets in the scene.

Also, for a better result, the dataset containing the images of the identified pigs is augmented and presented

so that it may be utilized for other reasons. The strategy that takes us to the final model will be detailed in

the next section.

2.1.5 Infrared Images and applications

The infrared spectrum encompasses light with wavelengths ranging from 0.9 to 12µm. Infrared (IR) imaging

technology is used in many applications ranging from thermal detection of objects when very photons from

the visible spectrum are available to determine the temperature of an item without contact. All things

generate electromagnetic radiation, particularly in the infrared wavelength range, which the human eye

cannot see. Figure 2.11 shows the light spectrum for both visible and infrared light. All of these benefits

and a host of others lead to their inclusion in several studies on object detection using machine and deep
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learning. For example, this study [36] makes use of one of the oldest using machine-learning approaches to

detect pedestrians using infrared images. The study first extracts image features using histograms of oriented

gradients (HOG). Then used (SVM) classifier model.

Figure 2.11: The light spectrum shows both visible light and infrared light

2.2 Method Overview

2.2.1 Vulva Localization Using HOG with 12 Gabor filters

Many machine-learning approaches focus on the use of one feature to detect/segment objects. The model

developed in this study is based on features derived from the Gabor filter concatenated with HOG features.

By using this model we can easily and effectively get the desired results. The procedure followed has been

split into two main steps which focus separately on training and testing data-set. In order to support the

previously stated core goals of agricultural reproduction, the dataset contains thermal images of pigs and

their surrounding stalls.

In order to effectively train the SVM classifier, a negative/labeled sample set is required. A sample of both

positive and negative samples are shown side by side in Figure 2.12.
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(a) Positive sample (b) Negative sample.

Figure 2.12: A sample is taken from the dataset.

Training dataset

The datasets used contains a combination of thermal images of pigs and humans in different poses. As a

positive dataset, we used images from pigs, while we sorted humans’ images as negative.

After resizing the input images to the size of N ×N , the HOG feature maps were calculated from the input

images. Then the Gabor responses are calculated for the input image. A huge number of Gabor responses

can be obtained by using different combinations of filter parameters. Lastly, we concatenated them into a

single 3D feature map. The same procedure was used for the negative samples.

Testing dataset

The testing stage of the method starts by defining the size of the sliding window to be the same as the size of

the corresponding image in the training data (N×N ). Gaussian pyramids were implemented to increase the

probability of accurate detection regardless of the size of the pig in the image. The sliding window scanned

each layer of the Gaussian pyramid for responses similar to the ones on which the SVM model was trained.

This technique in image processing breaks down an image into successively smaller groups of pixels which

will assures better detection regardless of the pig’s location, size, or direction in the 2D image.

2.2.2 Vulva Localization Using 96 Gabor filters

Figure 2.13 presents the full pipeline components to be covered in detail in the following subsections.
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Figure 2.13: An overview of our classification system construction. The First stage contains

collecting thermal RGB images dataset. Then, we extract features using Gabor filter bank

followed by feature selection via PCA. Consequently, our SVM classifier is trained using the

resulting features. Finally, we employ a series of Gaussian pyramids with sliding windows to

establish the vulva locations through the trained SVM.

Dataset Collection

To train our machine learning classifier, a dataset with images containing only the vulva (positive dataset)

and images representing anything other than the vulva (negative dataset) is needed. To do so, we used a

Long-Wave Infrared (LWIR) camera to capture 175 images for sows in a climate-controlled barn. Then we

cropped the parts that contained only the pig’s vulva. In contrast, we created images with other pig parts,

such as ears and heads, as well as other unspecified scenes, as shown in Figure 2.14. LWIR cameras are

constructed to capture and image photons emitted due to thermal energy in one of the three major infrared

ranges. The other two major infrared ranges are Medium Wavelength Infrared (MWIR) and Very Long

Wavelength Infrared (VLIR). LWIR infrared covers the wavelengths that range from 8,000nm to 14,000nm

(8 µm to 14µm) [6]. An LWIR camera can detect the thermal emissions of animals, vehicles, and people as

they stand out when the temperature of the environment is different. Since it measures heat rather than visible

light, LWIR imaging is frequently used as a thermal imaging solution. The contrast in the captured images

is actively enhanced according to the documentation provided by the manufacturer in [11]. Active Contrast

Enhancement (ACE) eliminates the effects of temperature shifts during daytime compared to nighttime and

the temperature gradient during different seasons.
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Figure 2.14: Image in (a) presents a sample training set image that contains only the pig’s vulva.

Images such as these construct our positive training dataset. Images such as the one shown in (b)

are representative of the images defining our negative training dataset

Dataset Augmentation. Machine learning algorithms require significant amounts of training and testing

data to effectively extract the information necessary for accurate function on unseen data. In our case,

although we had significant amounts of data, the number of images collected was not sufficient for an

effective algorithmic function. Therefore, a number of data augmentation methods had to be implemented

to increase the effective size of the available data. Specifically, in order to obtain a large enough dataset,

the images are flipped, mirrored, and rotated 90 degrees. An example of this augmentation is shown in

Figure 2.15 With the additional images, the dataset was shown to be sufficient to make effective inferences

on unknown data.

Feature Extraction

In order to train our system, we extracted 96 image features using the Gabor filter bank. We chose Gabor

filters to incorporate textures in the classification process in addition to the HOG set of features which can

be insufficient, as demonstrated in previous work [2]. The previous study demonstrated how HOG features

in thermal images could cause the model to confuse any surface that falls within the same temperature range

to be classified as a pig. Another advantage of Gabor filters over Gaussian derivatives is related to greater
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Figure 2.15: Data Augmentation

kernel/function shape flexibility due to the inherent inclusion of a larger general set of parameters (degrees

of freedom) [40]. Consequently, we generated 96 Gabor filters via manipulating its parameters, as shown in

the following equation:

g(x, y;λ, θ, ϕ, γ) = exp

(
− x′2+γ2y′2

2σ2

)
cos

(
2π x′

λ + ϕ

)
while λ, θ, γ, and ϕ represent the wavelength, orientation, spatial aspect ratio, and phase offset, respectively.

We choose a set of λ values to be equal to (0, π/2, π/3, π/4), while θ and γ equal to (0, 1/4π, 2/4π, 3/4π)

and (0, π/2, π/3, π/4), respectively. We also set both the size of the Gabor kernel and sinusoidal function

phase offset ϕ to zero.

To construct our features, we applied the 96 Gabor kernels and collected their responses for each image

such that we got 96 Gabor responses for each. Then we calculated the power which is the sum of the squared
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for each filtered image produced to exclude the redundancy in features. As a result, we ended up with 96

features for each training image dataset.

Normalization: As a final step before creating a classifier, we normalized the final feature to ensure that all

data falls between 0 and 1.

Feature Selection

Generating Gabor kernels using the full range for parameters mentioned in the previous section can lead to

a high number of filters. This can increase the dimension of the problem and cause the model to become

prohibitively complex and expensive to train [7]. Often when dealing with a high number of filters, there

will exist a sub-set of the feature filters where the information extracted is relevant to the model. The rest

tend to be redundant and carry no useful information. By eliminating the irrelevant features, we cut down

on the resources needed to train and perform predictions and enhance the accuracy of the model since these

features can act as noise to the model. Therefore, some feature selection is needed after we build our kernels.

In the paper [26], the authors apply the generated filters on the input images, then eliminate redundant re-

sponses to be used in their segmentation by calculating the error in the reconstructed image using a subset of

the filtered images. The authors then iterate through the filters to get the highest reconstruction variance. To

complete a similar procedure, we leveraged Principle component Analysis (PCA) [33] to exclude redundant

features which extracted in the previous subsection.

Principal Component Analysis (PCA): Varying Gabor kernel parameters (θ, λ, σ, γ, µ) resulted in 96 ker-

nels. Convolving our dataset with those filters will result in 96×D feature maps. Having this many feature

maps means having highly correlated samples to train our ML model. The high correlation will cause

overfitting and subsequent poor algorithmic generalization performance. We applied PCA to eliminate cor-

relation in the training data by excluding highly correlated responses from the Gabor filters. We find the

major principal component and eliminate the least significant 5% of the principal components. We found

the 5% ratio empirically. When we tried to reduce the dimensionality further, it resulted in reduced per-

formance. PCA performs better in cases of fewer samples per class. In comparison, other dimensionality

reduction techniques such as LDA perform better with large datasets having multiple classes [4].

22



Training SVM Classifier

SVM, or Support Vector Machine, is a linear model for classification and regression issues. It can handle

linear and nonlinear problems and is useful for a wide range of applications. The algorithm creates a line or

hyper-plane that divides the information into classes. Figure 2.8 shows one example to classify two different

classes via linear SVM.

For sorting the final features into two categories, we design an SVM classifier by partitioning the data

into training and testing splits. To do so, we used 80 percent of the data for training and the remaining 20

percent for testing.

Gaussian Pyramid & Sliding Window

After training our model, we needed to keep track of a contiguous sequence of elements, so a sliding window

was defined. Performing the search over a sliding window is an essential task in object detection since it

allows localizing where the object precisely resides in the image. Three arguments are provided to use the

sliding window function: image, step size, and window size. A step size of 30 pixels was used, where the

window size has to be the same as the size of the images in the training data. Along with the sliding window,

as shown in Figure 2.16 and 2.17 the Gaussian pyramid was used to break down an image into successively

smaller groups of pixels for efficient multi-scale object detection.

Utilizing both a sliding window and a Gaussian pyramid, we are able to detect objects in images at

various scales and locations. Finally, we eliminated detections of the same object as shown in Figure 2.18

which overlapped by 95% or more of the target area, which resulted in a single bounding box.
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Figure 2.16: Various sizes of image (layers) achieved by using scale down pyramid
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Figure 2.17: Various sizes of image (layers) achieved by using scale up pyramid
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Figure 2.18: Overlapping of bounding box
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Chapter 3

Object Detection Implementation Using

Deep Learning

3.1 Background

This section summarizes some object detection approaches utilizing Deep Neural Networks. In order to

ensure complete coverage of this section, we will include a detailed discussion of several deep-learning

approaches to object detection and segmentation. For example, YOLOv3 [29] is an object detector pro-

posed by Joseph et al. It determines the score for each detection using logistic regression. This approach

improves detecting speed and takes input images in various sizes. Darknet-53 [29] is used by YOLOv3

to extract features. Darknet-53 is far more powerful than Darknet-19 [27] while remaining more efficient

than ResNet-101 [13] or ResNet-152 [13].A 53-layer feature extractor Darknet53 was built in the YOLOv3

model using continuous 1×1 and 3×3 convolutions and residual modules, as seen in the figure 3.1. YOLOv3

uses multiscale prediction, which implies it is identified on several scale feature maps. For this reason, the

accuracy of target detection is improved. figure 3.2 shows its structure detail.
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Figure 3.1: The structure of Darknet53.

Figure 3.2: Structure detail of YOLOv3. It uses Darknet-53 as the backbone network and uses

three-scale predictions.
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The YOLO algorithm is a multiple-step approach to object detection. First, it divides the image into

N grids with each having an equal dimensional region of S × S. Each of these N grids is responsible for

detecting and locating the object under search. Similarly, these grids estimate B bounding box coordinates

relative to cell coordinates, the object label, and its probability of being present in the cell. YOLO utilizes

of Non-Maximal Suppression [25] to get rid of many duplicate predictions due to multiple cells predicting

the exact same object with different bounding box predictions figure 3.3. It fulfills this by first looking at the

probability scores associated with each decision and taking the largest one. Following this, it suppresses the

bounding boxes having the largest Intersection over Union with the current high probability bounding box.

Figure 3.3: Duplicate predictions
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3.2 Method overview

3.2.1 Image annotation

Image annotation is defined as the task of labeling digital images. It is generally used to prepare images

for use in machine learning algorithms and is an integral component of creating algorithms that perform

computer vision tasks. Put more simply, annotated images are used to train computers to annotate images

on their own. This is highly beneficial for a wide array of processing needs since hand-labeling images for

algorithmic use is tedious and time-consuming. For the purposes of the research contained in this treatment,

the graphical image annotation tool LabelImg was used to complete the labeling.

Figure 3.4: The labeling interface for vulva dataset

When labeling images using LabelImg, there are a few steps to consider as shown in Fig 3.4:

1- Label the complete circumference of an object; including a small amount of non-object buffer is preferable

rather than omitting a piece of the object with a rectangle label. Look for boxes that closely resemble the

items wanted to name but do not chop off any of them. This method will significantly improve our model’s

understanding of the edges.

2- For labeling obscured items completely; if an object is out of view because another object is in front of

it, name it as if it could be seen entirety. This will help our model grasp the absolute boundaries of items.
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3.2.2 Set up Google Colab

Colab allows anybody to develop and run Python code in the browser, making it ideal for machine learning

and data analysis. Colab, in technical terms, is a hosted Jupyter notebook service that requires no setup

and provides free access to computer resources such as GPUs. The main difference between Google Colab

and Jupyter Notebook is that Google Colab is cloud-based, whereas Jupyter is not. This implies that if you

work in Google Colab, you won’t have to download or install anything on your computer. It also means

that you may rest assured that your work will automatically save and backup to the cloud without your

intervention. And because it syncs effortlessly between platforms, Google Colab is ideal for users who need

to work across many devices, such as one computer at home, one at work, a laptop, and a tablet. On the

other hand, Jupyter Notebook runs on your local system and saves files to your hard disk. Jupyter does have

an autosaving interval (which you can modify), but it does not back up to the cloud, so if something goes

wrong with your system, you’re out of luck. Jupyter cannot sync or share files between devices without

using a third-party file-sharing service such as DropBox or GitHub.

Jupyter Notebook vs. Google Colab couldn’t be discussed without bringing up cooperation. Google Colab,

as the name implies, is designed to make it simple to share your notes with everyone - even if they aren’t

data scientists. Other people can access your notebook without downloading any software, which is a huge

benefit if you frequently deal with non-techies who need to view the data. Another major feature that

distinguishes Colab from the competition is the ability to import large datasets from Google Drive into

Colab.

31



To setup Google colab GPU need to be enabled as shown in Fig 3.5

Figure 3.5: Set up Google Colab

To import data from Google drive two lines code need to be written as shown in Fig 3.6

Figure 3.6: connect Colab with our Google Drive
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3.2.3 Training

In order to start training, Darknet need to be installed. Darknet is an open-source neural network frame-

work that supports CPU and GPU computation. Darknet-19 was used as the backbone feature extractor in

YOLOv2, whereas Darknet-53 is currently used in YOLOv3. Darknet-53 is another backbone created by

YOLO inventors Joseph Redmon and Ali Farhadi. Darknet-53 includes 53 convolutional layers instead of

19 in Darknet-19, making it more powerful and efficient than rival backbones (ResNet-101 or ResNet-152).

Using the chart from Redmon and Farhadi’s YOLOv3 work Table 3.1, which shows that Darknet-52 is 1.5

times faster than ResNet101. The precision represented does not imply any trade-off between accuracy and

speed amongst Darknet backbones since it is still as accurate as ResNet-152 while being two times faster.

Comparison of backbones

Backbone Top-1 Top-5 Ops BFLOP/s FPS

Darknet-19 74.1 91.8 7.29 1246 171

ResNet-101 77.1 93.7 19.7 1039 53

ResNet-152 77.6 93.8 29.4 1090 37

Darknet-53 77.2 93.8 18.7 1457 78

Table 3.1: Comparison of backbones. Accuracy, billions of operations (Ops), billion

floating-point operations per second (BFLOP/s), and frames per second (FPS) for various

networks
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In order to ensure algorithmic accuracy YOLO needs certain specific files to know how and what to

train. The YOLOv3 tiny model (yolov3-tiny.cfg) will need to be modified by training it on the custom de-

tector. This modification includes the following steps:

1- Uncomment the lines 5,6, and 7 and change the training batch to 64 and subdivisions to 2.

2- Change the number of filters for convolutional layer “[convolution]” just before every yolo output “[yolo]”

such that the number of filters = number of anchors x (5 + number of classes) = 3*(5+1) = 18. The number

5 is the count of parameters center-x, center-y, width, height, and objectness Score. So, change lines 127

and 171 to “filters=18”.

3- For every yolo layer [yolo] change the number of classes to 1 as in lines 135 and 177.

In addition to weights from the darknet53 model, weights were used from a pre-trained model on Im-

agenet [10]. Where a pre-trained model refers to a model or a saved network created by someone else

and trained on a large dataset to solve a similar problem, these large datasets were obtained from Imagenet,

which is an image database organized according to the WordNet hierarchy, where each node of the hierarchy

is represented by hundreds of thousands of images.
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Chapter 4

Image Segmentation Using U-Net

4.1 Background

4.1.1 Image segmentation

Image segmentation is a sub-field of digital image processing and computer vision that tries to group the

same segments or regions of an image under their corresponding class labels. Image segmentation is a subset

of image classification that does localization in addition to classification. Image segmentation is essentially

a subset of image classification, with the model identifying where a related item is present by outlining

the entity’s boundaries. Most image segmentation models in computer vision are composed of an encoder-

decoder network, as opposed to a single encoder network in classifiers. The main task of the encoder is to

encode a latent space representation of the input, which the decoder decodes to generate segment maps that

outline the position of each item in the image.

Image segmentation tasks are divided into three categories based on the amount and kind of information

conveyed; semantic segmentation [12], instance segmentation [31], and panoptic segmentation [9]. Seman-

tic segmentation is the categorization of pixels in an image into semantic classes. Pixels belonging to a

specific class are simply categorized into that class, with no further information or context taken into ac-

count. In instance segmentation, pixels are divided into groups based on “instances” rather than classes.

While panoptic segmentation is a combination of semantic and instance segmentation in one image.
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Semantic segmentation

Semantic segmentation is the process of categorizing each pixel as belonging to a specific label. It does

not differ across instances of the same item. For example, in Figure 4.1 the image contains two pigs, and

semantic segmentation assigns the same label to all of the pigs’ pixels.

Figure 4.1: Semantic segmentation

Instance segmentation

Instance segmentation models sort pixels based on ”instances” rather than classes. An instance segmentation

algorithm has no previous knowledge of what class a recognized region belongs to, but it may separate

overlapping or remarkably similar object regions based on their borders. Figure 4.2 shows how instance

segmentation work.

Figure 4.2: Instance segmentation
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Panoptic segmentation

The most recently developed segmentation task, panoptic segmentation, may be defined as a mix of semantic

segmentation and instance segmentation in which each instance of an item in an image is separated, and the

object’s identification is predicted.

4.1.2 U-Net semantic segmentation

U-Net is a particular type of architecture for image segmentation purposes. When come to architecture,

that means an arrangement of deep learning tools like convolutional layers and max pooling. The U-Net

is an excellent design that solves the majority of the problems that arise. This method employs the notion

of fully convolutional networks. The U-Net goal is to collect both context features and localization. The

sort of architecture constructed effectively to complete this procedure. The implementation’s basic idea is

to use consecutive contracting layers followed by up-sampling operators to get higher-resolution outputs

from the input images. By looking at the architecture depicted in figure 4.3, it’s clearly obvious why it is

most likely referred to as U-Net architecture. The shape of the newly formed architecture is in the shape

of a ’U’, thus the name. The architecture can tell that the network constructed is a fully convolutional

neural network just by looking at the structure and the multiple pieces involved in building this architecture.

They did not employ any further layers, such as dense, flatten, or other similar layers. The representation

shows a decreasing path called the encoder, followed by an increasing path called the decoder. According

to the design, the model processes an input image, which is then followed by a pair of convolutional layers

using the ReLU activation function. The picture size decreases from 572X572 to 570X570 and then to

568X568. This decrease is due to unpadded convolutions, which reduce total dimensionality. The encoder

block constantly reduces image size with the aid of strides 2’s max-pooling layers. In the encoder design,

convolutional layers also have been repeated with a growing number of filters. When we approach the

decoder aspect, the number of filters in the convolutional layers was beginning to decrease, followed by a

steady up-sampling in the subsequent layers all the way to the top. The usage of skip connections to connect

the previous outputs to the layers in the decoder blocks can be noticed. There is a handful of convolutional

layers followed by the last convolution layer in the final convolution block. This layer has 2 filters with the

proper function to show the output. This last layer can be adjusted depending on the scope of the project.
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Figure 4.3: U-Net architecture

4.2 Introduction

Nowadays, Farmers breed animals for various reasons, including increased productivity, disease resistance,

effective reproduction, and climate adaptation, with heat and drought being the most common. Highly pro-

ductive animals use a more significant portion of their nutritional intake to produce desired items such as

milk or meat rather than simply maintaining their bodies. Increased longevity and reproductive success mean

that feed calories are concentrated among the most productive animals, lowering the number of replacement

animals needed in a herd. With the recent growth of the intelligent pig breeding industry, precise pig man-
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agement has become critical, and individual pig recognition is the key to precision breeding. However, how

important is pig breeding, There has been little research into this. Previous research sought to construct a

model that can detect pig faces [19] using YOLO [24], posture [35], touching pigs [15] and sow using ma-

chine learning [2]. The goal of this work is to detect sow’s vulvae using the U-Net segmentation model [32],

which is the most effective technique to manage breeding on the farm. A segmentation model is chosen to

assist in detecting the ovulation cycle as it relates to temperature fluctuations in the vulva. According to the

study [34], the temperature and size changes in the vulva indicate which part of the estrous cycle the sow is

in. This will be covered in further detail in the future research section. In this work, The U-Net semantic

segmentation was used after extracting masks via HSV color space. The system is trained on gray-scale

images along with masks obtained by defining the HSV ranges for red on the segmented images. the U-Net

technique to look for the vulva in the input image makes it lightweight, simple, and robust to be evaluated

on a hugely different number of images.
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4.3 Method overview

Figure 4.4 presents the full pipeline components that were covered in detail in the following subsections.

Figure 4.4: An overview of the segmentation model used in this chapter. The first stage contains

extract masks of a region of interest. Then train grayscale images along with extracted masks in

U-Net semantic segmentation model. Finally, using the center of mass for optimizing the

predicted mask to get better Intersection over union (IOU) values.
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4.3.1 Color threshold

In order to extract the masks of the region of interest, segment this region in red. Then threshold the image

to get the binary image using the Hue, Saturation, and Value of each pixel. Unlike RGB, HSV allows not

only filtering based on the colors of the pixels but also on the intensity of color and the brightness since Hue

is Measuring the color of the pixel, Saturation measures the intensity of the pixel’s color, while the pixel’s

brightness is measured by value. The figure 4.5 shows a sample of the segmented image and its mask.

Figure 4.5: Segmented image and its mask. The lower and upper limits for HSV are (161, 155,

84) (179, 255, 255) respectively

4.3.2 Training masks

The dataset used to build this model is a combination of grayscale images and their masks. The table 4.1

explains the U-Net semantic segmentation architecture in detail.
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Contraction path (Encoder)

Block layer # filters Activation
Function

Block 1
Conv2D (3,3) 16 relu

Conv2D (3,3) 16 relu

Block 2
Conv2D (3,3) 32 relu

Conv2D (3,3) 32 relu

Block 3
Conv2D (3,3) 64 relu

Conv2D (3,3) 64 relu

Block 4
Conv2D (3,3) 128 relu

Conv2D (3,3) 128 relu

Block 5
Conv2D (3,3) 256 relu

Conv2D (3,3) 256 relu

Expansive path (Decoder)

Block layer # filters Activation
Function

Block 6

Conv2DTranspose (2,2) 128 .......

Concatenate(c4,Transpose(2,2) 128 ......

Conv2D (3,3) 128 relu

Block 7

Conv2DTranspose (2,2) 64 ......

Concatenate(c3,Transpose(2,2) 64 ......

Conv2D (3,3) 64 relu

Block 8

Conv2DTranspose (2,2) 32 ......

Concatenate(c2,Transpose(2,2) 32 ......

Conv2D (3,3) 32 relu

Block 9

Conv2DTranspose (2,2) 16 .......

Concatenate(c1,Transpose(2,2) 16 ......

Conv2D (3,3) 16 relu

Table 4.1: U-Net architecture.
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4.3.3 Intersection Over Union

IOU (Intersection over Union) is a phrase used to define the amount to which two boxes overlap. The

bigger the overlap zone, the greater the IOU [30]. Which is a suitable indicator for determining the model’s

robustness. For the segmentation model, An Intersection over Union score greater than 0.5 is normally

considered a “good” prediction. this model shows 0.50 IOU and 0.58 after improving it with a minimum

area rectangle.

Figure 4.6: Intersection Over Union. The first left image is the ground truth mask. The first right

image is the predicted. The second left shows the intersection between the ground truth and the

predicted mask, while the second right represents the union
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4.3.4 Minimum area rectangle

In order to improve the results that come from the U-Net model, the masks returned to the original rectangle

shape by drawing a minimum rectangle around the predicted masks with considering the rotation. The

figure 4.7 shows two rectangles; the green one is the regular bounding rectangle, while the blue one is the

minimum area rectangle.

Figure 4.7: Bounding rectangle with the minimum area

44



Chapter 5

Thesis Results

5.1 Results of machine learning model

This section presents and summarizes the results obtained from the application of the machine and deep

learning-based object detection models detailed in the previous sections. The results address the effects of

the number of Gabor filters and the chosen target on algorithmic performance. A brief comparison to a

Convolutional Neural Networks-based approach provides a baseline for qualitative and quantitative efficacy

measures.

5.1.1 Using HOG with 12 Gabor filters

The results shown in figure 5.1a summarize the outputs of the object detection algorithm for the HOG feature

alone without the inclusion of the Gabor filter enhancement. After concatenating 12 Gabor filters with the

model, Figure 5.2d shows the results achieved which is more accurate and reliable.

The graph in Figure 5.3 presents the accuracy of the object detection algorithm in relation to the number

of Gabor kernels used in generating the feature maps. The results illustrate that of any number of kernels

over 12 (Gabor feature maps) begins to significantly decrease the model’s accuracy. This can be attributed

to the similarity in the concatenated responses where the overall feature map starts to become similar in all

regions or textures. Therefore the model will find it hard to distinguish between regions. A significant drop

in the model’s accuracy was noticed after using 12 filters.
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(a) Result 1 (b) Result 2

Figure 5.1: Results using HOG without Gabor filters

(a) Result 1 (b) Result 2

(c) Result 3 (d) Result 4

Figure 5.2: Final results after incorporating Gabor responses in the feature maps.

5.1.2 Results using 96 Gabor filters

The system was evaluated using qualitative and quantitative assessments. Figure 5.4 shows the quantitative

results which depict the confusion matrix of our classification model. It demonstrates that our system can

correctly classify the pig’s vulva by 93%. It also shows that the percentages of false detection and missing
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Figure 5.3: Gabor filter accuracy.

detection are 4% and 7%, respectively. These values emphasize the high performance the system achieves

with considering the limited dataset.

Figure 5.4: The resultant confusion matrix of our trained system.

On the other hand, Figure 5.5 shows the qualitative results that our system achieves on a high-level range

of image scenarios. For instance, Figure 5.5(f) and Figure 5.5(g) present the high detection response of our

system. When a farmer covers a sow’s hindquarter with their hand in Figure 5.5(f), the system is unable to

detect vulva in that instance. In contrast, the system becomes able to detect the sow’s vulva right after the
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person removed their hand in Figure 5.5(g). On the left side of the 5.5, the figures represent the robustness

of our system on close-up images. These outcomes can be seen in Figures 5.5(a) and 5.5(e) on one side, and

all other images captured from a distance on the other side. These results demonstrate the importance of

using the Gaussian pyramid technique, which derives the robustness of our system in a variety of scenarios

and scales.

Figure 5.5: A qualitative results of the Vulva detection system. The results cover a wide range of

scenarios indicating the robustness of our system. Results show in infrared as they appear in the

camera.

To further assess, the performance of the proposed model has been compared to the convolutional neural

network (CNN). Due to the limited dataset available and less variation between images in our dataset, the

model reached overfitting. The results of the CNN pipeline on our dataset are shown in Figures 5.6. The

figure depicts how a CNN pipeline is unable to solve this type of problem. This outcome leads us to the

conclusion that, despite its lightweight, our model outperforms CNNs on our dataset, producing reliable and

high-accuracy results.

Runtime: Figure 5.7 depicts the runtime evaluation measures of our system using Intel core i7-7500U

CPU with respect to the number of Gabor kernels used. These times represent the average running times of

the testing algorithm considering the entire test dataset. In the experiments, the model was run on 96 Gabor

kernels and obtained results in 0.4 ms. It emphasizes the system’s lightness and ability to operate in real
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Figure 5.6: The results of the CNN model [43] on our dataset. The results show that CNN is

unable to address the dataset limitation of these types of problems in a wide range of scenarios.

time. Also, It shows that the calculated time slightly increases when kernels are less than 400, but it changes

dramatically when more than 400 Gabor kernels are used.

Figure 5.7: Model inference time for the varying number of filters

5.2 Results of YOLOv3 model

The interpretation of a YOLO model prediction results is just as nuanced as the model’s implementation.

A successful interpretation and accuracy rating is determined by several elements, including the box confi-

dence score and class confidence score utilized when developing a YOLOv3 computer vision model. The

results were evaluated using the mean average precision (mAP), The mAP computes a score by comparing

the ground-truth bounding box to the detected box. The higher the score, the more precise the model’s
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detections. Fig 5.8 shows the results that were obtained utilizing our custom gray-scale dataset. The images

show the detection of the vulva and ear in the same model as well as prediction accuracy.

Figure 5.8: YOLOv3 results

5.3 Conclusion and future work

In the first chapter, the problem of detecting vulva in sows using a machine learning-based algorithm has

been studied. The base purpose behind this topic was to localize vulva in thermal images. this began by

using three main steps, which are: collecting dataset, feature selection, and extraction, then normalization.

Collecting and annotating a sufficient number of images was the most challenging part. The challenge

of data collection prompted the development of this lightweight machine-learning algorithm for detecting

sows. Nonetheless, when the sliding window was examined alongside the Gaussian pyramid techniques for
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scalable feature extraction, the system shows robustness and works efficiently with a high positive detection

rate and low false and missing detection rates.

YOLO was explored in the second chapter. The ”You.Only.Look.Once” (YOLO) model family is a

collection of end-to-end deep learning models [42] built for quick object detection. The method employs a

single deep convolutional neural network that divides the input into a grid of cells, each of which immedi-

ately predicts a bounding box and object classification. As a consequence, several candidate bounding boxes

are generated for each object, and then a single entity is selected in a final prediction by using a non-max

suppression technique.

In the third chapter, U-Net semantic segmentation model has been utilized. Semantic image segmen-

tation aims to label pixels of an image with a compatible class of what is being represented. This task is

known as ”dense prediction” because the predicting was for every pixel in the image. The U-Net archi-

tecture has two paths. The first path is the contraction path (also known as the encoder), which is used to

store the image’s context. The encoder is just a stack of convolutional and max pooling layers. The sym-

metric expanding path (also known as the decoder) is utilized to achieve exact localization via transposed

convolutions. Using U-Net allows us to obtain the most precise results. Despite the fact that accuracy and

model speed are trade-offs, the model demonstrates the capacity to recognize the vulva with the greatest

IOU and the highest speed. The table 5.1 summaries the comparison between the different models used in

this project.

This work is part of a more extensive framework to automate the process of breeding sows. The first step

is to accurately localize the Regions Of Interest (vulva, ears, and back of the thighs where ovaries can be

visible to alter the temperature of the outer skin). Time series analysis will be performed to identify patterns

in the ROIs for accurate estrous predictions.
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Comparison between models

Approach Mean IOU Improved
IOU

FPS

SVM 0.400 0.450 35

SVM after
Gabor

0.490 0.515 25

YOLOv3 0.520 0.520 40

U-Net 0.500 0.586 30

Table 5.1: Comparison between models
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