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ABSTRACT

The seismic hazard of an area is determined based on the ground motion observed at that site. The
intensity of the ground motion can be predicted using ground motion models (GMMs). GMMs
typically use distance metrics such as the Joyner-Boore distance (Rjg) and the Rupture distance
(Rrup). However, apart from Rjs and Rrup, probabilistic seismic hazard analysis (PSHA) also
utilizes point-source-based distances like the Epicentral distance (Reri) and the Hypocentral
distance (Rnyp). These distance metrics are used for point sources when the fault geometry is
unknown or is ignored. We need to determine the relationship between the distance metrics to
obtain an accurate seismic hazard of an area. In this study, we develop empirical relationships
between Rjg and various other distance metrics. This avoids computationally intensive tasks such
as computing finite-fault-based distances for different fault geometries of a virtual rupture plane
for each point source. The empirical equations provide the relation between Rjg and the target
distance metric (Rarget) based on the magnitude of the earthquake and the dip angle of the fault. In
addition, we also require the depth to the top of the rupture to calculate Ruyp. We discuss the steps
to include the variability due to the conversion of the distance metrics in the PSHA. We have
compared the results of this study with other published studies for distance conversion. A simple
PSHA study of a circular area of 100 km using Pezeshk et al. (2011) and Boore et al. (2014) as the
GMMs determined an increase in hazard using the proposed empirical equations and their
uncertainties. The equations developed in this study can be directly applied in PSHA and are
independent of the GMMs used for seismic hazard calculations. The equations can also be used
for different fault geometries with a range of dip angles varying from 10° to 90°, for magnitudes

5.0 to 8.0, and for distances up to 200 km. We have focused on the Central and Eastern US.
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Chapter 1 Introduction

1.1 Background

Seismic hazard analysis is the quantitative analysis of the effects of earthquakes and ground
shaking at a site of interest. It is an essential parameter for engineers to design structures that can
withstand an earthquake in seismically active regions. The seismic hazard analysis is a complex
multi-disciplinary process. It involves geology and seismology, particularly knowledge about the
propagation of seismic waves, location of known faults, historical seismicity, and fault-rupture
processes. It involves mathematics to understand the probability and statistics. It also involves
earthquake engineering to determine the response of the structures and estimate the structural

damage.

Pacific Earthquake Engineering Research (PEER) described a formal process to compute the
probability distribution for the seismic risk of an area (Cornell and Krawinkler, 2000; Deierlein,
2004). The PEER seismic risk assessment framework provides a quantitative evaluation of the
seismic risk of an area by modeling the interaction between several random variables.

Mathematically,
Apy = ] j j G(DV|DM)dG(DM|EDP)AG(EDP|IM)d A, (1.1)

where DV is the decision variable, DM is the damage measure, EDP is the engineering demand
parameter, and IM is the intensity measure. A, and A;,, are the rate of exceedance of chosen DV
and IM, respectively. Due to the one-step Markovian assumption, the variables depend on only
one other variable. This assumption simplifies the overall computation. G(DV|DM) provides the

probability of exceedance of the decision variable for a given damage measure. There are several
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steps taken to determine the seismic risk of an area. The seismic hazard of the area is determined
in the first phase. A set of ground motions that can accurately reflect the hazard identified in the
first phase are used to estimate the EDP distribution based on a particular IM. In the third phase,
fragility functions are employed to determine the probability distribution for a DM at a given EDP
value. Finally, the probability of exceedance of DV at a given DM is determined using loss
functions. Hence, inaccuracies in calculating seismic hazard would be detrimental to precisely

determining the seismic risk of an area.

The seismic hazard analysis can be conducted in two ways: Deterministic seismic hazard analysis
(DSHA) and probabilistic seismic hazard analysis (PSHA). In DSHA, the seismic hazard can be
described using single-valued discrete events and models. A controlling earthquake is chosen from
different earthquake sources based on the earthquake potential of each source. Different models
are then used to determine the effect of the earthquake. The effect is usually described by the
ground motion experienced at the site of interest, so the models are referred to as ground motion
models (GMM). GMMs have been developed for different regions, such as Toro et al. (1997) and
Pezeshk et al. (2011) for the central and eastern United States (CEUS). Probabilistic seismic hazard
assessment (Cornell, 1968; Kramer, 1996; McGuire, 2004) incorporates the effects of all the
earthquakes capable of affecting the site of interest using multi-varied continuous events and
models. It provides the probability distribution of the ground motion intensity calculated based on
the GMM:s. It also incorporates various uncertainties which may be aleatory or epistemic in nature.
Aleatory uncertainties are uncertainties due to the earthquake event, such as the location and the

time of rupture. Epistemic uncertainties are due to a lack of information or knowledge about the
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earthquake process. It can be reduced when more information becomes available about the

earthquake event.

In simpler terms, the probability distribution can be described as:

Mmax "Tmax

P(IM > x) = Z a; f f P(IM > x|m,r)P(M = m)P(R = r)dmdr 1.2)

=1 Mmin Tmin

where ‘IM’ is the intensity measure, ‘m’ is the magnitude of the earthquake, ‘r’ is the distance
from the source to the site, and ‘a;’ is the mean rate of occurrence of earthquakes between mmin
and Mmax. P(IM > x|m, r) is the probability that an earthquake with a magnitude ‘m’ and distance
‘r” will exceed the ground motion ‘z’. P(M = m) and P(R = r) are the probability distributions
for magnitude and distance, respectively. It is important to use consistent distance metrics when
describing the source-to-site distances in seismic hazard analysis to calculate accurate seismic

hazards at the site of interest.

1.2 Motivation

With the growth of population, many populated cities are currently located close to the fault. As a
result, there is an increased focus on estimating accurate seismic hazards close to the fault. The
current research activities have mainly focused on the rupture directivity effects, which cause a
pulse in the velocity time history at close distances (Somerville et al., 1997; Bray and Rodriguez-
marek, 2004; Shahi and Baker, 2013; Spudich et al., 2013; Watson-lamprey, 2018; Tarbali et al.,
2019). The rupture directivity increases the demand on the structures at close distances and is an
important area of study to determine accurate seismic hazards at close distances. However,

studying the variation between different distance metrics is also important.
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The different distance metrics used to identify the distance from the source to the site of interest
converge at large distances. So, accurate seismic hazard calculations can be done without
converting from one distance metric to another in such cases. However, the different distance
metrics may have significantly different values at close distances, especially at higher magnitudes.
As a result, there may be significant variation in the calculated seismic hazard without using
appropriate distance metrics. So, the seismic hazard may be limited to specific distance metrics,
which would significantly hamper the use case for PSHA. Hence, converting from one distance
metric to another may be necessary to accurately determine an area's seismic hazard in conducting

PSHA.

1.3 Objectives
This research aims to address the issues discussed in section 1.2 as far as possible. The

following objectives are sought in this research:

e Develop a dataset of different distance metrics representing their corresponding values
for each other for different earthquake events and fault geometries to build a complete

database to convert from one distance to another.

e Propose empirical equations that can accurately represent the dataset without
significant variations. Also, the parameters used to convert the distance metrics should

be in use in current methodologies to determine the seismic hazard.

e Formulate methods to capture the uncertainty due to the conversion from one distance
metric to another. The uncertainty is vital to determine the accurate seismic hazard in

PSHA.

e Provide quantitative estimation of the variation in the seismic hazard due to distance
16



conversion.

1.4 Organization of this Dissertation

The dissertation is comprised of seven chapters. Chapter 1 provided a background and discussed
the motivation and the objectives of this study. Chapter 2 is the literature review and provides
detailed background on the different methodologies to handle the use of different distance metrics
in seismic hazard calculations. Chapter 3 explores the parameters required to accurately describe
the earthquake events and the rupture faults. It also provides methods to determine the values for
different distance metrics based on these parameters. Chapter 4 utilizes the dataset developed in
Chapter 3 to develop empirical equations to convert between different distance metrics. Chapter 5
provides the empirical equations to include the variability due to distance conversion in seismic
hazard calculations. Chapter 6 presents the application of the equations proposed in Chapter 4 and
Chapter 5. Finally, Chapter 7 concludes the results of this study and provides some
recommendations for future research. The dissertation expands on the work published in Kayastha

et al. (2023b).
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Chapter 2 Literature Review

2.1 Introduction

Researchers use different distance metrics to determine the source-to-site distance metrics during
an earthquake. The most used distance metrics are the Joyner-Boore distance (R;g), the Rupture
distance (Rrup), the Epicentral distance (Repi), and the Hypocentral distance (Rnyp). Riz measures
the closest distance to the surface projection of the fault, Rrup measures the closest distance to the
ruptured fault, Repi measures the distance to the epicenter of an earthquake, and Rnyp measures
the distance to the hypocenter of an earthquake. Rjz and Rrup are classified as fault-based
distances, while Repiand Rryp are classified as point-based distances. Many researchers have used
point-based distance metrics to develop their GMMs. However, issues with large magnitudes at
close distances for such models resulted in unreliable seismic hazard calculations. Hence, GMMs
usually use either Rjs or Rrup to determine the ground motions in an area. However, the seismicity
of some areas cannot be associated with known faults. In such cases, PSHA uses point source
models to describe the seismic hazard, as such models can be used for gridded seismicity (Tavakoli

etal., 2018).

In PSHA, different GMMs with different distance metrics may be included in different branches
of a logic tree. Certain assumptions can be made to estimate the value of the required distance
metric in such cases. However, such assumptions and the corresponding distance conversions may
increase the uncertainties. Moreover, uncertainties in distance conversions may cause the
uncertainties of the GMM to be magnitude and distance-dependent, even if the uncertainties of the
GMMs did not have those dependencies in the original equations. Monelli et al. (2014) found

differences of as much as 54% in a PSHA sensitivity study when using point-based and fault-based
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distances. This resulted in a considerable underestimation of the hazard, especially for large
earthquakes. Tavakoli et al. (2018) also demonstrated that effective Rep developed higher seismic
hazards than R;s. Thompson and Worden (2018) also showed significant variation between mean
rupture distance and point-source distances, even for small-magnitude earthquake events. There

are a few methods to avoid this problem which we have discussed in the next section.

2.2 Approaches to use different distance metrics in seismic hazard analysis

2.2.1 Approach 1: Conversion between distance metrics

One approach to utilize multiple source-to-site distances would be to convert from one distance
metric to another. Scherbaum et al. (2004) used Rjg as the primary distance metric to obtain Rep,
Ruyp, Rrup, and the distance to the seismogenic part of the rupture plane. They simulated various
earthquake events based on the magnitude, dip angle, and location of the hypocenter on the fault.
They used Wells and Coppersmith (1994) as the magnitude-scaling relationship to determine the
length and the width of the fault. For the depth distribution, they developed a truncated normal
distribution model with different mean and standard deviation values based on the style of the
faulting. They also ignored events deeper than 20 km for strike-slip faults and 25 km for dip-slip
faults. The simulation was conducted for different cases: strike-slip, dip-slip, and a general case
where the style of faulting is unknown. Different dip angle ranges were assumed for different
cases. The dip angles were varied from 40° to 90° for the general case, 40° to 70° for shallow
dipping faults, and 80° to 90° for strike-slip faults. A residual function based on the gamma
distribution was used to describe other distance metrics based on magnitude and R;jg. The residual
function, the difference between the target distance metric and reference distance metric (Rjg), is

always positive as the Ry is always less than or equal to other target distance metrics. The
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polynomial functions are applicable for shallow intercontinental earthquake events for R;g from 0
to 100 km and moment magnitudes between 5.0 and 7.5. They also provided coefficients to
calculate the standard deviation, which can be used to account for the variability of the GMM due
to distance conversion. Though the variability of the GMMs may not be magnitude or distance
dependent in their original form, the equations provided in Scherbaum et al. (2004) provide a
method to account for this variability reliably for all GMMs. They also compared these
relationships with manually derived distance metric estimates for Landers, Imperial Valley, and

Chi-Chi earthquakes.

EPRI (2004) developed four GMMs for the central and eastern United States, three GMMs based
on Rjg, and one GMM based on Rrup. They also provided a method to convert from Repi to Ris
and Rrup for each of their GMMs. The ruptured area was modeled based on the Somerville et al.
(2001) relation to obtain the distance conversion equations. The hypocenter depth distribution was
modeled using Silva et al. (2002). A length-to-width aspect ratio of 3 for the strike-slip fault and
2 for the dip-slip fault were used. A dip angle of 40° was assumed for the dip-slip fault. EPRI
(2004) also constrained the maximum depth to 25 km. Rep; was chosen as the primary distance
metric to obtain Rjg and Rrup. They provided separate coefficients for centered ruptures and
random ruptures. They determined that random ruptures estimated slightly smaller distance
correction compared to centered ruptures. EPRI (2004) also provided equations to calculate the
additional aleatory variability to determine the total variability in PSHA for each GMM. They can
be directly used in PSHA for the respective GMMs. However, they cannot be used for other GMMs

not included in EPRI (2004).

20



2.2.2 Approach 2: Development of GMMs for different distance metrics

As another approach, Bommer and Akkar (2012) suggested that two different sets of coefficients
for point-source-based models and finite-source-based models should be developed for GMMs.
However, few researchers have provided coefficients for point-source and finite-source-based
distances for their GMMs. Akkar et al. (2014) provided the coefficients for both point-based and
fault-based distances for their GMM for Europe and the Middle East. They determined low
variation in the sigma models for GMM based on Repi and Rjs. However, that may have resulted
from an incomplete dataset, with a sparseness of data for large earthquake events at small
distances. So, they proposed a method to determine the true sigma of the Repi model based on the
Ris model for a dense grid of observation points. They used Scherbaum et al. (2004) to calculate

the values.

Bommer et al. (2016) simulated many Repi and R;s combinations based on a range of fault
orientations and fault dimensions to determine the variability in their ground motion model for
induced seismicity. They used Wells and Coppersmith (1994) to determine the rupture length, as
no appropriate magnitude scaling relationship was available for induced seismicity. As a result,
the dimensions may not be applicable for induced earthquakes at shallow depths. The same process
could be repeated for other magnitude scaling relationships to obtain accurate sigma values for
those regions. They assumed a single observation site and simulated the epicentral location for
many points in a circular seismic zone. This provides a large dataset of epicenter locations for
different fault rupture dimensions and geometry for different magnitude earthquake events. They
calculated a range of Rjg values for a given Repi and then used Akkar et al. (2014) to determine

the median values for spectral acceleration. Finally, they calculated the variability due to Repi and
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its respective Ryg values. They modeled sigma as a Gaussian distribution. This approach can be
directly applied without converting the distances by including the sigma in the total GMM
variability for PSHA calculations. However, the equation for variability cannot be used for other

GMMs.

2.2.3 Approach 3: Simulation for different distance metrics

The third approach would be to simulate pseudo-ruptures for each scenario based on dimensions
obtained using different magnitude scaling relationships such as Wells and Coppersmith (1994),
Somerville (2014), or others. Kaklamanos et al. (2011) developed the relationship between Ris
and Rrup based on the geometrical properties of the fault. For a given dip angle (8), down-dip
rupture width (W), depth to the top of rupture (Zror) and Rjs, they provided the relation to
determine the Ryyp for different source-to-size azimuths (o). They have also suggested different
relationships for 6, W, and Zrqy if these values are unknown. They compared their results to those

obtained by Scherbaum et al. (2004) and found them to be slightly different.

Thompson and Worden (2018) derived mean Ryg and Rrup constrained on Repi, magnitude, and
azimuth. They also provided adjustment factors for GMM standard deviations to include the
uncertainty due to the conversion of different distances. For simulation, they used different
distance conversion equations provided in Somerville (2014) for the stable continental region
(SCR), Hanks and Bakun (2008) for the active continental region (ACR), and Wells and
Coppersmith (1994) for both cases. A length-to-width aspect ratio of 1 for SCR and 1.7 for ACR
was assumed. They have assumed different ranges for the dip angle based on the style of faulting
and the magnitude scaling relationship used. The seismological depth is assumed to be 20 km for

ACR and 15 km for SCR. At a given Rep; and magnitude, they determined the target distance
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metrics (Rse or Rrup) by integrating at different azimuths, dimensions of the fault (length and
width), dip angles, and epsilons. Epsilon (¢) is the standard normal random variable used to
incorporate the variability in the estimation of the fault dimensions determined based on the
magnitude scaling relationship used. They observed the mean Rjs decreased as the dip angle
decreased due to increase in the width projection. The ratio of the mean Rjg to Repi varied from 0
at small distances to 1 at larger distances while the ratio of the mean Rrup t0 Repi is greater than 1
at smaller distances and approaches 1 at very large distances. The variation of Rrup at small Rep)
is controlled by the distribution of depth to top of rupture (Ztor). At shorter distances, the variance
for Rs is smaller for large magnitude earthquake events while the variance is greater at shorter
distances for smaller magnitudes for Rrup. They also determined that the choice of aspect ratio did

not significantly impact the estimation of distances.

Tavakoli et al. (2018) proposed an analytical distance conversion method to convert Rs to Repi,
Ruyp, or Rrup based on the geometry of the fault and the distribution of the hypocenter. The
distance obtained can be combined with other seismological constraints, such as geometric
spreading and attenuation parameters, to obtain effective distances which can demonstrate the
effect of extended fault sources at small distances. They also provide separate equations to estimate
the distances for strike-slip and dip-slip faults. Similar to Thompson and Worden (2018), they
integrate the values along the fault dimensions (length and width), azimuths, and depth of the fault
to determine the target distance (Repi and Rryp) for a given R;s, magnitude, and dip angle of the
fault. Based on these distances, they calculate the effective distance that can reasonably simulate
the average ground motions for large earthquakes. Effective distances are based on equivalent

point source modeling. In equivalent point source modeling, the rupture originated from a virtual
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point at an effective distance from the site such that there is no saturation effect at close distances.
They calculate the effective distances to account for the geometrical spreading and attenuation
using the Boore (2009) approach such that the effective point can generate a similar energy
intensity level to those generated from all the sub-faults at the observation site. The method
developed by them can be employed for different magnitudes, distances, and site-specific
conditions to obtain an accurate conversion between different distance metrics for the specific
region. A method to account for the uncertainty has also been discussed. This approach reduces
the uncertainty considerably compared to other distance conversion methods, as the uncertainty at
a particular azimuth is zero. As the method is generic, it can be applied to different cases of
earthquake rupture, large, small, or even induced earthquakes. The resultant distance conversion
is insensitive to frequency, so the same values can be applied to the GMM for different frequency

values.

2.2.4 Current approach

In current PSHA methodologies for the United States Geological Survey (USGS), Petersen et al.
(2010) assume the seismic energy is released from the epicenter rather than the crust of the ruptured
fault. They use Reps as the reference distance to calculate Rjg for a vertical strike-slip fault for
different azimuths ranging from 0° to 360°. They assume the epicenter is at the center of the fault,
and they used Wells and Coppersmith (1994) for the magnitude scaling relationship. They use a
virtual fault model, where the vertical faults are simulated at random orientations, and the site is
fixed about the center of the fault. However, for a fixed epicentral distance, the station can be
relocated for a given azimuth based on the location of the epicenter, as shown in Figure 2.1. To

avoid this, the location of the epicenter is always assumed to be at the center of the fault. However,
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many researchers, such as Mai et al. (2005), have shown that the location of the epicenter may
have a distribution along the fault. Also, EPRI (2004) demonstrated that the centered epicenter
approach provided slightly higher distance adjustments than a random epicenter distribution. So,
the USGS method may not represent the actual distance adjustment required, particularly for dip-

slip faults.

Figure 2.1 Demonstration of the variation of the location of the observation sites for a fixed Rep
based on the location of the epicenter. The observation sites have a fixed position for a fixed Rjs
and azimuth.

2.3 Research gaps
e The distance conversion equations developed by EPRI (2004) depend on the GMMs and
frequency.
e Scherbaum et al. (2004) do not consider the effect of hanging walls and footwalls.
e Kaklamanos et al. (2011) do not include a conversion method between point-source
distance metrics and extended fault distance metrics.
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e Calculating seismic hazards is a computationally intensive process. The method developed
by Thompson and Worden (2018) and Tavakoli et al. (2018), which involves integration
at different possible virtual faults or virtual sites, may not be practical for large datasets.

e The current USGS approach is only practical for vertical strike-slip faults and may not be

suitable for dip-slip faults.
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Chapter 3 Estimation of Distance metrics

3.1 Introduction

Based on the seismic source and the GMMs used, researchers can use different distance metrics to
calculate the distance from the earthquake event to an area of interest. The most used distance
metrics are Joyner-Boore distance (Rsg), Rupture distance (Rrup), Epicentral distance (Repi), and
Hypocentral distance (Ruyp). Apart from these distances, some researchers also use Rx and Ry.
Rx is the closest perpendicular distance from the site to the projection of the top edge of the
ruptured fault. Beyond the limits of the strike of the fault, it is calculated perpendicular to the
extension of the projection of the top edge of the fault along the strike. This distance metric is used
in GMMs such as Abrahamson and Silva (2008), Chiou and Youngs (2008), and Campbell and
Bozorgnia (2014) to quantify hanging wall effects. Unlike other distance metrics, which always
have positive values, Rx can be positive or negative — positive for sites on the hanging wall side
of the fault and negative for sites on the footwall side of the fault (Kaklamanos et al., 2011). Ry is
the closest parallel distance from the site to the projection of the ruptured fault. Both Rx and Ry
can be classified under fault-based distances. Figure 3.1 shows the different distance metrics

discussed in this study.

To develop relationships between the different distance metrics, we need to develop a database
that encompasses the values of these distance metrics at different magnitudes, faulting conditions,
location of the hypocenter, and other factors. While databases are available for these purposes
based on the recorded earthquakes, these are not exhaustive. Since most recorded earthquakes are
for small magnitudes and at large distances, there may be a bias in the relationship developed using

such databases. To avoid bias, we decided to develop the relationship between different distance
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metrics based on the geometry of the fault. This approach provides us with the relationship between
different distance metrics for a given magnitude, hypocenter location, azimuth, and the style of
faulting. To develop the geometrical relationship, we use Rjg as the reference distance. Other
variables include the magnitude of the earthquake (M), the dip angle of the fault (§), and the
azimuth angle from the center of the fault to the site of interest (8). Based on these parameters, we
establish the geometrical relationship to other distance parameters referred to as target distance
metrics (Rtarget), Such as Rrup, Reri, and Ruyp. The relations and their derivation haven been

discussed in this chapter.

Surface
projection Rz
of fault! >

Top edge Repnn

A
Surface

projection
of fault

Ryp)
‘/j -
= (a)

Figure 3.1 (a) Illustration of the plan view of the fault. The rectangle is the surface projection of
the fault, with the bold line as the surface projection of the top edge of the fault. The triangles are
locations of possible sites or stations with their respective distance metrics. Site 1 is located at the
footwall of the fault and has a negative value for Rx, while Site 2 is located at the hanging wall
side of the fault and has a positive Rx value. Ry is 0 for Site 2. (b) Illustration of the vertical cross-
section of a fault. Also shown are various distance metrics Rx, Ris. Rrup, Repi, and Ruyp measured
from the site (shown by a triangle) to the fault.
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3.2 Equation for distance metrics based on the geometry of the fault

3.2.1 Equation for Rx and Ry

The equation for Rx is dependent on the geometrical properties of the fault, such as the length (L),
width (W) and dip angle (6), reference distance (Rsg), and the azimuth (6) of the site from the
center of the ruptured fault. We derive the equation for Rx for vertical strike-slip fault (6 = 90°)

and dip-slip fault (6§ # 90°).

Figure 3.2 lllustration of the plan view of dip-slip fault, which shows Rjg, Rx, and Ry for different
cases based on azimuth angle (0).

Due to the symmetry of the fault, we can derive the equations for Rx for six cases (Kayastha et al.,
2022), as shown in Figure 3.2. The six cases can be reduced to three cases, as shown in Figure 3.3,
if we only consider positive values of the azimuth angle (0). 6, and 6, are shown in Figure 3.2

and the equations are listed in Equation 3.9.

Case-1: 0 < 16| < 64
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when 0 € (0, g)

L

tan(0) = I =P = tan(0) (— + R]B)
2

? + R]B

IZWLS(S)_pzwLS(S)—tan(G)G+R]B)

2 2
Wcos(6 L
Ry = Wcos(8) —y' = Wcos(8) — % + tan(0) (5 + R]B>
\'\ ) L
TT
when 6 € (—5,0),
P L
tan(0) = I =P = tan(0) (E + R]B>
Wcos(6)
=———2_P
X 2
Wcos(6 L
< Ryg >g= % — tan(0) (E + R]B) (3.2)
Case-11: 8, < 10| < 6
T
when 0 € (O'E)'
Wcos(6) )
X = T + RererSin (9)
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when 8 € (—2,0),

Case-Ill: 8, < 18] <90

when 8 € (Og)

when 8 € (—;,0),

B Wcos(8)

< RX >9— > + RcrefSil’l (9)
Wecos(6) )

X = T — Rerersin (0)
Wcos(6) _

< Ry >g= — - Rerersin (0)

RX = WCOS(S) + R]B

< RX >9: WCOS(S) + R]B

RX = R]B

< RX >e=< RX >9= RIB

3.3)

(3.4)

(3.5)

(3.6)

where Rerer IS the epicentral distance calculated from the site of interest to the center of the fault

rupture projected on the surface. The equation for Rcrer Was provided by Tavakoli et al. (2018) and

is listed below.
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For vertical strike-slip faults,

[ LV L _ sin(6) *% _
(E) +R]B—2*(§)*R]B*cos 180 — | 6 + sin™? R if0 <0 <6,
IB (3.7

Reper =
Rjp .
sin(0) if6, <6 <90
For dip-slip fault,
L
M+ g 0<6<6
cos(0) - 1
Weos(8)\> /L2 Weos(8)\*  /Ly?
Reref = 3 RIZB + <L()> + (_> - 2\/( cos( )> + (—) Rjgcos (v) 9, <06<6, (38
2 2 2 2
(WCOZS(S)) + Ry
sin(0) 8, <0< 90
in which,
Wcos(6) +Rpg
-1 2
0, = tan L
2
Wcos(6)
91 = tan‘1 #L
Rip +3 (3.9)
. Wceos(8)\* . /L\?
sin(]6 — al)\j(%) + (7)
y =180 —| sin~? +10 —«f

R]B
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a = tan™ %
2
The equations for Rx have been summarized in Table 3.1 for different cases based on the azimuth
angle (0), which is the angle from the center of the fault to the site (Kayastha et al., 2022).

Similarly, we can determine the equations to calculate Ry, which are presented in equation (3.10).

0 |6] = 06,
Ry = J Rerercos(16]) — 0.5L 0, < [6] < 6, (3.10)
Rjp 6] < 8,

Table 3.1 Equation to calculate Rx based on Rg, length (L) and width (W) of the fault, dip angle
(8), and azimuth angle (8).

Azimuth angle Case Equation
TC
0 € (0, E) 0.5Wcos(6) + tan(0) * (O.SL + R]B)
— 0<10/ <6,
6 (-5.0) 0.5Wcos(8) — tan(|6]) * (0.5L + Ryp)
TC
CNS (0, E) 0.5Wcos(8) + Rcgersin(0)
p 0, <16] <8,
8e (_E' 0) —0.5Wcos(8) + Repersin([6])
TC
R= (0, E) Wcos(8) + Ryp
= 18] = 8,
o€ (_E' 0) Rjp
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Figure 3.3 Detailed diagram for the derivation of Rx for different cases.
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3.2.2 Equation for Rrup
The equations to determine Rrup has been provided by Kaklamanos et al. (2011) and are listed

below.

For strike-slip fault,

< Rryp >¢= \/< Ry >3+ Z2,r +< Ry >% (3.11)
For dip-slip fault,
Case-I: For footwall
< Rgyp >¢= J< Ry >§+ ZYZ"OR +< Ry >§ (3.12)
Case-Il: Ry < Rgy
As shown in Figure 3.4,
RSl
tan(6) = = Rg; = Zpprtan (5)
ZTOR
R,RUP = \/R;Z(-l-—Z%OR
(3.13)

< Rryp >p= \/< Ry >4+ Z2,p +< Ry >3

Case-1ll: Rg; < Ry < Rs;

ZTOR ZTOR
tan(6) = =Ry =——
@ Ry, X1 7 tan(6)
Rryp
sin(6) = ———

= Rryp = (Rx1 + Ry)sin (8)
= (Ry;sin (6) + Rysin (6))

Z
= (222 sin () + Resin )

35



R’RUP = RX SlIl((Y) + ZTORCOS (6)

< Rpyp >o= J[< Ry >¢ sin(8) + Zporcos(8)]? +< Ry >& (3.14)
Case-1V: Rx>Rs
w
COS(S) = R_X1 :'>RX1 = m = WS@C(S)
RXZ
tan(S) = = RXZ = ZTORtan (6)
TOR
RSZ = RXl + RXZ = WSeC(6) + ZTOR tan(5)
Rx3 = RX - WCOS(S)
R,RUP = \/(ZTOR + WSln(5))2 + R)2(3 = \/(ZTOR + WSLTL(S))Z + (RX - WCOS((S))Z
3.15
< Rgpyp >p= \/(ZTOR + Wsin(6))2 + (< Ry >p— Wcos(6))2 +< Ry >% (3.15)
The equations can be summarized as follows:
\/< Ry >+ Z2,p +< Ry >2 Ry < Rg;
RRUP = 3 J[< RX >9 Sln(5) + ZTORCO 5(5)]2 +< RY >5 R51 < RX < RSZ (316)
L\/(ZTOR + Wsin(8))” + (< Ry >g— Wcos(8))” +< Ry >2 Rx > R,

where Rx and Ry can be calculated using the equations discussed previously. Ztor is the depth to
the top of the rupture. Using the equations, we can determine the Rrup at different magnitudes and

dip angles.
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Figure 3.4 Detailed diagram for the derivation of Rrup for different cases.

3.2.3 Equation for Repi and Ruyp

As shown in Figure 3.5, we can calculate Rep; and Ruyp based on the geometry of the fault and the
location of the focus (Kayastha et al., 2022). The location of the focus is specified by variables
(x,y,z), where x is measured along the length from the center of the fault, y is measured along the
width from one end of the fault, and z is measured from the ground surface. The calculation for

Rc is discussed in the next section.
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L2 L2

Hypocenter

v

Figure 3.5 Detailed diagram for the derivation of Repi and Rryp for a vertical strike-slip fault. The
figure above the dotted lines shows the plan or the top-view of the fault with length (L). ‘x’ is the
distance from the center of the fault to the assumed epicenter along the length of the fault. Since it
is a vertical strike-slip fault, the width of the fault (W) and the location of the epicenter along the
width (y) is not considered. ‘@’ is the azimuth angle from the center of the fault to the site. The
figure below the dotted lines shows the cross-section of the fault with ‘z’ as the depth from the
ground surface to the hypocenter.

In Figure 3.5, using cosine law,

R2p; = RZ + x? + 2|x|R;cos (8")

Rep; = \/Ré + x2 + 2|x|Rcos (6" (3.17)

Similarly,

2 _ p2 2
Riyp = Rgp; + 2
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Ryyp = ‘/Rl%}PI + z*

Ryyp = VR? + x2 + 2|x|R.cos (") + z2

(3.18)

For strike-slip fault, 8" = 6.
3.2.3.1 Strike-slip fault

For the strike-slip fault, the width of the fault does not affect the estimation of Repi and Ruyp. TO
determine Repi and Ruyp, we define the term Rc as shown in Figure 3.6. Rc is the distance from
the site to the center of the fault. So, if the epicenter is located in the center of the fault, Rzp; = R,.
The equation for Rc has been divided into two cases based on the azimuth of the fault to the site.
The hinge azimuth (6,), where the two cases have been separated, is based on the azimuth of the

fault where Ry has a non-zero value. When 6 < 6,, Ry has a non-zero value while Ry, = 0 when

6 > 6,.

A
AJ

0<0<80, 0,<6 <90

Figure 3.6 Detailed diagram for the derivation of Rc for different cases for vertical strike-slip fault.

If 6, < 6 < 90
R
sin(9) = RLCB
P (3.19)
cC — .
sin(6)
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If 0<6 <6,

. P L
sin(0) = T = P= > * sin (0)
2
P % * sin(0) sin(0) * %
sinf@) =—=%—— = a=sin"!{ —=
R]B R]B R]B
sin(0) *%
f=180—- (8 +a)=180— |0 +sin”}| ————=
R]B

Using cosine law in ABC,

L\? L
RZ = (E) +R123 -2 *E*R]B * cos(f)

. L
6 + sin1 <S‘“(9) - 7)] ) (3.20)
Rjp

2

L L
R = (E) +RJZB—2*(E)*R]B*cos<180—(9+a)=180—

3.2.3.2 Dip-slip fault
For dip-slip faults, both the length and the width of the faults are required to determine the values

for Repi and Ruyp as shown in Figure 3.7. So, the equations are different than for strike-slip fault.

Ifo<6<6,
L
tan(@) = [ = P= (§+ R]B>tan G
R]B +7
, , Wcos(6) Wcos(5) L
PP=y—y =y—<T—P> =y—<T—tan(9)(§+R]B)
_(Weos(8) _ (9)(£+R )
tan(6") ~ ” : B
an = =
L L
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' 2
9) = —=
cos(0') 7
L
L) (3.21)
R, =
© 7 cos(8)
0<6<6, 0. <0<o,
L2 : L2 . -~

Figure 3.7 Detailed diagram for the derivation of Rc for different cases for dip-slip fault.

If6, <06 <8,
Sln(9) = = P = RCT‘efSin (6)
Cref
,_Weos@®)
2
tan(8’) = P-y' _ Rcref sin(e)_(W%S@_y)
an( ) - Rcref cos(0) B Rcref cos(0)
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tan(a) = % = a=tan"?! %
2 2
In ABC, using sine law,
sin(B) sin(6’' — a)
X R;p
L 2
= 2 —
=T (2)
: L\?
. sin(8’ — a) sin(0’' — a),|y? + (7)
sin(f) =———x*x =

R]B R]B

2

/sm(@ —a) y2+
y=180—-p — (9’—a)—180—51n1\

R]B

\—(9'—a)
J

Using cosine law,

R% = Rz + x* — 2xR;gcos (y)

, L\2 I\2 (3.22)
RC = R]B + yZ + (E) -2 yZ + (E) R]BCOS ()/)
If 6, < 6 < 90
Wcos(6
ch)25(6) F Ry ( 2( )+R]B)
tan(@) = = b=
b tan(@)
, y+Rjp Y+ Rjp _ Y+ Rjp
tan(0") = b Wcos(8) tan(6) Wcos(6)
tan(0)
+ R
sin(0’ :y JB
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_yt Rjp (3.23)
¢ sin(6")

In summary,

For strike-slip fault,

L\? L
. \/(E) +R]ZB—2*(5)*R]B*cos<180—(6+a)= 180 —
C=

6 + sin-1 sin(8) 3 0<6<8
+sin R S0<b (32

Rjp
NG 6o < 6 <90
For dip-slip fault,
B+ 0<6<8
cos(6") - 1
RC =4 2 2 L 2 5 L 2 (325)
Rjp +y +(§) -2 |y +(§) R;gcos () 0, <0<86,
y+ R
<
(sin(@") B0 =6 <90

For dip-slip faults, change y = Wcos(8) — y, if 8 < 0° i.e., the site lies in the top half of the
projection of the fault (The derivation is shown for conditions when site lies below the half of the

fault projection).

3.3 Fault model assumptions

The data for this study is developed based on the centroid-centered virtual site model. In this
approach, the fault is fixed, and the virtual site moves around the fault. The location of the azimuth
is dependent on the azimuth of the site from the centroid of the ruptured fault. The virtual sites are
located at a constant R;s from the fault. For a constant Rsg, a range of values for other distance

metrics (Rrup, Repi, RHvp) can be obtained based on the magnitude, dip angle, and azimuth of the
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fault. Rys is chosen as the reference distance because there is only one possible station for a known
fault at a given azimuth. For Repy, the location of the station at a given azimuth can vary based on
the location of the epicenter of the fault. The mean value of the reference distance metric is
obtained to develop the statistical relationship between the different distance metrics. For
computational efficiency, instead of solving for the integral, we have discretized the fault along
the length, width, and depth of the fault, with an azimuth increment of 1° for the virtual site. The
length and width are discretized such that the reference sites are densely spaced closer to the fault

and sparsely spaced away from the fault.

Different fault ruptures have been considered based on the size of the rupture, the geometry of the
rupture plane, and the location of the hypocenter. The geometry of the rupture plane is modeled as
a rectangular plane with length (L), width (W), dip angle (6), and depth to the top of the rupture
(Ztor), as shown in Figure 3.1. The size of the rupture, based on magnitude, is used to model the
length and width of the fault. We have focused on the Central and Eastern US region. So, we used
the equation provided in Somerville (2014), developed for the CEUS region, to calculate the
ruptured area (RA) of the rupture plane for different magnitudes. We use a fixed length-to-width
aspect ratio of 1. The hypocentral depth values are based on Scherbaum et al. (2004). If the
calculated rupture plane is extended above the surface, the width of the fault is adjusted such that
the top of the fault lies on the surface. The width is restricted to the seismogenic zone, assumed at
a depth of 15 km (Shaw and Wesnousky, 2008). Modification of Ztor also changes the dimensions
for the width of the fault (assuming a fixed hypocentral depth). Consequently, the length is
increased to maintain a constant ruptured area for a given M. The data is generated for M values

between 5 to 8, dip angles from 10° to 90°, and Rjg values up to 200 km. The azimuth value is
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varied from 0° to 360°. We determine the target distances, such as Repi, Ruyp, and Rrup, for each

geometrical scenario using the equations discussed previously.

This approach provides us with a range of target distance values for a given Rjg value. The target
distances depend on Rgg, length (L), width (W), and dip (6) of the rupture plane, the azimuth angle
(), the hypocentral depth, depth to the top of the rupture (Ztor), and the style of faulting (strike-
slip or dip-slip). Regression analysis based on the non-linear least squares method is performed on
the obtained data to develop empirical relations for Rrup and Repi based on the Ry, magnitude of

the fault and dip angle, and Ruyp based on Rss, M, 6, and Ztor.

3.3.1 Equation for mean and variance of Rupture distance

The mean Rrup can be calculated as follows:

3271

ERruplRip M, 81 = [ | Ruup(6,0p(@)p(e)dode (3.26)

-30

where, Rryp(8, €) is the rupture distance from the fault to the site at a given azimuth (0). ‘€’ is
used to incorporate the uncertainties in the scaling relationship used to determine 'L' and 'W' from
the magnitude of the fault. We have used +3 standard deviations, assuming a standard normal
distribution for our calculation. Since Rrup is a fault-based distance metric, we do not need to
discretize the fault. Instead, we calculate Rrup values at different azimuth values from the fault for

a given Ryg, dip angle, and magnitude.

Instead of defining a complex function to express the distribution of 6, we used a small spacing
for 6, which provided results with acceptable accuracy without hampering the computational

efficiency (Campbell and Gupta, 2018). For our calculation, we have used a spacing of 1° with
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uniform distribution (P(8) = 1/2m). For ‘€’, we used a spacing of 1.0. We have calculated the

mean values at different dip angles from 10° to 90° with a spacing of 10°.

Similarly, to calculate the variance of Rrup, we can use the following equation:

2T

3
2
OfRpupIRiEMS] = ff [RRUP(H’E)_E[RRUPlR]B'M,S]] p(@)p(e)dode (3.27)
230

3.3.2 Equation for mean and variance of Epicentral distance

The mean Reps can be determined for a given Ryg, §, and magnitude as follows:

2w Wcos(8) o.5L

3
E[Rgp|Rys, M, 8] = j f j f Repi(x,7, 6, Op(Op()p(@)p(e)dxdydode  (3.28)
-30 0

—0.5L

where, Rgpi(X,y, 6, €) is the distance from the epicenter (X, y) of the fault to the site located at an
azimuth angle (8) from the fault, and ‘e’ has been defined previously. Using this equation, we can
obtain Rep from the fault to the site at different R;s and 6. For the calculation, we determine the
mean value of Rep) at all possible 6 € (0°,360°) for a given Ryg, magnitude, and dip angle. 'x' and
'y’ are the variables along the length and the width of the fault. We can use different distribution
functions to define the spacing that can describe the characteristics of the fault rupture. We have
used Mai et al. (2005) for our calculations to determine the hypocenter distribution along the strike
and down-dip direction. After integration along the length and width of the fault, all possible

locations of the epicenter can be considered.

The equation for the variance of Reps can be calculated as:
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2rWceos(6) o.5L

f f f[REPI(X,y,e,e)—E[REpllR]B'M’S]]Z

—0.5L

GR Rig,M,8]
[Rep1IRB, (3.29)

W"aw

*p(x)p(Y)p(0)p(e)dxdydbde

3.3.3 Equation for mean and variance of Hypocentral distance

Most of the parameters required for Ruyp are already specified in equation (3.28). In addition, we

also have the depth term ‘z’, which varies from the depth to the bottom of the rupture
(ZTOR +Wsin(8)) to the depth to the top of the rupture (Zror). The hypocentral depth is
determined by Scherbaum et al. (2004).

The mean Ruyp can be calculated as follows:

E[Ruyp|R}p, M, 8]

3 2w ZToR+Wsin(6) Weos(8) o.5L

- | f | f | Rive(ey.2.0,0p0) (3.30)
-30

ZTOR —0.5L

* p(¥)p(2)p(0)p(e)dxdydzdbde

The equation for the variance of Rnyp can be presented as:

3 2w Zror+Wsin(8) Wcos(6) o.5L

O-fRHYP|R]BrM'8] = ]j j j J [RHYP(X y,Z,0,€)
-30 (3.31)

ZTOR —-0.5L

— E[Ruyp [Ryp M.8]|” * p(x)p0IP(2)p(0)p(e)dxdydzdbde

3.4 Discussions

3.4.1 Distribution of the distances
Figure 3.8 and Figure 3.9 show the histogram plots for the difference between Rrup and Ryg at
different magnitudes and a Rg of 10 km for a dip-slip fault with a dip angle of 50° and a vertical

strike-slip fault, respectively. The difference can be modeled as a gamma distribution (shown as
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the solid line) to determine the mean and the standard deviation of the target distance metric
(Kayastha et al., 2021). For M 5, we can observe that the residuals for the dip-slip fault are mostly
distributed between 2 km and 6 km. Below 2 km, the frequency distribution of the residuals is
nearly zero. Since the fault is assumed to be deeper from the surface for smaller magnitudes, the
depth of the ruptured fault is rarely zero. Due to the depth term, the frequency distribution of the
residuals of Rrup with Ry is also rarely zero for smaller magnitudes. This is not observed at large
distances (>100 km). As the magnitude increases, the fault is assumed to be closer to the surface.
Hence, the frequency of the residuals below 2 km also increases. For the dip-slip fault, the increase
in magnitude also increases the maximum residual value from 6 km at M 5.0 to 12 km at M 7.5.
So, the residuals are concentrated between a few values for smaller magnitudes, and the range
increases for larger magnitudes. Since only the length of the fault is used to determine the Rrup
for the vertical strike-slip fault, such variations are not observed, and the residuals range from 0 to

4 km for all magnitudes.

Figure 3.10 and Figure 3.11 show the histogram plots for the difference between Repi and Rjg at
different magnitudes and a Ryg of 10 km for a dip-slip fault with a dip angle of 50° and a vertical
strike-slip fault, respectively. We can similarly model the gamma distribution as shown by the
solid lines. We can observe significant variation in the range for the residuals of Repi as the
magnitude increases. Similar to residuals of Rrup, the residuals of Repi are concentrated between

a few values for smaller magnitudes, and the distribution is more spread out at larger magnitudes.

We have also plotted histograms for the residuals of Rnyp at different magnitudes at a Rsg of 10
km for a dip-slip fault with a dip angle of 50° and a vertical strike-slip fault as shown in Figure

3.12 and Figure 3.13, respectively. Instead of taking the difference between Ruyp and Rjg to
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calculate the residuals, we have taken the difference of Rnyp with the square root of Rjg and Ztor.
This is because the depth of the earthquake event is an important parameter for the Rnvp, especially
at smaller distances and for larger magnitudes. The effect of depth is less pronounced at large
distances. Based on the histogram plots, we can observe that the peak distribution of the residuals
increases with increasing magnitude. The peak of the residuals is nearly 1 km for M 5.0 and 15
km for M 7.5 earthquake event. Similar to the residual plots for other target distances, the range is
concentrated between a few values for smaller magnitudes, and the range increases as magnitude

increases.

Similar distributions can be developed for each target distance metric at different R;s, M, and 6.
The mean and the standard deviation can be calculated for each distribution to obtain a dataset
containing the target distance metrics and the reference parameters such as magnitude, Joyner-
Boore distance, the dip angle of the fault, and depth to the top of the rupture. Based on an
appropriate empirical form, we can conduct a non-linear regression analysis on the dataset.
Alternatively, we can also implement different machine-learning algorithms to appropriately select
relevant parameters to determine a parsimonious model that can determine the target distance

metrics.
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Figure 3.8 Histogram plots of the difference of Rrup and Rys for a dip-slip fault with dip angle 50°
at different magnitudes for a R;g of 10 km. The solid line represents the gamma distribution fitted
to the histogram. The mean and the standard deviation of the distribution can be used in regression
analysis to determine the coefficients at different M, R;g, and & in the empirical equations for Rrup.
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Figure 3.9 Histogram plots of the difference between Rrup and Ry for a vertical strike-slip fault
at different magnitudes for a R;g of 10 km. The solid line represents the gamma distribution fitted
to the histogram. The mean and the standard deviation of the distribution can be used in regression
analysis to determine the coefficients at different M, Rjg, and & in the empirical equations for Rrup.
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at different magnitudes for a R;g of 10 km. The solid line represents the gamma distribution fitted
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3.4.2 Sensitivity of azimuth angle

The target distance metric varies significantly with the azimuth angle for a given Rjg, M, and §.
Boore (2009) determined that the distances parallel to the fault are much larger than the distances
perpendicular to the center of the fault for a vertical strike-slip fault at M 5 and M 7. The values
converge at larger distances. For sites perpendicular to the center of the fault, the values converged
at a distance of 5 km for M 5 and 70 km for the M 7 earthquake event. Similarly, the values
converged at 100 km for M 5 and more than 200 km for M 7 if the site is parallel to the fault. In
this section, we discuss the variation in estimating the target distance metrics based on the azimuth

of the fault using the equations discussed previously.

3.4.2.1 Sensitivity of azimuth angle for Rupture distance

The sensitivity of Rrup With azimuth angle varies significantly based on the magnitude, R;g, and
dip angle (Kayastha et al., 2023a). The variation of Rrup With 6 for a dip angle of 50° is plotted in
Figure 3.14. For smaller magnitudes (M < 5), Rrup is almost constant at different azimuth angles
for a given Ryg and dip angle. As the magnitude increases, we can observe significant variation in
the calculated Rrup for sites along the footwall (represented by negative azimuth values) and
hanging wall (represented by positive azimuth values). The variation is almost abrupt for
magnitude 8, as observed by a steep slope between azimuth angles (-3, 3). The variation is also
significantly higher at smaller distances (R;s = 1km) and negligible at large distances (R = 100

km).

We have also plotted the variation of Rrup With 8 for M 7 in Figure 3.15. As the dip angle increases,

the maximum value of the ratio of Rrup to Ry decreases. There is no effect of azimuth angle for a
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vertical strike-slip fault. For other dip angles, we can observe higher variation at small R;g (Rig =

1 km) and insignificant variation at large distances (R;g = 100 km).

Variation with 8 (5 = 50°)
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Figure 3.14 Variation of the ratio of Rrup t0 Ris versus the azimuth angle (@) at different
magnitudes and R;g for a dip-slip fault with dip angle 50°.
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Variation with 6 (M 7)
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Figure 3.15 Variation of the ratio of Rrup to Rys versus the azimuth angle (0) at different dip angles
and Rjg for a M 7 earthquake event.

3.4.2.2 Sensitivity of azimuth angle for Epicentral distance

For the comparison, we have only considered an azimuth angle from 0° to 90° due to symmetry,
as discussed in the previous sections. Figure 3.16 shows the variation of the ratio of Repi to Ryg for
different magnitudes and R;g for a dip angle of 50°. Similarly, Figure 3.17 shows the variation in
the ratio of Repi to Ryg for different dip angles and Rjs at M 7. We can observe that the ratio is
higher for smaller R;g and decreases as the Rjg increases for all magnitudes. This trend strengthens

our assumptions that Rep; and Rjg vary significantly at smaller distances and that the values are
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closer to each other at large distances (Kayastha et al., 2023a). The ratio is also constant at a
smaller azimuth angle and decreases exponentially after a hinge point. The hinge point is
calculated based on the parameters 8, and 6; discussed in the previous section. The hinge point
is dependent on magnitude; the value of the hinge point decreases as the magnitude increases. As
observed in Figure 3.17, the hinge point also depends on the dip angle, with the hinge point
decreasing as the dip angle increases. For the vertical strike-slip fault, after the hinge point, we can

observe that the ratios are equal for different magnitudes. This can be explained by the equations

discussed previously. For 6, < 6 <90, Rgp; = S;’(BQ) - IZE”’ = sin1(6)' Hence, the ratios are
JB

dependent only on the azimuth angle beyond the hinge point.
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Figure 3.16 Variation of the ratio of Rep to Rjg versus the azimuth angle (@) at different
magnitudes and R;g for a dip-slip fault with dip angle 50°.
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Variation with 6 (M 7)
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Figure 3.17 Variation of the ratio of Repi to Ris versus the azimuth angle (8) at different dip angles
and Ryg for a M 7 earthquake event.

3.4.2.2 Sensitivity of azimuth angle for Hypocentral distance

Figure 3.18 shows the trend of the ratio of Ruvp to Rys for different magnitudes and distances at a
dip angle of 50°. The trends for the ratio of Rnyp to Ry are similar to the trends observed in the
plots for the ratio of Rep) to Rjg. The smaller R;s (R;s = 1km) has higher ratios compared to larger

Ris. The hinge points are negligible for smaller magnitudes (M<=6).
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The variation of the ratio of Rnyp to Ryg versus azimuth at magnitude 7 for different Rjg and dip
angles is plotted in Figure 3.19. As the dip angle increase, the hinge value for the azimuth
decreases. Unlike the observation in the plot of the ratio of Repi to Ry versus azimuth for the
vertical strike-slip fault, the values beyond the hinge point are not constant for the ratio of Rxyp to
Ryg for the vertical strike-slip fault. The variation is due to the depth term ‘z’, which significantly

affects the values at smaller Ryg and is negligible at large distances.
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Figure 3.18 Variation of the ratio of Rnyp to Rie versus the azimuth angle (@) at different
magnitudes and R;g for a dip-slip fault with dip angle 50°.
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Figure 3.19 Variation of the ratio of Ruyp to Ryg versus the azimuth angle (0) at different dip angles
and Rjg for a M 7 earthquake event.

3.4.3 Saturation effects

In the plots for Repi and Rjs as shown in Figure 3.20, we can observe that for small Rig (Ris =
1km), the Repi and Ruyp values are significantly higher. For M 7 earthquake, for Rys of 1 km, the
Rryp value varies from 10 km to 25 km. Such large variations are not observed at large distances
(Rsz = 100 km). The large variation at close distances is a limitation of point-based distances

(Kayastha et al., 2023a). Point-based distances such as Repiand Rnyp assume the total energy of
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an earthquake is released from a single point. However, it has been observed that the seismic
energy is released from the whole ruptured fault. At large distances, the energy from the sub-faults
of the ruptured fault reaches the site of interest with relatively short delays among each other.
However, at close distances, only a fraction of the ruptured fault is actually closer to the site of
interest. So, the energy from the sub-fault closer to the site reaches it faster than the energy from

the furthest sub-fault.

The saturation effects can be modeled in point-based distance models using virtual points, as
shown in studies by Atkinson and Silva (2000) and Boore (2009). The virtual point is placed at an
effective distance such that the virtual point can mimic the extended fault and release identical

total energy to the site.

Mathematically, Rgrr = VR? + h?, where Rerr is the effective distance, R is the actual point-

based distance, and ‘h’ is the finite fault factor (Tavakoli et al., 2018; Atkinson and Silva, 2000).

So, to determine the actual point-based distance, R = \/R2zz — h?.

Rerr is the point-based distance that we have calculated using the geometry of the fault. Hence,
these values are significantly higher due to the finite fault factor. To determine the actual point-
based distances, we need to determine the finite fault factor and remove them from the calculated

point-based distances.

For Strike-slip faults,
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( Rje 8, <0 <90
sin(60) (3.32)
= L
L\? L sin(8) * >
(E) +R]23 -2 *(E) * Ryp *cos<180— 0 +sin‘1< Rps 2)‘) 0<06<86,
L
2
< Rpp; >p= f\/Rg + x2 — 2xR.cos (0) p(x)dx (3.33)
!
2

When the site lies on top of the fault, R;z and Repi are 0. However, Repi calculated based on the
equation derived based on the geometry of the fault discussed previously is not zero. The resultant

value provides us with the finite-fault factor.
Rjp = Rgpy =0
R — L
=Rc =3

:»>h =<< REPI >9

For an azimuth angle 8 = 0°,

L\’ 1
(E) +x2—2*x*z*cos (0) p(x)dx

Assuming a uniform distribution of the epicenter along the fault, p(x) = 1/L

Also,cos(0) = 1, so

64



as shown in Table 3.2.

b 1 L+L 1 [* 12
= — % |— - — — *
2 12 21 L |8 8

h_L
2
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(3.34)

So, the value of ‘h’ for a strike-slip fault is equal to half the length of the fault. This is valid only
when 6 =0°, i.e., when the site lies at the end of the fault (since ‘8’ is used to represent the location
of the site about the fault). For values other than 8 = 0°, the value for ‘h’ differs. The finite-fault
factor (h) for different azimuth angles for vertical strike-slip faults and dip-slip faults can be
calculated numerically by using the equations for < Rgp; >4 assuming a very small value of Rjs

(R;e = 0.0000001 km). This assumption does not affect the resultant calculated finite-fault factor,



Table 3.2 Comparison of the finite-fault factor obtained numerically (hcaic) with equation (3.34)
for different magnitudes at a site located parallel to the ruptured fault (8 = 0°).

Magnitude | Length (km) | heaic (km) | h = 0.5 * L (km)
5.00 2.37 1.19 1.19
5.50 4,22 211 2.11
6.00 7.50 3.75 3.75
6.50 13.34 6.67 6.67
7.00 37.49 18.74 18.74
7.50 118.55 59.28 59.28
8.00 374.89 187.45 187.45
For dip-slip faults,
( L
Mo * 2 0<6<8
cos(6") - 1
Rc = L\? L\? 3.35
=) R]23+y2+(§) -2 y2+(§) R;pcos () 0, <60 <86, (3:35)
y+ R]B
6, <6 <90
\sin(6") 0=
lim
When R;p — 0,
Wcos(6 Wcos(6
o — tan-1 — ) + Rjp Y ) . _1[Wcos(8)
o = tan L = tan L = tan [T
2 2
Wcos(6 Wcos(6
_ 2( ) _ 2( ) _, [Wcos(6)
0, = tan! 4| =tan 1 — | =tan 1[7]
zt s z
Wcos(6
619 = 90 = 91 = tan_l [%:I
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(3

<
Rc = { cos(6") 0=0<6
y
< 9
sin(6") O =0<90
!
Wcos(8) 32

< Rgp; >p= f f\/Rg + x2 — 2xR.cos (0) p(x)p(y)dxdy
0 l

2

Wcos(8) %
h= f j\/Rg + x2 — 2xRccos (8) p(x)p(y)dxdy (3.36)
o L

2

Figure 3.20 shows the variation of the ratio of the finite fault factor to the length of the fault versus
0 for different dip angles and magnitudes at R;g = 1 km. As discussed previously, the hinge point
is based on 6, and 6,. When Ry = 0, 8, = 6, = 0,, as discussed previously. The value of 6,

depends on the dimensions of the fault and the dip angle. For our calculation, we have chosen the
aspect ratio as 1 (% = 1). As a result, the 8, value for M 5 and M 6 is the same and the ratio of

‘h/L’ is similar. However, the calculated fault dimensions may fall over the surface at larger
magnitudes. When we fix the top of the fault on the surface for such cases, we need to recalculate
the fault dimensions keeping the rupture area constant, resulting in a change in the value of the
aspect ratio. For larger magnitudes, the ‘h/L’ value is similar up to 8, and decreases beyond the
hinge point as the magnitude increases. The ‘h/L’ value is constant for the vertical strike-slip fault

for all magnitudes. Itis 0.5 at 8 = 0°, and zero elsewhere.

Using the finite-fault factor, we can calculate the Repi and Ruvp values used to determine the

empirical equations discussed in the next chapter.
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Variation with 6 (R, = Tkm)
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3.4.4 Effect of aspect ratio
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Figure 3.20 Variation of the ratio of the finite fault factor (h) to the length of the fault versus the
azimuth angle (@) at a Ryg of 1 km for different magnitudes and dip angles.

As discussed in the previous sections, we used an aspect ratio (the ratio of length to width) of 1
for the calculations. Different published studies have used different aspect ratios to determine the
dimensions of the fault based on the ruptured area. EPRI (2004) used an aspect ratio of 3 for a
strike-slip fault and an aspect ratio of 2 for a dip-slip fault. Thompson and Worden (2018) used an
aspect ratio of 1.7 for the active continental region and 1.0 for the stable continental region. In this

section, we examine the impact of aspect ratio in estimating distance metrics.



For smaller earthquakes (M<6), the dimensions of the ruptured fault based on magnitude is also
small, so there is not a significant variation between the estimated distance metrics using different
aspect ratios, as shown in Figure 3.21 for the ratio of Rrup to Ryg versus Rjg for different
magnitudes for a dip-slip fault with a dip angle of 50°. There is a slight variation for a vertical
strike-slip fault for M 6 that is not observed for dip-slip faults, as seen in Figure 3.22. As we have
shown in the equations to calculate the distance metrics, the length and the width of the ruptured
fault are essential parameters for the dip-slip fault. However, for the strike-slip fault, only the
length of the fault is used to estimate the distance metrics. As a result, the variation in length due
to different aspect ratios causes a slight variation in the estimated distance metrics for the strike-
slip fault, while the impact is not felt for the dip-slip fault. The variation is observed at small Ris
(Rjp < 20 km). The estimated distance is the smallest for AR 1.0 and the highest for AR 3.0.
Similar observations can be made for the effects of the aspect ratio on Rep; for different magnitudes
and dip angles, as shown in Figure 3.23 and Figure 3.24, respectively. Figure 3.25 and Figure 3.26
show the variation of the ratio of Ruvp to Rie versus Ryg at different aspect ratios for different

magnitudes and dip angles, respectively.
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Figure 3.21 Variation of the ratio of Rrup t0 Rig versus R;g for different magnitudes and aspect
ratios (AR) for a dip-slip fault with a dip angle of 50°.
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Figure 3.22 Variation of the ratio of Rrup t0 Ry versus Ryg for different dip angles and aspect

ratios (AR) for a M 6 earthquake event.
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Variation with Aspect Ratio (AR) for 4 = 50°
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Figure 3.23 Variation of the ratio of Repi to Rys versus Rjs for different magnitudes and aspect
ratios (AR) for a dip-slip fault with a dip angle of 50°.
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Figure 3.24 Variation of the ratio of Repi to Ryg versus Rjg for different dip angles and aspect ratios
(AR) for a M 6 earthquake event.
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Figure 3.25 Variation of the ratio of Rnyp to Ris versus Rjg for different magnitudes and aspect
ratios (AR) for a dip-slip fault with a dip angle of 50°.

74



10"

RHYP / RJ B

107 L

10"

RHYP / RJ B

100,

Figure 3.26 Variation of the ratio of Ruvp to Ry versus Rjg for different dip angles and aspect
ratios (AR) for a M 6 earthquake event.

The variations are not observed for large-magnitude earthquakes for either dip-slip or vertical
strike-slip faults (Kayastha et al., 2023a). We have restricted the depth of the fault to the
seismogenic depth (15 km). The calculated depth using Scherbaum et al. (2004) for larger
magnitudes is usually higher than the seismogenic depth. Due to this restriction, we need to
recalculate the width of the fault based on the restricted depth and then calculated the length of the
fault while keeping the ruptured area constant. So, for higher magnitude earthquakes, the aspect

ratio is not maintained to satisfy the conditions for the depth of the fault. So, the aspect ratio only
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affects smaller magnitude earthquakes for the vertical strike-slip fault. This variation is also not
very significant. Thompson and Worden (2018) also determined that the calculated distances are
identical when they compared the results for a range of AR observed in the NGA-West2 database
for the active continental region (AR varying from 0.75 to 4.75) with the assumed AR of 1.7 that

they used for their studies.

3.5 Chapter Conclusion

In this chapter, we discussed the equations for different distance metrics based on the geometry of
the fault. The geometry of the fault is dependent on the magnitude of the earthquake, the dip angle
of the fault, and the depth to the top of the rupture. The fault dimensions are determined based on
the magnitude using Somerville (2014). We can either specify the depth to the top of the rupture
or use the magnitude to determine the depth to the top of the rupture using Scherbaum et al. (2004).
For our calculations, we have used Scherbaum et al. (2004) to determine the hypocentral depth.
The hypocentral depth and the width of the ruptured fault are then used to determine the depth to
the top of the rupture. We have provided the equations for fault-based distance metrics Rx, Ry,
and Rrup and point-based distance metrics Repi and Ruyp. For point-based distance metrics, the
fault is discretized, and the location of the hypocenter is randomized across the fault based on Mai
et al. (2005). We have used a virtual site model to model the fault and the site where the fault is
constant, and the site moves along the fault at a fixed distance. Based on the azimuth angle from
the fault to the site, the estimated distance also changes significantly. The effect of azimuth angle

is less pronounced for smaller magnitudes (M < 6) and at larger distances (R;z = 100 km). This

effect is also not observed in the case of Rrup for a vertical strike-slip fault. We have also discussed
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the saturation effects, which can be observed for larger magnitudes and at small distances. The

effect of aspect ratio was determined to be not significant in the estimation of distance metrics.
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Chapter 4 Mean Models for distance metrics conversions

4.1 Introduction

We conducted a non-linear least squares regression analysis for the data to develop a suitable
empirical relation between R;g and the target distance. For regression, we used the mean value of
the target distances at different azimuths for a given Rys. To determine the correlation between the
target distance metric and Rjs, we choose an appropriate functional form that best describes their
relationship. The functional form is dependent on the M, Ztor, and & of the fault and can be

presented as
Rtarget = f(R]B' M, 6, ZTOR) +o (41)

where o is the standard deviation due to variations in different parameters such as the location of
the hypocenter, azimuth, and geometry of the fault. Separate equations have been presented for
dip-slip faults and vertical strike-slip faults. For the vertical strike-slip faults, the width of the fault
does not impact the calculation of the target distance, but the width of the fault is an essential
parameter for the dip-slip fault. Due to this, the final values obtained for both cases are different
from each other and are better represented if we conduct separate regressions on these datasets.
Though azimuth angles are an important parameter to accurately determine the target distance
metrics, we have not included it as a dependent variable. Instead, we have calculated the mean
target distance across all azimuth angles. For cases with more information, such as the location of
the hypocenter or azimuth, Approach-3 discussed in section 2.2.3, where each possible source-site
scenario is simulated, would provide better results than the proposed empirical equations. The
proposed empirical equations would only provide mean values considering random azimuth and

hypocenter locations.
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4.1.1 Joyner-Boore distance and Rupture distance

Based on equation (3.16), we determine the mean Rrup for a given Ryg at different lengths, widths,
and dip angles of the fault. Due to symmetry, only azimuth angles from —90° to 90° are used for
calculation. Separate regression analysis was carried out for vertical strike-slip faults and dip-slip
faults. At different dip angles, the coefficients for the dip-slip faults are different. The relationship

between R and Rrup for dip-slip faults can be represented as:

E[Rgup|Rjs, M, 8] = R + C; exp(—C,(M — 5)) exp(—C5R;g) + C4 exp(—CsRyg) + CFyy + ogup
(4.2)
CFuw = Cq exp(C,(M — 5)) exp(—CgR;p)

where parameters C; to Cg are the regression coefficients, and CFyyy is the hanging wall and
footwall parameter. Coefficients C1 to Cg are obtained from regression analysis and are provided
in Table 4.1. The coefficients for dip angles not listed can be determined using interpolation. ogyp
is the standard deviation discussed in the next section. The CFnw term is positive on the hanging
wall side of the fault and negative on the footwall side of the fault. If the location of the site about

the fault is not known, CFyy, = 0. The effect of the CFnw term is discussed in later sections.
For a vertical strike-slip fault,

E[Rrup|Rjp, M, 8] = Rjg + C; exp(—C,(M — 5)%) exp(—CsRyp) + C4 exp(—CsRyp) + oryp (4.3)
The effect of the footwall and hanging wall is not observed for a vertical strike-slip fault. As a
result, the CFnw term is zero and not included in equation (4.3). As shown in Figure 4.1, the values
obtained from the empirical equation (represented as lines) closely align with the mean data
obtained from the equation (represented by dots). For this comparison, the CFnw term is not
included for all dip angles. Rrup is considerably larger than R;g at shorter distances (<10 km), but

the values converge at larger Ry (>30 km). Rrup varies with the dip angle of the fault and the
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magnitude of the earthquake event, though the variation is mainly observed below 20 km. At

smaller distances, we observe that Rrup decreases as the magnitude increases, though this effect is

not observed for smaller dip angles (6=30°).
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Figure 4.1 Comparison of the ratio of Rrup to Rys versus Rjs for dip-slip fault with dip angles of
30°,50°, and 70°, and vertical strike-slip fault for moment magnitudes of 6 (solid line) and 7
(dashed line). The dots represent the mean values for the distribution, and the lines represent the
empirical equations fitted to the distribution.
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Table 4.1 Coefficients for E [Rrur|Ris, M, 8] at different dip angles for a given Magnitude (M)
and Joyner-Boore distance (Rjg) (azimuth angle (@) and hypocenter location are randomized).
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4.1.2 Joyner-Boore distance and Epicentral distance

The azimuth angles from 0° to 90° can model the entire range of possible values for Reps for a
given R;g at a given length, width, and dip angle of the fault. The regression analysis is performed
separately for the dip-slip fault (& # 90°) and vertical strike-slip fault (6 = 90°). The functional

form that can fit the mean values of Rep) at different Ryg for a dip-slip fault is

E[Rgepi|Rjs, M, 8] = Ry + Cy exp(C,(M — 5)?) (R/3 — C,) + CsRjg + C,exp(Ce(M — 5)) + 0y (4.4)
Similarly, for the vertical strike-slip fault (6 = 90°),

E[Repi|Rjs, M, 8] = Ryg + C; exp(C,(M — 5)) (Rj3 — C4) + CsR;E + C; exp(Cy(M — 5)) + ogpy (4.5)

where the coefficients C1 to Cg are obtained from regression analysis and presented in Table 4.2.
ogp; IS the standard deviation discussed later. The coefficients are different for different dip angles.
The coefficients for dip angles not listed can be determined using interpolation. Figure 4.2 shows
the variation of Repi Obtained from the empirical equations with the mean for dip-slip faults with
dip angles of 30°, 50°, and 70°, respectively. Repi is always greater than or equal to Rys at all
magnitudes and dip angles. The difference between the two distances is substantial for dip-slip
faults at higher magnitudes. At Rjg of 1 km, Repi for a 30° dip-slip fault is three times greater for
M 6 and five times greater for M 7. Since the rupture area increases with magnitude, the length
and width of the fault are large for higher magnitudes, resulting in higher mean Rep; values for the
same Ryg values. This effect of large magnitude is less prominent for the vertical strike-slip fault

since only one fault dimension, the length of the fault, affects Repi.
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Figure 4.2 Comparison of the ratio of Repi to Ry versus R;g for dip-slip fault with dip angles of
30°,50°, and 70° for moment magnitudes of 6 (solid line) and 7 (dashed line). The dots represent
the mean values for the distribution, and the lines represent the empirical equations fitted to the
distribution.
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Table 4.2 Coefficients for E [Reri|Ri8, M, 8] at different dip angles for a given Magnitude (M)
and Joyner-Boore distance (Rjg) (azimuth angle (@) and hypocenter location are randomized).

6 |C C2 Cs Ca Cs Cs Cy Cs
10 |3.595 |0.2506 |0.24 0.8218 -0.9044 | 0.4764 1.267 0.5607
20 | 3.56 0.252 0.239 0.8151 -0.9039 | 0.4742 1.234 0.5588
30 |3.52 0.2542 | 0.237 0.8044 -0.9142 | 0.4688 1.192 0.5495
40 | 3.46 0.2568 | 0.2345 |0.7781 -0.9315 | 0.4609 1.107 0.5342
50 |3.403 |0.2601 |0.2308 |0.7478 -0.9674 | 0.443 1.023 0.5021
60 |3.377 |0.2637 |0.2253 |0.713 -1.038 0.4296 0.947 0.4405
70 |3.537 |0.2653 |0.2151 |0.6761 -1.319 0.3846 1.064 0.2525
80 |3.846 |0.2646 |0.2021 | 0.6551 -1.854 0.3269 1.483 0.0026
90 |0.2211 | 1.74 0.188 0.7227 -0.00295 | 1.169 0.5337 | 0.4944

4.1.3 Joyner-Boore distance and Hypocentral distance

Due to symmetry, the azimuth angles from 0° to 90° are used to obtain Rnyp for a given Ry at
different magnitudes and dip angles. As discussed, separate regressions are carried out at different
dip angles. Equation (4.6) provides the equation for the dip-slip fault, and equation (4.7) for the

vertical strike-slip fault.

E[RHyle]B; M, 8' ZTOR]
B \[ﬁ + Crexp(C(M = 5)%) (Rjg = 1) + CoRyj + Crexp(CoM = 5)) - (46)

+ Onyp
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E[RHYP | R]Bl M' 8! ZTOR]

= /R]ZB + Ziop + C1 exp(C;(M — 5)) (R — C,) + CsRyg + C; exp(C(M — 5)) 4.7)

+ Onyp
where parameters C; to Cg are regression coefficients and are provided in Table 4.3. ‘M’ is the
moment magnitude, & is the dip angle, and Ztor is the depth to the top of the rupture. oyyp is the

standard deviation discussed later.

Apart from magnitude, dip angle, and Rse, Ruye also depends on the depth to the top of the rupture
(ZTor). A comparison of the fitting of the mean values with the empirical equation is shown in
Figure 4.3 for dip angles of 30°, 50°, and 70°, respectively. Ruyp increases slightly with increasing

magnitude at small distances and converges at large R;g values.

Table 4.3 Coefficients for E [Ruye|Ris, M, 8, Ztor] at different dip angles for a given Magnitude
(M), depth to the top of the rupture (Ztor), and Joyner-Boore distance (R;g) (azimuth angle (@)
and hypocenter location are randomized).

5 |C (07) Cs Cs Cs Ce Cs Cs
10 |4.75 0.242 0.2242 | 0.9981 -0.563 0.579 0.6626 | 0.7618
20 |4.207 |0.2556 |0.2203 | 1.045 -0.5616 | 0.5622 1.25 0.6849
30 |3.656 |0.2706 |0.2174 |1.082 -0.608 0.5306 1.793 0.6471
40 |3.112 |0.2864 |0.2162 |1.099 -0.7109 | 0.4867 2.273 0.6175
50 |2.634 |0.3028 |0.2157 |1.101 -0.8945 | 0.4333 2.746 0.584
60 |2.246 |0.319 0.215 1.092 -1.135 0.3839 3.184 0.5505
70 |2.02 0.3321 | 0.2119 | 1.065 -1.438 0.3429 3.601 0.511
80 |1.87 0.3429 | 0.2075 |1.041 -1.628 0.3243 3.828 0.4867
90 |1.846 |0.3573 |0.1933 | 1.086 -2.031 0.2987 4.533 0.455
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30°,50°, and 70° for moment magnitudes of 6 (solid line) and 7 (dashed line). The dots represent
the mean values for the distribution, and the lines represent the empirical equations fitted to the
distribution.
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4.2 Residuals
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To evaluate the proposed empirical equation for mean Rrup, We plot the residuals, which are the
differences between the predicted mean Rrup values and the actual mean Rrup values, as shown in
Figure 4.4 for M 6 and M 7 for dip-slip faults with dip angles of 30°, 50°, 70°, and for a vertical
strike-slip fault. For a dip angle of 30°, the difference between the calculated and actual values is
only +£0.2 km. The maximum difference of 0.4 km can be observed for M 7 at 100 km for a 50°
dip-slip fault. Similarly, we calculated the residuals for Repi and Ruyp. As shown in Figure 4.5 for
Repi, we can observe a maximum variation of +3.0 km, though it is observed at large distances
(>100 km). At smaller distances (< 30 km), the residuals are nearly equal to 0 km at all dip angles.

We can make similar observations for mean Ruve, as shown in Figure 4.6.
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Figure 4.4 Residual values at M 6 and M 7 for mean Rrup at dip angles 30°, 50°, 70°, and for

vertical strike-slip fault.
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Figure 4.5 Residual values at M 6 and M 7 for mean Repi at dip angles 30°, 50°, 70°, and for
vertical strike-slip fault.
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Figure 4.6 Residual values at M 6 and M 7 for mean Rnyp at dip angles 30°, 50°, 70°, and for
vertical strike-slip fault.

4.3 Effect of hanging wall and footwall

Many GMMs have a hanging wall or footwall flag which is used to fix the site on the hanging wall
or the footwall side of the fault. In this section, we study the impact of the location of the site about
the fault. For this study, we examine a dip-slip fault with a 50° dip angle at M 7 as shown in Figure
4.7. We have an 80 km by 80 km plot varying from -40 to 40 in both directions, as shown in Figure
4.7. The center of the fault is located at the center of the plot (0,0). We generate observation sites
on the plot with a gridded density of 1 km (only a small sample of observation sites are shown in
Figure 4.7 for clarity). For each observation point, we calculate the Rz and the target distance
metric (Rtarget) from the fault. We divide Riarget by Rig to determine the ratio. We then use the

calculated ratios to plot the contour map.
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Figure 4.7 The rectangle represents the projection of the ruptured fault on the surface. The dark
line represents the projection of the top edge of the ruptured fault. The triangles represent the
observation sites located at every 1 km Rjs from the center (0,0) (Only a small sample of
observation sites are shown for clarity). The length and width of the fault are based on the
magnitude and dip angle calculated using Somerville (2014). The center of the fault is (0,0).
4.3.1 Effect on Rrup

For the dip-slip fault, Rrup is always measured from the top of the rupture to the site on the footwall
side of the fault. However, at the hanging wall side of the fault, Rrup is also dependent on the depth
of the rupture and dip angle. So, Rrup calculated on the footwall side of the fault is always less
than or equal to Rrup calculated on the hanging wall side of the fault for a constant R;g, as shown
in Figure 4.8 and Figure 4.9. The Rrup is calculated in Figure 4.8 based on the geometry of the
fault, as presented in equation (3.16). The Rrup for Figure 4.9 is based on the empirical equations

for Rrup (equation 4.2). For both figures, the contours of the ratios are closer together on the

footwall side of the fault, representing smaller Rrup values for the same R;g values. The contours
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of the ratios are further apart at the hanging side of the fault. Also, Rrur and Rjg values are the
same (representing the ratio of 1) for Rs greater than 15 km for the footwall and 40 km for the

hanging wall.

In Figure 4.8, the variation of Rrup is gradual from the footwall to the hanging wall side of the
fault, but the variation is abrupt in Figure 4.9, as we have used a step function. For a more gradual
variation, we can use the mean equation of the Rrup for the sites along the width of the fault. We
have also plotted similar contour plots for Scherbaum et al. (2004). Since they do not differentiate
between the hanging wall and the footwall side of the fault, the contour lines are uniform across

the fault as shown in Figure 4.10.
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Figure 4.8 Contour plot for the ratio of Rrup to Ryg for Magnitude 7 and dip angle 50°. Rrup iS
calculated using equation (3.16). The contour of the ratios is closer together at the footwall side of
the fault than the hanging wall side of the fault, as Rrup for a given Rug is smaller at the footwall
compared to the hanging wall side of the fault.
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Figure 4.9 Contour plot for the ratio of Rrup to Ryg for Magnitude 7 and dip angle 50°. Rrup iS
calculated using equation (4.2). The contour of the ratios is closer together at the footwall side of
the fault than the hanging wall side of the fault, as Rrup for a given Rjg is smaller at the footwall
compared to the hanging wall side of the fault.
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Figure 4.10 Contour plot for the ratio of Rrup to Rjg for Magnitude 7 and dip angle 50°. Rrup is
calculated based on Scherbaum et al. (2004). The contour of the ratios is the same on both the
footwall side of the fault and the hanging wall side of the fault. Scherbaum et al. (2004) also do
not differentiate between different dip angles for the dip-slip fault so the results would not change
for other dip angles of the same magnitude.
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4.3.2 Effect on Repi

Unlike Rrup, Which is a fault-based distance metric, Repi is a point-based distance metric. So, we
do not observe any effect of hanging wall or footwall on the estimation of Repi. Figure 4.11 shows
the contour plot for the ratio of Rep) to R;g for a dip-slip fault with a dip angle of 50° and M 7. Rep
is calculated based on the geometry of the fault using equation (3.17). We can observe that the
contours on the hanging wall side and the footwall side of the fault are similar. The only variation
is due to the azimuth of the fault to the site. The ratios are higher parallel to the fault and are smaller
perpendicular to the fault. Figure 4.12 shows the contour plot for the ratio of mean Rep to Rig
calculated using equation (4.4). Since the mean of the values across all the azimuths of the fault is

used, the contour is uniform across the fault.

40

w
o

N
o

-
o

Y Coordinate axis (km)
o

7o

40 -30 -20 10 0 10 20 30 40
X Coordinate axis (km)

Figure 4.11 Contour plots for the ratio of Repi to Ry for a M 7 earthquake with dip angle 50°. Repi
is calculated based on the geometry of the fault using equation (3.17).

93



o~
o

w
o

N
o
an)
o
=}
o,
=]
i
=
B,
//

=
\
)
/J
Pe

Y Coordinate axis (km)
o
[
P |

- Footwall 45

40 -30 -20 10 O 10 20 30 40
X Coordinate axis (km)

Figure 4.12 Contour plots for the ratio of Rep to Rys for a M 7 earthquake with dip angle 50°. Rep
is calculated using the empirical equation (4.4).

4.3.3 Effect on Ruvp

Similar to Repi, RHyp is also a point-based distance metric, so we do not observe any effect of
hanging wall or footwall on the estimation of Ruye. Figure 4.13 shows the contour plot for the
ratio of Ryyp to Rys for a dip-slip fault with a dip angle of 50° and M 7. Ruye is calculated based
on the geometry of the fault using equation (3.18). We can observe that the contours on the hanging
wall side and the footwall side of the fault are similar. We can also observe the variation due to
the azimuth of the fault to the site, with the ratios higher parallel to the fault and smaller
perpendicular to the fault. Figure 4.14 shows the contour plot for the ratio of mean Ruypr t0 Ris
calculated using equation (4.6). Since the mean of the values across all the azimuths of the fault is

used, the contour is uniform across the fault.
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Figure 4.13 Contour plots for the ratio of Ruyp to Rys for a M 7 earthquake with dip angle 50°.
Ruye is calculated using equation (3.18).
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Figure 4.14 Contour plots for the ratio of Ruyp to Ry for a M 7 earthquake with dip angle 50°.
Ruve is calculated using equation (4.6).
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4.4 Discussions

We compared our results with the equations provided by Scherbaum et al. (2004), EPRI (2004),
and Thompson and Worden (2018). Scherbaum et al. (2004) provided a polynomial equation with
different coefficients for different distance conversions. Different GMMs have been defined by
EPRI (2004): three models (GMM-1, GMM-2, and GMM-4) based on R;g, and one model (GMM-
3) based on Rrup. They have also provided equations to convert these distance metrics to Rep; for

each GMM. The assumptions for each published study we have used for comparison are listed in

Table 4.4. Figure 4.15 shows the variation of the ratio of Riarget t0 Rig versus Rjs for different
magnitude events and compares the values with those obtained from other published studies. Since
Scherbaum et al. (2004) are limited to M 7.5, we have provided a comparison for M 6 and M 7.
For the ratio of Reps to Ry, Scherbaum et al. (2004) predict higher values at smaller distances (<10
km), while EPRI (2004) predicts comparatively lower values. The values for the strike-slip model
developed in this study closely follow other studies for distances greater than 10 km at all
magnitudes. The values obtained from the proposed empirical equations and Thompson and
Worden (2018) differ from EPRI (2004) at smaller distances (<10 km) for M 7. The differences in
values result from different assumptions and methodologies. The calculations used in this study
and Thompson and Worden (2018) are also independent of GMMs or the oscillator period. Overall,

the values are consistent with the other published studies.

The comparison of variation of the ratio of Rrup t0 Rjs Versus Rjg is also presented in Figure 4.15
for M 6 and M 7. The comparison is shown for the dip-slip fault. For the comparison, we have
used a dip angle of 60°, though other dip angles also provide similar results. EPRI (2004) does not

provide a separate equation to convert between R;g and Rrup. The values obtained from this study
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are slightly higher at a smaller distance (< 10 km) compared to other published studies for M 6.
The values are consistent at distances greater than 10 km for all magnitudes. The variation in the
values at distances less than 10 km directly results from the choice of depth to the top of the rupture
(Z7or). At smaller distances, the calculated Rrup is directly affected by Ztor. Ztor does not have
a significant impact on Rrup at large distances. For magnitude 7, the mean Rrup calculated in this
study is similar to other published studies. For all magnitudes, the calculated Rrup from all the

studies falls between the Rrup calculated for the hanging wall and the footwall in this study.

Only Scherbaum et al. (2004) have provided an empirical relationship between Rnyp and Rig. The
values are consistent with this study for M 6 and M 7. For calculation, we have assumed the depth
to the top of the rupture as 3 km. Similar to Rrup, Ruyp is also sensitive to Ztor value at small

distances.

Table 4.4 Distance conversion assumptions from different published studies used for comparison

in this study.
Description | Fault Type | Magnitude Scaling relation | Aspect Ratio (AR) | Depth (km)
This study | Strike-slip | Somerville (2014) 1 0-15
This study | Dip-slip Somerville (2014) 1 0-15
EPRI (2004) | Strike-slip | Somerville (2004) 3 0-25
EPRI (2004) | Dip-slip Somerville (2004) 2 0-25
Scherbaum | Strike-slip | wells and Coppersmith
etal. (2004) | Dip-slip (1994)
Thompson
and Worden | Strike-slip | Somerville (2014) 1 0-15
(2018)
Thompson
and Worden | Dip-slip Somerville (2014) 1 0-15
(2018)
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Figure 4.15 Comparison with other models for mean distance conversion at Magnitude 6 (left) and
Magnitude 7 (right) for Rrup, Reri, and Ruyp. The mean results for Repi and Ruyp are based on the
strike-slip fault, and the mean results for Rrup are based on the 60° dip-slip fault. The comparison
is made with other published studies which provide a relationship for the conversion of each
distance metric. For example, Scherbaum et al. (2004) provide relationships for Rig, Rrup, Repl,
and Ruyp, while EPRI (2004) and Thompson et al. (2018) provide relationships only for Repi, Rsg,
and Rrup. For Ruyp, the Ztor value is fixed at 3 km.
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4.5 Chapter Conclusion

In this chapter, we proposed the empirical equations for different distance metrics based on the
mean values at various azimuths of the fault. The proposed empirical equations are dependent on
the magnitude of the earthquake, the dip angle of the fault, and the depth to the top of the rupture.
We have developed the empirical equations for Rrup, Reri, and Ruyp. Based on the residual
calculations for the actual and the predicted target distances, we can conclude that the proposed
empirical equations can accurately predict the mean of the target distances. The proposed empirical
equations also include the effect of hanging wall and footwall, which is not observed in other
similar distance metric prediction equations. Overall, the result from the proposed empirical
equations provides values similar to other published studies. The proposed empirical equations can
be used in seismic hazard analysis to convert from R;g to other distance metrics for any ground

motion models for the stable continental region.
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Chapter 5 Capturing the uncertainty in distance metric conversions

5.1 Introduction

The proposed empirical equations discussed in Chapter 4 provide the mean target distance for a
given magnitude, dip angle, and Joyner-Boore distance. There are several uncertainties in the
calculated distance metrics associated with the variation in azimuth angle from the site to the fault,
location of the hypocenter, distribution of hypocenter location, and directivity effects. To
accurately determine the seismic hazard of an area, it is crucial to consider the effect of these
uncertainties in the calculated hazard (Kayastha et al., 2022b). In this chapter, we have proposed
empirical equations to capture the uncertainties in the distance metrics conversions for each target
distance metric. The proposed equations are based on the magnitude (M) of the earthquake event,
the Joyner-Boore distance (Ris), and the dip angle of the fault. Our dataset has considered
variations along different azimuth angles from the fault. We have also considered variations for
the rupture area of the fault for the same magnitude using epsilon values ranging from -3 to 3 for
the magnitude scaling relationship Somerville (2014). We have also assumed various locations
for the hypocenter along the length, width, and depth of the fault based on Mai et al. (2005). The

effects of directivity have not been considered in this study.

5.2 Sigma Models for distance metrics conversion

5.2.1 Rupture distance and Joyner-Boore distance

The sigma for Rrup is based on M, §, and Rjg and can be represented as follows:

O[Rpup[RypM5] = C1€Xp (C2(M = 5)) * exp (=C3Ryp) (5.1)
where regression coefficients C1to Cs are provided in Table 5.1 as a function of dip angles. The

coefficients differ for the mean, hanging wall, or footwall side of the fault. For the vertical strike-
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slip fault, only coefficients for the mean are provided, as there is no hanging wall effect. As
discussed previously, the coefficients for dip angles not listed can be determined by interpolation.
The sigma values increase with increasing dip angle for smaller magnitudes (M<6.0). Above M
6.0, no specific trends between the sigma and dip angle could be observed. The sigma also
increases with increasing magnitudes for all dip angles. However, there is a decrease in sigma with
increasing distance since there is less variation in values at larger distances (because Rss and Rrup

are almost the same at large distances).

Table 5.1 Coefficients for calculation of agrrypirsem,s5 at different dip angles for a given

Magnitude (M) and Joyner-Boore distance (Rig) (azimuth angle (8) and hypocenter location are
randomized).

Mean Footwall Hanging wall

dip | cl c2 c3 cl c2 c3 cl c2 c3

10 | 0.1807 | 0.4005 | 0.0385 | 0.2132 | 0.3418 | 0.04356 | 0.1886 | 0.3921 | 0.03496
20 [ 0.346 | 0.4005 | 0.03749 | 0.4249 | 0.3353 | 0.04934 | 0.353 | 0.3982 | 0.03056
30 |0.4837 | 0.3958 | 0.03597 | 0.6296 | 0.3264 | 0.05632 | 0.4771 | 0.3994 | 0.02592
40 | 0.591 | 0.3816 | 0.03438 | 0.8203 | 0.3138 | 0.06418 | 0.5559 | 0.3908 | 0.02145
50 | 0.6763 | 0.3507 | 0.0333 | 0.9861 | 0.295 | 0.07151 | 0.5961 | 0.3655 | 0.01749
60 | 0.7653 | 0.2982 | 0.03472 | 1.114 | 0.2704 | 0.07638 | 0.6219 | 0.3137 | 0.01495
70 [0.9143 | 0.2416 | 0.04623 | 1.201 | 0.2477 | 0.07897 | 0.698 | 0.2435 | 0.01845
80 [ 1.124 | 0.213 | 0.06916 | 1.251 | 0.2321 | 0.08013 | 0.9934 | 0.1898 | 0.05233
90 [1.091 |0.3018 | 0.07638

5.2.2 Epicentral distance and Joyner-Boore distance
The standard deviation for Rep at a given Rs, M, and § for dip-slip fault can be determined using

the equation:

OReprRisM8] = C1€xp(C(M — 5)) (R — C,) + CsRyg (5.2)
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The coefficients C1to Ce are determined using regression and listed in Table 5.2. The coefficients
are different for different dip angles. The sigma value increases with increasing magnitude and
distance. Though sigma increases with dip angles at a smaller magnitude and Rjg, at large

magnitudes, there is no significant variation in sigma values for different dip angles.

Table 5.2 Coefficients for calculation of argpirsB m,s) at different dip angles for a given

Magnitude (M) and Joyner-Boore distance (Rig) (azimuth angle (8) and hypocenter location are
randomized).

5 | Cs1 C Cs Cs Cs Ce

10 | 0.07256 | 1.71 0.3498 | 0.5909 0.7239 | -0.2208

20 |0.07344 |1.708 | 0.3493 | 0.5906 0.7198 |-0.2371

30 |0.07504 | 1.704 | 0.3483 | 0.5921 0.7148 | -0.2657

40 |0.07752 | 1.697 0.3467 | 0.5918 0.7103 | -0.3078

50 |0.08021 |1.691 |0.3451 | 0.5899 0.7049 | -0.3563

60 | 0.08405 | 1.683 0.343 0.5895 0.7101 |-0.4151

70 ]0.09132 | 1.668 |0.3392 | 0.5999 0.7467 | -0.4853

80 |0.1031 | 1.646 0.332 0.6298 0.8473 | -0.5442

90 |0.1678 |1.848 0.1752 | 0.9409 1.494 -0.4161

5.2.3 Hypocentral distance and Joyner-Boore distance
The standard deviation for Ruve at a given Rys, M, and § for dip-slip faults can be determined

using the equation:
ORuyplRisMs] = C1exp(Co(M — 5)) (RE — C4) + CsRjs + Crexp(Ce(M —5))  (5.3)

Similarly, for the vertical strike-slip fault (6 = 90°),
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ORpyplRisM5] = C1€xp(C,(M — 5)2) (Rj3 — C4) + CsRy§ + C; exp(Ce(M — 5)) (5.4)

The coefficients Cyto Cgare determined using regression and listed in Table 5.3. The coefficients
differ for different dip angles, and the sigma value increases with magnitude, dip angle, and
distance. For large magnitudes (M>7.5), there is no considerable variation in sigma values for

different dip angles.

Table 5.3 Coefficients for calculation of o gruyp|riB,M,5.2505 at different dip angles for a given
Magnitude (M), depth to the top of the rupture (Ztor), and Joyner-Boore distance (Rsg) (azimuth
angle (@) and hypocenter location are randomized).

6 |C C2 Cs Cs Cs Cs Cs Cs

10 | 0.06713 | 1.735 |0.3506 | 0.5713 0.4025 | -0.3045 0 0

20 | 0.06924 | 1.737 0.346 0.6179 0.9081 -0.4381 0 0

30 |0.07177 | 1.737 0.3418 | 0.6587 1.456 -0.4835 0 0

40 | 0.03256 | 1.897 0.4069 | 0.9976 -0.05961 | 0.7247 0.7838 | 0.6469
50 |0.03361 |1.897 |0.4038 | 1.006 -0.2863 | 0.4537 1.32 0.4966
60 |0.03339 | 1.904 | 0.4048 | 1.063 -0.4847 | 0.3859 1.72 0.4531
70 |0.03449 | 1.898 0.4062 1.133 -0.5475 | 0.3862 1.903 0.4562
80 |0.03582 | 1.89 0.408 1.242 -0.4631 | 0.4328 1.848 0.505
90 |0.7622 |0.3002 | 0.405 1.168 -0.9389 | 0.4699 2.303 0.4218

5.3 Residuals

We have also plotted the residuals for the sigma of Rrup, Repi, and Ruyp for M 6 and M 7 at dip
angles of 30°, 50°, and 70°, and for the vertical strike-slip fault as shown in Figure 5.1, Figure 5.2,

and Figure 5.3 respectively. The residual values are similar to the mean values, with a residual
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sigma variation of +£0.4 km for Rrup, +2 km for Rep, and +3 km for Ruype. For all cases, the

residual values are closer to 0 at small distances (Rjg < 30 km).
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Figure 5.1 Residual values at M 6 and M 7 for sigma of Rrup at dip angles 30°, 50°, 70°, and for
vertical strike-slip fault.
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Figure 5.3 Residual values at M 6 and M 7 for sigma of Ruve at dip angles 30°, 50°, 70°, and for
vertical strike-slip fault.

5.4 Discussions

The sigma of the proposed model in this study is considerably smaller than Scherbaum et al.
(2004), as shown in Figure 5.4 for Rrup, Repi, and Ruyp. The sigma obtained from Scherbaum et
al. (2004) for Repi is much larger for all magnitudes, and similar trends can be observed for Ruye.
For Rrup, at smaller distances (<10 km for M 6), the sigma values are slightly higher for this study
compared to Scherbaum et al. (2004); however, the difference is negligible (<0.5 km). The sigma

has not been compared with EPRI (2004) as it depends on the ground-motion models, so a
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comparison would not be valid. Similarly, Thompson and Worden (2018) use Rep; as a reference

distance, so a direct comparison of sigma is not possible.
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Chapter 6 Applications

6.1 Application in GMMs

In performing PSHA, one must consider whether the source modeling approach is consistent with
the distance metric used in the GMMs and can be included in PSHA by calculating an additional
variability due to the conversion from Rjs to other distance metrics. The total sigma can be

calculated using the law of propagation of error as follows:

_ / 2 2
Ototal = .[OGmm T Ao

2 (6.1)
, (9 In(Y) )
© T \9Roum/ [Remm[Rpsua, M, 8]

where ogpy IS the standard deviation for the GMM, In(Y) is the natural logarithm of the ground

motion and of ] is the standard deviation for the conversion from GMM distances

RemmIRpsya, M, 6
to PSHA distances. The GMMs can be based on Rjg or Rrup. If the GMM is based on Rjs and the

PSHA is based on Rgp, then:

a1In(V)\’
Ao? = Aoy =|—==—] of 6.2
° G[RIB|REPI'M'8] (aRJB ) G[R]B|REPI' M, §] (6.2)
OR;5 1°

i = [==L] o? 6.3
TR lRer 5] = [7Re] “TRerl Ry .5 ©9

; ORjp 1 . .. . OREp;
We can directly calculate the Rprr . OREE (using the empirical equation for REm;—aR + 0), or

EPI — IB

6R]B

we can use the Taylor series expansion. Using the Taylor series, we can consider only the first-

order approximation of the second moment obtained from the Taylor expansion for simplicity. If

109



there is no empirical relation between the distance metrics, we can use the following

approximation:

ORgpr < Rgp1 >Rrpp+ar;s —< Rep1 >Rjg-aRjp

(6.4)

In which < Rgp; >g5+ar, IS the mean Repi for a given reference distance of Rjg + ARyp. Since

. . . . . 0R
we have the relation between different distance metrics in our case, we can directly calculate aRi.
EPI

2 - - - - -
G[REPI|R]Br M, 6] can be calculated using equation (5.2) for different magnitudes and dip angles.

Similarly, for a GMM based on Rrup and a PSHA based on Repi,

2
61n(Y)> 5 65)

2 2 _
A0 = A0{R ruplRepr, M, 8] = <—6RRUP °[RpyplRepi, M, §]

We can also calculate similar values for Rrup and Ruyp using equation (5.1) and equation (5.3),

respectively.

6.2 Application in NSHMP-haz

Powers et al. (2022) developed USGS National Seismic Hazard Mapping Project (NSHMP) codes
for performing PSHA for the US and its territories. We modified the NSHMP-haz software to
calculate the Rrup using the proposed empirical equations. We conducted a seismic hazard study
at four different sites for a vertical strike-slip fault and a dip-slip fault with a dip angle of 50°, as
shown in Figure 6.1. For the comparison, we have used Pezeshk et al. (2011) as the GMM, which
uses Rrup as the reference distance, to determine the hazard. We assume a fault capable of
generating an earthquake of M 7. The rupture dimensions are calculated based on Somerville

(2014). The depth to the top of the rupture is calculated using Scherbaum et al. (2004). For M 7,
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the Ztor is 3.54 km for the vertical strike-slip fault and 3.42 km for the dip-slip fault with a 50°
dip angle. Assigning different Ztor values would result in larger differences in the hazard. The
activity rate is set to 1 in 500 years. We also calculated the hazard for activity rates of 1 in 1000
years, 1 in 2500 years, and 1 in 10000 years, but the relative differences between the hazard
calculated based on original codes and modified codes (which uses the empirical equation for Rrup
developed herein) are similar. We found that these equations provided comparable hazard results
to those determined using NSHMP-haz for the vertical strike-slip fault as shown in Figure 6.2. The
predicted hazard is lower using the proposed empirical equations since it predicted slightly higher
values for Rrup. The difference is negligible at Rrup greater than 20 km, as observed by the
minimum variation in hazard calculated for Site 4. For the dip-slip fault, the difference is much
higher, as shown in Figure 6.3. The hazard may also be higher or lower than those predicted by

the NSHMP-haz software, based on the location of the site (hanging wall or footwall).

NSHMP-haz uses different rupture scaling relationships to determine the ruptured dimensions
based on magnitude. These scaling relationships, such as “NSHM_ SOMERVILLE” have sigma
associated with them, so we may obtain a range of ruptured area values (and their respective length
and width) for a given magnitude. The empirical equations used here have considered different
ruptured area values for a given magnitude, resulting in a wide range of values. Due to this
variation, there is a difference in the calculated hazard. Figure 6.4 shows the variation of hazard
for distances at one standard deviation above and below the mean for a vertical strike-slip fault for
Site 1 and Site 4. This difference is more prominently observed for dip-slip faults, where the width

of the fault is also an important parameter, as shown in Figure 6.5 for Site 2 and Site 4.
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and dip-slip fault with 50° dip angle (b). The line represents the fault, and the points represent the
location of the sites.
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Figure 6.2 Hazard curves at different sites for Peak Ground Acceleration (PGA) and activity rate
of 1 in 500 years for a vertical strike-slip fault. The dotted lines represent the values obtained from
NSHMP-haz software, and the solid lines represent the values obtained using the empirical
equations proposed in this study (KPT23).
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Figure 6.3 Hazard curves at different sites for Peak Ground Acceleration (PGA) and activity rate
of 1 in 500 years for dip-slip fault with 50° dip angle. The dotted lines represent the values obtained
from NSHMP-haz software, and the solid lines represent the values obtained using the empirical
equations proposed in this study (KPT23).
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Figure 6.4 Hazard curves at Site 1 (top) and Site 4 (bottom) for Peak Ground Acceleration (PGA)
and activity rate of 1 in 500 years for Vertical Strike-Slip fault. The solid line represents the hazard
calculated using the mean distance obtained from the proposed empirical equations. The boundary
represents the hazard calculated at mean + 1 sd distance. The dashed line represents the hazard
obtained from NSHMP-haz software.
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Figure 6.5 Hazard curves at Site 2 (top) and Site 4 (bottom) for Peak Ground Acceleration (PGA)
and activity rate of 1 in 500 years for Dip-Slip fault with dip angle 50°. The solid line represents
the hazard calculated using the mean distance obtained from the empirical equations. The
boundary represents the hazard calculated at mean + 1 sd distance. The dashed line represents the
hazard obtained from NSHMP-haz software.

6.3 Application in PSHA
In PSHA, the integral over various seismic sources, such as faults and areal sources, is conducted

for each site for different magnitudes and distances. Areal sources are assigned when we do not
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have enough information about the fault, such as in some regions of CEUS. They are generally
used for low and moderate seismicity. The areal source is subdivided into grids where each grid
acts as a point source. The distance from each point source to the site can be described using point-
based distances such as Repi or Ruvp. Since we do not have enough information about the fault in

such cases, it is challenging to use fault-based distances such as R;g and Rrup.

The total variation in the calculated seismic hazard due to the conversion of distance and their
associated uncertainties can be demonstrated by considering a simple seismic source. We have
considered a circular seismic source with a radius of 100 km. The seismicity of the source follows
a truncated exponential model with A(M > 5) = 0.0395 and a b-value of 0.9. The magnitude is
truncated from 5.0 to 7.5. The magnitude and distance are restricted to 7.5 and 100 km,
respectively, to adhere to the limitation of Scherbaum et al. (2004). We have used two GMMs to
conduct PSHA calculations: Pezeshk et al. (2011) based on Rrup (referred to as PZT11) and Boore
et al. (2014) (referred to as BSSA14) based on Rjs. The seismic source is divided into grids, each
acting like a point source. A site is assumed at the center of the areal seismic source. We calculate
the epicentral distance by measuring the distance from each point source to the site. However, the
GMM is based on Rrup Or Rjs. Hence, we need to convert the distances for consistency between

the PSHA and GMM.

At a sample Repi 0f 30 km for a vertical strike-slip fault of magnitude 7.0, we obtain a Rjg of 21.1
km and a Rrup of 23.4 km. So, for a 30 km Rep; used in the PSHA for an areal source, we need to
use a Rrup Of 23.4 km in PZT11 and 21.1 km in BSSA14 for consistency. Since the equivalent
Rrup and Ry are smaller than the Rep) in this example, it increases the calculated seismic hazard.

In this example, there is no direct way to convert from Rep to Rjg since the equations developed
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in this study are based on Rjg. So, we determine Rep values for different Rjs values for a given
magnitude using equations (4.4, 4.5) and populate a table. We can use this table to determine Rjs
values for the required Repi values, which can be used in BSSA14. We can use the calculated Ris

values to determine Rrup for a given magnitude and dip angle using equations (4.2, 4.3) in PZT11.

The additional sigma due to distance conversion must also be included in the PSHA to obtain
accurate seismic hazard results. The equation for the derivative of the GMM, which is necessary
to determine the total sigma, is discussed in the appendix. Based on the mean and the total sigma,
we determine the mean exceedance at different magnitudes and distances to calculate the seismic
hazard. Figure 6.6 shows the mean annual exceedance of hazard based on PZT11 and BSSA14.
The solid red lines represent the hazard without any distance conversion. The black dashed lines
represent the hazard calculated based on the proposed empirical equations (referred to as KPT23).
We have also included comparisons for Thompson and Worden (2018) (referred to as TW18) and
Scherbaum et al. (2004) (referred to as SSC04). For PZT11, based on Rrup, We can observe a
significant increase in the calculated mean annual frequency of exceedance as the spectral
acceleration (SA) increases. The increase in the values is smaller for KPT23 compared to TW18
and SSCO04. For a SA value of 2.0 g, the hazard increases by a factor of 1.4 for KPT23, 9.2 for
SSCO04, and 44 for TW18. The values for TW18 appear to saturate as the spectral values increase.
The mean values for the distance conversions for different studies, as discussed in section 4.4, do
not vary significantly. However, there is significant variation in sigma values for the different
studies. The sigma value for Rrup decreases as the distance increases for SSC04 and KPT23.

However, the sigma value for Rrup increases with the distance for TW18. SSC04 also has a higher

117



sigma variation compared to KPT23. As a result, other published studies report higher values for

the same SA values.

Similarly, we can observe an increase in the mean annual exceedance rate for BSSA14, based on
Rus, for the distance conversion equations provided in all the published studies. Unlike the
variation observed for PZT11, the hazard values are similar for KPT23 and TW18. SSC04 has
higher values compared to others. For a SA value of 2.0 g, the hazard increases by a factor of 1.9
for KPT23, 2.1 for TW18, and 3.3 for SSC04. Hence, one must convert to appropriate distances

and project their uncertainties in the PSHA calculations to obtain accurate seismic hazards.
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Figure 6.6 Annual hazard curves for a circular seismic source with a radius of 100 km based on
Rrup-based GMM (Pezeshk et al., 2011) (top) and Rjs-based GMM (Boore et al., 2014) (bottom)
using distance conversion equations developed in this study (KPT23). Annual hazard curves
without distance conversion and those based on Thomson and Worden (2018) (TW18) and
Scherbaum et al. (2004) (SSCO04) are also shown for reference.
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Chapter 7 Conclusion, Contributions, and Future Work

7.1 Conclusion and Contributions

This study provides empirical relations among different distance metrics. The equations were
developed with an emphasis on stable continental regions. As a result, we have used Somerville
(2014) to describe the relationship between the rupture area and the magnitude of the earthquake.
We have demonstrated that Rs can be effectively used to determine other source-to-site distance
metrics based on the properties of the fault. We determined the differences between the various
distance metrics and Rjs. These differences can be described using a gamma distribution. The
functional forms for Ruarget are based on the magnitude and the dip angle of the fault (also Zror for
Ruyp) for a random azimuth and hypocenter location. Since the empirical equations provide a mean
estimate of the required distance measure for a given magnitude and the dip angle of the fault,
these equations may not be effective when the location of the hypocenter or the azimuth of the
fault is known. A method to determine the sigma of the obtained results has also been discussed.
These equations are helpful in PSHA to reliably convert from Rjg to other rupture-based distances
(Rrup) and point-based distances (Reri and Ruve). The equations for variability can be used to
obtain the total sigma for use in PSHA. To use these equations, we only need basic information on
the type of faulting, applicable source-scaling equations, and the dip angle of the fault based on
available geologic and tectonic information. If the dip angle is unknown, we can assume a dip

angle of 40° (Kaklamanos et al. 2011) and apply appropriate sigma values.

Though these distance metrics are closer to each other at large distances, there are significant
differences between them at smaller distances. Ignoring these differences will result in inaccurate

seismic hazard calculations closer to the fault. With interest high in developing accurate ground-
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motion models (GMMs) for near-fault areas, we should also consider the effect of different
distance metrics in PSHA to obtain accurate seismic hazards of the area. Unlike previous models
developed by EPRI (2004) and Scherbaum et al. (2004), which are only dependent on magnitude,
the proposed models also depend on the effect of the dip angle for estimating different distance
measures. The Scherbaum et al. (2004) model is also highly unstable for larger magnitudes (greater
than 7.5) and distances greater than 100 km. We also consider the effect of hanging wall and
footwall for the conversion of Rrup. The empirical equations developed in this study are purely
based on the geometry of the fault and are not dependent on the GMMs. Hence, the equations can
be applied directly in seismic hazard applications for any preferred GMMs, which avoids complex
integrations involved in (Thompson and Worden, 2018) and (Tavakoli et al., 2018). We can better
estimate the seismic hazard for the region of interest by using the distance conversion equations

and their respective uncertainties.

7.2 Future Work
The researcher is interested in pursuing this research or recommends extending this research

in the following directions:

e The current empirical models apply to GMMs that are based on only one distance metric.
However, there are currently many GMMs that may be based on multiple distance
metrics. An appropriate method should be developed to include uncertainty due to using

multiple distance metrics in a single GMM for use in PSHA.

e The proposed empirical models cannot be used for faults with a particular azimuth. As
discussed in section 3.4.2, variation in the azimuth angle can significantly impact the
required distance adjustment. For cases when the exact azimuth angle is known, this
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approach may not provide an accurate result for estimating the seismic hazard.
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Appendix: Calculation of derivative for the GMMs

The equation for Pezeshk et al. (2011) is

log(Y) = C; + C,M,, + C3M2, + (C4 + CsMyy) min(log(R),log(70))

+ (C¢ + C,M,,) max (min (log (3) ,log (g» , 0>

70 70
R (A1)
+ (Cg + CyM,,) max (log (—) , 0) + CioR
140
R= ,/R%{UP +Cfy
The derivative can be calculated as follows:
dlog(y) . .
1R = (C4 + CsM,,)min1 + (C4 + C;M,, )maxmin2 + (Cg + CoM,, )max3
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C
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The coefficients are provided in Pezeshk et al. (2011).

The derivative for Boore et al. (2014) can be calculated as:
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Fp (the path function), R (a function of R;g), and f, are defined in Boore et al. (2014). PGA: is the
peak ground acceleration for a reference rock at a shear wave velocity of 760 m/s. ci, 2, C3, Acz,

and fs are constants.
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