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ABSTRACT 

The seismic hazard of an area is determined based on the ground motion observed at that site. The 

intensity of the ground motion can be predicted using ground motion models (GMMs). GMMs 

typically use distance metrics such as the Joyner-Boore distance (RJB) and the Rupture distance 

(RRUP). However, apart from RJB and RRUP, probabilistic seismic hazard analysis (PSHA) also 

utilizes point-source-based distances like the Epicentral distance (REPI) and the Hypocentral 

distance (RHYP). These distance metrics are used for point sources when the fault geometry is 

unknown or is ignored. We need to determine the relationship between the distance metrics to 

obtain an accurate seismic hazard of an area. In this study, we develop empirical relationships 

between RJB and various other distance metrics. This avoids computationally intensive tasks such 

as computing finite-fault-based distances for different fault geometries of a virtual rupture plane 

for each point source. The empirical equations provide the relation between RJB and the target 

distance metric (Rtarget) based on the magnitude of the earthquake and the dip angle of the fault. In 

addition, we also require the depth to the top of the rupture to calculate RHYP. We discuss the steps 

to include the variability due to the conversion of the distance metrics in the PSHA. We have 

compared the results of this study with other published studies for distance conversion. A simple 

PSHA study of a circular area of 100 km using Pezeshk et al. (2011) and Boore et al. (2014) as the 

GMMs determined an increase in hazard using the proposed empirical equations and their 

uncertainties. The equations developed in this study can be directly applied in PSHA and are 

independent of the GMMs used for seismic hazard calculations. The equations can also be used 

for different fault geometries with a range of dip angles varying from 10° to 90°, for magnitudes 

5.0 to 8.0, and for distances up to 200 km. We have focused on the Central and Eastern US.  
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Chapter 1 Introduction 

1.1 Background 

Seismic hazard analysis is the quantitative analysis of the effects of earthquakes and ground 

shaking at a site of interest. It is an essential parameter for engineers to design structures that can 

withstand an earthquake in seismically active regions. The seismic hazard analysis is a complex 

multi-disciplinary process. It involves geology and seismology, particularly knowledge about the 

propagation of seismic waves, location of known faults, historical seismicity, and fault-rupture 

processes. It involves mathematics to understand the probability and statistics. It also involves 

earthquake engineering to determine the response of the structures and estimate the structural 

damage.  

Pacific Earthquake Engineering Research (PEER) described a formal process to compute the 

probability distribution for the seismic risk of an area (Cornell and Krawinkler, 2000; Deierlein, 

2004). The PEER seismic risk assessment framework provides a quantitative evaluation of the 

seismic risk of an area by modeling the interaction between several random variables. 

Mathematically, 

𝜆𝐷𝑉 = ∫∫∫𝐺(𝐷𝑉|𝐷𝑀)𝑑𝐺(𝐷𝑀|𝐸𝐷𝑃)𝑑𝐺(𝐸𝐷𝑃|𝐼𝑀)𝑑𝜆𝐼𝑀 (1.1) 

where DV is the decision variable, DM is the damage measure, EDP is the engineering demand 

parameter, and IM is the intensity measure. 𝜆𝐷𝑉 and 𝜆𝐼𝑀 are the rate of exceedance of chosen DV 

and IM, respectively. Due to the one-step Markovian assumption, the variables depend on only 

one other variable. This assumption simplifies the overall computation. G(DV|DM) provides the 

probability of exceedance of the decision variable for a given damage measure. There are several 
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steps taken to determine the seismic risk of an area. The seismic hazard of the area is determined 

in the first phase. A set of ground motions that can accurately reflect the hazard identified in the 

first phase are used to estimate the EDP distribution based on a particular IM. In the third phase, 

fragility functions are employed to determine the probability distribution for a DM at a given EDP 

value. Finally, the probability of exceedance of DV at a given DM is determined using loss 

functions. Hence, inaccuracies in calculating seismic hazard would be detrimental to precisely 

determining the seismic risk of an area. 

The seismic hazard analysis can be conducted in two ways: Deterministic seismic hazard analysis 

(DSHA) and probabilistic seismic hazard analysis (PSHA). In DSHA, the seismic hazard can be 

described using single-valued discrete events and models. A controlling earthquake is chosen from 

different earthquake sources based on the earthquake potential of each source. Different models 

are then used to determine the effect of the earthquake. The effect is usually described by the 

ground motion experienced at the site of interest, so the models are referred to as ground motion 

models (GMM). GMMs have been developed for different regions, such as Toro et al. (1997) and 

Pezeshk et al. (2011) for the central and eastern United States (CEUS). Probabilistic seismic hazard 

assessment (Cornell, 1968; Kramer, 1996; McGuire, 2004) incorporates the effects of all the 

earthquakes capable of affecting the site of interest using multi-varied continuous events and 

models. It provides the probability distribution of the ground motion intensity calculated based on 

the GMMs. It also incorporates various uncertainties which may be aleatory or epistemic in nature. 

Aleatory uncertainties are uncertainties due to the earthquake event, such as the location and the 

time of rupture. Epistemic uncertainties are due to a lack of information or knowledge about the 
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earthquake process. It can be reduced when more information becomes available about the 

earthquake event. 

In simpler terms, the probability distribution can be described as: 

𝑃(𝐼𝑀 > 𝑥) =∑𝛼𝑖 ∫ ∫ 𝑃(𝐼𝑀 > 𝑥|𝑚, 𝑟)𝑃(𝑀 = 𝑚)𝑃(𝑅 = 𝑟)𝑑𝑚𝑑𝑟

𝑟𝑚𝑎𝑥

𝑟𝑚𝑖𝑛

𝑚𝑚𝑎𝑥

𝑚𝑚𝑖𝑛

𝑁

𝑖=1

 (1.2) 

where ‘IM’ is the intensity measure, ‘m’ is the magnitude of the earthquake, ‘r’ is the distance 

from the source to the site, and ‘𝛼𝑖’ is the mean rate of occurrence of earthquakes between mmin 

and mmax. 𝑃(𝐼𝑀 > 𝑥|𝑚, 𝑟) is the probability that an earthquake with a magnitude ‘m’ and distance 

‘r’ will exceed the ground motion ‘z’. 𝑃(𝑀 = 𝑚) and 𝑃(𝑅 = 𝑟) are the probability distributions 

for magnitude and distance, respectively. It is important to use consistent distance metrics when 

describing the source-to-site distances in seismic hazard analysis to calculate accurate seismic 

hazards at the site of interest. 

1.2 Motivation 

With the growth of population, many populated cities are currently located close to the fault. As a 

result, there is an increased focus on estimating accurate seismic hazards close to the fault. The 

current research activities have mainly focused on the rupture directivity effects, which cause a 

pulse in the velocity time history at close distances (Somerville et al., 1997; Bray and Rodriguez-

marek, 2004; Shahi and Baker, 2013; Spudich et al., 2013; Watson-lamprey, 2018; Tarbali et al., 

2019). The rupture directivity increases the demand on the structures at close distances and is an 

important area of study to determine accurate seismic hazards at close distances. However, 

studying the variation between different distance metrics is also important. 
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The different distance metrics used to identify the distance from the source to the site of interest 

converge at large distances. So, accurate seismic hazard calculations can be done without 

converting from one distance metric to another in such cases. However, the different distance 

metrics may have significantly different values at close distances, especially at higher magnitudes. 

As a result, there may be significant variation in the calculated seismic hazard without using 

appropriate distance metrics. So, the seismic hazard may be limited to specific distance metrics, 

which would significantly hamper the use case for PSHA. Hence, converting from one distance 

metric to another may be necessary to accurately determine an area's seismic hazard in conducting 

PSHA. 

1.3 Objectives  

This research aims to address the issues discussed in section 1.2 as far as possible. The 

following objectives are sought in this research: 

• Develop a dataset of different distance metrics representing their corresponding values 

for each other for different earthquake events and fault geometries to build a complete 

database to convert from one distance to another. 

• Propose empirical equations that can accurately represent the dataset without 

significant variations. Also, the parameters used to convert the distance metrics should 

be in use in current methodologies to determine the seismic hazard. 

• Formulate methods to capture the uncertainty due to the conversion from one distance 

metric to another. The uncertainty is vital to determine the accurate seismic hazard in 

PSHA. 

• Provide quantitative estimation of the variation in the seismic hazard due to distance 
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conversion. 

1.4 Organization of this Dissertation 

The dissertation is comprised of seven chapters. Chapter 1 provided a background and discussed 

the motivation and the objectives of this study. Chapter 2 is the literature review and provides 

detailed background on the different methodologies to handle the use of different distance metrics 

in seismic hazard calculations. Chapter 3 explores the parameters required to accurately describe 

the earthquake events and the rupture faults. It also provides methods to determine the values for 

different distance metrics based on these parameters. Chapter 4 utilizes the dataset developed in 

Chapter 3 to develop empirical equations to convert between different distance metrics. Chapter 5 

provides the empirical equations to include the variability due to distance conversion in seismic 

hazard calculations. Chapter 6 presents the application of the equations proposed in Chapter 4 and 

Chapter 5. Finally, Chapter 7 concludes the results of this study and provides some 

recommendations for future research. The dissertation expands on the work published in Kayastha 

et al. (2023b). 
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Chapter 2 Literature Review 

2.1 Introduction 

Researchers use different distance metrics to determine the source-to-site distance metrics during 

an earthquake. The most used distance metrics are the Joyner-Boore distance (RJB), the Rupture 

distance (RRUP), the Epicentral distance (REPI), and the Hypocentral distance (RHYP). RJB measures 

the closest distance to the surface projection of the fault, RRUP measures the closest distance to the 

ruptured fault, REPI measures the distance to the epicenter of an earthquake, and RHYP measures 

the distance to the hypocenter of an earthquake. RJB and RRUP are classified as fault-based 

distances, while REPI and RHYP are classified as point-based distances. Many researchers have used 

point-based distance metrics to develop their GMMs. However, issues with large magnitudes at 

close distances for such models resulted in unreliable seismic hazard calculations. Hence, GMMs 

usually use either RJB or RRUP to determine the ground motions in an area. However, the seismicity 

of some areas cannot be associated with known faults. In such cases, PSHA uses point source 

models to describe the seismic hazard, as such models can be used for gridded seismicity (Tavakoli 

et al., 2018).  

In PSHA, different GMMs with different distance metrics may be included in different branches 

of a logic tree. Certain assumptions can be made to estimate the value of the required distance 

metric in such cases. However, such assumptions and the corresponding distance conversions may 

increase the uncertainties. Moreover, uncertainties in distance conversions may cause the 

uncertainties of the GMM to be magnitude and distance-dependent, even if the uncertainties of the 

GMMs did not have those dependencies in the original equations. Monelli et al. (2014) found 

differences of as much as 54% in a PSHA sensitivity study when using point-based and fault-based 
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distances. This resulted in a considerable underestimation of the hazard, especially for large 

earthquakes. Tavakoli et al. (2018) also demonstrated that effective REPI developed higher seismic 

hazards than RJB. Thompson and Worden (2018) also showed significant variation between mean 

rupture distance and point-source distances, even for small-magnitude earthquake events. There 

are a few methods to avoid this problem which we have discussed in the next section. 

2.2 Approaches to use different distance metrics in seismic hazard analysis 

2.2.1 Approach 1: Conversion between distance metrics 

One approach to utilize multiple source-to-site distances would be to convert from one distance 

metric to another. Scherbaum et al. (2004) used RJB as the primary distance metric to obtain REPI, 

RHYP, RRUP, and the distance to the seismogenic part of the rupture plane. They simulated various 

earthquake events based on the magnitude, dip angle, and location of the hypocenter on the fault. 

They used Wells and Coppersmith (1994) as the magnitude-scaling relationship to determine the 

length and the width of the fault. For the depth distribution, they developed a truncated normal 

distribution model with different mean and standard deviation values based on the style of the 

faulting. They also ignored events deeper than 20 km for strike-slip faults and 25 km for dip-slip 

faults. The simulation was conducted for different cases: strike-slip, dip-slip, and a general case 

where the style of faulting is unknown. Different dip angle ranges were assumed for different 

cases. The dip angles were varied from 40° to 90° for the general case, 40° to 70° for shallow 

dipping faults, and 80° to 90° for strike-slip faults. A residual function based on the gamma 

distribution was used to describe other distance metrics based on magnitude and RJB. The residual 

function, the difference between the target distance metric and reference distance metric (RJB), is 

always positive as the RJB is always less than or equal to other target distance metrics. The 
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polynomial functions are applicable for shallow intercontinental earthquake events for RJB from 0 

to 100 km and moment magnitudes between 5.0 and 7.5. They also provided coefficients to 

calculate the standard deviation, which can be used to account for the variability of the GMM due 

to distance conversion. Though the variability of the GMMs may not be magnitude or distance 

dependent in their original form, the equations provided in Scherbaum et al. (2004) provide a 

method to account for this variability reliably for all GMMs. They also compared these 

relationships with manually derived distance metric estimates for Landers, Imperial Valley, and 

Chi-Chi earthquakes. 

EPRI (2004) developed four GMMs for the central and eastern United States, three GMMs based 

on RJB, and one GMM based on RRUP. They also provided a method to convert from REPI to RJB 

and RRUP for each of their GMMs. The ruptured area was modeled based on the Somerville et al. 

(2001) relation to obtain the distance conversion equations. The hypocenter depth distribution was 

modeled using Silva et al. (2002). A length-to-width aspect ratio of 3 for the strike-slip fault and 

2 for the dip-slip fault were used. A dip angle of 40° was assumed for the dip-slip fault. EPRI 

(2004) also constrained the maximum depth to 25 km. REPI was chosen as the primary distance 

metric to obtain RJB and RRUP. They provided separate coefficients for centered ruptures and 

random ruptures. They determined that random ruptures estimated slightly smaller distance 

correction compared to centered ruptures. EPRI (2004) also provided equations to calculate the 

additional aleatory variability to determine the total variability in PSHA for each GMM. They can 

be directly used in PSHA for the respective GMMs. However, they cannot be used for other GMMs 

not included in EPRI (2004). 
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2.2.2 Approach 2: Development of GMMs for different distance metrics 

As another approach, Bommer and Akkar (2012) suggested that two different sets of coefficients 

for point-source-based models and finite-source-based models should be developed for GMMs. 

However, few researchers have provided coefficients for point-source and finite-source-based 

distances for their GMMs. Akkar et al. (2014) provided the coefficients for both point-based and 

fault-based distances for their GMM for Europe and the Middle East. They determined low 

variation in the sigma models for GMM based on REPI and RJB. However, that may have resulted 

from an incomplete dataset, with a sparseness of data for large earthquake events at small 

distances. So, they proposed a method to determine the true sigma of the REPI model based on the 

RJB model for a dense grid of observation points. They used Scherbaum et al. (2004) to calculate 

the values. 

Bommer et al. (2016) simulated many REPI and RJB combinations based on a range of fault 

orientations and fault dimensions to determine the variability in their ground motion model for 

induced seismicity. They used Wells and Coppersmith (1994) to determine the rupture length, as 

no appropriate magnitude scaling relationship was available for induced seismicity. As a result, 

the dimensions may not be applicable for induced earthquakes at shallow depths. The same process 

could be repeated for other magnitude scaling relationships to obtain accurate sigma values for 

those regions. They assumed a single observation site and simulated the epicentral location for 

many points in a circular seismic zone. This provides a large dataset of epicenter locations for 

different fault rupture dimensions and geometry for different magnitude earthquake events. They 

calculated a range of RJB values for a given REPI and then used Akkar et al. (2014) to determine 

the median values for spectral acceleration. Finally, they calculated the variability due to REPI and 
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its respective RJB values. They modeled sigma as a Gaussian distribution. This approach can be 

directly applied without converting the distances by including the sigma in the total GMM 

variability for PSHA calculations. However, the equation for variability cannot be used for other 

GMMs. 

2.2.3 Approach 3: Simulation for different distance metrics 

The third approach would be to simulate pseudo-ruptures for each scenario based on dimensions 

obtained using different magnitude scaling relationships such as Wells and Coppersmith (1994), 

Somerville (2014), or others. Kaklamanos et al. (2011) developed the relationship between RJB 

and RRUP based on the geometrical properties of the fault. For a given dip angle (δ), down-dip 

rupture width (W), depth to the top of rupture (ZTOR) and RJB, they provided the relation to 

determine the RRUP for different source-to-size azimuths (α). They have also suggested different 

relationships for δ,W, and ZTOR if these values are unknown. They compared their results to those 

obtained by Scherbaum et al. (2004) and found them to be slightly different.  

Thompson and Worden (2018) derived mean RJB and RRUP constrained on REPI, magnitude, and 

azimuth. They also provided adjustment factors for GMM standard deviations to include the 

uncertainty due to the conversion of different distances. For simulation, they used different 

distance conversion equations provided in Somerville (2014) for the stable continental region 

(SCR), Hanks and Bakun (2008) for the active continental region (ACR), and Wells and 

Coppersmith (1994) for both cases. A length-to-width aspect ratio of 1 for SCR and 1.7 for ACR 

was assumed. They have assumed different ranges for the dip angle based on the style of faulting 

and the magnitude scaling relationship used. The seismological depth is assumed to be 20 km for 

ACR and 15 km for SCR. At a given REPI and magnitude, they determined the target distance 
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metrics (RJB or RRUP) by integrating at different azimuths, dimensions of the fault (length and 

width), dip angles, and epsilons. Epsilon (𝜖) is the standard normal random variable used to 

incorporate the variability in the estimation of the fault dimensions determined based on the 

magnitude scaling relationship used. They observed the mean RJB decreased as the dip angle 

decreased due to increase in the width projection. The ratio of the mean RJB to REPI varied from 0 

at small distances to 1 at larger distances while the ratio of the mean RRUP to REPI is greater than 1 

at smaller distances and approaches 1 at very large distances. The variation of RRUP at small REPI 

is controlled by the distribution of depth to top of rupture (ZTOR). At shorter distances, the variance 

for RJB is smaller for large magnitude earthquake events while the variance is greater at shorter 

distances for smaller magnitudes for RRUP. They also determined that the choice of aspect ratio did 

not significantly impact the estimation of distances.  

Tavakoli et al. (2018) proposed an analytical distance conversion method to convert RJB to REPI, 

RHYP, or RRUP based on the geometry of the fault and the distribution of the hypocenter. The 

distance obtained can be combined with other seismological constraints, such as geometric 

spreading and attenuation parameters, to obtain effective distances which can demonstrate the 

effect of extended fault sources at small distances. They also provide separate equations to estimate 

the distances for strike-slip and dip-slip faults. Similar to Thompson and Worden (2018), they 

integrate the values along the fault dimensions (length and width), azimuths, and depth of the fault 

to determine the target distance (REPI and RHYP) for a given RJB, magnitude, and dip angle of the 

fault. Based on these distances, they calculate the effective distance that can reasonably simulate 

the average ground motions for large earthquakes. Effective distances are based on equivalent 

point source modeling. In equivalent point source modeling, the rupture originated from a virtual 
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point at an effective distance from the site such that there is no saturation effect at close distances. 

They calculate the effective distances to account for the geometrical spreading and attenuation 

using the Boore (2009) approach such that the effective point can generate a similar energy 

intensity level to those generated from all the sub-faults at the observation site. The method 

developed by them can be employed for different magnitudes, distances, and site-specific 

conditions to obtain an accurate conversion between different distance metrics for the specific 

region. A method to account for the uncertainty has also been discussed. This approach reduces 

the uncertainty considerably compared to other distance conversion methods, as the uncertainty at 

a particular azimuth is zero. As the method is generic, it can be applied to different cases of 

earthquake rupture, large, small, or even induced earthquakes. The resultant distance conversion 

is insensitive to frequency, so the same values can be applied to the GMM for different frequency 

values.  

2.2.4 Current approach 

In current PSHA methodologies for the United States Geological Survey (USGS), Petersen et al. 

(2010) assume the seismic energy is released from the epicenter rather than the crust of the ruptured 

fault. They use REPI as the reference distance to calculate RJB for a vertical strike-slip fault for 

different azimuths ranging from 0° to 360°. They assume the epicenter is at the center of the fault, 

and they used Wells and Coppersmith (1994) for the magnitude scaling relationship. They use a 

virtual fault model, where the vertical faults are simulated at random orientations, and the site is 

fixed about the center of the fault. However, for a fixed epicentral distance, the station can be 

relocated for a given azimuth based on the location of the epicenter, as shown in Figure 2.1. To 

avoid this, the location of the epicenter is always assumed to be at the center of the fault. However, 
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many researchers, such as Mai et al. (2005), have shown that the location of the epicenter may 

have a distribution along the fault. Also, EPRI (2004) demonstrated that the centered epicenter 

approach provided slightly higher distance adjustments than a random epicenter distribution.  So, 

the USGS method may not represent the actual distance adjustment required, particularly for dip-

slip faults. 

 

Figure 2.1 Demonstration of the variation of the location of the observation sites for a fixed REPI 

based on the location of the epicenter. The observation sites have a fixed position for a fixed RJB 

and azimuth. 

 

2.3 Research gaps  

• The distance conversion equations developed by EPRI (2004) depend on the GMMs and 

frequency.  

• Scherbaum et al. (2004) do not consider the effect of hanging walls and footwalls. 

•  Kaklamanos et al. (2011) do not include a conversion method between point-source 

distance metrics and extended fault distance metrics.  
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• Calculating seismic hazards is a computationally intensive process. The method developed 

by Thompson and Worden (2018) and Tavakoli et al. (2018), which involves integration 

at different possible virtual faults or virtual sites, may not be practical for large datasets.  

• The current USGS approach is only practical for vertical strike-slip faults and may not be 

suitable for dip-slip faults.  
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Chapter 3 Estimation of Distance metrics 

3.1 Introduction 

Based on the seismic source and the GMMs used, researchers can use different distance metrics to 

calculate the distance from the earthquake event to an area of interest. The most used distance 

metrics are Joyner-Boore distance (RJB), Rupture distance (RRUP), Epicentral distance (REPI), and 

Hypocentral distance (RHYP). Apart from these distances, some researchers also use RX and RY. 

RX is the closest perpendicular distance from the site to the projection of the top edge of the 

ruptured fault. Beyond the limits of the strike of the fault, it is calculated perpendicular to the 

extension of the projection of the top edge of the fault along the strike. This distance metric is used 

in GMMs such as Abrahamson and Silva (2008), Chiou and Youngs (2008), and  Campbell and 

Bozorgnia (2014) to quantify hanging wall effects. Unlike other distance metrics, which always 

have positive values, RX can be positive or negative – positive for sites on the hanging wall side 

of the fault and negative for sites on the footwall side of the fault (Kaklamanos et al., 2011). RY is 

the closest parallel distance from the site to the projection of the ruptured fault. Both RX and RY 

can be classified under fault-based distances. Figure 3.1 shows the different distance metrics 

discussed in this study. 

To develop relationships between the different distance metrics, we need to develop a database 

that encompasses the values of these distance metrics at different magnitudes, faulting conditions, 

location of the hypocenter, and other factors. While databases are available for these purposes 

based on the recorded earthquakes, these are not exhaustive. Since most recorded earthquakes are 

for small magnitudes and at large distances, there may be a bias in the relationship developed using 

such databases. To avoid bias, we decided to develop the relationship between different distance 
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metrics based on the geometry of the fault. This approach provides us with the relationship between 

different distance metrics for a given magnitude, hypocenter location, azimuth, and the style of 

faulting. To develop the geometrical relationship, we use RJB as the reference distance. Other 

variables include the magnitude of the earthquake (M), the dip angle of the fault (𝛿), and the 

azimuth angle from the center of the fault to the site of interest (𝜃). Based on these parameters, we 

establish the geometrical relationship to other distance parameters referred to as target distance 

metrics (Rtarget), such as RRUP, REPI, and RHYP. The relations and their derivation haven been 

discussed in this chapter. 

 

Figure 3.1 (a) Illustration of the plan view of the fault. The rectangle is the surface projection of 

the fault, with the bold line as the surface projection of the top edge of the fault. The triangles are 

locations of possible sites or stations with their respective distance metrics. Site 1 is located at the 

footwall of the fault and has a negative value for RX, while Site 2 is located at the hanging wall 

side of the fault and has a positive RX value. RY is 0 for Site 2. (b) Illustration of the vertical cross-

section of a fault. Also shown are various distance metrics RX, RJB, RRUP, REPI, and RHYP measured 

from the site (shown by a triangle) to the fault. 
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3.2 Equation for distance metrics based on the geometry of the fault 

3.2.1 Equation for RX and RY 

The equation for RX is dependent on the geometrical properties of the fault, such as the length (L), 

width (W) and dip angle (δ), reference distance (RJB), and the azimuth (θ) of the site from the 

center of the ruptured fault. We derive the equation for RX for vertical strike-slip fault (𝛿 = 90°) 

and dip-slip fault (𝛿 ≠ 90°).  

 

Figure 3.2 Illustration of the plan view of dip-slip fault, which shows RJB, RX, and RY for different 

cases based on azimuth angle (𝜽). 
 

Due to the symmetry of the fault, we can derive the equations for RX for six cases (Kayastha et al., 

2022), as shown in Figure 3.2. The six cases can be reduced to three cases, as shown in Figure 3.3, 

if we only consider positive values of the azimuth angle (θ). 𝜃0 and 𝜃1 are shown in Figure 3.2 

and the equations are listed in Equation 3.9. 

Case-I: 0 ≤ |θ| < θ1 

 0

 1

 0

 1

  

  

  

   
   

I

II
III III

I

II



 

30 

 

when θ ∈ (0,
π

2
), 

tan(θ) =
P

L
2 + RJB

 P = tan(θ) (
L

2
+ RJB) 

y′ =
Wcos(δ)

2
− P =

Wcos(δ)

2
− tan(θ) (

L

2
+ RJB) 

RX = Wcos(δ) − y
′ = Wcos(δ) −

Wcos(δ)

2
+ tan(θ) (

L

2
+ RJB) 

< RX >θ=
Wcos(δ)

2
+ tan(θ) (

L

2
+ RJB) (3.1) 

when θ ∈ (−
π

2
, 0), 

tan(θ) =
P

L
2 + RJB

P = tan(θ) (
L

2
+ RJB) 

RX =
Wcos(δ)

2
− P 

< RX >θ=
Wcos(δ)

2
− tan(θ) (

L

2
+ RJB) (3.2) 

Case-II: θ1 ≤ |θ| ≤ θ0 

when θ ∈ (0,
π

2
), 

RX =
Wcos(δ)

2
+ Rcrefsin (θ) 
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< RX >θ=
Wcos(δ)

2
+ Rcrefsin (θ) (3.3) 

 

when θ ∈ (−
π

2
, 0), 

RX =
Wcos(δ)

2
− Rcrefsin (θ) 

< RX >θ=
Wcos(δ)

2
− Rcrefsin (θ) 

 

(3.4) 

Case-III: θ0 ≤ |θ| ≤ 90 

when θ ∈ (0,
π

2
), 

RX = Wcos(δ) + RJB 

< RX >θ= Wcos(δ) + RJB (3.5) 

 

when θ ∈ (−
π

2
, 0), 

RX = RJB 

< RX >θ=< RX >θ= RJB (3.6) 

where Rcref is the epicentral distance calculated from the site of interest to the center of the fault 

rupture projected on the surface. The equation for Rcref was provided by Tavakoli et al. (2018) and 

is listed below. 
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For vertical strike-slip faults, 

Rcref =

{
 
 

 
 
√(
L

2
)
2

+ RJB
2 − 2 ∗ (

L

2
) ∗ RJB ∗ cos [180 − (θ + sin

−1 (
sin(θ) ∗

L
2

RJB
))]       if 0 ≤ θ < θ0

RJB

sin(θ)
                                                                                                                            if θ0 ≤ θ < 90

 

 

(3.7) 

For dip-slip fault, 

RCref =

{
 
 
 
 

 
 
 
 RJB +

L
2

cos(θ)
                                                                                                                     0 ≤ θ < θ1

√RJB
2 + (

Wcos(δ)

2
)

2

+ (
L

2
)
2

− 2√(
Wcos(δ)

2
)

2

+ (
L

2
)
2

RJBcos (γ)        θ1 ≤ θ < θ0

(
Wcos(δ)
2 ) + RJB

sin(θ)
                                                                                                     θ0 ≤ θ < 90

 

 

(3.8) 

in which, 

θ0 = tan
−1 [

Wcos(δ)
2 + RJB

L
2

] 

θ1 = tan
−1 [

Wcos(δ)
2

RJB +
L
2

] 

γ = 180 −

(

 
 
 

sin−1

[
 
 
 
 
 
sin(|θ − α|)√(

Wcos(δ)
2

)
2

+ (
L
2)
2

RJB

]
 
 
 
 
 

+ |θ − α|

)

 
 
 

 

(3.9) 
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α = tan−1 [
y

L
2

] 

 
The equations for RX have been summarized in Table 3.1 for different cases based on the azimuth 

angle (θ), which is the angle from the center of the fault to the site (Kayastha et al., 2022).  

Similarly, we can determine the equations to calculate RY, which are presented in equation (3.10).  

RY = {

0                                                   |θ| ≥ θ0
RcRef cos(|θ|) − 0.5L   θ1 ≤ |θ| < θ0 
RJB                                               |θ| < θ1

 (3.10) 

 

Table 3.1 Equation to calculate RX based on RJB, length (L) and width (W) of the fault, dip angle 

(𝜹), and azimuth angle (𝜽). 

Azimuth angle Case Equation 

θ ∈ (0,
π

2
) 

0 ≤ |θ| < θ1 

0.5Wcos(δ) + tan(θ) ∗ (0.5L + RJB) 

θ ∈ (−
π

2
, 0) 0.5Wcos(δ) − tan(|θ|) ∗ (0.5L + RJB) 

θ ∈ (0,
π

2
) 

θ1 ≤ |θ| < θ0 

0.5Wcos(δ) + RcRef sin(θ) 

θ ∈ (−
π

2
, 0) −0.5Wcos(δ) + RcRef sin(|θ|) 

θ ∈ (0,
π

2
) 

|θ| ≥ θ0 

Wcos(δ) + RJB 

θ ∈ (−
π

2
, 0) RJB 
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Figure 3.3 Detailed diagram for the derivation of RX for different cases.     



 

35 

 

3.2.2 Equation for RRUP 

The equations to determine RRUP has been provided by Kaklamanos et al. (2011) and are listed 

below. 

For strike-slip fault, 

< 𝑅𝑅𝑈𝑃 >𝜃= √< 𝑅𝑋 >𝜃
2+ 𝑍𝑇𝑂𝑅

2 +< 𝑅𝑌 >𝜃
2  

(3.11) 

For dip-slip fault, 

Case-I: For footwall 

< 𝑅𝑅𝑈𝑃 >𝜃= √< 𝑅𝑋 >𝜃
2+ 𝑍𝑇𝑂𝑅

2 +< 𝑅𝑌 >𝜃
2  

(3.12) 

 

Case-II: 𝑅𝑋 < 𝑅𝑆1 

As shown in Figure 3.4,  

tan(𝛿) =
𝑅𝑆1
𝑍𝑇𝑂𝑅

 𝑅𝑆1 = 𝑍𝑇𝑂𝑅tan (𝛿) 

𝑅′𝑅𝑈𝑃 = √𝑅𝑋
2 + 𝑍𝑇𝑂𝑅

2  

< 𝑅𝑅𝑈𝑃 >𝜃= √< 𝑅𝑋 >𝜃
2+ 𝑍𝑇𝑂𝑅

2 +< 𝑅𝑌 >𝜃
2  

(3.13) 

Case-III: 𝑅𝑆1 ≤ 𝑅𝑋 ≤ 𝑅𝑆2 

tan(𝛿) =
𝑍𝑇𝑂𝑅
𝑅𝑋1

  𝑅𝑋1 =
𝑍𝑇𝑂𝑅
tan(𝛿)

 

sin(𝛿) =
𝑅𝑅𝑈𝑃

𝑅𝑋1 + 𝑅𝑋
 

 𝑅𝑅𝑈𝑃 = (𝑅𝑋1 + 𝑅𝑋)sin (𝛿) 

= (𝑅𝑋1sin (𝛿) + 𝑅𝑋sin (𝛿)) 

= (
𝑍𝑇𝑂𝑅
tan(δ)

sin (𝛿) + 𝑅𝑋sin (𝛿)) 
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𝑅′𝑅𝑈𝑃 = 𝑅𝑋 sin(𝛿) + 𝑍𝑇𝑂𝑅cos (𝛿) 

< 𝑅𝑅𝑈𝑃 >𝜃= √[< 𝑅𝑋 >𝜃 sin(𝛿) + 𝑍𝑇𝑂𝑅co s(𝛿)]2 +< 𝑅𝑌 >𝜃
2  

(3.14) 

Case-IV: RX>RS2 

cos(𝛿) =
𝑊

𝑅𝑋1
 𝑅𝑋1 =

𝑊

cos(𝛿)
= 𝑊𝑠𝑒𝑐(𝛿)  

tan(𝛿) =
𝑅𝑋2
𝑍𝑇𝑂𝑅

       𝑅𝑋2 = 𝑍𝑇𝑂𝑅tan (𝛿) 

𝑅𝑆2 = 𝑅𝑋1 + 𝑅𝑋2 = 𝑊𝑠𝑒𝑐(𝛿) + 𝑍𝑇𝑂𝑅 tan(𝛿)  

𝑅𝑋3 = 𝑅𝑋 −𝑊𝑐𝑜𝑠(𝛿) 

𝑅′𝑅𝑈𝑃 = √(𝑍𝑇𝑂𝑅 +𝑊𝑠𝑖𝑛(𝛿))
2
+ 𝑅𝑋3

2 = √(𝑍𝑇𝑂𝑅 +𝑊𝑠𝑖𝑛(𝛿))
2
+ (𝑅𝑋 −𝑊𝑐𝑜𝑠(𝛿))

2
  

< 𝑅𝑅𝑈𝑃 >𝜃= √(𝑍𝑇𝑂𝑅 +𝑊𝑠𝑖𝑛(𝛿))
2
+ (< 𝑅𝑋 >𝜃−𝑊𝑐𝑜𝑠(𝛿))

2
+< 𝑅𝑌 >𝜃

2  
(3.15) 

The equations can be summarized as follows: 

𝑅𝑅𝑈𝑃 =

{
  
 

  
 √< 𝑅𝑋 >𝜃

2+ 𝑍𝑇𝑂𝑅
2 +< 𝑅𝑌 >𝜃

2                                                                           𝑅𝑋 < 𝑅𝑆1 

√[< 𝑅𝑋 >𝜃 sin(𝛿) + 𝑍𝑇𝑂𝑅co s(𝛿)]
2 +< 𝑅𝑌 >𝜃

2                               𝑅𝑆1 ≤ 𝑅𝑋 ≤ 𝑅𝑆2

√(𝑍𝑇𝑂𝑅 +𝑊𝑠𝑖𝑛(𝛿))
2
+ (< 𝑅𝑋 >𝜃−𝑊𝑐𝑜𝑠(𝛿))

2
+< 𝑅𝑌 >𝜃

2               𝑅𝑋 > 𝑅𝑆2    

 

 

(3.16) 

where RX and RY can be calculated using the equations discussed previously. ZTOR is the depth to 

the top of the rupture. Using the equations, we can determine the RRUP at different magnitudes and 

dip angles.  
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Figure 3.4 Detailed diagram for the derivation of RRUP for different cases. 

3.2.3 Equation for REPI and RHYP 

As shown in Figure 3.5, we can calculate REPI and RHYP based on the geometry of the fault and the 

location of the focus (Kayastha et al., 2022). The location of the focus is specified by variables 

(x,y,z), where x is measured along the length from the center of the fault, y is measured along the 

width from one end of the fault, and z is measured from the ground surface. The calculation for 

RC is discussed in the next section. 

 ase I and II  ase III

 ase I 
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Figure 3.5 Detailed diagram for the derivation of REPI and RHYP for a vertical strike-slip fault. The 

figure above the dotted lines shows the plan or the top-view of the fault with length (L). ‘x’ is the 

distance from the center of the fault to the assumed epicenter along the length of the fault. Since it 

is a vertical strike-slip fault, the width of the fault (W) and the location of the epicenter along the 

width (y) is not considered. ‘𝜽’ is the azimuth angle from the center of the fault to the site. The 

figure below the dotted lines shows the cross-section of the fault with ‘z’ as the depth from the 

ground surface to the hypocenter. 

In Figure 3.5, using cosine law, 

𝑅𝐸𝑃𝐼
2 = 𝑅𝐶

2 + 𝑥2 ± 2|𝑥|𝑅𝐶cos (𝜃′) 

𝑅𝐸𝑃𝐼 = √𝑅𝐶
2 + 𝑥2 ± 2|𝑥|𝑅𝐶cos (𝜃′) 

(3.17) 

Similarly,  

𝑅𝐻𝑌𝑃
2 = 𝑅𝐸𝑃𝐼

2 + 𝑧2 

    

   I

    

 sin ( )

 L

 L  

   

 ite

 ypocenter

x

L  L  

 

z
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𝑅𝐻𝑌𝑃 = √𝑅𝐸𝑃𝐼
2 + 𝑧2 

𝑅𝐻𝑌𝑃 = √𝑅𝑐2 + 𝑥2 ± 2|𝑥|𝑅𝐶cos (𝜃′) + 𝑧2 
(3.18) 

For strike-slip fault, 𝜃′ = 𝜃. 

3.2.3.1 Strike-slip fault 

For the strike-slip fault, the width of the fault does not affect the estimation of REPI and RHYP. To 

determine REPI and RHYP, we define the term RC as shown in Figure 3.6. RC is the distance from 

the site to the center of the fault. So, if the epicenter is located in the center of the fault, 𝑅𝐸𝑃𝐼 = 𝑅𝐶 . 

The equation for RC has been divided into two cases based on the azimuth of the fault to the site. 

The hinge azimuth (𝜃0), where the two cases have been separated, is based on the azimuth of the 

fault where RY has a non-zero value. When 𝜃 < 𝜃0, RY has a non-zero value while 𝑅𝑌 = 0 when 

𝜃 ≥ 𝜃0. 

 

Figure 3.6 Detailed diagram for the derivation of RC for different cases for vertical strike-slip fault. 

If 𝜃0 ≤ 𝜃 < 90 

sin(𝜃) =
𝑅𝐽𝐵
𝑅𝐶
    

𝑅𝐶 =
𝑅𝐽𝐵
sin(𝜃)

 
(3.19) 



 

40 

 

If  0 ≤ 𝜃 < 𝜃0 

sin(𝜃) =
𝑃

𝐿
2

       𝑃 =
𝐿

2
∗ sin (𝜃) 

sin(𝛼) =
𝑃

𝑅𝐽𝐵
=

𝐿
2 ∗ sin

(𝜃)

𝑅𝐽𝐵
       𝛼 =  sin−1(

sin(𝜃) ∗
𝐿
2

𝑅𝐽𝐵
) 

𝛽 = 180 − (𝜃 + 𝛼) = 180 − [𝜃 + sin−1(
sin(𝜃) ∗

𝐿
2

𝑅𝐽𝐵
)] 

Using cosine law in ABC, 

𝑅𝐶
2 = (

𝐿

2
)
2

+ 𝑅𝐽𝐵
2 − 2 ∗

𝐿

2
∗ 𝑅𝐽𝐵 ∗ cos(𝛽)  

𝑅𝐶 = √(
𝐿

2
)
2

+ 𝑅𝐽𝐵
2 − 2 ∗ (

𝐿

2
) ∗ 𝑅𝐽𝐵 ∗ cos (180 − (𝜃 + 𝛼) = 180 − [𝜃 + sin

−1 (
sin(𝜃) ∗

𝐿
2

𝑅𝐽𝐵
)]) 

 

(3.20) 

 

3.2.3.2 Dip-slip fault 

For dip-slip faults, both the length and the width of the faults are required to determine the values 

for REPI and RHYP as shown in Figure 3.7. So, the equations are different than for strike-slip fault. 

If 0 ≤ 𝜃 < 𝜃1 

tan(𝜃) =
𝑃

𝑅𝐽𝐵 +
𝐿
2

          𝑃 = (
𝐿

2
+ 𝑅𝐽𝐵) tan (𝜃) 

𝑃′ = 𝑦 − 𝑦′ = 𝑦 − (
𝑊𝑐𝑜𝑠(𝛿)

2
− 𝑃) = 𝑦 − (

𝑊𝑐𝑜𝑠(𝛿)

2
− tan(𝜃) (

𝐿

2
+ 𝑅𝐽𝐵)) 

tan(𝜃′) =
𝑃′

𝐿
2 + 𝑅𝐽𝐵

=

𝑦 − (
𝑊𝑐𝑜𝑠(𝛿)

2 − tan(𝜃) (
𝐿
2 + 𝑅𝐽𝐵))

𝐿
2 + 𝑅𝐽𝐵
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cos(𝜃′) =
𝑅𝐽𝐵 +

𝑙
2

𝑅𝐶
  

𝑅𝐶 =
𝑅𝐽𝐵 +

𝐿
2

cos(𝜃′)
 

(3.21) 

 

 

Figure 3.7 Detailed diagram for the derivation of RC for different cases for dip-slip fault. 

If 𝜃1 ≤ 𝜃 < 𝜃0 

sin(𝜃) =
𝑃

𝑅𝐶𝑟𝑒𝑓 
    𝑃 = 𝑅𝐶𝑟𝑒𝑓sin (𝜃) 

𝑦′ =
𝑊𝑐𝑜𝑠(𝛿)

2
− 𝑦 

 tan(𝜃′) =
𝑃−𝑦′

𝑅𝐶𝑟𝑒𝑓 cos(𝜃)
=
𝑅𝐶𝑟𝑒𝑓 sin(𝜃)−(

𝑊𝑐𝑜𝑠(𝛿)

2
−𝑦)

𝑅𝐶𝑟𝑒𝑓 cos(𝜃)
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tan(𝛼) =
𝑦

𝐿
2

       𝛼 = tan−1(
𝑦

𝐿
2

) 

In ABC, using sine law, 

sin(𝛽)

𝑥
=
sin(𝜃′ − 𝛼)

𝑅𝐽𝐵
 

𝑥 = √𝑦2 + (
𝐿

2
)
2

 

sin(𝛽) =
sin(𝜃′ − 𝛼)

𝑅𝐽𝐵
∗ 𝑥 =  

sin(𝜃′ − 𝛼)√𝑦2 + (
𝐿
2)
2

𝑅𝐽𝐵
 

𝛾 = 180 − 𝛽 − (𝜃′ − 𝛼) = 180 − sin−1

(

 
sin(𝜃′ − 𝛼)√𝑦2 + (

𝐿
2)
2

𝑅𝐽𝐵
)

 − (𝜃′ − 𝛼)  

Using cosine law, 

𝑅𝐶
2 = 𝑅𝐽𝐵

2 + 𝑥2 − 2𝑥𝑅𝐽𝐵cos (𝛾) 

𝑅𝐶 =
√𝑅𝐽𝐵

2 + 𝑦2 + (
𝐿

2
)
2

− 2√𝑦2 + (
𝐿

2
)
2

𝑅𝐽𝐵cos (𝛾) 
(3.22) 

If 𝜃0 ≤ 𝜃 < 90 

tan(𝜃) =

𝑊𝑐𝑜𝑠(𝛿)
2 + 𝑅𝐽𝐵

𝑏
       𝑏 =

(
𝑊𝑐𝑜𝑠(𝛿)

2 + 𝑅𝐽𝐵)

tan(𝜃)
 

tan(𝜃′) =
𝑦 + 𝑅𝐽𝐵

𝑏
=

𝑦 + 𝑅𝐽𝐵

(
𝑊𝑐𝑜𝑠(𝛿)

2 + 𝑅𝐽𝐵)

tan(𝜃)

= tan(𝜃)(
𝑦 + 𝑅𝐽𝐵

𝑊𝑐𝑜𝑠(𝛿)
2 + 𝑅𝐽𝐵

) 

sin(𝜃′) =
𝑦 + 𝑅𝐽𝐵
𝑅𝐶
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𝑅𝐶 =
𝑦 + 𝑅𝐽𝐵
sin(𝜃′)

 
(3.23) 

 

In summary, 

For strike-slip fault, 

𝑅𝑐 =

{
 
 

 
 
√(
𝐿

2
)
2

+ 𝑅𝐽𝐵
2 − 2 ∗ (

𝐿

2
) ∗ 𝑅𝐽𝐵 ∗ cos(180 − (𝜃 + 𝛼) = 180 − [𝜃 + sin

−1 (
sin(𝜃) ∗

𝐿
2

𝑅𝐽𝐵
)])           0 ≤ 𝜃 < 𝜃0

𝑅𝐽𝐵

sin(𝜃)
                                                                                                                                                                    𝜃0 ≤ 𝜃 < 90

 

 

(3.24) 

 

For dip-slip fault, 

𝑅𝐶 =

{
 
 
 
 

 
 
 
 𝑅𝐽𝐵 +

𝐿
2

cos(𝜃′)
                                                                                    0 ≤ 𝜃 < 𝜃1

√𝑅𝐽𝐵
2 + 𝑦2 + (

𝐿

2
)
2

− 2√𝑦2 + (
𝐿

2
)
2

𝑅𝐽𝐵cos (𝛾)          𝜃1 ≤ 𝜃 < 𝜃0 

𝑦 + 𝑅𝐽𝐵

sin(𝜃′)
                                                                                 𝜃0 ≤ 𝜃 < 90

 

 

(3.25) 

For dip-slip faults, change 𝒚 = 𝑾𝒄𝒐𝒔(𝜹) − 𝒚, if  𝜽 < 𝟎° i.e., the site lies in the top half of the 

projection of the fault (The derivation is shown for conditions when site lies below the half of the 

fault projection). 

3.3 Fault model assumptions 

The data for this study is developed based on the centroid-centered virtual site model. In this 

approach, the fault is fixed, and the virtual site moves around the fault. The location of the azimuth 

is dependent on the azimuth of the site from the centroid of the ruptured fault. The virtual sites are 

located at a constant RJB from the fault. For a constant RJB, a range of values for other distance 

metrics (RRUP, REPI, RHYP) can be obtained based on the magnitude, dip angle, and azimuth of the 
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fault. RJB is chosen as the reference distance because there is only one possible station for a known 

fault at a given azimuth. For REPI, the location of the station at a given azimuth can vary based on 

the location of the epicenter of the fault. The mean value of the reference distance metric is 

obtained to develop the statistical relationship between the different distance metrics. For 

computational efficiency, instead of solving for the integral, we have discretized the fault along 

the length, width, and depth of the fault, with an azimuth increment of 1° for the virtual site. The 

length and width are discretized such that the reference sites are densely spaced closer to the fault 

and sparsely spaced away from the fault. 

Different fault ruptures have been considered based on the size of the rupture, the geometry of the 

rupture plane, and the location of the hypocenter. The geometry of the rupture plane is modeled as 

a rectangular plane with length (L), width (W), dip angle (δ), and depth to the top of the rupture 

(ZTOR), as shown in Figure 3.1. The size of the rupture, based on magnitude, is used to model the 

length and width of the fault. We have focused on the Central and Eastern US region. So, we used 

the equation provided in Somerville (2014), developed for the CEUS region, to calculate the 

ruptured area (RA) of the rupture plane for different magnitudes. We use a fixed length-to-width 

aspect ratio of 1. The hypocentral depth values are based on Scherbaum et al. (2004). If the 

calculated rupture plane is extended above the surface, the width of the fault is adjusted such that 

the top of the fault lies on the surface. The width is restricted to the seismogenic zone, assumed at 

a depth of 15 km (Shaw and Wesnousky, 2008). Modification of ZTOR also changes the dimensions 

for the width of the fault (assuming a fixed hypocentral depth). Consequently, the length is 

increased to maintain a constant ruptured area for a given M. The data is generated for M values 

between 5 to 8, dip angles from 10° to 90°, and RJB values up to 200 km. The azimuth value is 
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varied from 0° to 360°. We determine the target distances, such as REPI, RHYP, and RRUP, for each 

geometrical scenario using the equations discussed previously. 

This approach provides us with a range of target distance values for a given RJB value. The target 

distances depend on RJB, length (L), width (W), and dip (δ) of the rupture plane, the azimuth angle 

(α), the hypocentral depth, depth to the top of the rupture (ZTOR), and the style of faulting (strike-

slip or dip-slip). Regression analysis based on the non-linear least squares method is performed on 

the obtained data to develop empirical relations for RRUP and REPI based on the RJB, magnitude of 

the fault and dip angle, and RHYP based on RJB, M, 𝛿, and ZTOR. 

3.3.1 Equation for mean and variance of Rupture distance 

The mean RRUP can be calculated as follows: 

E[RRUP|RJB, M, δ] = ∫∫ 𝑅𝑅𝑈𝑃(𝜃, 𝜖)𝑝(𝜃)𝑝(𝜖)𝑑𝜃𝑑𝜖

2𝜋

0

3

−3

 (3.26) 

where, 𝑅𝑅𝑈𝑃(𝜃, 𝜖) is the rupture distance from the fault to the site at a given azimuth (𝜃). ′ϵ′ is 

used to incorporate the uncertainties in the scaling relationship used to determine 'L' and 'W' from 

the magnitude of the fault. We have used ±3 standard deviations, assuming a standard normal 

distribution for our calculation. Since RRUP is a fault-based distance metric, we do not need to 

discretize the fault. Instead, we calculate RRUP values at different azimuth values from the fault for 

a given RJB, dip angle, and magnitude.  

Instead of defining a complex function to express the distribution of θ, we used a small spacing 

for θ, which provided results with acceptable accuracy without hampering the computational 

efficiency (Campbell and Gupta, 2018). For our calculation, we have used a spacing of 1° with 
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uniform distribution (𝑃(θ) = 1/2π).  or ‘𝜖’, we used a spacing of  .0.  e have calculated the 

mean values at different dip angles from 10° to 90° with a spacing of 10°. 

Similarly, to calculate the variance of RRUP, we can use the following equation: 

σ[RRUP|RJB,M,δ]
2 = ∫∫ [𝑅𝑅𝑈𝑃(𝜃, 𝜖) − E[RRUP|RJB, M, δ]]

2
2𝜋

0

3

−3

𝑝(𝜃)𝑝(𝜖)𝑑𝜃𝑑𝜖 (3.27) 

3.3.2 Equation for mean and variance of Epicentral distance 

The mean REPI can be determined for a given RJB, 𝛿, and magnitude as follows: 

E[REPI|RJB, M, δ] = ∫∫ ∫ ∫ REPI(x, y, θ, ϵ)𝑝(𝑥)𝑝(𝑦)𝑝(𝜃)𝑝(𝜖)𝑑𝑥𝑑𝑦𝑑𝜃𝑑𝜖

0.5𝐿

−0.5𝐿

𝑊𝑐𝑜𝑠(𝛿)

0

2𝜋

0

3

−3

 (3.28) 

where, REPI(x, y, θ, ϵ) is the distance from the epicenter (x, y) of the fault to the site located at an 

azimuth angle (θ) from the fault, and ‘𝜖’ has been defined previously.  sing this equation, we can 

obtain REPI from the fault to the site at different RJB and θ. For the calculation, we determine the 

mean value of REPI at all possible θ ∈ (0°, 360°) for a given RJB, magnitude, and dip angle. 'x' and 

'y’ are the variables along the length and the width of the fault.  e can use different distribution 

functions to define the spacing that can describe the characteristics of the fault rupture. We have 

used Mai et al. (2005) for our calculations to determine the hypocenter distribution along the strike 

and down-dip direction. After integration along the length and width of the fault, all possible 

locations of the epicenter can be considered.  

The equation for the variance of REPI can be calculated as: 
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σ[REPI|RJB,M,δ]
2 = ∫∫ ∫ ∫ [REPI(x, y, θ, ϵ) − E[REPI|RJB, M, δ]]

2
0.5𝐿

−0.5𝐿

𝑊𝑐𝑜𝑠(𝛿)

0

2𝜋

0

3

−3

∗ 𝑝(𝑥)𝑝(𝑦)𝑝(𝜃)𝑝(𝜖)𝑑𝑥𝑑𝑦𝑑𝜃𝑑𝜖 

(3.29) 

3.3.3 Equation for mean and variance of Hypocentral distance 

Most of the parameters required for RHYP are already specified in equation (3.28). In addition, we 

also have the depth term ‘z’, which varies from the depth to the bottom of the rupture 

(ZTOR +Wsin(δ)) to the depth to the top of the rupture (ZTOR). The hypocentral depth is 

determined by Scherbaum et al. (2004).      

The mean RHYP can be calculated as follows: 

E[RHYP|RJB, M, δ]

= ∫∫ ∫ ∫ ∫ RHYP(x, y, z, θ, ϵ)𝑝(𝑥)

0.5𝐿

−0.5𝐿

𝑊𝑐𝑜𝑠(𝛿)

0

𝑍𝑇𝑂𝑅+𝑊𝑠𝑖𝑛(𝛿)

𝑍𝑇𝑂𝑅

2𝜋

0

3

−3

∗ 𝑝(𝑦)𝑝(𝑧)𝑝(𝜃)𝑝(𝜖)𝑑𝑥𝑑𝑦𝑑𝑧𝑑𝜃𝑑𝜖 

(3.30) 

The equation for the variance of RHYP can be presented as: 

σ[RHYP|RJB,M,δ]
2 = ∫∫ ∫ ∫ ∫ [RHYP(x, y, z, θ, ϵ)

0.5𝐿

−0.5𝐿

𝑊𝑐𝑜𝑠(𝛿)

0

𝑍𝑇𝑂𝑅+𝑊𝑠𝑖𝑛(𝛿)

𝑍𝑇𝑂𝑅

2𝜋

0

3

−3

− E[RHYP|RJB, M, δ]]
2

∗ 𝑝(𝑥)𝑝(𝑦)𝑝(𝑧)𝑝(𝜃)𝑝(𝜖)𝑑𝑥𝑑𝑦𝑑𝑧𝑑𝜃𝑑𝜖 

(3.31) 

3.4 Discussions 

3.4.1 Distribution of the distances  

Figure 3.8 and Figure 3.9 show the histogram plots for the difference between RRUP and RJB at 

different magnitudes and a RJB of 10 km for a dip-slip fault with a dip angle of 50° and a vertical 

strike-slip fault, respectively. The difference can be modeled as a gamma distribution (shown as 
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the solid line) to determine the mean and the standard deviation of the target distance metric 

(Kayastha et al., 2021). For M 5, we can observe that the residuals for the dip-slip fault are mostly 

distributed between 2 km and 6 km. Below 2 km, the frequency distribution of the residuals is 

nearly zero. Since the fault is assumed to be deeper from the surface for smaller magnitudes, the 

depth of the ruptured fault is rarely zero. Due to the depth term, the frequency distribution of the 

residuals of RRUP with RJB is also rarely zero for smaller magnitudes. This is not observed at large 

distances (>100 km). As the magnitude increases, the fault is assumed to be closer to the surface. 

Hence, the frequency of the residuals below 2 km also increases. For the dip-slip fault, the increase 

in magnitude also increases the maximum residual value from 6 km at M 5.0 to 12 km at M 7.5. 

So, the residuals are concentrated between a few values for smaller magnitudes, and the range 

increases for larger magnitudes. Since only the length of the fault is used to determine the RRUP 

for the vertical strike-slip fault, such variations are not observed, and the residuals range from 0 to 

4 km for all magnitudes. 

Figure 3.10 and Figure 3.11 show the histogram plots for the difference between REPI and RJB at 

different magnitudes and a RJB of 10 km for a dip-slip fault with a dip angle of 50° and a vertical 

strike-slip fault, respectively. We can similarly model the gamma distribution as shown by the 

solid lines. We can observe significant variation in the range for the residuals of REPI as the 

magnitude increases. Similar to residuals of RRUP, the residuals of REPI are concentrated between 

a few values for smaller magnitudes, and the distribution is more spread out at larger magnitudes.  

We have also plotted histograms for the residuals of RHYP at different magnitudes at a RJB of 10 

km for a dip-slip fault with a dip angle of 50° and a vertical strike-slip fault as shown in Figure 

3.12 and Figure 3.13, respectively. Instead of taking the difference between RHYP and RJB to 
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calculate the residuals, we have taken the difference of RHYP with the square root of RJB and ZTOR. 

This is because the depth of the earthquake event is an important parameter for the RHYP, especially 

at smaller distances and for larger magnitudes. The effect of depth is less pronounced at large 

distances. Based on the histogram plots, we can observe that the peak distribution of the residuals 

increases with increasing magnitude. The peak of the residuals is nearly 1 km for M 5.0 and 15 

km for M 7.5 earthquake event. Similar to the residual plots for other target distances, the range is 

concentrated between a few values for smaller magnitudes, and the range increases as magnitude 

increases. 

Similar distributions can be developed for each target distance metric at different RJB, M, and δ. 

The mean and the standard deviation can be calculated for each distribution to obtain a dataset 

containing the target distance metrics and the reference parameters such as magnitude, Joyner-

Boore distance, the dip angle of the fault, and depth to the top of the rupture. Based on an 

appropriate empirical form, we can conduct a non-linear regression analysis on the dataset. 

Alternatively, we can also implement different machine-learning algorithms to appropriately select 

relevant parameters to determine a parsimonious model that can determine the target distance 

metrics. 
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Figure 3.8 Histogram plots of the difference of RRUP and RJB for a dip-slip fault with dip angle 𝟓𝟎° 
at different magnitudes for a RJB of 10 km. The solid line represents the gamma distribution fitted 

to the histogram. The mean and the standard deviation of the distribution can be used in regression 

analysis to determine the coefficients at different M, RJB, and 𝜹 in the empirical equations for RRUP. 
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Figure 3.9 Histogram plots of the difference between RRUP and RJB for a vertical strike-slip fault 

at different magnitudes for a RJB of 10 km. The solid line represents the gamma distribution fitted 

to the histogram. The mean and the standard deviation of the distribution can be used in regression 

analysis to determine the coefficients at different M, RJB, and 𝜹 in the empirical equations for RRUP. 
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Figure 3.10 Histogram plots of the difference of REPI and RJB for a dip-slip fault with dip angle 

𝟓𝟎° at different magnitudes for a RJB of 10 km. The solid line represents the gamma distribution 

fitted to the histogram. The mean and the standard deviation of the distribution can be used in 

regression analysis to determine the coefficients at different M, RJB, and 𝜹 in the empirical 

equations for REPI. 
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Figure 3.11 Histogram plots of the difference between REPI and RJB for a vertical strike-slip fault 

at different magnitudes for a RJB of 10 km. The solid line represents the gamma distribution fitted 

to the histogram. The mean and the standard deviation of the distribution can be used in regression 

analysis to determine the coefficients at different M, RJB, and 𝜹 in the empirical equations for REPI. 
 



 

54 

 

 
Figure 3.12 Histogram plots of the difference of RHYP, RJB, and ZTOR for a dip-slip fault with dip 

angle 𝟓𝟎° at different magnitudes for a RJB of 10 km. The solid line represents the gamma 

distribution fitted to the histogram. The mean and the standard deviation of the distribution can be 

used in regression analysis to determine the coefficients at different M, RJB, and 𝜹 in the empirical 

equations for RHYP. 
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Figure 3.13 Histogram plots of the difference of RHYP, RJB, and ZTOR for a vertical strike-slip fault 

at different magnitudes for a RJB of 10 km. The solid line represents the gamma distribution fitted 

to the histogram. The mean and the standard deviation of the distribution can be used in regression 

analysis to determine the coefficients at different M, RJB, and 𝜹 in the empirical equations for RHYP. 
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3.4.2 Sensitivity of azimuth angle 

The target distance metric varies significantly with the azimuth angle for a given RJB, M, and 𝛿. 

Boore (2009) determined that the distances parallel to the fault are much larger than the distances 

perpendicular to the center of the fault for a vertical strike-slip fault at M 5 and M 7. The values 

converge at larger distances. For sites perpendicular to the center of the fault, the values converged 

at a distance of 5 km for M 5 and 70 km for the M 7 earthquake event. Similarly, the values 

converged at 100 km for M 5 and more than 200 km for M 7 if the site is parallel to the fault. In 

this section, we discuss the variation in estimating the target distance metrics based on the azimuth 

of the fault using the equations discussed previously. 

3.4.2.1 Sensitivity of azimuth angle for Rupture distance 

The sensitivity of RRUP with azimuth angle varies significantly based on the magnitude, RJB, and 

dip angle (Kayastha et al., 2023a). The variation of RRUP with 𝜃 for a dip angle of 50° is plotted in 

Figure 3.14.  For smaller magnitudes (𝑀 ≤ 5), RRUP is almost constant at different azimuth angles 

for a given RJB and dip angle. As the magnitude increases, we can observe significant variation in 

the calculated RRUP for sites along the footwall (represented by negative azimuth values) and 

hanging wall (represented by positive azimuth values). The variation is almost abrupt for 

magnitude 8, as observed by a steep slope between azimuth angles (-3, 3). The variation is also 

significantly higher at smaller distances (RJB = 1km) and negligible at large distances (RJB = 100 

km). 

We have also plotted the variation of RRUP with 𝜃 for M 7 in Figure 3.15. As the dip angle increases, 

the maximum value of the ratio of RRUP to RJB decreases. There is no effect of azimuth angle for a 
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vertical strike-slip fault. For other dip angles, we can observe higher variation at small RJB (RJB = 

1 km) and insignificant variation at large distances (RJB = 100 km). 

 

Figure 3.14 Variation of the ratio of RRUP to RJB versus the azimuth angle (𝜽) at different 

magnitudes and RJB for a dip-slip fault with dip angle 𝟓𝟎°. 
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Figure 3.15 Variation of the ratio of RRUP to RJB versus the azimuth angle (𝜽) at different dip angles 

and RJB for a M 7 earthquake event. 

 

3.4.2.2 Sensitivity of azimuth angle for Epicentral distance 

For the comparison, we have only considered an azimuth angle from 0° to 90° due to symmetry, 

as discussed in the previous sections. Figure 3.16 shows the variation of the ratio of REPI to RJB for 

different magnitudes and RJB for a dip angle of 50°. Similarly, Figure 3.17 shows the variation in 

the ratio of REPI to RJB for different dip angles and RJB at M 7. We can observe that the ratio is 

higher for smaller RJB and decreases as the RJB increases for all magnitudes. This trend strengthens 

our assumptions that REPI and RJB vary significantly at smaller distances and that the values are 
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closer to each other at large distances (Kayastha et al., 2023a).  The ratio is also constant at a 

smaller azimuth angle and decreases exponentially after a hinge point. The hinge point is 

calculated based on the parameters 𝜃0 and 𝜃1 discussed in the previous section.  The hinge point 

is dependent on magnitude; the value of the hinge point decreases as the magnitude increases. As 

observed in Figure 3.17, the hinge point also depends on the dip angle, with the hinge point 

decreasing as the dip angle increases. For the vertical strike-slip fault, after the hinge point, we can 

observe that the ratios are equal for different magnitudes. This can be explained by the equations 

discussed previously. For  𝜃0 ≤ 𝜃 < 90, 𝑅𝐸𝑃𝐼 =
𝑅𝐽𝐵

sin(𝜃)
→

𝑅𝐸𝑃𝐼

𝑅𝐽𝐵
=

1

sin(𝜃)
. Hence, the ratios are 

dependent only on the azimuth angle beyond the hinge point. 

 

Figure 3.16 Variation of the ratio of REPI to RJB versus the azimuth angle (𝜽) at different 

magnitudes and RJB for a dip-slip fault with dip angle 𝟓𝟎°. 
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Figure 3.17 Variation of the ratio of REPI to RJB versus the azimuth angle (𝜽) at different dip angles 

and RJB for a M 7 earthquake event. 

 

3.4.2.2 Sensitivity of azimuth angle for Hypocentral distance 

Figure 3.18 shows the trend of the ratio of RHYP to RJB for different magnitudes and distances at a 

dip angle of 50°. The trends for the ratio of RHYP to RJB are similar to the trends observed in the 

plots for the ratio of REPI to RJB. The smaller RJB (RJB = 1km) has higher ratios compared to larger 

RJB. The hinge points are negligible for smaller magnitudes (M<=6). 
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The variation of the ratio of RHYP to RJB versus azimuth at magnitude 7 for different RJB and dip 

angles is plotted in Figure 3.19. As the dip angle increase, the hinge value for the azimuth 

decreases. Unlike the observation in the plot of the ratio of REPI to RJB versus azimuth for the 

vertical strike-slip fault, the values beyond the hinge point are not constant for the ratio of RHYP to 

RJB for the vertical strike-slip fault.  he variation is due to the depth term ‘z’, which significantly 

affects the values at smaller RJB and is negligible at large distances. 

 

Figure 3.18 Variation of the ratio of RHYP to RJB versus the azimuth angle (𝜽) at different 

magnitudes and RJB for a dip-slip fault with dip angle 𝟓𝟎°. 
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Figure 3.19 Variation of the ratio of RHYP to RJB versus the azimuth angle (𝜽) at different dip angles 

and RJB for a M 7 earthquake event. 

 

3.4.3 Saturation effects 

In the plots for REPI and RJB as shown in Figure 3.20, we can observe that for small RJB (RJB = 

1km), the REPI and RHYP values are significantly higher. For M 7 earthquake, for RJB of 1 km, the 

RHYP value varies from 10 km to 25 km. Such large variations are not observed at large distances 

(RJB = 100 km). The large variation at close distances is a limitation of point-based distances 

(Kayastha et al., 2023a). Point-based distances such as REPI and RHYP assume the total energy of 
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an earthquake is released from a single point. However, it has been observed that the seismic 

energy is released from the whole ruptured fault. At large distances, the energy from the sub-faults 

of the ruptured fault reaches the site of interest with relatively short delays among each other. 

However, at close distances, only a fraction of the ruptured fault is actually closer to the site of 

interest. So, the energy from the sub-fault closer to the site reaches it faster than the energy from 

the furthest sub-fault.  

The saturation effects can be modeled in point-based distance models using virtual points, as 

shown in studies by Atkinson and Silva (2000) and Boore (2009). The virtual point is placed at an 

effective distance such that the virtual point can mimic the extended fault and release identical 

total energy to the site.  

Mathematically, 𝑅𝐸𝐹𝐹 = √𝑅2 + ℎ2, where REFF is the effective distance, R is the actual point-

based distance, and ‘h’ is the finite fault factor (Tavakoli et al., 2018; Atkinson and Silva, 2000). 

So, to determine the actual point-based distance, 𝑅 = √𝑅𝐸𝐹𝐹
2 − ℎ2.  

REFF is the point-based distance that we have calculated using the geometry of the fault. Hence, 

these values are significantly higher due to the finite fault factor. To determine the actual point-

based distances, we need to determine the finite fault factor and remove them from the calculated 

point-based distances. 

For Strike-slip faults, 
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𝑅𝐶

=

{
 
 

 
 
𝑅𝐽𝐵
sin(𝜃)

                                                                                                                                             𝜃0 ≤ 𝜃 < 90

√(
𝐿

2
)
2

+ 𝑅𝐽𝐵
2 − 2 ∗ (

𝐿

2
) ∗ 𝑅𝐽𝐵 ∗ cos (180 − [𝜃 + sin

−1 (
sin(𝜃) ∗

𝐿
2

𝑅𝐽𝐵
)])                      0 ≤ 𝜃 < 𝜃0

 

 

(3.32) 

< 𝑅𝐸𝑃𝐼 >𝜃= ∫√𝑅𝐶
2 + 𝑥2 − 2𝑥𝑅𝐶cos (𝜃)

𝑙
2

−
𝑙
2

 𝑝(𝑥)𝑑𝑥 (3.33) 

When the site lies on top of the fault, RJB and REPI are 0. However, REPI calculated based on the 

equation derived based on the geometry of the fault discussed previously is not zero. The resultant 

value provides us with the finite-fault factor. 

𝑅𝐽𝐵 = 𝑅𝐸𝑃𝐼 = 0 

 𝑅𝐶 =
𝐿

2
 

 ℎ =< 𝑅𝐸𝑃𝐼 >𝜃 

For an azimuth angle 𝜃 = 0°, 

ℎ = ∫√(
𝐿

2
)
2

+ 𝑥2 − 2 ∗ 𝑥 ∗
1

𝐿
∗ cos (0)

𝑙
2

−
𝑙
2

 𝑝(𝑥)𝑑𝑥 

Assuming a uniform distribution of the epicenter along the fault, 𝑝(𝑥) = 1/𝐿  

Also,cos(0) = 1, so 



 

65 

 

ℎ = ∫√(
𝐿

2
)
2

+ 𝑥2 − 2 ∗ 𝑥 ∗ (
𝐿

2
)

𝑙
2

−
𝑙
2

∗
1

𝐿
∗ 𝑑𝑥 

ℎ = ∫√(
𝐿

2
− 𝑥)

2

𝑙
2

−
𝑙
2

∗
1

𝐿
∗ 𝑑𝑥 

ℎ = ∫(
𝐿

2
− 𝑥)

𝑙
2

−
𝑙
2

∗
1

𝐿
∗ 𝑑𝑥 

ℎ = ∫(
1

2
−
𝑥

𝐿
)

𝑙
2

−
𝑙
2

∗ 𝑑𝑥 

ℎ =
1

2
∗ [
𝐿

2
+
𝐿

2
] −

1

𝐿
∗ [
𝐿2

8
−
𝐿2

8
] 

ℎ =
𝐿

2
  (3.34) 

 o, the value of ‘h’ for a strike-slip fault is equal to half the length of the fault.  This is valid only 

when 𝜃 = 0°, i.e., when the site lies at the end of the fault (since ‘𝜃’ is used to represent the location 

of the site about the fault). For values other than 𝜃 = 0°, the value for ‘h’ differs. The finite-fault 

factor (h) for different azimuth angles for vertical strike-slip faults and dip-slip faults can be 

calculated numerically by using the equations for < 𝑅𝐸𝑃𝐼 >𝜃 assuming a very small value of RJB 

(RJB = 0.0000001 km). This assumption does not affect the resultant calculated finite-fault factor, 

as shown in Table 3.2. 



 

66 

 

Table 3.2 Comparison of the finite-fault factor obtained numerically (hcalc) with equation (3.34) 

for different magnitudes at a site located parallel to the ruptured fault (𝜽 = 𝟎°). 

Magnitude Length (km) hcalc (km) ℎ = 0.5 ∗ 𝐿 (km) 

5.00 2.37 1.19 1.19 

5.50 4.22 2.11 2.11 

6.00 7.50 3.75 3.75 

6.50 13.34 6.67 6.67 

7.00 37.49 18.74 18.74 

7.50 118.55 59.28 59.28 

8.00 374.89 187.45 187.45 

 

For dip-slip faults, 

𝑅𝐶 =

{
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 (3.35) 

When 𝑅𝐽𝐵
𝑙𝑖𝑚
→ 0, 

𝜃0 = tan
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 𝑝(𝑥)𝑝(𝑦)𝑑𝑥𝑑𝑦 (3.36) 

Figure 3.20 shows the variation of the ratio of the finite fault factor to the length of the fault versus 

𝜃 for different dip angles and magnitudes at RJB = 1 km. As discussed previously, the hinge point 

is based on 𝜃0 and 𝜃1. When RJB = 0, 𝜃𝑝 = 𝜃0 = 𝜃1, as discussed previously. The value of 𝜃𝑝 

depends on the dimensions of the fault and the dip angle. For our calculation, we have chosen the 

aspect ratio as 1 (
𝐿

𝑊
= 1). As a result, the 𝜃𝑝 value for M 5 and M 6 is the same and the ratio of 

‘h L’ is similar. However, the calculated fault dimensions may fall over the surface at larger 

magnitudes. When we fix the top of the fault on the surface for such cases, we need to recalculate 

the fault dimensions keeping the rupture area constant, resulting in a change in the value of the 

aspect ratio. For larger magnitudes, the ‘h L’ value is similar up to 𝜃𝑝 and decreases beyond the 

hinge point as the magnitude increases.  he ‘h L’ value is constant for the vertical strike-slip fault 

for all magnitudes. It is 0.5 at 𝜃 = 0°, and zero elsewhere. 

Using the finite-fault factor, we can calculate the REPI and RHYP values used to determine the 

empirical equations discussed in the next chapter. 
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Figure 3.20 Variation of the ratio of the finite fault factor (h) to the length of the fault versus the 

azimuth angle (𝜽) at a RJB of 1 km for different magnitudes and dip angles. 

 

3.4.4 Effect of aspect ratio 

As discussed in the previous sections, we used an aspect ratio (the ratio of length to width) of 1 

for the calculations. Different published studies have used different aspect ratios to determine the 

dimensions of the fault based on the ruptured area. EPRI (2004) used an aspect ratio of 3 for a 

strike-slip fault and an aspect ratio of 2 for a dip-slip fault. Thompson and Worden (2018) used an 

aspect ratio of 1.7 for the active continental region and 1.0 for the stable continental region. In this 

section, we examine the impact of aspect ratio in estimating distance metrics. 
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For smaller earthquakes (M≤6), the dimensions of the ruptured fault based on magnitude is also 

small, so there is not a significant variation between the estimated distance metrics using different 

aspect ratios, as shown in Figure 3.21 for the ratio of RRUP to RJB versus RJB for different 

magnitudes for a dip-slip fault with a dip angle of 50°. There is a slight variation for a vertical 

strike-slip fault for M 6 that is not observed for dip-slip faults, as seen in Figure 3.22. As we have 

shown in the equations to calculate the distance metrics, the length and the width of the ruptured 

fault are essential parameters for the dip-slip fault. However, for the strike-slip fault, only the 

length of the fault is used to estimate the distance metrics. As a result, the variation in length due 

to different aspect ratios causes a slight variation in the estimated distance metrics for the strike-

slip fault, while the impact is not felt for the dip-slip fault. The variation is observed at small RJB 

(𝑅𝐽𝐵 ≤ 20 km). The estimated distance is the smallest for AR 1.0 and the highest for AR 3.0. 

Similar observations can be made for the effects of the aspect ratio on REPI for different magnitudes 

and dip angles, as shown in Figure 3.23 and Figure 3.24, respectively. Figure 3.25 and Figure 3.26 

show the variation of the ratio of RHYP to RJB versus RJB at different aspect ratios for different 

magnitudes and dip angles, respectively. 
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Figure 3.21 Variation of the ratio of RRUP to RJB versus RJB for different magnitudes and aspect 

ratios (AR) for a dip-slip fault with a dip angle of 50°. 
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Figure 3.22 Variation of the ratio of RRUP to RJB versus RJB for different dip angles and aspect 

ratios (AR) for a M 6 earthquake event. 
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Figure 3.23 Variation of the ratio of REPI to RJB versus RJB for different magnitudes and aspect 

ratios (AR) for a dip-slip fault with a dip angle of 50°. 
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Figure 3.24 Variation of the ratio of REPI to RJB versus RJB for different dip angles and aspect ratios 

(AR) for a M 6 earthquake event. 
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Figure 3.25 Variation of the ratio of RHYP to RJB versus RJB for different magnitudes and aspect 

ratios (AR) for a dip-slip fault with a dip angle of 50°. 
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Figure 3.26 Variation of the ratio of RHYP to RJB versus RJB for different dip angles and aspect 

ratios (AR) for a M 6 earthquake event. 

 

The variations are not observed for large-magnitude earthquakes for either dip-slip or vertical 

strike-slip faults (Kayastha et al., 2023a). We have restricted the depth of the fault to the 

seismogenic depth (15 km). The calculated depth using Scherbaum et al. (2004) for larger 

magnitudes is usually higher than the seismogenic depth. Due to this restriction, we need to 

recalculate the width of the fault based on the restricted depth and then calculated the length of the 

fault while keeping the ruptured area constant. So, for higher magnitude earthquakes, the aspect 

ratio is not maintained to satisfy the conditions for the depth of the fault. So, the aspect ratio only 



 

76 

 

affects smaller magnitude earthquakes for the vertical strike-slip fault. This variation is also not 

very significant. Thompson and Worden (2018) also determined that the calculated distances are 

identical when they compared the results for a range of AR observed in the NGA-West2 database 

for the active continental region (AR varying from 0.75 to 4.75) with the assumed AR of 1.7 that 

they used for their studies.  

3.5 Chapter Conclusion 

In this chapter, we discussed the equations for different distance metrics based on the geometry of 

the fault. The geometry of the fault is dependent on the magnitude of the earthquake, the dip angle 

of the fault, and the depth to the top of the rupture. The fault dimensions are determined based on 

the magnitude using Somerville (2014). We can either specify the depth to the top of the rupture 

or use the magnitude to determine the depth to the top of the rupture using Scherbaum et al. (2004). 

For our calculations, we have used Scherbaum et al. (2004) to determine the hypocentral depth. 

The hypocentral depth and the width of the ruptured fault are then used to determine the depth to 

the top of the rupture. We have provided the equations for fault-based distance metrics RX, RY, 

and RRUP and point-based distance metrics REPI and RHYP. For point-based distance metrics, the 

fault is discretized, and the location of the hypocenter is randomized across the fault based on Mai 

et al. (2005). We have used a virtual site model to model the fault and the site where the fault is 

constant, and the site moves along the fault at a fixed distance. Based on the azimuth angle from 

the fault to the site, the estimated distance also changes significantly. The effect of azimuth angle 

is less pronounced for smaller magnitudes (𝑀 ≤ 6) and at larger distances (𝑅𝐽𝐵 ≥ 100 𝑘𝑚). This 

effect is also not observed in the case of RRUP for a vertical strike-slip fault. We have also discussed 
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the saturation effects, which can be observed for larger magnitudes and at small distances. The 

effect of aspect ratio was determined to be not significant in the estimation of distance metrics.  
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Chapter 4 Mean Models for distance metrics conversions 

4.1 Introduction 

We conducted a non-linear least squares regression analysis for the data to develop a suitable 

empirical relation between RJB and the target distance. For regression, we used the mean value of 

the target distances at different azimuths for a given RJB. To determine the correlation between the 

target distance metric and RJB, we choose an appropriate functional form that best describes their 

relationship. The functional form is dependent on the M, ZTOR, and δ of the fault and can be 

presented as 

Rtarget = f(RJB, 𝑀, δ, ZTOR) + σ (4.1) 

where 𝜎 is the standard deviation due to variations in different parameters such as the location of 

the hypocenter, azimuth, and geometry of the fault. Separate equations have been presented for 

dip-slip faults and vertical strike-slip faults. For the vertical strike-slip faults, the width of the fault 

does not impact the calculation of the target distance, but the width of the fault is an essential 

parameter for the dip-slip fault. Due to this, the final values obtained for both cases are different 

from each other and are better represented if we conduct separate regressions on these datasets. 

Though azimuth angles are an important parameter to accurately determine the target distance 

metrics, we have not included it as a dependent variable. Instead, we have calculated the mean 

target distance across all azimuth angles. For cases with more information, such as the location of 

the hypocenter or azimuth, Approach-3 discussed in section 2.2.3, where each possible source-site 

scenario is simulated, would provide better results than the proposed empirical equations.  The 

proposed empirical equations would only provide mean values considering random azimuth and 

hypocenter locations. 
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4.1.1 Joyner-Boore distance and Rupture distance 

Based on equation (3.16), we determine the mean RRUP for a given RJB at different lengths, widths, 

and dip angles of the fault. Due to symmetry, only azimuth angles from −90° to 90° are used for 

calculation. Separate regression analysis was carried out for vertical strike-slip faults and dip-slip 

faults. At different dip angles, the coefficients for the dip-slip faults are different. The relationship 

between RJB and RRUP for dip-slip faults can be represented as: 

E[RRUP|RJB, M, δ] = RJB + C1 exp(−C2(𝑀 − 5)) exp(−𝐶3RJB) + C4 exp(−C5RJB) ± CFHW + σRUP 

CFHW = C6 exp(C7(M − 5)) exp(−𝐶8RJB) 

(4.2) 

where parameters C1 to C8 are the regression coefficients, and CFHW is the hanging wall and 

footwall parameter. Coefficients C1 to C8 are obtained from regression analysis and are provided 

in Table 4.1. The coefficients for dip angles not listed can be determined using interpolation. σRUP 

is the standard deviation discussed in the next section. The CFHW term is positive on the hanging 

wall side of the fault and negative on the footwall side of the fault. If the location of the site about 

the fault is not known, 𝐶𝐹𝐻𝑊 = 0. The effect of the CFHW term is discussed in later sections. 

For a vertical strike-slip fault, 

E[RRUP|RJB, M, δ] = RJB + C1 exp(−C2(M − 5)
2) exp(−𝐶3RJB) + C4 exp(−C5RJB) + σRUP (4.3) 

The effect of the footwall and hanging wall is not observed for a vertical strike-slip fault. As a 

result, the CFHW term is zero and not included in equation (4.3). As shown in Figure 4.1, the values 

obtained from the empirical equation (represented as lines) closely align with the mean data 

obtained from the equation (represented by dots). For this comparison, the CFHW term is not 

included for all dip angles. RRUP is considerably larger than RJB at shorter distances (<10 km), but 

the values converge at larger RJB (>30 km). RRUP varies with the dip angle of the fault and the 
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magnitude of the earthquake event, though the variation is mainly observed below 20 km. At 

smaller distances, we observe that RRUP decreases as the magnitude increases, though this effect is 

not observed for smaller dip angles (𝛿=30°).  

 

Figure 4.1 Comparison of the ratio of RRUP to RJB versus RJB for dip-slip fault with dip angles of 

𝟑𝟎°, 𝟓𝟎°, and 70°, and vertical strike-slip fault for moment magnitudes of 6 (solid line) and 7 

(dashed line). The dots represent the mean values for the distribution, and the lines represent the 

empirical equations fitted to the distribution. 
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Table 4.1 Coefficients for E [RRUP|RJB, M, 𝜹] at different dip angles for a given Magnitude (M) 

and Joyner-Boore distance (RJB) (azimuth angle (𝜽) and hypocenter location are randomized). 
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4.1.2 Joyner-Boore distance and Epicentral distance 

The azimuth angles from 0° to 90° can model the entire range of possible values for REPI for a 

given RJB at a given length, width, and dip angle of the fault. The regression analysis is performed 

separately for the dip-slip fault (δ ≠ 90°) and vertical strike-slip fault (δ = 90°). The functional 

form that can fit the mean values of REPI at different RJB for a dip-slip fault is 

E[RREPI|RJB, M, δ] = 𝑅𝐽𝐵 + 𝐶1 exp(𝐶2(𝑀 − 5)
2) (𝑅𝐽𝐵

𝐶3 − 𝐶4) + 𝐶5𝑅𝐽𝐵
𝐶6 + 𝐶7 exp(𝐶8(𝑀 − 5)) + 𝜎𝐸𝑃𝐼  (4.4) 

 

Similarly, for the vertical strike-slip fault (𝛿 = 90°), 

E[R𝐸𝑃𝐼|RJB, M, δ] =  RJB + 𝐶1 exp(𝐶2(𝑀 − 5)) (𝑅𝐽𝐵
𝐶3 − 𝐶4) + 𝐶5𝑅𝐽𝐵

𝐶6 + 𝐶7 exp(𝐶8(𝑀 − 5)) + σEPI (4.5) 

where the coefficients C1 to C8 are obtained from regression analysis and presented in Table 4.2. 

σEPI is the standard deviation discussed later. The coefficients are different for different dip angles. 

The coefficients for dip angles not listed can be determined using interpolation. Figure 4.2 shows 

the variation of REPI obtained from the empirical equations with the mean for dip-slip faults with 

dip angles of 30°, 50°, and 70°, respectively. REPI is always greater than or equal to RJB at all 

magnitudes and dip angles. The difference between the two distances is substantial for dip-slip 

faults at higher magnitudes. At RJB of 1 km, REPI for a 30° dip-slip fault is three times greater for 

M 6 and five times greater for M 7. Since the rupture area increases with magnitude, the length 

and width of the fault are large for higher magnitudes, resulting in higher mean REPI values for the 

same RJB values. This effect of large magnitude is less prominent for the vertical strike-slip fault 

since only one fault dimension, the length of the fault, affects REPI. 
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Figure 4.2 Comparison of the ratio of REPI to RJB versus RJB for dip-slip fault with dip angles of 

𝟑𝟎°, 𝟓𝟎°, and 70° for moment magnitudes of 6 (solid line) and 7 (dashed line). The dots represent 

the mean values for the distribution, and the lines represent the empirical equations fitted to the 

distribution. 
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Table 4.2 Coefficients for E [REPI|RJB, M, 𝜹] at different dip angles for a given Magnitude (M) 

and Joyner-Boore distance (RJB) (azimuth angle (𝜽) and hypocenter location are randomized). 

𝛿 C1 C2 C3 C4 C5 C6 C7 C8 

10 3.595 0.2506 0.24 0.8218 -0.9044 0.4764 1.267 0.5607 

20 3.56 0.252 0.239 0.8151 -0.9039 0.4742 1.234 0.5588 

30 3.52 0.2542 0.237 0.8044 -0.9142 0.4688 1.192 0.5495 

40 3.46 0.2568 0.2345 0.7781 -0.9315 0.4609 1.107 0.5342 

50 3.403 0.2601 0.2308 0.7478 -0.9674 0.443 1.023 0.5021 

60 3.377 0.2637 0.2253 0.713 -1.038 0.4296 0.947 0.4405 

70 3.537 0.2653 0.2151 0.6761 -1.319 0.3846 1.064 0.2525 

80 3.846 0.2646 0.2021 0.6551 -1.854 0.3269 1.483 0.0026 

90 0.2211 1.74 0.188 0.7227 -0.00295 1.169 0.5337 0.4944 

 

4.1.3 Joyner-Boore distance and Hypocentral distance 

Due to symmetry, the azimuth angles from 0° to 90° are used to obtain RHYP for a given RJB at 

different magnitudes and dip angles. As discussed, separate regressions are carried out at different 

dip angles. Equation (4.6) provides the equation for the dip-slip fault, and equation (4.7) for the 

vertical strike-slip fault. 

E[R𝐻𝑌𝑃|RJB, M, δ, ZTOR]

= √RJB
2 + ZTOR

2 + 𝐶1 exp(𝐶2(𝑀 − 5)
2) (𝑅𝐽𝐵

𝐶3 − 𝐶4) + 𝐶5𝑅𝐽𝐵
𝐶6 + 𝐶7 exp(𝐶8(𝑀 − 5))

+ σHYP 

(4.6) 
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E[R𝐻𝑌𝑃|RJB, M, δ, ZTOR]

= √RJB
2 + ZTOR

2 + 𝐶1 exp(𝐶2(𝑀 − 5)) (𝑅𝐽𝐵
𝐶3 − 𝐶4) + 𝐶5𝑅𝐽𝐵

𝐶6 + 𝐶7 exp(𝐶8(𝑀 − 5))

+ σHYP 

(4.7) 

where parameters C1 to C8 are regression coefficients and are provided in Table 4.3. ‘M’ is the 

moment magnitude, δ is the dip angle, and ZTOR is the depth to the top of the rupture. σHYP is the 

standard deviation discussed later. 

Apart from magnitude, dip angle, and RJB, RHYP also depends on the depth to the top of the rupture 

(ZTOR). A comparison of the fitting of the mean values with the empirical equation is shown in 

Figure 4.3 for dip angles of 30°, 50°, and 70°, respectively. RHYP increases slightly with increasing 

magnitude at small distances and converges at large RJB values. 

Table 4.3 Coefficients for E [RHYP|RJB, M, 𝜹, ZTOR] at different dip angles for a given Magnitude 

(M), depth to the top of the rupture (ZTOR), and Joyner-Boore distance (RJB) (azimuth angle (𝜽) 
and hypocenter location are randomized). 

𝛿 C1 C2 C3 C4 C5 C6 C7 C8 

10 4.75 0.242 0.2242 0.9981 -0.563 0.579 0.6626 0.7618 

20 4.207 0.2556 0.2203 1.045 -0.5616 0.5622 1.25 0.6849 

30 3.656 0.2706 0.2174 1.082 -0.608 0.5306 1.793 0.6471 

40 3.112 0.2864 0.2162 1.099 -0.7109 0.4867 2.273 0.6175 

50 2.634 0.3028 0.2157 1.101 -0.8945 0.4333 2.746 0.584 

60 2.246 0.319 0.215 1.092 -1.135 0.3839 3.184 0.5505 

70 2.02 0.3321 0.2119 1.065 -1.438 0.3429 3.601 0.511 

80 1.87 0.3429 0.2075 1.041 -1.628 0.3243 3.828 0.4867 

90 1.846 0.3573 0.1933 1.086 -2.031 0.2987 4.533 0.455 

 



 

86 

 

 

Figure 4.3 Comparison of the ratio of RHYP to RJB versus RJB for dip-slip fault with dip angles of 

𝟑𝟎°, 𝟓𝟎°, and 70° for moment magnitudes of 6 (solid line) and 7 (dashed line). The dots represent 

the mean values for the distribution, and the lines represent the empirical equations fitted to the 

distribution. 
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4.2 Residuals  

To evaluate the proposed empirical equation for mean RRUP, we plot the residuals, which are the 

differences between the predicted mean RRUP values and the actual mean RRUP values, as shown in 

Figure 4.4 for M 6 and M 7 for dip-slip faults with dip angles of 30°, 50°, 70°, and for a vertical 

strike-slip fault. For a dip angle of 30°, the difference between the calculated and actual values is 

only ±0.2 km. The maximum difference of 0.4 km can be observed for M 7 at 100 km for a 50° 

dip-slip fault. Similarly, we calculated the residuals for REPI and RHYP. As shown in Figure 4.5 for 

REPI, we can observe a maximum variation of ±3.0 km, though it is observed at large distances 

(>100 km). At smaller distances (< 30 km), the residuals are nearly equal to 0 km at all dip angles. 

We can make similar observations for mean RHYP, as shown in Figure 4.6. 

 

Figure 4.4 Residual values at M 6 and M 7 for mean RRUP at dip angles 30°, 50°, 70°, and for 

vertical strike-slip fault. 
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Figure 4.5 Residual values at M 6 and M 7 for mean REPI at dip angles 30°, 50°, 70°, and for 

vertical strike-slip fault. 
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Figure 4.6 Residual values at M 6 and M 7 for mean RHYP at dip angles 30°, 50°, 70°, and for 

vertical strike-slip fault. 

4.3 Effect of hanging wall and footwall 

Many GMMs have a hanging wall or footwall flag which is used to fix the site on the hanging wall 

or the footwall side of the fault. In this section, we study the impact of the location of the site about 

the fault. For this study, we examine a dip-slip fault with a 50° dip angle at M 7 as shown in Figure 

4.7. We have an 80 km by 80 km plot varying from -40 to 40 in both directions, as shown in Figure 

4.7. The center of the fault is located at the center of the plot (0,0). We generate observation sites 

on the plot with a gridded density of 1 km (only a small sample of observation sites are shown in 

Figure 4.7 for clarity). For each observation point, we calculate the RJB and the target distance 

metric (Rtarget) from the fault. We divide Rtarget by RJB to determine the ratio. We then use the 

calculated ratios to plot the contour map. 
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Figure 4.7 The rectangle represents the projection of the ruptured fault on the surface. The dark 

line represents the projection of the top edge of the ruptured fault. The triangles represent the 

observation sites located at every 1 km RJB from the center (0,0) (Only a small sample of 

observation sites are shown for clarity). The length and width of the fault are based on the 

magnitude and dip angle calculated using Somerville (2014). The center of the fault is (0,0).  

4.3.1 Effect on RRUP  

For the dip-slip fault, RRUP is always measured from the top of the rupture to the site on the footwall 

side of the fault. However, at the hanging wall side of the fault, RRUP is also dependent on the depth 

of the rupture and dip angle. So, RRUP calculated on the footwall side of the fault is always less 

than or equal to RRUP calculated on the hanging wall side of the fault for a constant RJB, as shown 

in Figure 4.8 and Figure 4.9. The RRUP is calculated in Figure 4.8 based on the geometry of the 

fault, as presented in equation (3.16). The RRUP for Figure 4.9 is based on the empirical equations 

for RRUP (equation 4.2). For both figures, the contours of the ratios are closer together on the 

footwall side of the fault, representing smaller RRUP values for the same RJB values. The contours 
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of the ratios are further apart at the hanging side of the fault. Also, RRUP and RJB values are the 

same (representing the ratio of 1) for RJB greater than 15 km for the footwall and 40 km for the 

hanging wall. 

In Figure 4.8, the variation of RRUP is gradual from the footwall to the hanging wall side of the 

fault, but the variation is abrupt in Figure 4.9, as we have used a step function. For a more gradual 

variation, we can use the mean equation of the RRUP for the sites along the width of the fault. We 

have also plotted similar contour plots for Scherbaum et al. (2004). Since they do not differentiate 

between the hanging wall and the footwall side of the fault, the contour lines are uniform across 

the fault as shown in Figure 4.10. 

 

Figure 4.8 Contour plot for the ratio of RRUP to RJB for Magnitude 7 and dip angle 𝟓𝟎°. RRUP is 

calculated using equation (3.16). The contour of the ratios is closer together at the footwall side of 

the fault than the hanging wall side of the fault, as RRUP for a given RJB is smaller at the footwall 

compared to the hanging wall side of the fault. 
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Figure 4.9 Contour plot for the ratio of RRUP to RJB for Magnitude 7 and dip angle 𝟓𝟎°. RRUP is 

calculated using equation (4.2). The contour of the ratios is closer together at the footwall side of 

the fault than the hanging wall side of the fault, as RRUP for a given RJB is smaller at the footwall 

compared to the hanging wall side of the fault. 

 

Figure 4.10 Contour plot for the ratio of RRUP to RJB for Magnitude 7 and dip angle 𝟓𝟎°. RRUP is 

calculated based on Scherbaum et al. (2004). The contour of the ratios is the same on both the 

footwall side of the fault and the hanging wall side of the fault. Scherbaum et al. (2004) also do 

not differentiate between different dip angles for the dip-slip fault so the results would not change 

for other dip angles of the same magnitude. 
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4.3.2 Effect on REPI  

Unlike RRUP, which is a fault-based distance metric, REPI is a point-based distance metric. So, we 

do not observe any effect of hanging wall or footwall on the estimation of REPI. Figure 4.11 shows 

the contour plot for the ratio of REPI to RJB for a dip-slip fault with a dip angle of 50° and M 7. REPI 

is calculated based on the geometry of the fault using equation (3.17). We can observe that the 

contours on the hanging wall side and the footwall side of the fault are similar. The only variation 

is due to the azimuth of the fault to the site. The ratios are higher parallel to the fault and are smaller 

perpendicular to the fault. Figure 4.12 shows the contour plot for the ratio of mean REPI to RJB 

calculated using equation (4.4). Since the mean of the values across all the azimuths of the fault is 

used, the contour is uniform across the fault. 

 

Figure 4.11 Contour plots for the ratio of REPI to RJB for a M 7 earthquake with dip angle 𝟓𝟎°. REPI 

is calculated based on the geometry of the fault using equation (3.17). 



 

94 

 

 

Figure 4.12 Contour plots for the ratio of REPI to RJB for a M 7 earthquake with dip angle 𝟓𝟎°. REPI 

is calculated using the empirical equation (4.4). 

4.3.3 Effect on RHYP 

Similar to REPI, RHYP is also a point-based distance metric, so we do not observe any effect of 

hanging wall or footwall on the estimation of RHYP. Figure 4.13 shows the contour plot for the 

ratio of RHYP to RJB for a dip-slip fault with a dip angle of 50° and M 7. RHYP is calculated based 

on the geometry of the fault using equation (3.18). We can observe that the contours on the hanging 

wall side and the footwall side of the fault are similar. We can also observe the variation due to 

the azimuth of the fault to the site, with the ratios higher parallel to the fault and smaller 

perpendicular to the fault. Figure 4.14 shows the contour plot for the ratio of mean RHYP to RJB 

calculated using equation (4.6). Since the mean of the values across all the azimuths of the fault is 

used, the contour is uniform across the fault. 
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Figure 4.13 Contour plots for the ratio of RHYP to RJB for a M 7 earthquake with dip angle 𝟓𝟎°. 
RHYP is calculated using equation (3.18). 

 

Figure 4.14 Contour plots for the ratio of RHYP to RJB for a M 7 earthquake with dip angle 𝟓𝟎°. 
RHYP is calculated using equation (4.6). 
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4.4 Discussions  

We compared our results with the equations provided by Scherbaum et al. (2004), EPRI (2004), 

and Thompson and Worden (2018). Scherbaum et al. (2004) provided a polynomial equation with 

different coefficients for different distance conversions. Different GMMs have been defined by 

EPRI (2004): three models (GMM-1, GMM-2, and GMM-4) based on RJB, and one model (GMM-

3) based on RRUP. They have also provided equations to convert these distance metrics to REPI for 

each GMM. The assumptions for each published study we have used for comparison are listed in  

Table 4.4. Figure 4.15 shows the variation of the ratio of Rtarget to RJB versus RJB for different 

magnitude events and compares the values with those obtained from other published studies. Since 

Scherbaum et al. (2004) are limited to M 7.5, we have provided a comparison for M 6 and M 7. 

For the ratio of REPI to RJB, Scherbaum et al. (2004) predict higher values at smaller distances (<10 

km), while EPRI (2004) predicts comparatively lower values. The values for the strike-slip model 

developed in this study closely follow other studies for distances greater than 10 km at all 

magnitudes. The values obtained from the proposed empirical equations and Thompson and 

Worden (2018) differ from EPRI (2004) at smaller distances (<10 km) for M 7. The differences in 

values result from different assumptions and methodologies. The calculations used in this study 

and Thompson and Worden (2018) are also independent of GMMs or the oscillator period. Overall, 

the values are consistent with the other published studies.  

The comparison of variation of the ratio of RRUP to RJB versus RJB is also presented in Figure 4.15 

for M 6 and M 7. The comparison is shown for the dip-slip fault. For the comparison, we have 

used a dip angle of 60°, though other dip angles also provide similar results. EPRI (2004) does not 

provide a separate equation to convert between RJB and RRUP. The values obtained from this study 
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are slightly higher at a smaller distance (< 10 km) compared to other published studies for M 6. 

The values are consistent at distances greater than 10 km for all magnitudes. The variation in the 

values at distances less than 10 km directly results from the choice of depth to the top of the rupture 

(ZTOR). At smaller distances, the calculated RRUP is directly affected by ZTOR. ZTOR does not have 

a significant impact on RRUP at large distances. For magnitude 7, the mean RRUP calculated in this 

study is similar to other published studies. For all magnitudes, the calculated RRUP from all the 

studies falls between the RRUP calculated for the hanging wall and the footwall in this study.    

Only Scherbaum et al. (2004) have provided an empirical relationship between RHYP and RJB. The 

values are consistent with this study for M 6 and M 7. For calculation, we have assumed the depth 

to the top of the rupture as 3 km. Similar to RRUP, RHYP is also sensitive to ZTOR value at small 

distances.  

 

Table 4.4 Distance conversion assumptions from different published studies used for comparison 

in this study. 

Description Fault Type Magnitude Scaling relation Aspect Ratio (AR) Depth (km) 

This study Strike-slip Somerville (2014) 1 0-15 

This study Dip-slip Somerville (2014) 1 0-15 

EPRI (2004) Strike-slip Somerville (2004) 3 0-25 

EPRI (2004) Dip-slip Somerville (2004) 2 0-25 

Scherbaum 

et al. (2004) 

Strike-slip 

Dip-slip 

Wells and Coppersmith 

(1994) 
  

Thompson 

and Worden 

(2018) 

Strike-slip Somerville (2014) 1 0-15 

Thompson 

and Worden 

(2018) 

Dip-slip Somerville (2014) 1 0-15 
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Figure 4.15 Comparison with other models for mean distance conversion at Magnitude 6 (left) and 

Magnitude 7 (right) for RRUP, REPI, and RHYP. The mean results for REPI and RHYP are based on the 

strike-slip fault, and the mean results for RRUP are based on the 60° dip-slip fault. The comparison 

is made with other published studies which provide a relationship for the conversion of each 

distance metric. For example, Scherbaum et al. (2004) provide relationships for RJB, RRUP, REPI, 

and RHYP, while EPRI (2004) and Thompson et al. (2018) provide relationships only for REPI, RJB, 

and RRUP. For RHYP, the ZTOR value is fixed at 3 km.  
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4.5 Chapter Conclusion 

In this chapter, we proposed the empirical equations for different distance metrics based on the 

mean values at various azimuths of the fault. The proposed empirical equations are dependent on 

the magnitude of the earthquake, the dip angle of the fault, and the depth to the top of the rupture. 

We have developed the empirical equations for RRUP, REPI, and RHYP. Based on the residual 

calculations for the actual and the predicted target distances, we can conclude that the proposed 

empirical equations can accurately predict the mean of the target distances. The proposed empirical 

equations also include the effect of hanging wall and footwall, which is not observed in other 

similar distance metric prediction equations. Overall, the result from the proposed empirical 

equations provides values similar to other published studies. The proposed empirical equations can 

be used in seismic hazard analysis to convert from RJB to other distance metrics for any ground 

motion models for the stable continental region. 
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Chapter 5 Capturing the uncertainty in distance metric conversions 

5.1 Introduction 

The proposed empirical equations discussed in Chapter 4 provide the mean target distance for a 

given magnitude, dip angle, and Joyner-Boore distance. There are several uncertainties in the 

calculated distance metrics associated with the variation in azimuth angle from the site to the fault, 

location of the hypocenter, distribution of hypocenter location, and directivity effects. To 

accurately determine the seismic hazard of an area, it is crucial to consider the effect of these 

uncertainties in the calculated hazard (Kayastha et al., 2022b). In this chapter, we have proposed 

empirical equations to capture the uncertainties in the distance metrics conversions for each target 

distance metric. The proposed equations are based on the magnitude (M) of the earthquake event, 

the Joyner-Boore distance (RJB), and the dip angle of the fault. Our dataset has considered 

variations along different azimuth angles from the fault. We have also considered variations for 

the rupture area of the fault for the same magnitude using epsilon values ranging from -3 to 3 for 

the magnitude scaling relationship Somerville (2014).  We have also assumed various locations 

for the hypocenter along the length, width, and depth of the fault based on Mai et al. (2005). The 

effects of directivity have not been considered in this study. 

5.2 Sigma Models for distance metrics conversion 

5.2.1 Rupture distance and Joyner-Boore distance 

The sigma for RRUP is based on M, δ, and RJB and can be represented as follows: 

σ[RRUP|RJB,M,δ] = C1exp (C2(M − 5)) ∗ exp (−C3RJB) (5.1) 

where regression coefficients C1 to C3 are provided in Table 5.1 as a function of dip angles. The 

coefficients differ for the mean, hanging wall, or footwall side of the fault. For the vertical strike-
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slip fault, only coefficients for the mean are provided, as there is no hanging wall effect. As 

discussed previously, the coefficients for dip angles not listed can be determined by interpolation. 

The sigma values increase with increasing dip angle for smaller magnitudes (M<6.0). Above M 

6.0, no specific trends between the sigma and dip angle could be observed. The sigma also 

increases with increasing magnitudes for all dip angles. However, there is a decrease in sigma with 

increasing distance since there is less variation in values at larger distances (because RJB and RRUP 

are almost the same at large distances).  

Table 5.1 Coefficients for calculation of 𝝈[𝑹𝑹𝑼𝑷|𝑹𝑱𝑩,𝑴,𝜹] at different dip angles for a given 

Magnitude (M) and Joyner-Boore distance (RJB) (azimuth angle (𝜽) and hypocenter location are 

randomized). 

dip 

Mean Footwall Hanging wall 

c1 c2 c3 c1 c2 c3 c1 c2 c3 

10 0.1807 0.4005 0.0385 0.2132 0.3418 0.04356 0.1886 0.3921 0.03496 

20 0.346 0.4005 0.03749 0.4249 0.3353 0.04934 0.353 0.3982 0.03056 

30 0.4837 0.3958 0.03597 0.6296 0.3264 0.05632 0.4771 0.3994 0.02592 

40 0.591 0.3816 0.03438 0.8203 0.3138 0.06418 0.5559 0.3908 0.02145 

50 0.6763 0.3507 0.0333 0.9861 0.295 0.07151 0.5961 0.3655 0.01749 

60 0.7653 0.2982 0.03472 1.114 0.2704 0.07638 0.6219 0.3137 0.01495 

70 0.9143 0.2416 0.04623 1.201 0.2477 0.07897 0.698 0.2435 0.01845 

80 1.124 0.213 0.06916 1.251 0.2321 0.08013 0.9934 0.1898 0.05233 

90 1.091 0.3018 0.07638       
 

5.2.2 Epicentral distance and Joyner-Boore distance 

The standard deviation for REPI at a given RJB, M, and 𝛿 for dip-slip fault can be determined using 

the equation: 

σ[R𝐸𝑃𝐼|RJB,M,δ] = 𝐶1 exp(𝐶2(𝑀 − 5)) (𝑅𝐽𝐵
𝐶3 − 𝐶4) + 𝐶5𝑅𝐽𝐵

𝐶6 (5.2) 
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The coefficients C1 to C6 are determined using regression and listed in Table 5.2. The coefficients 

are different for different dip angles. The sigma value increases with increasing magnitude and 

distance. Though sigma increases with dip angles at a smaller magnitude and RJB, at large 

magnitudes, there is no significant variation in sigma values for different dip angles. 

Table 5.2 Coefficients for calculation of 𝝈[𝑹𝑬𝑷𝑰|𝑹𝑱𝑩,𝑴,𝜹] at different dip angles for a given 

Magnitude (M) and Joyner-Boore distance (RJB) (azimuth angle (𝜽) and hypocenter location are 

randomized). 

𝛿 C1 C2 C3 C4 C5 C6 

10 0.07256 1.71 0.3498 0.5909 0.7239 -0.2208 

20 0.07344 1.708 0.3493 0.5906 0.7198 -0.2371 

30 0.07504 1.704 0.3483 0.5921 0.7148 -0.2657 

40 0.07752 1.697 0.3467 0.5918 0.7103 -0.3078 

50 0.08021 1.691 0.3451 0.5899 0.7049 -0.3563 

60 0.08405 1.683 0.343 0.5895 0.7101 -0.4151 

70 0.09132 1.668 0.3392 0.5999 0.7467 -0.4853 

80 0.1031 1.646 0.332 0.6298 0.8473 -0.5442 

90 0.1678 1.848 0.1752 0.9409 1.494 -0.4161 

 

5.2.3 Hypocentral distance and Joyner-Boore distance 

The standard deviation for RHYP at a given RJB, M, and 𝛿 for dip-slip faults can be determined 

using the equation: 

σ[R𝐻𝑌𝑃|RJB,M,δ] = 𝐶1 exp(𝐶2(𝑀 − 5)) (𝑅𝐽𝐵
𝐶3 − 𝐶4) + 𝐶5𝑅𝐽𝐵

𝐶6 + 𝐶7 exp(𝐶8(𝑀 − 5)) (5.3) 

 

Similarly, for the vertical strike-slip fault (𝛿 = 90°), 
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σ[R𝐻𝑌𝑃|RJB,M,δ] = 𝐶1 exp(𝐶2(𝑀 − 5)
2) (𝑅𝐽𝐵

𝐶3 − 𝐶4) + 𝐶5𝑅𝐽𝐵
𝐶6 + 𝐶7 exp(𝐶8(𝑀 − 5)) (5.4) 

The coefficients C1 to C8 are determined using regression and listed in Table 5.3. The coefficients 

differ for different dip angles, and the sigma value increases with magnitude, dip angle, and 

distance. For large magnitudes (M>7.5), there is no considerable variation in sigma values for 

different dip angles. 

Table 5.3 Coefficients for calculation of 𝝈[𝑹𝑯𝒀𝑷|𝑹𝑱𝑩,𝑴,𝜹,𝒁𝑻𝑶𝑹] at different dip angles for a given 

Magnitude (M), depth to the top of the rupture (ZTOR), and Joyner-Boore distance (RJB) (azimuth 

angle (𝜽) and hypocenter location are randomized). 

𝛿 C1 `C2 C3 C4 C5 C6 C7 C8 

10 0.06713 1.735 0.3506 0.5713 0.4025 -0.3045 0 0 

20 0.06924 1.737 0.346 0.6179 0.9081 -0.4381 0 0 

30 0.07177 1.737 0.3418 0.6587 1.456 -0.4835 0 0 

40 0.03256 1.897 0.4069 0.9976 -0.05961 0.7247 0.7838 0.6469 

50 0.03361 1.897 0.4038 1.006 -0.2863 0.4537 1.32 0.4966 

60 0.03339 1.904 0.4048 1.063 -0.4847 0.3859 1.72 0.4531 

70 0.03449 1.898 0.4062 1.133 -0.5475 0.3862 1.903 0.4562 

80 0.03582 1.89 0.408 1.242 -0.4631 0.4328 1.848 0.505 

90 0.7622 0.3002 0.405 1.168 -0.9389 0.4699 2.303 0.4218 

 

5.3 Residuals 

We have also plotted the residuals for the sigma of RRUP, REPI, and RHYP for M 6 and M 7 at dip 

angles of 30°, 50°, and 70°, and for the vertical strike-slip fault as shown in Figure 5.1, Figure 5.2, 

and Figure 5.3 respectively. The residual values are similar to the mean values, with a residual 
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sigma variation of ±0.4 km for RRUP, ±2 km for REPI, and ±3 km for RHYP. For all cases, the 

residual values are closer to 0 at small distances (RJB < 30 km). 

 

Figure 5.1 Residual values at M 6 and M 7 for sigma of RRUP at dip angles 30°, 50°, 70°, and for 

vertical strike-slip fault. 
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Figure 5.2 Residual values at M 6 and M 7 for sigma of REPI at dip angles 30°, 50°, 70°, and for 

vertical strike-slip fault. 
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Figure 5.3 Residual values at M 6 and M 7 for sigma of RHYP at dip angles 30°, 50°, 70°, and for 

vertical strike-slip fault. 
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comparison would not be valid. Similarly, Thompson and Worden (2018) use REPI as a reference 

distance, so a direct comparison of sigma is not possible. 
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Figure 5.4 Compares the standard deviation for REPI, RHYP, and RRUP versus RJB obtained from this 

study and Scherbaum et al. (2004) for Vertical Strike-slip fault for Magnitude 6 and Magnitude 7.  
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Chapter 6 Applications 

6.1 Application in GMMs 

In performing PSHA, one must consider whether the source modeling approach is consistent with 

the distance metric used in the GMMs and can be included in PSHA by calculating an additional 

variability due to the conversion from RJB to other distance metrics. The total sigma can be 

calculated using the law of propagation of error as follows: 

σtotal = √σGMM
2 + ∆σ2 

∆σ2 = (
∂ ln(Y)

∂RGMM
)

2

σ
[RGMM|RPSHA, M, δ]
2  

(6.1) 

where σGMM is the standard deviation for the GMM, ln(Y) is the natural logarithm of the ground 

motion and σ[RGMM|RPSHA, M, δ]
 is the standard deviation for the conversion from GMM distances 

to PSHA distances. The GMMs can be based on RJB or RRUP. If the GMM is based on RJB and the 

PSHA is based on REPI, then: 

∆σ2 = ∆σ
[RJB|REPI, M, δ]
2 = (

∂ ln(Y)

∂RJB
)

2

σ
[RJB|REPI, M, δ]
2  (6.2) 

σ
[RJB|REPI, M, δ]
2 = [

∂RJB

∂REPI
]

2

σ
[REPI|RJB, M, δ]
2  (6.3) 

We can directly calculate the 
∂RJB

∂REPI
=

1

(
∂REPI
∂RJB

)
 (using the empirical equation for REPI; 

∂REPI

∂RJB
≠ 0), or 

we can use the Taylor series expansion. Using the Taylor series, we can consider only the first-

order approximation of the second moment obtained from the Taylor expansion for simplicity. If 
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there is no empirical relation between the distance metrics, we can use the following 

approximation: 

∂RJB

∂REPI
=

2∆RJB

< REPI >RJB+∆RJB −< REPI >RJB−∆RJB
 (6.4) 

In which < REPI >RJB+∆RJB is the mean REPI for a given reference distance of RJB + ∆RJB. Since 

we have the relation between different distance metrics in our case, we can directly calculate 
∂RJB

∂REPI
. 

σ
[REPI|RJB, M, δ]
2  can be calculated using equation (5.2) for different magnitudes and dip angles. 

Similarly, for a GMM based on RRUP and a PSHA based on REPI, 

∆σ2 = ∆σ
[RRUP|REPI, M, δ]
2 = (

∂ ln(Y)

∂RRUP
)

2

σ
[RRUP|REPI, M, δ]
2  (6.5) 

We can also calculate similar values for RRUP and RHYP using equation (5.1) and equation (5.3), 

respectively. 

6.2 Application in NSHMP-haz 

Powers et al. (2022) developed USGS National Seismic Hazard Mapping Project (NSHMP) codes 

for performing PSHA for the US and its territories. We modified the NSHMP-haz software to 

calculate the RRUP using the proposed empirical equations. We conducted a seismic hazard study 

at four different sites for a vertical strike-slip fault and a dip-slip fault with a dip angle of 50°, as 

shown in Figure 6.1. For the comparison, we have used Pezeshk et al. (2011) as the GMM, which 

uses RRUP as the reference distance, to determine the hazard. We assume a fault capable of 

generating an earthquake of M 7. The rupture dimensions are calculated based on Somerville 

(2014). The depth to the top of the rupture is calculated using Scherbaum et al. (2004). For M 7, 
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the ZTOR is 3.54 km for the vertical strike-slip fault and 3.42 km for the dip-slip fault with a 50° 

dip angle. Assigning different ZTOR values would result in larger differences in the hazard. The 

activity rate is set to 1 in 500 years. We also calculated the hazard for activity rates of 1 in 1000 

years, 1 in 2500 years, and 1 in 10000 years, but the relative differences between the hazard 

calculated based on original codes and modified codes (which uses the empirical equation for RRUP 

developed herein) are similar. We found that these equations provided comparable hazard results 

to those determined using NSHMP-haz for the vertical strike-slip fault as shown in Figure 6.2. The 

predicted hazard is lower using the proposed empirical equations since it predicted slightly higher 

values for RRUP. The difference is negligible at RRUP greater than 20 km, as observed by the 

minimum variation in hazard calculated for Site 4. For the dip-slip fault, the difference is much 

higher, as shown in Figure 6.3. The hazard may also be higher or lower than those predicted by 

the NSHMP-haz software, based on the location of the site (hanging wall or footwall).  

NSHMP-haz uses different rupture scaling relationships to determine the ruptured dimensions 

based on magnitude. These scaling relationships, such as “   M_  M   ILL ” have sigma 

associated with them, so we may obtain a range of ruptured area values (and their respective length 

and width) for a given magnitude. The empirical equations used here have considered different 

ruptured area values for a given magnitude, resulting in a wide range of values. Due to this 

variation, there is a difference in the calculated hazard. Figure 6.4 shows the variation of hazard 

for distances at one standard deviation above and below the mean for a vertical strike-slip fault for 

Site 1 and Site 4. This difference is more prominently observed for dip-slip faults, where the width 

of the fault is also an important parameter, as shown in  Figure 6.5 for Site 2 and Site 4. 
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Figure 6.1 Location of the sites about the fault for M 7 earthquake for vertical strike-slip fault (a) 

and dip-slip fault with 50° dip angle (b). The line represents the fault, and the points represent the 

location of the sites. 

 

 

Figure 6.2 Hazard curves at different sites for Peak Ground Acceleration (PGA) and activity rate 

of 1 in 500 years for a vertical strike-slip fault. The dotted lines represent the values obtained from 

NSHMP-haz software, and the solid lines represent the values obtained using the empirical 

equations proposed in this study (KPT23). 
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Figure 6.3 Hazard curves at different sites for Peak Ground Acceleration (PGA) and activity rate 

of 1 in 500 years for dip-slip fault with 50° dip angle. The dotted lines represent the values obtained 

from NSHMP-haz software, and the solid lines represent the values obtained using the empirical 

equations proposed in this study (KPT23). 
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Figure 6.4 Hazard curves at Site 1 (top) and Site 4 (bottom) for Peak Ground Acceleration (PGA) 

and activity rate of 1 in 500 years for Vertical Strike-Slip fault. The solid line represents the hazard 

calculated using the mean distance obtained from the proposed empirical equations. The boundary 

represents the hazard calculated at mean ± 1 sd distance. The dashed line represents the hazard 

obtained from NSHMP-haz software. 
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Figure 6.5 Hazard curves at Site 2 (top) and Site 4 (bottom) for Peak Ground Acceleration (PGA) 

and activity rate of 1 in 500 years for Dip-Slip fault with dip angle 50°. The solid line represents 

the hazard calculated using the mean distance obtained from the empirical equations. The 

boundary represents the hazard calculated at mean ± 1 sd distance. The dashed line represents the 

hazard obtained from NSHMP-haz software. 

6.3 Application in PSHA 

In PSHA, the integral over various seismic sources, such as faults and areal sources, is conducted 

for each site for different magnitudes and distances. Areal sources are assigned when we do not 
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have enough information about the fault, such as in some regions of CEUS. They are generally 

used for low and moderate seismicity. The areal source is subdivided into grids where each grid 

acts as a point source. The distance from each point source to the site can be described using point-

based distances such as REPI or RHYP. Since we do not have enough information about the fault in 

such cases, it is challenging to use fault-based distances such as RJB and RRUP.  

The total variation in the calculated seismic hazard due to the conversion of distance and their 

associated uncertainties can be demonstrated by considering a simple seismic source. We have 

considered a circular seismic source with a radius of 100 km. The seismicity of the source follows 

a truncated exponential model with λ(M ≥ 5) = 0.0395 and a b-value of 0.9. The magnitude is 

truncated from 5.0 to 7.5. The magnitude and distance are restricted to 7.5 and 100 km, 

respectively, to adhere to the limitation of Scherbaum et al. (2004). We have used two GMMs to 

conduct PSHA calculations: Pezeshk et al. (2011) based on RRUP (referred to as PZT11) and Boore 

et al. (2014) (referred to as BSSA14) based on RJB. The seismic source is divided into grids, each 

acting like a point source. A site is assumed at the center of the areal seismic source. We calculate 

the epicentral distance by measuring the distance from each point source to the site. However, the 

GMM is based on RRUP or RJB. Hence, we need to convert the distances for consistency between 

the PSHA and GMM.  

At a sample REPI of 30 km for a vertical strike-slip fault of magnitude 7.0, we obtain a RJB of 21.1 

km and a RRUP of 23.4 km. So, for a 30 km REPI used in the PSHA for an areal source, we need to 

use a RRUP of 23.4 km in PZT11 and 21.1 km in BSSA14 for consistency. Since the equivalent 

RRUP and RJB are smaller than the REPI in this example, it increases the calculated seismic hazard. 

In this example, there is no direct way to convert from REPI to RJB since the equations developed 
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in this study are based on RJB. So, we determine REPI values for different RJB values for a given 

magnitude using equations (4.4, 4.5) and populate a table. We can use this table to determine RJB 

values for the required REPI values, which can be used in BSSA14. We can use the calculated RJB 

values to determine RRUP for a given magnitude and dip angle using equations (4.2, 4.3) in PZT11.  

The additional sigma due to distance conversion must also be included in the PSHA to obtain 

accurate seismic hazard results. The equation for the derivative of the GMM, which is necessary 

to determine the total sigma, is discussed in the appendix. Based on the mean and the total sigma, 

we determine the mean exceedance at different magnitudes and distances to calculate the seismic 

hazard. Figure 6.6 shows the mean annual exceedance of hazard based on PZT11 and BSSA14. 

The solid red lines represent the hazard without any distance conversion. The black dashed lines 

represent the hazard calculated based on the proposed empirical equations (referred to as KPT23). 

We have also included comparisons for Thompson and Worden (2018) (referred to as TW18) and 

Scherbaum et al. (2004) (referred to as SSC04). For PZT11, based on RRUP, we can observe a 

significant increase in the calculated mean annual frequency of exceedance as the spectral 

acceleration (SA) increases. The increase in the values is smaller for KPT23 compared to TW18 

and SSC04. For a SA value of 2.0 g, the hazard increases by a factor of 1.4 for KPT23, 9.2 for 

SSC04, and 44 for TW18. The values for TW18 appear to saturate as the spectral values increase. 

The mean values for the distance conversions for different studies, as discussed in section 4.4, do 

not vary significantly. However, there is significant variation in sigma values for the different 

studies. The sigma value for RRUP decreases as the distance increases for SSC04 and KPT23. 

However, the sigma value for RRUP increases with the distance for TW18. SSC04 also has a higher 
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sigma variation compared to KPT23. As a result, other published studies report higher values for 

the same SA values.  

Similarly, we can observe an increase in the mean annual exceedance rate for BSSA14, based on 

RJB, for the distance conversion equations provided in all the published studies. Unlike the 

variation observed for PZT11, the hazard values are similar for KPT23 and TW18. SSC04 has 

higher values compared to others. For a SA value of 2.0 g, the hazard increases by a factor of 1.9 

for KPT23, 2.1 for TW18, and 3.3 for SSC04. Hence, one must convert to appropriate distances 

and project their uncertainties in the PSHA calculations to obtain accurate seismic hazards. 
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Figure 6.6 Annual hazard curves for a circular seismic source with a radius of 100 km based on 

RRUP-based GMM (Pezeshk et al., 2011) (top) and RJB-based GMM (Boore et al., 2014) (bottom) 

using distance conversion equations developed in this study (KPT23). Annual hazard curves 

without distance conversion and those based on Thomson and Worden (2018) (TW18) and 

Scherbaum et al. (2004) (SSC04) are also shown for reference. 
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Chapter 7 Conclusion, Contributions, and Future Work 

7.1 Conclusion and Contributions 

This study provides empirical relations among different distance metrics. The equations were 

developed with an emphasis on stable continental regions. As a result, we have used Somerville 

(2014) to describe the relationship between the rupture area and the magnitude of the earthquake. 

We have demonstrated that RJB can be effectively used to determine other source-to-site distance 

metrics based on the properties of the fault. We determined the differences between the various 

distance metrics and RJB. These differences can be described using a gamma distribution. The 

functional forms for Rtarget are based on the magnitude and the dip angle of the fault (also ZTOR for 

RHYP) for a random azimuth and hypocenter location. Since the empirical equations provide a mean 

estimate of the required distance measure for a given magnitude and the dip angle of the fault, 

these equations may not be effective when the location of the hypocenter or the azimuth of the 

fault is known. A method to determine the sigma of the obtained results has also been discussed. 

These equations are helpful in PSHA to reliably convert from RJB to other rupture-based distances 

(RRUP) and point-based distances (REPI and RHYP). The equations for variability can be used to 

obtain the total sigma for use in PSHA. To use these equations, we only need basic information on 

the type of faulting, applicable source-scaling equations, and the dip angle of the fault based on 

available geologic and tectonic information. If the dip angle is unknown, we can assume a dip 

angle of 40° (Kaklamanos et al. 2011) and apply appropriate sigma values.  

Though these distance metrics are closer to each other at large distances, there are significant 

differences between them at smaller distances. Ignoring these differences will result in inaccurate 

seismic hazard calculations closer to the fault. With interest high in developing accurate ground-
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motion models (GMMs) for near-fault areas, we should also consider the effect of different 

distance metrics in PSHA to obtain accurate seismic hazards of the area. Unlike previous models 

developed by EPRI (2004) and Scherbaum et al. (2004), which are only dependent on magnitude, 

the proposed models also depend on the effect of the dip angle for estimating different distance 

measures. The Scherbaum et al. (2004) model is also highly unstable for larger magnitudes (greater 

than 7.5) and distances greater than 100 km. We also consider the effect of hanging wall and 

footwall for the conversion of RRUP. The empirical equations developed in this study are purely 

based on the geometry of the fault and are not dependent on the GMMs. Hence, the equations can 

be applied directly in seismic hazard applications for any preferred GMMs, which avoids complex 

integrations involved in (Thompson and Worden, 2018) and (Tavakoli et al., 2018). We can better 

estimate the seismic hazard for the region of interest by using the distance conversion equations 

and their respective uncertainties. 

7.2 Future Work 

The researcher is interested in pursuing this research or recommends extending this research 

in the following directions:  

• The current empirical models apply to GMMs that are based on only one distance metric. 

However, there are currently many GMMs that may be based on multiple distance 

metrics. An appropriate method should be developed to include uncertainty due to using 

multiple distance metrics in a single GMM for use in PSHA. 

• The proposed empirical models cannot be used for faults with a particular azimuth. As 

discussed in section 3.4.2, variation in the azimuth angle can significantly impact the 

required distance adjustment. For cases when the exact azimuth angle is known, this 
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approach may not provide an accurate result for estimating the seismic hazard. 
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Appendix: Calculation of derivative for the GMMs 

The equation for Pezeshk et al. (2011) is 

log(Y) = C1 + C2Mw + C3Mw
2 + (C4 + C5MW)min(log(R) , log(70))

+ (C6 + C7Mw)max (min (log (
R

70
) , log (

140

70
)) , 0)

+ (C8 + C9Mw)max (log (
R

140
) , 0) + C10R 

R = √RRUP
2 + C11

2  

(A.1) 

The derivative can be calculated as follows: 

dlog(y)

dRRUP
= (C4 + C5Mw)min1 + (C6 + C7Mw)maxmin2 + (C8 + C9Mw)max3

+ C10
RRUP
R

 

(A.2) 

min1 = {

RRUP
ln(10) R

        R ≤ 70

0                      R ≥ 70

 

maxmin2 = {

0                        R ≤ 70
RRUP

ln(10) R 
       70 ≤ R ≤ 140

0                    R ≥ 140

 

max3 = {

0                   R ≤ 140
RRUP
ln(10) R

    R ≥ 140
 

(A.3) 

The coefficients are provided in Pezeshk et al. (2011). 

The derivative for Boore et al. (2014) can be calculated as: 
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∂(lnY)

∂RJB
=
∂Fp

∂RJB
(1 +

f2PGAr
f3 + PGAr

) 

∂Fp

∂RJB
= RJB (

1

R2
[c1 + c2(M −Mref)] +

1

R
[c3 + ∆c3]) 

 

(A.4) 

FP (the path function), R (a function of RJB), and f2 are defined in Boore et al. (2014). PGAr is the 

peak ground acceleration for a reference rock at a shear wave velocity of 760 m/s. c1, c2, c3, ∆c3, 

and f3 are constants.  
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