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Abstract  

The impact of maternal body mass index (BMI) on offspring health outcomes such as 

obesity has been widely investigated, with evidence suggesting that in-utero conditions may 

influence DNA methylation (DNAm) and BMI developmental trajectories. However, it is unclear 

whether differential DNAm on sites with a cytosine followed by a guanine linked by phosphate 

dinucleotide (CpG) related to gestational BMI are linked to BMI changes in offspring. Using data 

from the Isle of Wight birth cohort, UK, this study aims to investigate BMI trajectories and 

address the role of DNAm. 

Using trajectory analysis four distinct BMI developmental trajectories - ‘normal’ (n= 

1042), ‘early persistent obesity’ (EPO, n=61), ‘early transient overweight’ (ETO, n=185), and 

‘delayed overweight’ (DOW, n=149) - that spanned first 26 year of life were identified. The 

trajectories were found to be influenced by gestational BMI. 

To identify CpGs related to gestational BMI academic database were explored and 

1,090 CpGs were found in the IOW cohort data as candidate CpGs for specific aims 2 and 3 out 

of 1,773 differentially methylated CpGs reported in prior investigations. Fourteen of these 

candidate CpGs were found to be significantly associated with BMI trajectories, two survived 

multiple testing. Higher methylation of cg23089913 (NANOS1 gene) was associated with 

decreased odds of being in the EPO trajectory with an odds ratio of 0.84 (95%CI: 0.76-0.93). In 

contrast, increased methylation of cg13217064 (SOX14) was associated with a 1.4 times higher 

odds (95%CI: 1.13-1.67) of being in the DOW compared to the 'normal' trajectory. 

Finally, associations between candidate CpGs and repeated BMI measurements from 

infancy to 26 years of age were investigated.Five CpGs - cg00488692 (SP3), cg14434213 

(RNF5P1), cg23089913 (NANOS1), cg26862527 (BAI3), and cg17812850 (TMEM184C) were 

found to be statistically significantly linked with BMI. Female participants exposed to prenatal 
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paternal smoking and mixed feeding during infancy had a higher BMI, while male participants 

with lower birth weight had 0.4 kg/m2 higher BMI. 

The study identified candidate CpGs on genes critical to metabolic disorders and 

provides a basis for further investigations to understand the biological role of DNAm sites in BMI 

development. 
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Chapter 1 

1. Introduction 
 

Over the last two decades, obesity and being overweight have become a major public 

health crisis, with a global increase in childhood obesity [1]. The prevalence of obesity has risen 

to 23.8% and 22.6% in boys and girls, respectively, in developed countries, and 12.9% and 

13.4% in boys and girls, respectively, in developing countries [2]. In children, the United States 

is one of the 34 countries with the highest prevalence of overweight (25.1%) and obesity (6.8%) 

while Lithuania showed the lowest prevalence of overweight and obesity in school-aged children 

[3].The prevalence of obesity varied with age, gender, race/ethnicity, and region [1-4]. 

Children who are overweight in childhood tend to be obese in their adulthood [5]. In 

children, obesity was also found to be associated with chronic comorbidities such as elevated 

cholesterol levels which may lead to adverse cardiac health outcomes and elevated blood 

pressure [6], increased risk of diabetes and a certain type of cancers in adults [7]. There is a 10-

fold increased risk of Type II diabetes (non-insulin dependent diabetes mellitus) in obese 

children aged 5–10 years [8]. Obesity does not only impact the individual’s health but also 

increases the economic burden for individuals, families, and healthcare systems. Of a countries’ 

health care cost, 0.7% to 2.8% is attributable to obesity-related health issues. Individual’s 

medical costs of obese individuals are approximately 30% higher compared to normal 

individuals [9]. It has been speculated that the medical cost associated with obesity will increase 

to $44 - 66 billion/year and £1.9 – 2 billion/year in US and UK by 2030 [10]. Given the impact of 

childhood obesity on obesity-related health outcomes in adulthood and economic burden on 

individual families and health care system, identifying risk factors that are related to obesity in 

early childhood is critical. These risk factors may assist to identify the children who are at higher 

risk of becoming obese adults and develop health promotion strategies. 
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Intrauterine, perinatal, and early childhood risk factors 

Maternal smoking during pregnancy, maternal pre-pregnancy body mass index (BMI), 

birth weight, and formula feeding are a few known major risk factors for childhood and 

adolescence obesity [11, 12]. For a population-based birth-cohort in Brisbane, Australia, it was 

reported that the prevalence of obesity at the age of 14 years was higher in offspring’s of the 

mothers who smoked during pregnancy [13]. Similar effects were observed with maternal pre-

pregnancy BMI and offspring BMI. Maternal pre-pregnancy BMI is an independent risk factor for 

offspring obesity and obese mothers often delivered infants with high birth weight [14, 15]. A 

prospective study by Riley et al [11] and Pirkola et al [16] showed that maternal pre-pregnancy 

BMI was positively associated with the offspring BMI in early childhood (7 years of age) and at 

age 16 years suggesting the long-term influence of maternal pre-pregnancy BMI. 

Epidemiological studies to date have demonstrated a direct association between the maternal 

pre-pregnancy BMI and offspring BMI, but the underlying mechanism is unknown. Hence, it is 

important to investigate links between the maternal pre-pregnancy BMI and offspring BMI in 

next generation. 

Trajectories of childhood obesity 

Cross-sectional and/or longitudinal studies often have focused on the specific period of 

life. Only recently, the interests on individual development pattern of BMI, called trajectories, 

has increased. Analyses of trajectories of BMI will help to identify whether individual trends in 

BMI leading to obesity later in life are related to early life risk factors. For instances, early life 

unhealthy eating may predict obesity in later life [17]. Hence, modifying eating habits in early 

childhood may modify the obesity risk in later life. A longitudinal study from rural upstate New 

York [18] demonstrated that early childhood poverty influences BMI trajectories, i.e., children 

who experienced poverty in early childhood are more likely to gain weight and tend to be obese 

in their adolescence [18]. Interestingly, BMI trajectories can also predict later life mortality; and 
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the effect of these associations seems not to be confounded by the race or sex [19]. In addition, 

Huang et al reported that developmental trajectories of childhood obesity in children aged 6 to 

18 are not influenced by adolescence behaviors such as smoking, alcohol consumption etc. 

[20]. Hence, these findings based on longitudinal studies suggest that the BMI trajectories are 

set early, e.g., before the age of 6 years, and may not be influenced by race and/or behavioral 

changes at a later age. In conclusion, identifying the age at which the BMI trajectories are 

initiated and associated with modifiable risk factors (intrauterine or early childhood) will provide 

a unique opportunity to modify these risk factors and implement health promotion strategies 

very early in life. 

BMI trajectories from infancy to 18 years of age had been investigated in population birth 

cohorts and the long-term effects of prenatal exposures such as maternal smoking during 

pregnancy on these trajectories were demonstrated [21]. In the Isle of Wight birth cohort study, 

four BMI trajectories (normal, early persistent obesity, delayed overweight and early transient 

overweight) spanning age 1 to 18 years were identified [21]. These findings suggest that 

children who were obese (early persistent obesity group) or normal, respectively, by the age of 

four tend to be obese or normal at ages 10 and 18 years while the other two groups remained 

transient. However, it is yet to be understood if these BMI trajectories can be extended to 

adulthood until age of 26 years. 

Findings from the Isle of Wight birth cohort also demonstrated that offspring’s BMI 

trajectories were influenced by maternal smoking during pregnancy, explaining the critical role 

of intrauterine exposure that tunes the offspring obesity risk from birth to adolescence [21]. As 

highlighted above [11, 16], maternal pre-pregnancy BMI is associated with the offspring BMI in 

early childhood (age 7 years) and adolescence (16 years of age). However, the influence of 

maternal pre-pregnancy BMI on the offspring BMI trajectories from infancy to adolescence has 

not been studied yet. It is important to investigate the relationship between pre-pregnancy 
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maternal BMI and offspring BMI trajectories and to better understand the intrauterine and long-

term effects of maternal pre-pregnancy BMI on offspring BMI. 

Intrauterine exposures may initiate epigenetic modification in offspring  

Molecular mechanisms such as, but not limited to epigenetic processes-DNA 

methylation (DNAm), histone modifications, and gene expression are known to play a critical 

role in the individual's health [22, 23]. These markers can be altered by environmental 

exposures [24, 25] and establish a memory of past exposures [26]. DNAm, the addition of a 

methyl group to a cytosine followed by a guanine linked by phosphate dinucleotide (CpGs) [27], 

is one of the epigenetic processes that has been extensively studied. DNAm programming can 

be initiated in utero and the offspring may carry a memory of DNAm markers related to 

intrauterine exposures. For instances, maternal smoking during pregnancy influences 

differential methylation at birth (cord blood) in offspring [28] and such effects can continue into 

later childhood [29]. A large prospective birth cohort in South West England showed persistent 

differential methylation patterns at some CpGs, observed at birth, age seven, and 17 years, that 

were associated with maternal smoking during pregnancy [30]. 

Lawlor et al [31] reported that maternal obesity is linked to higher BMI in offspring, and 

suggested this connection may be explained by epigenetic changes. A systematic review 

yielded comparable results, indicating that epigenetic memories developed in the fetal and early 

life environment can impact BMI in later life. [32]. These findings emphasize the significance of 

epigenetic mechanisms, which could provide the connections between maternal pre-pregnancy 

factors and BMI in offspring. In 2009, Gemma et al found a positive relationship between 

methylation of the promoter of the peroxisome proliferator-activated receptor γ coactivator 1 α 

gene (PPARGC1A) in umbilical cord blood cells and maternal BMI [33]. An epigenome-wide 

association study (EWAS) in 2014 using a 27K bead chip identified 20 CpGs that were 

differentially methylated in offspring of obese mothers compared to those of normal-weight 
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mothers [34]. In further studies, the epigenome-wide assessments covered more CpGs: Illumina 

Infinium 450k bead chip covers ~1.6% of the genome with provided information on > 450,000 

CpGs. More recently, using the Illumina Infinium 450k bead chip, Sharp et al [35, 36] identified 

various epigenetic markers (1,649) associated with maternal pre-pregnancy BMI in offspring 

DNAm at birth by assessing over 450,000 CpGs, which represents about 1.6% of the genome. 

Authors replicated the findings from Gemma et al [33] and Liu et al [34] and observed a 

consistent direction of association between maternal BMI and the levels of differential 

methylation in offsprings [35]. 

The results mentioned above were reinforced by a recent meta-analysis of data from the 

450k bead chip conducted by the PACE consortium (pregnancy and childhood epigenetics) 

across 19 cohorts. This study provided information on maternal BMI at the beginning of 

pregnancy and DNAm in umbilical cord blood, and it found that 104 CpGs were differentially 

methylated in offspring cord blood and influenced by maternal BMI at the beginning of 

pregnancy [36]. It is worth noting that, despite the findings of the meta-analysis, there was no 

overlap between the CpGs identified in the analysis and those found in previous studies. The 

author of the meta-analysis suggested that the inconsistency in results could be due to false 

positive findings and limited statistical power of the small EWAS. 

Although several studies have shown a link between maternal pre-pregnancy BMI and 

DNAm levels, none of these studies have investigated the potential impact of these changes on 

offspring BMI and offspring BMI trajectories from infancy to adolescence. For instance, the 

question: “Can differentially methylated CpGs, which are associated with maternal BMI, predict 

offspring BMI developmental pattern?”  has not been answered yet. 

To provide insights into extension of BMI development developmental trajectories from 18 years 

of age to 26 years, association between epigenetic memories and offspring development of BMI 



 

7 
 

and BMI measurements covering first 26 years of life, this dissertation will test the following 

hypotheses: 

H1: Offspring BMI trajectories between age 1 and 18 years based on weight and height 

measurements taken at ages 1, 4, 10, and 18 years, can be extended to cover up to 26 

years of age. Furthermore, these BMI development trajectories are impacted by maternal 

pre-pregnancy BMI (Phenotypic association hypothesis). 

H2: Epigenetic alterations at birth, which are linked to maternal pre-pregnancy BMI, may predict 

BMI trajectories (1-26 years) in offspring based on height and weight measured at 1, 4, 10, 

18, and 26 years, demonstrating in early initiation of the BMI development (Early initiation 

hypothesis). 

H3: Epigenetic changes at birth, that are related to maternal pre-pregnancy BMI, are associated 

with BMI of the offspring at different stages of development - age1, 4, 10, 18, and 26 years, 

demonstrating long-lasting effects on the health outcomes of offspring. (Development 

origin of Health and Disease hypothesis). 

Data from the Isle of Wight birth cohort study (n= 1,456) initiated in 1989 on the Isle of Wight, 

will be used to test the above-mentioned hypotheses H1 to H3. In this birth cohort, participants 

were enrolled at birth and followed prospectively at ages 1, 4, 10, 18 years, during pregnancy 

(F1), and at 26 years. 

The dissertation has the following specific aims: 

SA1: Phenotypic association: To determine if the BMI developmental trajectories identified in 

the first 18 years life can be extended to 26 years of age. To investigate whether 

maternal pre-pregnancy BMI is associated with extended BMI trajectories in offspring. 

SA2: Epigenetic link to BMI trajectories: To test whether epigenetic signatures in F1 (DNA 

methylation at birth) related to maternal pre-pregnancy BMI (F0) is related to offspring 

BMI trajectories from age 1 to 26 years based on the weight and height measures at 

ages1, 4, 10, 18, and 26 years. 



 

8 
 

SA3: Epigenetic link to BMI at different ages of offspring: To determine whether differential 

DNAm at birth related to maternal pre-pregnancy BMI (F0) is associated with repeated 

measurements of offspring BMI measures at ages 1, 4, 10, 18, and 26 years. 
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Chapter 2 

2. Developmental BMI trajectories of first 26 years of life and influence of maternal 

prenatal BMI – a birth cohort study 

Introduction 

Obesity is a prevalent and complex health issue that has become a major public health 

concern globally. The prevalence of obesity has been steadily increasing over the past few 

decades and has been associated with numerous health risks such as diabetes, cardiovascular 

disease, and various cancers. [2, 3, 6, 7, 8, 10 ]. Understanding the dynamics of obesity and 

overweight from children to young adults will provide information on critical ages for prevention. 

BMI trajectories, which describe the patterns of weight gain and loss over time, have 

been shown to be an important predictor of obesity-related health outcomes. A study conducted 

in rural upstate New York on a longitudinal basis found that experiencing poverty in early 

childhood can influence BMI trajectories, resulting in children gaining more weight and being 

more likely to become obese during adolescence. [18]. It is worth noting that BMI trajectories 

can serve as an indicator of mortality risk in later life, and these associations are not affected by 

factors such as race or sex [19]. Understanding the factors that contribute to BMI development 

and its trajectories may aid in the development of effective interventions to modify the risk of 

overweight and obesity in children.   

In the Isle of Wight birth cohort (IOWBC) study, researchers investigated BMI trajectories 

from infancy to 18 years of age and identified four distinct patterns of BMI changes, including 

normal, early persistent obesity, delayed overweight, and early transient overweight [21]. The 

study found that children who became obese or remained normal could be detected by the age 

of four, while the other two groups (delayed overweight and early transient overweight) 

remained transient. Using this cohort, we will examine whether BMI trajectories change between 
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18 and 26 years of age or whether the information obtained in early life remains valuable until 

the age of 26.  

It has been established that both maternal smoking and maternal pre-pregnancy body 

mass index (BMI) increase the likelihood of offspring obesity during the prenatal period. Studies 

have shown that infants born to obese mothers tend to have a high birth weight, which is a 

factor that increases the risk of childhood obesity [14, 15]. Research by Riley et al [11] and 

Pirkola et al [16] found that maternal pre-pregnancy BMI has a lasting impact on offspring BMI, 

positively influencing it during early childhood (at 7 years old) and at age 16. This highlights the 

need to determine if this influence extends to offspring during adolescence and beyond. The 

IOW birth cohort study also found that offspring's BMI trajectory is impacted by maternal pre-

pregnancy BMI and smoking during pregnancy, emphasizing the significant role of prenatal 

exposure in determining the risk of offspring obesity from birth to adolescence [21]. However, it 

remains to be seen if gestational BMI continues to influence offspring BMI trajectory into 

adulthood.  

Considering these gaps in the literature, this study aims to investigate (1) whether 

existing BMI trajectories reported by Ziyab et al., [21] from birth to age 18 years can be 

extended to adulthood, i.e., age 26 years or if their patterns change; (2) whether offspring BMI 

trajectories extended to 26 year are still influenced by maternal pre-pregnancy BMI. We will use 

the data from IOWBC, established in 1989 IOW, UK, with provided information on the BMI from 

infancy to adulthood and gestational BMI. 
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Methods 

Study population 

The IOWBC was established to study the natural etiology of allergic diseases on Isle of 

Wight, UK in January 1989. Parents of 1,536 children born between January 1, 1989, and 

February 28, 1990, were invited to enroll their children into the study. Of these 1,536 children, 

after written consent, 1,456 newborns were enrolled at birth and followed at ages 1, 2, 4, 10, 18, 

and 26 years of age. Detailed questionnaires were obtained from the parents of these children 

at 1, 2, 4, and 10 years of age; self-administered questionnaires were obtained from the 

participants themselves at ages 18 and 26 years. The birth cohort has been explained in detail 

elsewhere [37, 38]. The study population is 99% Caucasian. The investigation was approved by 

the local ethics committee –National Research Ethics Service, NRES Committee South Central 

– Hampshire B, U.K. and by the University of Memphis Institutional Review Board in Memphis, 

U.S (#2423). Written informed consents were obtained from the parents or participants at each 

follow-up. 

Phenotypes 

BMI measurement from infancy to 26 years of age 

Height and weight of the children were ascertained at each follow-up visits at ages 1, 4, 

10, 18, and 26 years. BMI is calculated as the weight (kilogram) to height (meter2) ratio and BMI 

information was used for the analyses. For descriptive purposes, BMI was converted to z-BMI 

scores to increase the comparability across the ages for research purpose [39]. Children are 

considered as obese or overweight with respect to the age-specific BMI thresholds as specified 

by International Obesity Taskforce (IOTF) [40] for 4, 8, 18, and 26 years of age while for age 1 

years World Health Organization (WHO) [41] standards were considered. 
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Exposure of interest 

Maternal pre-pregnancy BMI is considered as the main exposure of interest. Maternal 

BMI at 14 weeks of pregnancy was used for our analysis. The height and weight of the mother 

were obtained from hospital record provided during prenatal visits. Prenatal maternal BMI is 

considered as a continuous variable in our analyses. 

Covariates 

Potential confounders were identified from prior literature based on their plausible 

associations with the outcome of interest. Information on the gestational age at birth (weeks), 

birth weight (kilograms), maternal age at delivery (years), and gender were collected soon after 

the birth from hospital records. Duration of breastfeeding (weeks), birth order, and age when the 

formula was introduced (weeks) were collected at the 1- and 2-years follow-up visits. Second-

hand smoke exposure at ages 1,2, 4, and 10 years, were obtained from the follow-up 

questionnaires completed at respective ages. Personal smoking history at age 18 and 26 years 

were obtained from the self-administered questionnaires. 

Statistical analysis 

Developmental BMI trajectories from infancy to age 26 years 

A group-based trajectory analyses using the procedure PROC TRAJ macro [42] in SAS 

(9.4) was implemented to identify the different BMI trajectories. BMI z-scores were used for 

trajectory analysis and individuals with no BMI information at all ages (infancy to 26 years of 

age) were excluded from the trajectory analyses. Groups of sizes 2 to 4 were tested. Standard 

recommendations were followed for the best model selections:  A maximum likelihood approach 

with censored normal model were used to estimate the trajectory parameters. Bayesian 

Information criteria values were used to select the best model as it summarizes the distinctive 

features of the trajectories with minimal overlap in the confidence intervals among the adjacent 
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trajectories. Models with smallest Bayesian Information criteria value and individuals group 

membership probabilities of at least 0.7 for each individual [43] in each group were considered 

as the final model. Following the identification of the final model, individuals were categorized 

into trajectories based on their highest estimated membership probabilities. The trajectories 

were then used in further analytical steps. We tested the agreement between the trajectory 

groups formed from infancy to age 18 in IOW reported by Ziyab et al [21] and trajectory groups 

from infancy to 26 years using Cohen’s Kappa coefficient. 

Association analysis 

To investigate the association between maternal pre-pregnancy BMI and BMI 

trajectories from infancy to 18 years and 26 years, a multinomial logistic regression analysis 

(PROC GLIMMIX, SAS) was conducted. Odds ratios and 95% confidence intervals (CI) were 

calculated. BMI trajectories were outcomes and maternal pre-pregnancy BMI was the exposure 

of interest. Covariates that changed the estimates by 10% were included in the final model. An 

association with a p-value ≤ 0.05 is considered statistically significant. All statistical analyses 

were performed in SAS, version 9.4 (SAS Institute, Cary, NC, USA).  

Results 

Descriptive characteristics of the cohort are shown in table 1. The mean maternal 

prenatal BMI at 14 (±4) weeks of pregnancy was 24.43 and maternal age at delivery was 28 

years. Average gestational age and birth weight are 40 weeks and 3.39 kilograms respectively. 

48% of the participants are female, 25% and 37% were exposed to maternal and paternal 

smoking during pregnancy respectively. BMI measurements were available at age 1, 4, 10, 18, 

and 26 years for 1076 (74%), 1053 (72%), 1043 (72%), 964 (66%), and 557 (38%) participants 

respectively (Table 2). 
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Table 1 Characteristics of the participants enrolled into the study 

Variable  Mean (n) 
Standard 

deviation 

Maternal early pregnancy BMI (kg/m2)  24.4 (1124) 4.2 

Maternal age at delivery (Years)  27.7 (1197) 5.3 

Gestational age (Weeks)  39.9 (1437) 1.5 

Birth weight (Kg)  3.4 (1432) 0.5 

Formula feeding (Weeks)  10.2 (1336) 11.6 

Duration of Breast feeding (Weeks)  14.3 (1319) 14.8 

  N 
Percentage 

(%) 

Gender 
Male 735 50.5 

Female 721 49.5 

Maternal smoking  
during pregnancy 

No 1098 75.4 

Yes 357 24.5 

Missing 1  0.07 

Paternal smoking  
during pregnancy 

No 885 60.8 

Yes 542 37.2 

Missing 29 2 

Birth order 

1 507 34.8 

2 412 28.3 

3 281 19.3 

Missing 256 17.6 

Secondhand smoke  
exposure at age one 

No 778 53.4 

Yes 557 38.3 

Missing 121 8.3 

Secondhand smoke  
exposure at 4 years of age 

No 738 50.7 

Yes 468 32.1 

Missing 250 17.2 

Secondhand smoke 
 exposure at 10 years of age 

No 763 52.4 

Yes 556 38.2 

Missing 137 9.4 

Smoking at 18 years of age 

No 899 61.7 

Yes 368 24.5 

Missing 258 13.8 

Smoking at 26 years of age 

No 699 48 

Yes 314 21.6 

Missing 443 30.4 
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BMI developmental trajectories 

From the trajectory analysis, four distinct developmental courses of BMI z-scores across 

the first 26 years of life were identified (Figure 1).  

 

Figure 1 Developmental Body Mass Index z-score trajectories age 1 to 26 year of age 
representing the latent growth patterns of body mass index 1 to 26 years of age.  

 

The four trajectories are labeled as ‘normal’ (n= 1042), ‘early persistent obesity’ (EPO, 

n=61), ‘early transient overweight’ (ETO, n=185), and ‘delayed overweight’ (DOW, n=149) 

respectively. The average BMI of the EPO trajectory crossed the age-specific threshold at ages 

4, 10, 18, and 26 years as specified by the IOTF. The mean BMI of DOW trajectory exceeded 

recommended BMI threshold at age 26 years while the ETO trajectory was higher than the age-

specific overweight cut-off as suggested by the WHO [41]. Descriptive characteristics of the 

trajectories are shown in table 2. 

 

-1

-0.5

0

0.5

1

1.5

2

2.5

3

1 4 10 18 26

B
M

I 
Z

-S
c

o
re

s

Age (Years)

Normal (1042) Delayed overweight (n=185)

Early transient Overweight (149) Early persistent obesity (61)



 

16 
 

Table 2 Descriptive characteristics of the BMI and BMI Z-score of BMI developmental 
trajectories 

BMI Z-score 
trajectories 

Normal 
(n=1042) 

Mean 

(95% CI) 

Early Persistent 
obesity (n=61) 

Mean 

(95% CI) 

Early transient 
overweight (n=185) 

Mean 

(95% CI) 

Delayed Overweight 
(n=149) 
Mean 

(95% CI) 

Age 1 year 

    

BMI  

16.94 
(16.85 to 17.04) 

18.27 
(17.78 to 18.7 7) 

20.08 
(19.8 to 20.36) 

17.09 
(16.9 to 17.29) 

BMI Z-score 

-0.26 

(-0.32 to -0.21) 

0.53  

(0.24 to 0.83) 

1.62 

(1.45 to 1.79) 

-0.18 

(-0.29 to -0.06) 

Age 4 year 

    

BMI  

16.67  
(16.45 to 16.89) 

18.38 
(17.48 to 19.28) 

18.53 
(17.36 to 19.69) 

16.98 
(16.4 to 17.56) 

BMI Z-score 

-0.38 
(-0.43 to -0.32) 

1.98 
(1.61 to 2.35) 

1.03 
(0.9 to 1.17) 

0.38 
(0.26 to 0.5) 

Age 10 year 

    

BMI  

15.62 

(15.55 to 15.7) 

19.04 

(18.5 to 19.57) 

17.67 

(17.48 to 17.86) 

16.72 

(16.54 to 16.89) 

BMI Z-score 

-0.44 
(-0.48 to -0.4) 

2.74 
(2.44 to 3.03) 

0.18 
(0.05 to 0.3) 

1.02 
(0.91 to 1.12) 

Age 18 year 

    

BMI  

16.8  
(16.69 to 16.93  

26.25 
(25.37 to 27.14) 

18.63 
(18.25 to 19.01) 

21.14 
(20.83 to 21.45) 

BMI Z-score 

-0.43 

(-0.47 to -0.39) 

2.78 

(2.48 to 3.09) 

0.06 

(-0.04 to 0.16) 

1.19  

(1.08 to 1.3) 

Age 26 year 

    

BMI  

21.34 
(21.17 to 21.52) 

35.24 
(33.92 to 36.56) 

23.45 
(23 to 23.9) 

28.34 
(27.86 to 28.81) 

BMI Z-score 

-0.43 
( -0.48 to -0.37) 

2.5 
(2.02 to 2.98) 

0.03 
(-0.12 to 0.18) 

1.01 
(0.84 to 1.18) 

Mean and 95% CI of BMI and BMI Z-scores of the four trajectories 
BMI - Body Mass Index 

The BMI developmental trajectories across 26 years of life are in agreement with the 

BMI trajectories from infancy to 18 years of age identified by Ziyab et al [21]. The BMI 

trajectories from infancy to age 18 years and BMI trajectories from infancy to 26 years of age 

will be referred as ‘1-18 year-trajectories’ and ‘1-26 years-trajectories’ respectively. Further 

some, the agreement between the ‘1-18 year- and ‘1-26 years’ -trajectories was tested using 

Cohen’s Kappa coefficient. A significant statistical agreement between these groups, with a 
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Kappa coefficient of 0.8.and an overlap of 98% (n=853) of normal, 74% (n=130) of the DOW, 

97% (n=139) of ETO, and 85 % (n=46) of the EPO trajectory groups was observed (Table 3). 

Table 3 Overlap of trajectory groups between ‘infancy to 18 years of age’ and ‘infancy to 26 
years of age. 

 
 

Infancy to 18 years of age  

BMI 
Trajectories 

 
Normal 
(n=886) 

Delayed 
overweight 

(n=143) 

Early 
Transient 

Overweight 
(n=163) 

Early persistent 
Overweight(n=48) 

Infancy to 
26 years of 

age  
(n, %) 

Normal (n=868) 
853 

(98.3) 4 (0.5) 11 (1.27) 0 
Delayed 

Overweight 
(n=175) 32(18.3) 130 (74.3) 11 (6.3) 2 (1.1) 

Early Transient 
Overweight 

(n=143) 1 (0.7) 3 (2.1) 139 (97.2) 0 

 
Early persistent 

Overweight(n=54) 0 6 (11.1) 2 (3.7) 46 (85.2) 

Maternal pre-pregnancy BMI as predictor of BMI trajectories and offspring BMI 

This study examined the association between risk factors and BMI trajectories over two 

different time periods - ‘1-18 year-trajectories’ and 1-26 year-trajectories’ (Table 4). The ‘normal’ 

group serves as reference. A statistically significant association of maternal pre-pregnancy BMI 

with DOW and EPO trajectories was observed. A unit increase in maternal BMI is associated 

with 18% and 24% increased odds of being in DOW and EPO trajectories respectively. Maternal 

age at delivery was inversely associated with the EPO trajectories in both ‘1-18 year- ‘and ‘1-26 

year-trajectories. If the mother smoked during pregnancy, the odds of being in EPO increased 

by three times in the ‘1-18 year-trajectories’ while odds of being in DOW doubled in the ‘1-26 

year-‘trajectories’; however, the latter was not statistically significant. No such effect of paternal 

smoking and birth order of the child were observed. Shorter gestational age, higher birth weight, 

age of initiation of formula feeding, duration of breastfeeding, and gender showed a statistically 

significant association with the EPO and/or DOW trajectory groups in both trajectory solutions 
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(Table 4). For instance, increased birth weight doubled the odds of being in ETO and EPO 

trajectories in ‘1-18 year-trajectories’ while it showed an impact on only early transient 

overweight group in ‘1-26 year-trajectories’.
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Table 4 Association of maternal pre-pregnancy BMI and BMI trajectories from infancy to 18 years and infancy to 26 years of age 

Risk Factors of 
Interest 

Traject
ory 

Group
s ǂ 

Association of trajectories from infancy to 18 
years 

(N=1240) 

Association of BMI trajectories from infancy to 26 
years (N = 1437)  

  Parameter 
estimate 

Standard 
Error 

p-Value Odds Ratio 
(95% CI) 

Parameter 
estimate 

Standard 
Error 

p-
Value 

Odds Ratio (95% 
CI) 

Maternal Pre-

pregnancy BMI 

DOW 0.16 0.02 <0.0001 1.18 (1.12 - 1.23) 0.16 0.02 <.0001 1.17 (1.11 - 1.23) 

ETO 0.04 0.03 0.21 1.04 (0.98 - 1.1) 0.05 0.03 0.08 1.05 (0.99 - 1.11) 

EPO 0.22 0.04 <0.0001 1.24 (1.16 - 1.34) 0.21 0.04 <.0001 1.23 (1.13 - 1.33) 

Maternal age at 
delivery 

DOW 0.01 0.02 0.58 1.01 (0.97 - 1.06) 0.00 0.03 0.92 1 (0.95 - 1.05) 

ETO 0.04 0.03 0.104 1.04 (0.99 - 1.1) 0.03 0.02 0.17 1.03 (0.99 - 1.09) 

EPO -0.11 0.05 0.02 0.89 (0.81 - 0.98) -0.11 0.05 0.03 0.89 (0.8 - 0.99) 

Maternal 
smoking 

during 
pregnancy 

DOW 0.41 0.28 0.14 1.51 (0.87 - 2.59) 0.70 0.29 0.02 2.01 (1.13 - 3.57) 

ETO 0.32 0.30 0.29 1.38 (0.76 - 2.51) 0.29 0.29 0.31 1.34 (0.76 - 2.36) 

EPO 1.12 0.43 0.01 3.06 (1.31 - 7.13) 0.82 0.49 0.1 2.27 (0.86 - 5.98) 

Paternal 
smoking 

during 
pregnancy 

DOW -0.01 0.24 0.95 0.99 (0.62 - 1.57) 0.01 0.26 0.96 1.01 (0.61 - 1.68) 

ETO 0.37 0.26 0.16 1.44 (0.87 - 2.39) 0.42 0.24 0.08 1.53 (0.95 - 2.46) 

EPO 0.26 0.41 0.52 1.3 (0.59 - 2.88) 0.44 0.45 0.33 1.56 (0.64 - 3.79) 

Birth order (1)# DOW 0.14 0.29 0.63 1.15 (0.66 - 2) 0.15 0.31 0.61 1.17 (0.64 - 2.13) 

ETO 0.34 0.33 0.30 1.41 (0.74 - 2.69) 0.15 0.31 0.64 1.16 (0.63 - 2.12) 

EPO 0.11 0.52 0.83 1.12 (0.4 - 3.1) 0.22 0.61 0.72 1.25 (0.38 - 4.12) 

Birth order (2)# DOW -0.29 0.28 0.29 0.75 (0.43 - 1.29) -0.41 0.31 0.18 0.66 (0.36 - 1.21) 

ETO -0.01 0.32 0.97 0.99 (0.53 - 1.83) -0.08 0.29 0.78 0.92 (0.52 - 1.64) 

EPO -0.74 0.57 0.19 0.48 (0.16 - 1.45) -0.14 0.61 0.82 0.87 (0.26 - 2.88) 

Gestational age DOW -0.12 0.08 0.14 0.89 (0.76 - 1.04) -0.22 0.09 0.01 0.8 (0.68 - 0.95) 

ETO -0.14 0.10 0.17 0.87 (0.71 - 1.06) -0.02 0.10 0.82 0.98 (0.79 - 1.2) 

EPO -0.28 0.14 0.06 0.76 (0.57 - 1.01) -0.33 0.16 0.04 0.72 (0.53 - 0.99) 

Birthweight¥ 

(Kg) 

DOW 0.15 0.24 0.52 1.17 (0.73 - 1.87) 0.41 0.26 0.12 1.5 (0.9 - 2.51) 

ETO 1.09 0.27 <0.0001 2.99 (1.76 - 5.07) 1.03 0.26 <.0001 2.8 (1.69 - 4.62) 

EPO 0.88 0.45 0.049 2.41 (1.01 - 5.78) 0.82 0.49 0.1 2.26 (0.86 - 5.94) 

DOW 0.00 0.01 0.927 1 (0.97 - 1.02) -0.01 0.01 0.71 0.99 (0.97 - 1.02) 
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Risk Factors of 
Interest 

Traject
ory 

Group

s ǂ 

Association of trajectories from infancy to 18 
years 

(N=1240) 

Association of BMI trajectories from infancy to 26 
years (N = 1437)  

Age at the 
initiation of 

formula 
feeding 

ETO 0.01 0.02 0.658 1.01 (0.97 - 1.04) 0.01 0.02 0.57 1.01 (0.98 - 1.05) 

EPO -0.05 0.02 0.051 0.95 (0.91 - 1) -0.06 0.03 0.025 0.94 (0.89 - 0.99) 

Duration of 
breast feeding 

DOW 0.01 0.01 0.301 1.01 (0.99 - 1.03) 0.02 0.01 0.12 1.02 (1 - 1.04) 

ETO -0.02 0.01 0.133 0.98 (0.95 - 1.01) -0.02 0.01 0.08 0.98 (0.95 - 1) 

EPO 0.03 0.02 0.044 1.03 (1 - 1.07) 0.05 0.02 0.01 1.05 (1.01 - 1.08) 

Gender 
(Female)* 

DOW 0.60 0.21 0.004 1.83 (1.22 - 2.76) 0.70 0.23 0.003 2.02 (1.28 - 3.17) 

ETO -0.27 0.24 0.257 0.77 (0.48 - 1.21) -0.08 0.22 0.70 0.92 (0.6 - 1.41) 

EPO 1.24 0.42 0.003 3.44 (1.52 - 7.79) 1.39 0.49 0.004 4.02 (1.55 - 10.47) 

ǂ corresponds to specific trajectory: DOW– Delayed overweight; ETO - Early transient overweight; EPO -  Early persistent obesity, 
NDT – Normal developmental trajectory is the reference group (not shown in the table); * Male gender is used as reference group; # 
Highest birth order (3) is considered as the reference group; ¥ Birthweight -measured in kilograms (Kg) 
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Associations between repeated measurement analyses of offspring BMI from 1 to 26 

years of age and risk factors are presented in table 5. Intrauterine and early life risk factors such 

as maternal pre-pregnancy BMI, birth order, maternal smoking during pregnancy, gestational 

age, birth weight, age of the offspring, and gender are statistically significantly associated with 

repeated measurements of offspring BMI. Every unit increase in the maternal gestational BMI 

was associated with 5% increase in the offspring BMI weight gain which may lead to later life 

overweight or obesity. Maternal smoking during pregnancy increased the risk of offspring weight 

gain by 28%. Children with higher birth weight/kg were at 43% elevated risk of being 

overweight. Being a female also increase the risk by 12% compared to males. Gestational age 

is inversely associated with offspring BMI and lower birth order showed a higher risk of offspring 

BMI. 
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Table 5 Association of maternal pre-pregnancy BMI, early life risk factors and offspring BMI 

Effect   
Parameter Standard  

p-Value 
Risk Ratio 

Estimate Error  (95% CI) 

Maternal BMI  0.05 0.01 <0.0001 1.05 (1.04 - 1.06) 

Age (years) 

1 -0.1 0.05 0.04 0.91 (0.82 - 0.99) 

4 -0.08 0.05 0.12 0.93 (0.84 - 1.02) 

10 -0.07 0.05 0.19 0.94 (0.85 - 1.03) 

18 -0.02 0.05 0.68 0.98 (0.88 - 1.08) 

26 Ref    

Age of the mother  0.002 0.01 0.79 1 (0.99 - 1.01) 

Maternal smoking 
during pregnancy 

Yes 0.24 0.07 0.0004 1.28 (1.12 - 1.46) 

No Ref    

Paternal smoking 

during pregnancy 

Yes 0.08 0.06 0.15 1.09 (0.97 - 1.22) 

No Ref    

Birth Order 

1 0.15 0.07 0.03 1.17 (1.01 - 1.34) 

2 -0.02 0.07 0.79 0.98 (0.86 - 1.12) 

3 Ref    

Gestational Age 
(weeks) 

 -0.07 0.02 0.0003 0.93 (0.89 - 0.97) 

Birth weight (Kg)  0.36 0.06 <0.0001 1.43 (1.28 - 1.61) 

Age when the 
formula was 
introduced (weeks) 

 -0.01 0.003 0.12 1 (0.99 - 1) 

Duration of Breast 

feeding (weeks) 
 0.003 0.003 0.141 1 (1 - 1.01) 

Gender 
Female 0.11 0.05 0.024 1.12 (1.02 - 1.23) 

Male Ref       

 

Discussion 

Four distinct BMI developmental trajectories that covered the first 26 years of life were 

identified in this longitudinal study. These trajectories agree (overlap of about 74% to 98% 

individual trajectories) with the BMI trajectories that were identified in the IOW for the age-

spanning between infancy and 18 years of age. Individual BMI trajectories of EPO and normal 

trajectory groups were set by age four and remained consistent through adolescence (26 years 

age) highlighting the critical timeline in early childhood that needs preventive attention. Unlike 

EPO and normal trajectories, ETO and DOW trajectories were set between age four and 10 

years. Gestational BMI was found to be associated with increased odds of being in EPO and 
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DOW trajectories illustrating the impact of the maternal prenatal BMI on ‘1-18 year-trajectories’ 

and ‘1-26 year-trajectories’ that covered the first 18 and 26 years of life respectively. Similar 

pattern of associations of prenatal maternal smoking and BMI trajectories were observed.  

To date, population-based studies attempted to study the course of BMI development 

from childhood to adolescence [20, 44-46]. A systematic review conducted by Ho et al [47] 

suggested that, lifestyle changes between ages 5 to 18-years have a significant impact on the 

childhood overweight supporting our findings in regard to the two transient BMI trajectories that 

changed their course of directions. A systemic review by Mattsson et al identified 14 studies that 

studied BMI trajectories from birth to 15 years of age. Three to four BMI trajectories with similar 

patterns including but not limited to rapid weight gain trajectories and stable high trajectory were 

identified across all studies [48]. Similar developmental trajectories- early persistent obesity, 

early transient overweight and delayed overweight’ were identified in IOW underlining the 

validity and generalizability of our findings. Unlike the prior studies that were restricted from birth 

to -infancy, early childhood and/or adolescence (15 years age of age), the BMI trajectories 

identified in the IOWBC has added advantage of covering the first 26 years of life since birth 

with multiple BMI measurements (1, 4, 10, 18, and 26 years of age). This prospective birth 

cohort study identified a critical time window of life where the BMI trends of individuals who are 

at high risk of later being overweight and/or obesity can be identified. We suggest that any 

lifestyle interventions focused on childhood obesity/overweight should target this time window 

where the BMI trajectories are yet to be set and the individuals who are likely to be in the high-

risk trajectories.  

This study replicated the association of the intrauterine risk factors-gestational BMI, 

smoking, and BMI developmental trajectories reported in the literature [21]. We also observed a 

consistent and statistically significant association of early risk factors -gestational age, birth 

weight, age of initiation of formula feeding, duration of breastfeeding, and gender with EPO 
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and/or DOW trajectories in ‘1-18 year-trajectories’- and/or ‘1-26 year-trajectories’. Female 

offspring are more likely be at higher odds being in DOW (twice) and EPO trajectories (4 times 

higher odds) compared to males in ‘1-26 year-trajectories’. Furthermore, our findings 

complement the work by Elrashidi et al [49] , who demonstrated four distinct BMI trajectories 

and also concluded that female offspring are more likely to be obese compared to males. 

Interesting, a population-based study demonstrated that female offspring have greater impact of 

gestational BMI compared to male offspring [50]. 

Though the literature reported that trajectories were not influenced by the offspring 

behavioral changes such as smoking status, alcohol consumption in adolescence [20], BMI 

trajectories are influenced by modifiable intrauterine risk factors such as maternal-pregnancy 

BMI and prenatal maternal smoking that have long-term consequences of offspring overweight 

and obesity (Table 4). Gestational BMI is positively correlated with offspring birth weight which 

in turn increases the risk of offspring being in EPO and DOW trajectories (Table 4). 

The underlying biological explanation for the aforementioned associations includes an 

interplay between genetic, epigenetic, and other behavioral changes. A meta-analysis that 

included 18 studies conducted by Tyrrell et al [51] suggested a ‘causal relation’ between 

maternal prenatal BMI and offspring BMI, though no specific gene/SNP was reported. 

Epigenetic epidemiology recently has provided a new insight on the associations of 

transgenerational effects. Khot et al [52] has demonstrated that an altered one-carbon 

metabolism influences the epigenetic programming in the offspring and increased the risk of 

adult diseases in offspring. Similarly, Morales et al [53], Gemma et al [33] and a recent meta-

analysis by PACE consortium [36] that included 19 cohorts identified epigenetic signatures of 

gestational BMI in the cord blood of their offspring’s providing a plausible explanation for the 

relation between gestational BMI and offspring BMI. However, further studies are necessary to 
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test whether epigenetic modifications linked with maternal BMI are related to the development of 

offspring BMI. 

This study has some limitations. Only five measurements of BMI (1 and 2 years, 4, 10, 

18, and 26 years of age) were available for the trajectory analysis. However, these repeated 

BMI measurements prospectively covered the first 26 years of life in contrast to the other 

studies that are restricted to a specific time periods of childhood and/or adolescence. The BMI 

z-score calculated is standardized by the standard deviations within IOW but not as per the 

CDC recommendations. Use of internal standardized BMI z-scores for trajectories and 

association analysis could be a limitation. However, it has been suggested that z-BMI derived 

as per CDC is a poor predictor of adiposity changes [39, 54]. Early pregnancy BMI was used as 

main predictor of offspring BMI trajectories is a plausible limitation in our study. Harris et al [55] 

suggested that the weight gain in first trimester is less compared to the second or third 

trimesters and prenatal maternal BMI reliable measure that represent the pre-pregnancy BMI. 

Ziyab et al utilized participants with a minimum of two BMI measurements, while the present 

study only utilized participants with one BMI measurement, which may be a drawback when 

comparing the BMI trajectories between the ages of 1 to 18 years and 1 to 26 years. Initial 

analysis indicated that the BMI trajectories produced using either one or two BMI measurements 

displayed similar qualities and the connections with early life risk factors remained unchanged. 

No distinct BMI trajectory groups based on gender were identified ruling out the need of gender 

stratified analysis. 

This study identified four different BMI developmental paths over the first 26 years of life 

that are established in early childhood and strongly align with BMI trajectories from infancy to 18 

years. Prenatal maternal BMI is linked with increased odds of falling into the Extremely 

Prevalent Overweight (EPO) and Developmental Overweight (DOW) trajectories. Early life risk 

factors such as gestational age, birth weight, breastfeeding duration, and gender are associated 
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with an increased risk of offspring being in the EPO and/or DOW trajectories. Given the long-

lasting impact of maternal BMI, it is recommended that women of childbearing age and 

expectant mothers be informed about the dangers of pre-pregnancy BMI and its effects on their 

offspring's BMI. Future interventions aimed at preventing childhood overweight and obesity 

should focus on promoting healthy weight in women of childbearing age and encouraging 

lifestyle changes in their offspring during early childhood, before the age of 10. 
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Chapter 3 

3. Offspring epigenetic markers at birth related to gestational BMI predict offspring BMI-

trajectories from infancy to 26 years 

Introduction  

Epidemiological studies to date have suggested a direct association between maternal 

pre-pregnancy body mass index (BMI) and offspring BMI suggesting an early programming of 

adverse health outcomes in the offspring [56, 57]. These associations can be explained by 

molecular mechanisms such as DNA methylation (DNAm) and histone modification altering 

gene expression. DNAm, the addition of a methyl group on sites with a cytosine followed by a 

guanine linked by phosphate dinucleotide (CpGs) [58], is one of the epigenetic processes that 

has been extensively studied. DNAm programming can be initiated in utero and the offspring 

may carry a memory of DNAm markers related to intrauterine exposures. 

Lawlor et al [59] reported that maternal obesity is positively associated with offspring 

BMI and suggested that these effects are mediated by epigenetic changes. In a candidate gene 

approach in 2009, Gemma et al. showed a positive correlation between the peroxisome 

proliferator-activated receptor (γ co-activator 1 α gene, PPARGC1A) promoter methylation in 

umbilical cord blood cells and maternal BMI [33]. Later in 2014, an epigenome-wide association 

study (EWAS) that used 27K bead chip reported 20 CpGs to be differentially methylated in the 

offspring of mothers who are obese compared to normal weight mothers [57]. In further studies, 

the epigenome-wide assessments covered more CpGs: Illumina Infinium 450k bead chip covers 

~1.6% of the genome providing information on > 450,000 CpGs. Using 450k CpGs, Sharp et al 

[35, 60] detected several epigenetic markers related to maternal pre-pregnancy BMI in offspring 

DNAm at birth. 

These findings were further supported by a meta-analysis conducted by a PACE 

consortium (pregnancy and childhood epigenetics) across 19 cohorts, which provided 
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information on maternal BMI at the start of pregnancy and associated DNAm sites in umbilical 

cord blood. The meta-analysis found a robust association between maternal pre-pregnancy BMI 

and variations in newborn DNA methylation [60]. Interestingly, no overlap between the CpGs 

reported in this meta-analysis and CpGs reported in earlier studies was observed. The lack of 

consistent results in the meta-analysis could be due to low sample sizes of individual studies 

resulting in false negative findings in some EWAS. In addition, the effect of maternally BMI-

induced DNAm on CpG sites at birth on the development of offspring BMI are not yet known. 

BMI trajectories have been used to characterize typical patterns of individual BMI 

developments during childhood and adolescence. Such BMI trajectories from infancy to 18 

years of age were determined in a prior study in the Isle of Weight birth cohort (IOWBC) [21]. 

Four distinct trajectories were identified: normal, early persistent obesity (EPO), delayed 

overweight (DOW), and early transient overweight (ETO). The findings suggest that trajectories 

of EPO and normal trajectories can be detected as early as age 4 years. Findings from the 

IOWBC also demonstrated that offspring’s BMI trajectories were influenced by gestational BMI 

[21].  

Although a variety of studies have reported associations, first, between maternal pre-

pregnancy BMI and BMI trajectories [61, 62], and second, between maternal pre-pregnancy BMI 

and differential DNAm sites [33, 35, 57, 60], these studies did not yet investigated effects of 

epigenetic changes induced by maternal BMI on offspring BMI trajectories. Considering these 

gaps in the literature, this study aims to determine whether CpG at birth related to maternal pre-

pregnancy BMI in prior studies, are also associated with offspring BMI trajectories. This study 

hypothesizes that CpGs related to gestational BMI, identified at birth, are also associated with 

trajectories of offspring BMI covering the age span from infancy to 26 years. 
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Method 

Study population 

The Isle of Wight birth cohort was established to study the natural etiology of allergic 

diseases on Isle of Wight (IOW), UK in January 1989. Parents of 1,536 children born between 

January 1, 1989, and February 28, 1990, were invited to enroll their children into the study. Of 

1,536 children, after exclusion of birth failure and missing written consent, 1,456 newborns were 

enrolled at birth. These children were referred as the F1-generation. Parents of the F1 

generation are the F0-generation. Dried blood spots (Guthrie cards) were collected in the first 5 

days after delivery and peripheral blood samples were taken at ages 10 and 18 years in the F1-

generation.  The F1 participants were assessed by detailed physical examinations and 

questionnaires at ages 1, 2, 4, 10, 18, and 26 years. The birth cohort has been described in 

detail elsewhere [38, 63]. F1-children with DNAm at birth and with characterized BMI trajectories 

were used in the investigation. The study population is 99% Caucasian.  

The investigation was approved by the local ethics committee –National Research Ethics 

Service, NRES Committee South Central – Hampshire B, U.K. and by the University of 

Memphis Institutional Review Board in Memphis, U.S (#2423). Written informed consents were 

obtained from the parents at each assessment through age 10 and from the participants at 18 

and 26 years. 

DNA methylation 

DNA from the Guthrie cards (dried blood spots; n = 796) at birth was extracted using 

QIAamp DNA Investigator Kits (Qiagen, Germantown, MD, USA) according to manufacturer’s 

instructions. At age 10 and 18 years, DNAm was assessed using the Illumina 450k platform. 

DNAm from selected peripheral blood samples at age 10 (n= 330) and 18 (n= 476) were 

extracted via a standard salting out procedure [64]. For Guthrie cards, measurements of 

genome wide DNAm were performed using the Illumina Methylation EPIC 850K platform 
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(Illumina, Inc., CA, USA) which interrogates > 850,000 CpGs associated with over 24,000 

genes. Arrays were processed on the respective platform using standard protocol as described 

elsewhere [65]. 

Methylation data were preprocessed and batch-effect removed using Bioconductor 

packages IMA [66] and ComBat [67]. After quantile normalization and background corrections, 

beta values for the each queried CpG sites were generated. The beta values, which represent 

the proportion of the methylated (M) sites over the sum of the methylated (M) and unmethylated 

(U) sites = (β =M/(c+M+U), with c as a constant to preventing dividing by zero were used to 

estimate DNA methylation levels. CpGs - with low quality, that are missing at random, and on 

sex-chromosomes were not taken into account. CpG sites that have a potential single 

nucleotide polymorphism (SNP) within 10 base pairs (a probe SNP) and with a minor allele 

frequency of greater than 0.007 since these probe-SNPs may interfere with the DNAm 

measurement were excluded. After excluding the CpGs on the sex chromosomes and probe 

SNPs - for EPIC methylation array data, 551,711 CpGs were retained from the Guthrie’s cards 

collected at birth. At ages 10 and 18 years, 349,456 CpGs were kept. Samples that were 

processed on 450k and 850K platforms, CpGs overlapping between two methylation arrays 

were taken. To estimate associations between DNAm at birth and BMI trajectories, we 

estimated odds related to the percent methylation by multiplying beta-value with 100. 

Cell proportions 

The cell proportions of the Guthrie cards were estimated using the DNAm of Guthrie 

cards with blood as a reference. Minfi, an R-package, was used to estimate seven cell 

proportions: B cells, CD4T and CD8T cells, granulocytes, monocytes, neutrophil, and 

eosinophils [68, 69]. Since Guthrie cards were collected between day 3-5 after delivery, there 

was no need to additionally adjust the DNAm for nRBCs, as on postnatal day 3 -5 nRBCs are 

no longer seen in the blood circulation of the newborn. 
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Exposure of interest 

Differentially methylated DNAm that is associated with maternal pre-pregnancy BMI at a 

birth is the exposure of interest. To identify CpGs related to maternal BMI, academic databases 

- PUBMED, GOOGLE SCHOLAR, & EMBASE were explored using search terms such as 

“Maternal BMI”, “Maternal pre-pregnancy BMI”, “Pregestational BMI”, “Preconception BMI”, and 

“Maternal obesity” along with “Cord blood DNA methylation”, “DNA methylation”, and 

“Epigenome-wide association” within a 10 years’ time span of 2007 -2017. Prior investigations 

reported 1,773 differentially methylated CpGs at birth related to maternal pre-pregnancy BMI 

[35, 57, 60]. Among the CpGs of the F1-generation at birth that were kept after quality control in 

the IOW birth cohort, 1,090 were identified and these CpGs constitute the exposure of interest. 

Outcome of interest 

BMI developmental trajectories from infancy to 18 years of age were determined in a 

prior study in the Isle of Weight birth cohort, BMI trajectories [21]. To identify BMI trajectories 

from birth to 26 years, this study repeated the approach described by Ziyab et al [21]. for infancy 

to 18 years and added information on body mass at 26 years. Four distinct BMI trajectories- 

normal, early persistent obesity (EPO), delayed overweight (DOW), and early transient 

overweight (ETO) were identified (Figure 2). These four BMI developmental trajectories from 

infancy to 26 years are outcome of interest in this study. The detailed methodology of BMI 

trajectory development from infancy to 26 years and the definition of the BMI trajectories are 

explained in chapter 2.3. Figure 2.1 illustrates the development of the BMI trajectories. 

Covariates 

The following potential confounder were considered: maternal age, socio-economic 

status, low birth weight (≤2,500 g), infant feeding method (exclusive breast feeding, exclusive 

formula, and mixed feeding), paternal smoking during pregnancy, and second-hand smoke 

exposure at ages 1, and 4 years. Gestational age, maternal smoking during pregnancy, and 
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maternal BMI were not considered as covariates in this study. Gestational age was correlated 

with birth weight and since the effects of these two variables can substitute one another, low 

birth weight was chosen to be controlled as confounder. Maternal smoking during pregnancy 

[70] and also maternal BMI [35] were known to alter newborn DNAm. Taking these two 

variables as confounder, would turn newborn DNAm into a mediator, which then would not 

provide an appropriate assessment of the role of newborn DNAm. Since DNAm based on blood 

cells was the exposure, estimated blood cell proportions were also taken into account to 

estimate the net effect of DNAm independent of varying cell-composition found in newborn 

blood. 

Statistical analysis 

When analyzing the IOW birth cohort, the analytical sample with BMI trajectories from 

infancy to 26 years of age (dependent variable) and DNAm data (independent variable) was 

assessed for [71] its representability of the total cohort. Statistical assessment to test the 

proposed hypothesis was conducted in five steps (Figure 2). Differentially methylated DNAm 

sites that were associated with maternal pre-pregnancy BMI at birth (as described under 

“Exposure of interest”) were gathered from literature. In total, 1,090 candidate CpGs collected 

from literature and present in the IOW cohort were considered as potential predictors of BMI 

trajectories in their offspring. 

An R screening computing package, ttScreening, was used to filter informative from non-

informative CpGs potentially associated with the four BMI trajectories [71]. This computing 

package facilitates a screening process where each CpG was tested through 100 iterations of 

training and testing. In each iteration, 2/3rd of the sample was used as training dataset while 

1/3rd was used as testing dataset. In these robust regressions, DNAm was considered as 

dependent variable and BMI trajectories as independent variable with cell proportions in blood 
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as potential covariates. CpGs that showed a statistical significance in at least 50% of the 

training and testing samples with p-value <0.05 were considered as informative. 

The informative CpGs were then tested for their association with BMI trajectories by 

additionally adjusting for potential confounders. Multinomial logistic regression models were 

used (PROC GLIMMIX, SAS) to study associations between CpGs and BMI trajectories. The 

normal trajectory was the reference group. Risk factors that did not change the odds ratio by 

10% were excluded from the model using backward elimination in the association analysis. 

Associations with a p-value ≤0.05 were considered statistically significant. Correction for 

multiple testing was performed using the false discovery rate (FDR) [72]. Odds ratios and 95% 

confidence intervals (CI) for the statistically significant CpGs were calculated.  

To illustrate the odds of being in a trajectory with level of methylation, each CpG that 

passed the multiple testing was further categorized into four groups by diving the range of 

methylation into four quartiles. Multinominal logistic regression models were applied to study the 

association between the BMI trajectories as dependent variable and the categorized CpG 

groups as predictors. 

Finally, the descriptive characteristics of the DNAm at birth, age 10, and 18 years in 

different BMI trajectories were illustrated. Mean methylation value of the CpGs of the associated 

BMI trajectories were plotted to understand changes in the methylation levels at different time 

periods (age 10 and 18 years). All statistical analyses were performed in SAS, version 9.4 (SAS 

Institute, Cary, NC, USA) and R. 
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Figure 2 Study flowchart of statistical analysis of CpGs associated with maternal pre-pregnancy 
BMI 

 

Results 

Participant characteristics 

In the analytical sample (n=794), 51% of the sample population were female, 95% were 

born with normal weight (Table 6) and 11% of the individuals were exposed to secondhand 

smoke 4 years of age. 19% of the individuals were breastfed while 9% were exclusively formula 

fed. No statistically significant difference was observed between the study population (n= 1,456) 

and the analytical sample. The descriptive characteristics of the participant by each trajectory 

were illustrated in table 7. 
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Table 6 Descriptive characteristics of the study population and the population analyzed 

 Factors   

Study 
Population 

Analytical 
Sample n=794 

P- Value n= 1,456 
(% (n)) 

(% (n)) 

Sex 
Male 50.5 (735) 50.4 (401) 

0.9 
Female 49.5 (721) 50.6 (395) 

Low Birth Weight 

< 2.5 Kg* 3.7 (54) 3.8 (30) 

0.9 >= 2.5kg* 94.6 (1378) 95 (755) 

Missing 1.7 (24) 1.4 (11) 

Infant feeding 
method 

Breast feeding Only 16.5 (368) 19 (151) 

0.4 
Formula feeding only 8.2 (119) 8.7 (69) 

Mixed feeding 66.6 (969) 65.1 (518) 

Missing 8.8 (128) 7.3 (58) 

Paternal smoking 
during pregnancy 

Yes 37.2 (542) 35.6 (283) 

0.5 No 60.8 (885) 62 (492) 

Missing 2 (29) 2.4 (19) 

Socio-economic 
Status 

Low 14 (204) 14 (109) 

0.7 
Medium 70.5 (1026) 76.7 (609) 

High 7.6 (110) 7.8 (62) 

Missing 8 (116) 1.8 (14) 

Secondhand 
Smoking at 1 years 
of age 

Yes 38.3 (557) 36.5 (290) 

0.2 No 53.4 (778) 57.2 (454) 

Missing 8.3 (121) 6.3 (50) 

Secondhand 
Smoking at 4 years 
of age 

Yes 32.1 (468) 11.1 (270) 

0.8 No 50.7 (738) 55 (438) 

Missing 17.2 (318) 11 (88) 

  Mean (95% Confidence Intervals) 

Maternal age (years)   29.2 (29 – 30) 29.3 (29 – 30)   

*Kg Kilograms 
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Table 7 Descriptive characteristics of the individuals with information on BMI trajectories, DNAm, and confounders 

    BMI Trajectory Group 

Factors 

  

Normal 
trajectory  
(n = 562) 

 %(n) 

Delayed 
Overweight  

(n = 118) 
%(n) 

Early Transient 
Overweight 

 (n = 77) 
%(n) 

Early Persistent 
Overweight  

(n = 37) 
%(n) 

Sex 
Male 52.5 (295) 36.4 (43) 36.4 (43) 29.7 (11) 

Female 47.5 (267) 63.6 (75) 63.6 (75) 70.1 (26) 

Low Birth Weight < 2.5 Kg* 94.9 (533) 94.1 (111) 96.1 (74) 94.6 (35) 
 >= 2.5kg* 4 (22) 4.2 (5) 2.6 (2) 2.7 (1) 
 Missing 1.3 (7) 2 (2) 1 (1) 2.7 (1) 

Infant feeding method 

Breast feeding only 20 (112) 22.9 (27) 14.3 (11) 2.7 (1) 

Formula Feeding 
Only 

8.4 (47) 12.7 (12.7) 6.5 (5) 5.4 (2) 

Mixed feeding 64.1 (360) 61.9 (73) 71.4 (55) 81.1 (30) 
 Missing 5.4 (30) 2.5 (3) 6 (6) 10.8 (4) 

Paternal smoking during 
pregnancy 

Yes 25.3 (201) 5 (37) 3.7 (29) 2 (16) 

No 44 (349) 10 (78) 5.5 (44) 2.6 (21) 

Missing 1.5 (12) 0.4 (3) 0.5 (4) - 

Socio-economic Status 

Low 10.8 (86) 1.4 (11) 0.8 (6) 0.8 (6) 

Medium 52.8 (419) 12.1 (96) 8.2 (65) 3.7 (26) 

High 5.8 (46) 1.4 (11) 0.5 (4) 0.1 (1) 

Missing 1.4 (11) - 0.3 (2) 0.1 (1) 

Secondhand Smoking at 1 
year of age 

Yes 24.2 (192) 6.2 (49) 0.5 94) 2.3 (18) 

No 41.2 (192) 8.3 (66) 5.3 (42) 1.8 (14) 

Missing 4.8 (38) 0.4 (3) 3.9 (31) 0.6 (5) 

Secondhand Smoking at 4 
years of age 

Yes 31.7 (178) 38.9 (46) 37.6 (29) 46 (17) 

No 55.9 (314) 55.9 (66) 53.25 (41) 43.2 (16) 

Missing 12.5 (70) 5.1 (6) 9.1 (7) 10.8 (4) 

 



 

37 
 

Table 7 (Continued)    BMI Trajectory Group 

Factors 

  

Normal 
trajectory  
(n = 562) 

 %(n) 

Delayed 
Overweight  

(n = 118) 
%(n) 

Early Transient 
Overweight 

 (n = 77) 
%(n) 

Early Persistent 
Overweight  

(n = 37) 
%(n) 

Cell proportions   Mean (95% Confidence Intervals) 

 B cells 0.08 (0.03 - 0.13) 0.08 (0.04 - 0.14) 0.08 (0.03 - 0.13) 0.08 (0.03 - 0.13) 
 CD8T 0.11 (0.02 - 0.19) 0.11 (0.02 - 0.19) 0.11 (0.02 - 0.19) 0.10 (0.02 - 0.19) 

 CD4T 0.3 (0.2 - 0.39) 0.29 (0.17 - 0.38) 0.29 (0.21 - 0.39) 0.3 (0.2 - 0.41) 

 Monocytes 0.13 (0.08 - 0.19) 0.13 (0.08 - 0.2) 0.13 (0.07 - 0.19) 0.13 (0.07 - 0.24) 

 NK Cells 0.01 (0 - 0.07) 0.02 (0 - 0.07) 0.02 (0 - 0.06) 0.01 (0 - 0.07) 

 Eosinophils 0.01 (0 - 0.05) 0.01 (0 - 0.05) 0.01 (0 - 0.05) 0.01 (0 - 0.11) 

  Maternal age (years) 29.4 (29 - 30) 29.3 (29 – 30) 29.4 (29 - 30) 29.1 (29 - 30) 

*Kg Kilograms                
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Identification of candidate CpGs associated with BMI trajectories from infancy to 26 

years of age 

Of the 1,773 CpGs identified in the literature, 1,090 were found in the cord blood DNAm 

of IOW birth cohort. Based on ttScreening, 14 CpGs showed a statistically significant 

association with BMI trajectories and were considered informative (Table 8 & 9). 

Table 8 CpGs that passed tt-screening and considered as informative 

  Delayed 
Overweight 

Early Transient 
Obesity 

Early Persistent 
Obesity 

CpG Name 
Selection 

Proportion 
Parameter 
Estimate 

Pvalue 
Parameter 
Estimate 

Pvalue 
Parameter 
Estimate 

Pvalue 

cg23089913 96 -0.10 0.002 -0.21 0.71 0.01 0.00004 
cg12076012 87 0.00 0.95 -0.26 0.0001 -0.22 0.001 
cg11015251 74 0.01 0.81 -0.41 0.45 -0.05 0.00002 
cg08102602 72 0.02 0.6 0.21 0.56 -0.03 0.0005 
cg14434213 70 0.06 0.08 -0.08 0.001 -0.14 0.2 
cg12737392 66 0.02 0.54 -0.16 0.22 -0.04 0.001 
cg13344237 64 0.10 0.001 -0.003 0.59 0.02 0.95 
cg07654559 62 0.05 0.125 0.17 0.54 -0.02 0.001 
cg08486961 61 0.00 0.99 -0.21 0.28 0.05 0.001 
cg17812850 58 -0.12 0.001 -0.06 0.84 -0.01 0.29 
cg13217064 54 0.14 0.002 0.07 0.89 -0.01 0.36 
cg23490166 54 0.13 0.005 -0.01 0.04 0.11 0.92 
cg16645202 53 0.03 0.32 0.15 0.79 -0.01 0.001 
cg01106145 52 -0.08 0.004 -0.09 0.04 -0.07 0.04 

 

 

 

 

 

 

 

 

 

 

 

 



 

39 
 

Table 9 Gene names and location of the CpGs that passed the screening 

CpG Name 
Gene 

Name 
Chromosome 

MAP 

INFO 
Coordinate Strand 

Location 
on the 
gene 

Relation 
to UCSC 

CpG 
Island 

cg23089913 NANOS1 10 120788366 120778356 F TSS1500  

cg12076012 ZFYVE1 14 73494092 72563845 F TSS1500 S Shore 

cg11015251 HOXA4 7 27170554 27137079 F TSS200 Island 

cg08102602 PTMS 12 6875642 6745903 F 
1stExon; 

5'UTR 
Island 

cg14434213  8 38508780 38627937 F  S Shore 
cg12737392 TRAPPC9 8 140945843 141015025 F Body  

cg13344237 DNMT3A 2 25565575 25419079 F 
TSS1500; 

TSS200 
Island 

cg07654559 
TTC31; 

CCDC142 
2 74710618 74564126 R 

Body; 
TSS1500 

S Shore 

cg08486961 DNAJB12 10 74114051 73784057 F Body Island 
cg17812850 TMEM184C 4 148538527 148757977 R TSS200 Island 
cg13217064 SOX14 3 137483099 138965789 F TSS1500 Island 

cg23490166 RAB1B 11 66035951 65792527 R TSS200 Island 
cg16645202 SLCO3A1 15 92397488 90198492 R Body Island 
cg01106145 ANO10 3 43663861 43638865 R TSS1500 Island 

After adjusting for the potential confounder such sex, second-hand smoke exposure, 

birthweight, infant feeding method, and cell types, two CpGs remained statistically significant 

after taking false discovery due to multiple testing into account. DNAm sites cg23089913 

(NANOS1) and cg13217064 (SOX14) were associated with EPO and DOW trajectories, 

respectively (Table 10). Increased methylation of cg23089913 was associated with decreased 

odds of being in EPO trajectory (OR: 0.84, 95% CI: 0.8-0.9) while higher methylation of 

cg13217064 resulted in increased odds of being in DOW trajectory (OR: 1.4, 95% CI: 1.1-1.7) 

when compared to the Normal trajectory. 
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Table 10 Association of DNAm and BMI trajectories from infancy to 26 years. 

CpG  
BMI 

trajectory 

group¥ 

Parameter 
estimate 

p-Value 
FDR  Odds ratio  

p-Value (95% CI*) 

Cg23089913 (NANOS1) 

DOW -0.05 0.06 0.1 0.94 (0.9 - 0.99) 

ETO 0.0008 0.98 0.97 1 (0.9 - 1.06) 

EPO -0.18 0.0006 0.02 0.84 (0.76 - 0.93) 

Cg13217064 (SOX14) 

DOW 0.32 0.001 0.02 1.38 (1.13 - 1.67) 

ETO -0.04 0.75 0.87 0.95 (0.73 - 1.23) 

EPO -0.01 0.9 0.96 0.97 (0.67 - 1.42) 

¥ corresponds to specif ic trajectory: DOW– Delayed overweight (n=108); ETO - Early transient 

overweight (n=64); EPO - Early persistent obesity (n=28), NT – Normal trajectory is the reference group 

(not shown in the table, n=456); CI- Conf idence Interval. Regression models were adjusted for maternal 

age, socioeconomic status, gender, secondhand smoking at age 4, birth weight, type of  feeding., and cell 

proportions.  

When analyzing these two CpGs, it was noted that the odds of being in the ETO 

trajectory was higher for participants who were exposed to mixed feeding method (formula & 

breast feeding) during infancy (data not shown). It is also noteworthy that the odds of being in 

DOW and EPO for female participants increased by 2- and 3- times respectively when 

compared to male participants (data not shown). 

Given the association on of the female participants with the BMI trajectories, the 

interaction between the methylation and gender were tested. A statistically significant interaction 

was observed between the DANm and gender (data not shown). The association between BMI 

trajectories and the DNAm was further stratified by gender to investigate if the association 

varied in each gender. Table 11 illustrates the odds ratios and 95% confidence intervals of 

stratified analysis. Cg23089913 showed a statistically significant association in both, male and 

female participants, and higher methylation levels of this CpGs were related to lower odds of 

developing EPO. However, cg13217064 suggested a statistically significant association with 

DOW trajectory in females but not in males. The odds of developing into DOW trajectory were 

1.8 times higher when compared to the participants in the normal trajectory group in females. 
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Table 11 Odds ratios and 95% confidence intervals for the CpGs associated with BMI 
trajectories stratified by gender 

  Male Female 

  Trajectory 
Group 

Paramete
r Estimate 

p-value Odds Ratio 
(95% 

Confidence 

Intervals) 

Paramete
r Estimate 

p-value Odds Ratio 
(95% 

Confidence 

Intervals) 

Cg2308991
3 (NANOS1) 

DOW -0.06 0.16 0.94 (0.86-1.02) -0.04 0.2 0.95 (0.89-1.01) 

ETO -0.01 0.74 0.97 (0.9-1.06) 0.004 0.94 1.02 (0.91-1.13) 

EPO -0.42 0.01 0.71 (0.54-0.92) -0.15 0.02 0.86 (0.76-0.98) 

Cg1321706

4 

(SOX14) 

DOW -0.02 0.89 1 (0.72-1.36) 0.55 <0.000

1 

1.8 (1.36-2.27) 

ETO -0.12 0.48 0.87 (0.63-1.24) 0.004 0.98 1.02 (0.63-1.6) 

EPO -0.03 0.94 0.95 (0.39-2.38) 0.14 0.54 1.1 (0.73-1.83) 

¥ corresponds to specif ic trajectory: DOW– Delayed overweight ETO (Male (n) = 39; female(n) = 69)- 

Early transient overweight (Male (n) = 40; female(n) = 24); EPO (Male (n) = 7; female(n) = 21) - Early 

persistent obesity, NT (Male (n) = 240; female(n) = 216)– Normal trajectory is the reference group (not 

shown in the table); Regression models were adjusted for maternal age, socioeconomic status, 

secondhand smoking at age 4, birth weight, type of  feeding, and cell proportions.  

Association of BMI trajectories and different methylation levels of CpGs: cg23089913 and 

cg13217064 stratified by gender 

Sex-specific DNAm quartiles were identified by categorizing cg23089913 and 

cg13217064 into four groups (first, second, third, and fourth quartiles of methylation separate for 

male and female participants. The odds of being in a trajectory was evaluated using multinomial 

logistic regression analysis (Table 12). For cg23089913, when compared to the fourth quartile 

(methylation level (β) between 0.27 – 0.8), male participants in the first quartile (β-value: 0.08 - 

0.21) had a 3- and females had 5-times higher odds of being in DOW and EPO respectively. 

This suggests that participants with lower methylation of cg23089913 have a higher odd of 

being in obese trajectory groups. 
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For cg13217064, first quartile (β-value: 0.04 - 0.026) was considered as the reference 

group. Females showed a statistically significant association of developing a DOW trajectory 

while no such association was observed in male participants. Interestingly, the odds of being in 

DOW increased from 3.7 to 5.7 times as methylation value increased from 0.026 to 0.094 (Table 

3.7). 
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Table 12 Odds ratios and 95% confidence intervals for the CpGs associated with BMI trajectories. 

CpG Name 
Trajectory 

group@ 

Proportion of 
methylation 

ranges 

Males Females 

n 
Odds 
Ratio 

95% CI# pvalue n 
Odds 
Ratio 

95% CI# pvalue 

Cg23089913 
(NANOS1) 

DOW 

0.08 - 0.21 86 

2.94 1.04 - 8.3 0.04 

94 

1.51 0.67 - 3.44 0.32 

ETO 1.35 0.52 – 3.53 0.54 0.92 0.26 – 3.56 0.89 

EPO¥ 9512.86 0 - 1.589E+39 0.89 6.55 1.2 – 35.29 0.02 

DOW 

0.21 - 0.24 97 

0.62 0.2 - 2.32 0.44 

115 

1.2 0.54 - 2.7 0.66 

ETO 0.62 0.25 - 1.87 0.36 0.38 0.07 - 1.63 0.19 

EPO¥ 3834.14 0 - 6.382E+38 0.84 4.21 0.78 – 22.80 0.1 

DOW 

0.24 - 0.27 123 

1.2 0.43 - 3.24 0.74 

99 

0.53 0.22 - 1.30 0.17 

ETO 0.51 0.19 - 1.36 0.18 0.94 0.3 - 2.95 0.92 

EPO¥ 1512.62 0 - 2.557E+38 0.86 1.29 0.19 – 8.60 0.79 

DOW 

0.27 - 0.8 93 Reference group 87 Reference group ETO 

EPO 

Cg13217064 
(SOX14) 

DOW 

0.004 - 0.026 89 Reference group 104 Reference group ETO 

EPO 

DOW 

0.026 - 0.032 97 

0.63 0.33 - 2.66 0.32 

90 

3.32 1.24 – 8.86 0.02 

ETO 0.92 0.58 - 4.05 0.86 3.1 0.83 - 11.53 0.09 

EPO 2.33 0.29 - 42.36 0.5 0.95 0.25 – 3.64 0.93 

DOW 

0.032 - 0.039 104 

1.01 0.27 - 2.18 0.9 

106 

3.46 1.36 – 8.76 0.01 

ETO 0.49 0.23 - 1.97 0.39 0.92 0.22 – 3.89 0.91 

EPO¥ 0.00 0 – 5.11e70 0.95 1.14 0.35 - 3.69 0.83 

DOW 

0.039 - 0.094 109 

1.01 0.39 – 2.61 0.98 

94 

6.55 2.44 - 17.61 0.0002 

ETO 0.78 0.26 - 2.04 0.55 2.35 0.57 – 9.67 0.24 

EPO 3.12 0.27 – 71.11 0.3 0.98 0.21 – 4.44 0.98 

@ Corresponds to specif ic trajectory: DOW– Delayed overweight; ETO - Early transient overweight; EPO - Early persistent obesity, Normal trajectory (NT) is the 

reference group; #CI- Conf idence Interval; * Reference group. Regression models were adjusted for maternal age, socioeconomic status, secondhand smoking at 

age 4, birth weight, and type of  feeding. ¥ the odds ratios, and conf idence intervals showed large values for these methylation ranges which could be attributed to 

the small sample sized in these subsections. 
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Descriptive characteristics of the developmental pattern of CpGs associated with BMI 

measurements  

To illustrate the developmental pattern of these CpGs over time the mean methylation of 

cg23089913 and cg13217064 at birth, and ages 10 and 18 years for BMI trajectories which they 

were associated with as well as normal trajectory in males and females was examined. For 

cg23089913, a parallel development of DNAm was observed in males for EPO and NT (normal 

trajectory). Male participants in EPO showed a lower DNAm from birth to 26 years of age 

(Figure 3). Though a marginally higher DNAm was observed in the NT participants at birth and 

10 years of age, no difference in DNAm was observed at 18 years of age. In females, similar 

pattern of DNAm development were noted in NT and EPO groups. However, a cross-over of 

DNAm at 10 years of age was noted. 

 

Figure 3 Distribution of mean methylation of cg23089913 across BMI trajectory group at 
different stages of life- at birth, 10, and 18 years of age for male and female participants. 

Early persistent obesity (EPO) trajectory showed a parallel development of  BMI and DNAm over time 

f rom birth to age 18 years in males while a cross over for the DNAm at age 10 was observed for females. 

NT- Normal trajectory 

For cg13217064 this study detected that higher methylation was associated with higher 

odds of developing a DOW trajectory (Table 12). Females in the DOW group showed a unique 

DNAm development compared to the participants in NT group. Male participants in the DOW 

trajectory displayed higher methylation levels at a birth and 18 years while lower methylation at 
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10 years of age was noted. Males in both the NT and DOW groups exhibited parallel DNAm 

development at birth and 10 years (Figure 4). 

 

Figure 4 Distribution of mean methylation of cg13217064 across BMI trajectory group at 
different stages of life- at birth, 10, and 18 years of age for male and female participants. 

A parallel development of  DNAm and BMI was observed with methylation cross over at age 18 years. 

However, the DNAm for females showed an inverted pattern of  DNAm for delayed overweight (DOW) 

trajectory when compared to the normal trajectory group (NT).  

Discussion 

Of 1,773 differentially methylated CpGs at birth that were reported in at least one prior 

study to be associated with maternal pre-pregnancy BMI, in this investigation 1,090 CpGs could 

be evaluated for their odds of developing a specific BMI trajectory in offspring from infancy to 

age 26 years (Table 10). With the normal trajectory as reference group, high or low levels of 

DNAm at CpG sites cg23089913 (NANOS1) and cg13217064 (SOX14) were statistically 

significantly associated with the EPO and DOW trajectories after adjusting for multiple testing. 

Surprisingly, cg23089913 (NANOS1) and cg13217064 (SOX14) identified by Sharp et al., did 

not survive a later meta-analyses by Sharp et al. (2017); however, lower sample sizes of studies 

included in meta-analyses may explain this limitation. Participant with higher methylation levels 

of cg23089913 (OR: 0.84) at birth showed a low risk of being in EPO while increased 

methylation of cg13217064 (OR: 1.4) showed a positive association concluding higher odds of 

progressing into DOW trajectory compared to the normal trajectory. In a gender stratified 
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analysis, the odds of developing into delayed overweight developmental trajectory was 1.8 

times high in female participants for cg13217064 while not such association was detected in 

males. 

A lower gestational BMI was known to be associated with higher methylation of 

cg23089913 (NANOS1) at birth [35] and the current investigation additionally demonstrated low 

odds of being in the EPO trajectory with increased methylation. Cg23089913 is located on the 

transcription start site of the gene NANOS1 on chromosome 10. A multiphase dietary 

intervention by Boltman et al reported that NANOS1 is highly expressed in obese individuals 

suggesting an association with obesity [73]. When comparing the odds, this study also observed 

that participants with lower methylation levels of this CpG were associated with higher odds of 

developing into a EPO trajectory (Table 3.5). Cg23089913 may be considered potential 

predictor of BMI growth trajectories, given the modified risk of being in different BMI trajectories 

with differential methylation of this CpG. 

Cg13217064 is located on transcription start site of the gene SOX14 on chromosome 3. 

SOX14 is a member of SOX (sex-determining region on Y box) family transcription factors that 

play critical role in cell fate determination as well as tissue development including pancreas [74]. 

Li et al reported that SOX14 promotes the growth of cervical cancer cells by activation of 

WNT/β-catenin signaling pathway [75]. This pathway is known to be involved in organ 

development, and physiological processes such as cell proliferation, migration, apoptosis, and 

invasion in metabolic diseases (24). Animal studies illustrated high fat diet induced hypertrophy 

and hyperplasia in visceral as well as subcutaneous white adipose tissues via Wnt/β-catenin 

activation [76]. Also, SOX family transcription factors are known modulators of canonical Wnt/β-

catenin signaling in disease development and cell growth [77]. Despite the lack of direct 

association between SOX14 and obesity, existing evidence suggests that SOX14 has a critical 
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role in cell proliferation via Wnt/β-catenin activation which in turn is involved in fat deposition in 

adipose tissues [76]. 

SOX14 was found to be differentially methylated in siblings born before and after 

maternal bariatric surgery and substantial weight loss [78]. SOX14 transcription factor was 

found in abundance in omentum of diabetic compared to non-diabetic patients [79]. Sharp et al 

illustrated that children born to mothers with lower BMI (underweight) showed higher 

methylation levels of the CpG site cg13217064 on SOX14 at birth [35]. This investigation 

additionally showed that the children with higher methylation levels of cg13217064 showed 

higher odds of progressing into DOW trajectory. To our knowledge, this is the first study that 

demonstrated a link between differential methylation of cg13217064 on SOX14 and excess 

bodyweight. Future studies should focus on understanding the association between SOX14 and 

obesity as DNAm of cg13217064 which could be a potential predictor of BMI growth trajectories 

from infancy to 26 years of age. 

To illustrate differential developments of DNAm at birth, age 10 and 18 years for specific 

trajectories compared to the normal growth trajectory, selected CpGs that passed multiple 

testing were examined (Figure 3 & 4). Concurrent changes in the DNAm normal and EPO 

trajectory were observed for cg23089913 (Figure 3). Participants in the EPO showed a lower 

methylation when compared to normal trajectory. This reflects the higher odds ratio for lower 

DNAm (Table 10). Cg13217064 showed a parallel change in DNAm in males. However, females 

exhibited a distinct pattern of DNAm changes with a cross-over at 10 years of age (Figure 4). It 

would be interesting to test whether the risk of obesity changes with age and the differential 

methylation of these CpGs in a repeated measurement analysis. 

This study suggests that the differential DNAm at birth associated with maternal pre-

pregnancy BMI constitute a risk for the offspring being in EPO or DOW trajectory. Further 
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replications of these associations in independent cohorts are needed. However, currently no 

other study has data on BMI trajectories and DNA methylation. Gene expression levels based 

on Guthrie card (F1) were not available to understand the biological relevance of the identified 

CpGs. The study participants are Caucasians only, thus future studies should consider racial 

diversity. Nevertheless, this study identified two novel CpGs of obesity-associated factors that 

were known to be influenced by environmental exposures or lifestyle changes. Interventions 

altering the methylation of cg23089913, and cg13217064 in newborns may change the risk of 

developing overweight in childhood and adolescence. 

Conclusion 

The results from this study suggest that gestational BMI-related epigenetic markers 

identified at birth were associated with offspring BMI trajectories from birth to 26 years of age. 

Variations in the methylation levels of these CpGs imposed various risk levels of obesity in 

offspring. Additional studies are needed to investigate the potential conditions that can change 

the DNAm of these two CpGs further modifying the risk of obesity. 

 

 

 

 

 

 

 

 



 

49 
 

Chapter 4 

4. Methylation at birth associated with maternal pre-pregnancy BMI may predict offspring 

BMI from infancy to adulthood in mixed linear models with repeated measurements 

Introduction  

Epigenetics changes, the mitotically heritable alternations that occurred due to the 

influence of exposures but not due to changes in the DNA sequence were studied to delineate 

the link between the intrauterine exposures and offspring health outcomes [80]. Epigenetic 

modification such as DNA methylation (DNAm) - the addition or removal of a methyl group to a 

cytosine followed by a guanine linked by phosphate dinucleotide (CpG) - has documented the 

role of intrauterine exposures such as maternal smoking during pregnancy and maternal body 

mass index (BMI) during gestation [81, 82]. 

Maternal pre-pregnancy BMI has shown to have prominent influence on the offspring 

BMI from childhood to adolescence and was considered as major risk factor [83]. Such an 

association is considered to be mediated via epigenetic modifications such as DNAm [84].To 

date, epigenome wide association studies (EWAS) identified several differentially methylated 

CpGs in offspring at birth with respect to the maternal gestational BMI. The number of CpGs 

identified by different studies varies. An EWAS by Liu et al who compared the DNAm of 

offspring born to obese  vs normal mothers using 27K bead identified 20 CpGs [84] while Sharp 

et al using the 450K Illumina BeadChip identified 1,649 differential methylated CpGs at birth 

[85]. The PACE (pregnancy and childhood epigenetics) consortium conducted a meta-analysis 

using maternal BMI information and variation in newborn umbilical cord blood DNAm from 19 

cohorts and identified 104 differentially methylated CpGs [36]. Among the CpGs identified by 

these studies, there was no overlap, which can be attributed to false positive results and small 

sample sizes of some EWAS. Despite these inconsistencies, it has nevertheless, been 

suggested that epigenetic marker of maternal pre-pregnancy BMI can be identified in the 

offspring at birth. 
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Sharp et al who studied associations between maternal pre-pregnancy BMI and DNAm 

at birth, also tested the predictability of CpGs identified at birth for adiposity in childhood and 

adolescence. No specific CpGs were reported with such associations after multiple statistical 

correction [85]. The lack of significant results may be due to many non-informative CpGs which 

eliminated informative CpG when adjusting for multiple testings. Also, potential post-partum 

confounder such as duration and mode of feeding during infancy (breast feeding, formula 

feeding and mixed feeding- breast), second-hand smoke exposure, and active smoking of 

offspring were not considered when associations were studied. Exclusive breast feeding was 

known to prevent the development of overweight and obesity [86, 87] whereas early introduction 

of formula feeding elevated the risk of overweight in later infancy [88]. Similarly, children who 

were exposed second smoke in childhood and/or adolescence have higher odds of obesity 

compared to children who were not exposed [89]. 

For the current study, the study hypothesis is that the differentially methylated DNAm 

related to maternal BMI identified in offspring at birth are associated with the BMI development 

from infancy to adolescence. Hence, we aim to identify CpGs known to be associated with 

maternal pre-pregnancy BMI at birth that may ‘predict’ BMI from infancy to adolescence. We try 

to overcome prior limitations by (i) focusing on informative 1,773 CpG related to gestational BMI 

in prior studies and not all CpGs, (ii) excluding non-informative CpGs that were not associated 

with either BMI measurements at different ages (1, 4, 10, 18, 26 years); (iii) including potential 

covariates such as mode of infant feeding, second-hand smoking, and cell proportions; in 

addition to other potential confounder; and (iv) further exploring the stability of DNAm at age 10 

and 18 years with BMI overtime. 
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Methods 

Study population 

Parents of the children born between January 1, 1989, and February 28, 1990 (n=1,536) 

in the Isle of Wight (IOW), UK were invited to participate in a longitudinal study. After exclusion 

of adaptions, perinatal deaths and missing written consent, 1,456 (94.8%) of the parents 

enrolled their newborns. The birth cohort has been described in detail elsewhere [38, 63]. The 

study population is 99% Caucasian. The enrolled newborns will be refereed as the F1 

generation. The F1 participants were followed up from infancy into adulthood (birth, age 1, 4,10, 

18, and 26 years). The investigation was approved by the local ethics committee –National 

Research Ethics Service, NRES Committee South Central – Hampshire B, U.K. and by the 

University of Memphis Institutional Review Board in Memphis, U.S (#2423). Written informed 

consents were obtained from the parents until age 10 and at 18 and 26 years from the 

participants at each follow-up. 

Variables 

Maternal and paternal smoking during pregnancy, birthweight, gender, infant feeding 

method (breast milk only, formula only, breast milk plus formula) during infancy, secondhand 

smoke exposure, and active smoking of participants at age 18 and 26 years are considered as 

potential confounding variables. At birth, maternal and paternal history of smoking during 

pregnancy were gathered while birth weight and gender of the child were collected from the 

birth records. At the 1-year and 2-year follow-up, information on type of feeding (formula and/or 

breast milk), length and weight of the child, exposure to secondhand smoking were collected. 

Information on secondhand smoke exposure at ages 4 and 10 years was collected from the 

questionnaires completed by parents during follow-ups. The smoking history of the participants 

at ages 18 and 26 years were acquired from the self-administered questionnaires. Height 

(length) and weight were measured at 1, 2, 4, 10, 18, and 26 years of age. 
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BMI measurements from infancy to 26 years of age 

BMI at each time point (1, 4, 10, 18, and 26 years) is calculated as weight (kg) to height 

(m2) ratio. BMI was standardized as Z-BMI scores, which were calculated by dividing BMI by its 

the standard deviations within IOW. 

DNA methylation measurements 

DNA was extracted from the Guthrie cards (dried blood spots collected at birth) of the F1 

participants (n=796), peripheral blood samples at age 10 (n = 330) and 18 years (n = 476) using 

a standard procedure as described by Bryan et al [90]. The Illumina Infinium Methylation EPIC 

BeadChips (Illumina, Inc., San Diego, CA, USA) was used to obtain the methylation levels 

following the manufacturer’s protocol for samples obtained from Guthrie card. The CPACOR 

pipeline [91] was used for pre-processing and QC of the samples. Batch effects were corrected 

using Bioconductor package IMA [92] and COMBAT [93]. 

Peripheral blood samples at age 10 (n = 330) and 18 years (n = 476) of F1 participants 

was extracted using a standard salting out procedure [94]. DNA concentration was determined 

using the Qubit quantification. Following the manufacturers protocol of EZ 96-DNA methylation 

kit (Zymo Research, CA, USA), up to 1 µg of DNA extracted from the samples was bisulfite-

treated for cytosine to thymine conversion. DNA methylation (DNAm) was assessed using the 

Illumina Infinium HumanMethylation450 Beadchip (Illumina, Inc., CA, USA) [95]. Arrays were 

used to process the samples following standard protocol. Assay variability was assessed by 

assigning multiple identical controls to each bisulfide conversion batch. Batch effect was 

controlled by random distribution of samples in the arrays. Each beadchip was scanned using a 

BeadStation. The methylation level of each queried CpG locus was calculated using Methylation 

module of BeadStudio software. 
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The beta values represent the proportion of the methylated (M) sites over the sum of the 

methylated (M) and unmethylated (U) sites = (β =M/(c+M+U), with c as a constant to preventing 

dividing by zero were used to estimate DNA methylation levels. During pre-processing, (1) 

CpGs that are on sex-specific chromosomes, (2) CpGs with signals that were not 

distinguishable against background noise and (3) CpGs with a potential single nucleotide 

polymorphic (SNP) within 10 base pairs and with a minor allele frequency of greater than 0.007 

since these probe-SNPs may interfere with the DNAm measurement were excluded. After pre-

processing, controlling for batch effect, and quality control 551,711 CpGs identified from Guthrie 

cards were considered reliable. 

Cell proportions 

The Minfi R-package with estimateCellcounts() function and adult reference panel of the 

respective blood samples. Seven cell types: B cells, CD4T and CD8T cells, monocytes, natural 

killer cells, neutrophil, and eosinophils were assessed using cell-specific CpGs, default settings 

in minfi and the method by Housemen et al [96] and Aryee et al [68]. nRBCs were not estimated 

as the Guthrie cards are collected between 3-5 days after delivery and nRBC are no longer 

seen in the blood circulation of the newborn after few days. 

Exposure of interest - CpGs previously identified to be associated with maternal BMI at 

birth 

A literature review was performed to identify studies that performed epigenome wide 

association (EWAS) between maternal pre-pregnancy BMI and the offspring DNAm at birth. 

Academic databases - PUBMED, GOOGLE SCHOLAR, & EMBASE were queried using search 

terms such as “Maternal BMI”, “Maternal pre-pregnancy BMI”, “Pregestational BMI”, 

“Preconception BMI”, and “Maternal obesity” along with “Cord blood DNA methylation”, “DNA 

methylation”, and “Epigenome-wide association” within a 10 years’ time span of 2007 -2017 to 
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capture all past studies that reported such results. Studies with similar exposure of interest 

(maternal pre-pregnancy BMI) and confounders (sex of the child, age of the mother, cell 

proportions etc.) were considered. 1,773 candidate CpGs from three EWAS studies with 

maternal pre-pregnancy BMI as exposure and DNAm of the offspring at birth were discovered. 

Of these 1,773 CpGs, 1,090 CpGs were also identified among the 551,711 CpGs from F1 

Guthrie cards in the IOW birth cohort and constitute the exposure of interest. 

Statistical analysis 

To test whether the analytical sample represents the cohort, one-sample proportion tests 

were used. For normal distributed continuous variables such as BMI, the one-sample Wilcoxon 

signed test was applied. Data available on participants’ BMI at ages 1, 4, 10, 18, and 26 years 

and 1,090 candidate CpGs known to be associated with gestational BMI and present in IOW 

birth cohort data were used to test the hypothesis of DNAm at birth to be associated with 

repeated BMI measurements from infancy to age 26 years. 

1,090 candidate CpGs were tested for their associations with offspring BMI at each age 

1, 4, 10, 18, and/or 26 years using ttScreening [71], a R computing package that filters 

informative CpGs that were potentially associated with the BMI at different time periods. In total, 

five screenings were performed with BMI at age 1, 4, 10, 18, and 26 years as independent 

variables and DNAm at birth as outcome of interest respectively. In the screenings, cell 

proportions were included as potential confounder in the robust regression but no other potential 

confounder. ttScreening facilities a screening process, where each CpG was tested through 100 

iterations of training and testing. 2/3rd of the sample was used as training dataset while 1/3rd was 

used as training dataset for each iteration. A CpG with at least 50% of selection probability in 

training and testing samples and statistically significantly associated with BMI at each respective 

age was considered informative. 
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CpGs identified in at least one ttScreening were considered informative and were further 

tested using mixed linear models for association with repeated measurements of BMI at age 1, 

4,10, 18, and 26 years adjusting for potential confounders such as paternal smoking during 

pregnancy, low birth weight, feeding pattern (breast feeding only, formula feeding only, and 

both), secondhand smoking at age 1, 4, and 10 years and personal smoking at ages 18 and 26 

years of age in addition cell proportions. Linear mixed models were used to study the overall 

effect and to account for the repeated measurements (age) of BMI in each subject. Within-

subject variation and the random time/age effect were included in the models. In these linear 

mixed models, covariates that did not change the parameter estimate by at least 10% were 

considered not to confound the association and were excluded. Associations with a p-value ≤ 

0.05 were considered statistically significant. Results were corrected for multiple testing using 

false discovery rate methods (FDR) [72]. For the CpG sites, M-values were used to study the 

association between BMI and DNAm that passed screening. For CpGs that passed multiple 

testing, 95% confidence intervals were calculated. Additionally, the CpGs that survived the FDR 

were further stratified by sex to test if the associations were distinct in male and female 

participants. 

Lastly, to understand variations in methylation at birth, age 10, and age 18 years, and 

BMI at ages 1, 4, 10, 18, and 26 years, the mean methylation value of the corresponding CpGs 

and the BMI z-scores were inspected in male and female participants. All statistical analyses 

were performed in R-4.1 and SAS, version 9.4 (SAS Institute, Cary, NC, USA). 

Results 

Participant’s characteristics 

The characteristics of the analytical sample (n=796) and the total cohort (n=1,459) are 

presented in table 13. No statistically significant differences in the characteristics were observed 
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concluding the analytical sample is representative of total population enrolled in the study. The 

majority of the participants have normal birth weight (94.9%) and had a mixed pattern of feeding 

(breast and formula feeding-64%). The sample consisted of equal proportions of male and 

female members. Participant exposed to paternal smoking during pregnancy, secondhand 

smoking or personal smoking varied between 24% to 37%. 

Table 13 Characteristics of the study population and the analyzed sample 

Variable   
Study population 

n = 1456 
% (n) 

Analytical 
Sample 

n = 796 
% (n) 

p 

Value 

Sex 
Male 50.5 (735) 50.4 (401) 0.72 

Female 49.5(721) 49.6 (395) 
 

Paternal smoking 

during pregnancy 

No 60.8 (885) 62.1 (494) 0.35 

Yes 37.2 (542) 35.6 (283) 
 

Missing 2 (29) 2.4 (19) 
 

Low birth weight 
< 2.5 Kg* 3.7 (54) 94.9 (755) 0.63 
>= 2.5kg* 94.6 (1378) 3.8 (30) 

 

Missing 1.7 (24) 1.4 (11) 
 

Infant feeding 
method 

Formula feeding only 16.5 (368) 8.7 (69) 0.34 

Brest feeding only 8.2 (119) 19 (151) 
 

Mixed feeding  66.6 (969) 65.1 (518) 
 

Missing 8.8 (128) 7.3 (58) 
 

Secondhand 

smoking at  
age 1 

No 53.4 (778) 57 (454) 0.16 

Yes 38.3 (557) 36.4 (290) 
 

Missing 8.3 (121) 6.5 (52) 
 

Secondhand 
smoking at  

age 4 

No 50.7 (738) 55 (438) 0.76 

Yes 32.1 (468) 34 (270) 
 

Missing 17.2 (250) 11.1 (88) 
 

Secondhand 
smoking at  

No 52.4 (763) 56.4 (449) 0.57 

age 10 Yes 38.2 (556) 39 (310) 
 

 
Missing 9.4 (137) 4.7 (37) 

 

Smoking at No 61.7 (899) 67.2 (535) 0.15 

age 18 years Yes 24.5 (356) 23.4 (186) 
 

 Missing 13.8 (201) 9.4 (75) 
 

Smoking at  No 48 (699) 51.1 (407) 0.53 
age 26 years Yes 21.6 (314) 25 (198) 

 

  Missing 30.4 (443) 24 (191)   

BMI (kilograms/meter2) Mean 
  

(n=Study population/analytical sample) (95% Confidence Intervals) 

Age 1 (n = 1,054/584) 17 (15 - 20) 17 (15 - 20) 0.75 
Age 4 (n= 1,043/635) 16 (14 - 19) 16 (14 - 19) 0.98 
Age 10 (n = 1,043/717) 18 (15 - 24) 18 (15 - 24) 0.99 

Age 18 (n = 949/617) 23 (18 - 32) 23 (18 - 33) 0.92 
Age 26 (n = 549/358)   26 (19 - 39)       26 (19 - 40) 0.93 

*Kg Kilograms 
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Identification of candidate CpGs that were associated with BMI from age 1, 4, 10, 18, to 26 

years of age 

Of the 1,090 candidate CpGs identified from the literature, by using the ttScreening 

approach four CpGs at age 1; six CpGs at age 4; nine CpGs at age 10; two CpGs at age 18; 

and one CpG at age 26 (total 20 unique CpGs) were found to be statistically significantly 

associated with BMI at the respective ages (Table 14). Two CpGs - cg23089913 (NANOS1) and 

cg13422881 (ERCC3) were associated with BMI at both, age 10 and 18 years. 

Table 14 CpGs that were informative for BMI at each age with at least 50% of selection 
proportion  

Time 

Period  
CpG Name 

Selection 

Proportion 

Parameter 

Estimate 
p-value Gene name(s) Chromosome 

Age 1  

(n = 584) 

cg00488692 85 -0.04 2.40E-05 unknown 2 

cg14434213 81 -0.04 8.10E-06 unknown 8 

cg10182317 73 0.03 1.70E-04 CLVS2 6 

cg22038796 57 0.03 4.80E-04 PSTPIP2 18 

Age 4 
(n = 635) 

cg12076012 79 -0.05 5.70E-05 ZFYVE1 14 

cg07428439 77 -0.03 9.50E-05 LOC284023 17 

cg15852879 63 -0.05 2.20E-04 ASB6 9 

cg04891917 54 -0.04 5.70E-04 KBTBD3;AASDH 11 

cg00522555 52 -0.05 1.70E-03 KEAP1 19 

cg26864230 52 -0.03 5.50E-04 unknown 1 

Age 10  

(n = 717) 

cg23089913 92 -0.02 3.20E-06 NANOS1 10 

cg24471459 73 -0.01 6.70E-05 UBXN8 8 

cg26862527 73 -0.02 1.60E-04 BAI3 6 

cg10592690 71 -0.01 3.90E-04 LRRC41;UQCRH 1 

cg07654559 69 0.02 5.60E-05 CCDC142;TTC31 2 

cg26884261 66 -0.02 3.50E-04 UBTD1;MMS19 10 

cg17812850 55 -0.02 6.20E-04 TMEM184C 4 

cg13422881 51 -0.02 6.40E-04 ERCC3 2 

cg05667158 50 0.02 4.40E-04 CCND2 12 

Age 18 

(n = 617) 

cg23089913 74 -0.01 3.10E-05 NANOS1 4 

cg13422881 68 -0.02 2.50E-04 ERCC3 2 

Age 26  
(n = 358) 

cg05925497 61 -0.01 1.00E-03 FLJ32810 11 

Regression models were adjusted for cell proportions.  
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Plausible predictors of BMI from infancy to 26 years 

This set of 20 unique CpG sites were then tested for their associations with BMI at 

different ages using mixed linear models with repeated measurements of BMI and adjusting for 

potential confounders. Of the 20 CpGs, eight CpGs showed a statistical significance with 

repeated BMI measurements but only five CpGs survived multiple testing. The estimated 

associations and their 95% confidence intervals of the CpGs that passed the multiple testing are 

presented in table 15. All CpG sites [cg00488692 (SP3-nearest gene), cg14434213 (RNF5P1-

nearest gene), cg23089913 (NANOS1), cg26862527 (BAI3), and cg17812850 (TMEM184C)] 

were inversely associated with BMI Z-scores from infancy to 26 years of age. For cg14434213 

the effect of repeated measurements showed a reduction of BMI of -0.28 kg/m2, for 

cg00488692 and cg23089913 the estimated effect is a reduction of BMI by -0.21 kg/m2, for 

cg26862527 and cg17812850 the reduction is -0.14 and -0.17, respectively. Of interest is also 

that participants with low birthweights had BMI that was 0.3 kg/m2 larger than those of 

participants with normal birthweights (data not shown). 

Table 15 Parameter estimates and 95% confidence intervals for five CpG sites that are 
associated with BMI after adjusting for confounders and multiple testing (n = 2,483) 

CpGs 
(Exposure) 

Annotated 
genes 

CpG 
location 

relative to 

gene 

Parameter 
Estimate 

Stan

dard 
error 

95% Confidence 
Intervals 

Raw 
Pvalue 

FDR-
adjusted P value 

cg14434213 
(Intragenic) 

RNF5P1  -0.28 0.08 -0.44 to -0.12 0.0008 0.16 

cg00488692 

(Intragenic) 
SP3  -0.21 0.07 -0.35 to -0.06 0.005 0.045 

cg23089913 NANOS1 TSS1500 -0.21 0.08 -0.37 to -0.05 0.008 0.047 

cg26862527 BAI3 5'UTR; 

TSS1500 
-0.14 0.06 -0.25 to -0.03 0.01 0.047 

cg17812850 TMEM184C  -0.17 0.07 -0.3 to -0.04 0.01 0.047 

Regression models were adjusted for cell proportions, gender, paternal smoking during pregnancy, 

secondhand smoking at age 4, 10, 18, and 26 years, birth weight, and feeding pattern.  
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A gender stratified analysis was performed to illustrate the associations of the CpGs that 

passed the FDR and showed a statistically significant association in the repeated measurement 

analysis (Table 16). In male participants, cg00488692, cg14434213, and cg23089913 displayed 

a significant association with 0.2kg/m2 decrease of BMI per unit increase in DNAm. In female 

participants cg00488692 and cg14434213 showed a statistically significant association with 

0.3kg/m2 and 0.4kg/m2 decrease in BMI with every unit increase in the methylation levels of 

these CpGs respectively. Interestingly, no significant associations were found for cg23089913 

and cg17812850 in male or female participants. It is noteworthy that female participants who are 

exposed to paternal smoking during pregnancy are at 20% higher risk of overweight while those 

who are exposed to mixed mode of feeding (formula + breast feeding) were at 30% higher risk 

of overweight (data not shown). 

Table 16 Parameter estimates and 95% confidence intervals for male and female participants 

CpGs 

Male (n = 352) Female (n = 359) 

Parameter 
Estimate 

Standard 
error 

95% 

Confidence 
Intervals 

P  
value 

Parameter 
Estimate 

Standard 
error 

95% 

Confidence 
Intervals 

P  
value 

cg14434213 
(RNF5P1)  

-0.19 0.08 
-0.34 to -

0.03 
0.02 -0.37 0.13 

-0.61 to -
0.12 

0.005 

cg00488692 
 (SP3) 

-0.15 0.07 
-0.29 to -

0.02 
0.03 -0.28 0.11 

-0.51 to -
0.06 

0.01 

cg23089913 

(NANOS1) 
-0.2 0.1 

-0.39 to -

0.01 
0.04 -0.22 0.12 

-0.46 to 

0.02 
0.07 

cg26862527  
(BAI3) 

-0.14 0.09 -0.31 to 0.03 0.1 -0.15 0.11 
-0.35 to 

0.06 
0.17 

cg17812850 
(TMEM184C) -0.15 0.1 -0.35 to 0.04 0.12 -0.11 0.09 

-0.28 to 
0.06 

0.19 

Regression models were adjusted for cell proportions, paternal smoking during pregnancy, secondhand 

smoking at age 4, 10, 18, and 26 years, birth weight, and feeding pattern.  
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Descriptive characteristics of the developmental pattern of CpG sites in male and female 

participants that are associated with BMI measurements 

Participants with DNAm measurements available at birth, age 10, and age 18 years (n = 

218) were used to inspect methylation patterns and BMI measurements at different ages in 

males and female. Male participants showed a decline in BMI Z scores from age 1 to 10 years, 

followed by gradual increment until 26 years of age. Females showed different patterns.  A 

gradual increase in BMI Z scores from age 1 to 10 years of age was observed that remained 

more stable afterwards.  

The CpG sites cg00488692, cg14434213, cg23089913 displayed similar developmental 

patterns in male and female participants (figures 5-7). These CpGs showed lower methylation 

level with gradual increase in methylation to age 10 years and stayed consistent thereafter 

(figures 5 & 6). A similar development of BMI and DNAm for cg00488692, cg14434213, 

cg23089913 was observed in females. 

 

Figure 5 DNAm pattern of cg00488692 (SP3-nearest gene) and BMI Z scores from birth to 
adolescence in male and female participants 

 

 



 

61 
 

 

Figure 6 DNAm pattern of cg14434213 (RNF5P1-nearest gene) and BMI Z scores from birth to 
adolescence in male and female participants 

 

 

Figure 7 DNAm pattern of cg23089913 (NANOS1) and BMI Z scores from birth to adolescence 
in male and female participants 
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5. Discussion 

 Among the 1,090 epigenetic markers of maternal pre-pregnancy identified at birth in the 

offspring, 20 unique CpGs were found to be associated with BMI at age 1, 4, 10, 18, and/or 26 

years of age. Five of the 20 informative CpGs that were identified in the study (cg23089913, 

cg12076012, cg14434213, cg07654559, and cg17812850) were already known to be linked 

with BMI growth trajectories replicating the study findings. A higher methylation of these CpGs 

was associated with lower odds of being in high risk growth trajectories. Of these 20 CpGs, five 

sites namely cg00488692, cg14434213, cg23089913, cg26862527, and cg17812850 showed a 

statistically significance in mixed linear models with repeated measurement analysis of BMI 

controlling for FDR. Individuals with higher methylation levels at these CgGs have lower BMI 

(Table 15). This study also noted that BMI increased by 0.3kg/m2 for participants with low 

birthweight vs. normal birthweight. In a gender stratified analysis, female participants who were 

exposed to paternal smoking and mixed method of feeding were at a greater risk of developing 

higher BMI. 

Cg00488692 is located on chromosome 2 and the nearest upstream gene is SP3. SP3 

transcription factor belongs to the SP1 family transcription factors that regulate transcription of 

several genes by binding to consensus GC- and GT-box regulatory element in target genes and 

cell-cycle regulation [97]. SP3 in conjugation with SP1 stimulates the GIP expression via GIPR 

(Glucose-dependent insulinotropic polypeptide receptor) [98]. Animal studied shows that 

overnutrition and high food intake induced obesity can be explained by abnormal expression of 

GIPR followed by absorption of fat and glucose. This series of events demonstrates that SP3 

may play a critical role in food induced obesity via GIPR expression and glucose uptake in 

obese individuals. Interventions focusing on modifying children’s diet may alter the cascade of 

diet induced GIPR glucose absorption followed by reduced risk of obesity. 
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Cg14434213 is an intragenic CpG located between the genes RNF5P1 (Ring Finger 

Protein 5 Pseudogene 1) and TACC1 with RNF5P1 as closest upstream gene on chromosome 

8.  Cg14434213 near RNF5P1 was known to show lower methylation in children born to mother 

with high prenatal BMI.  When the pre-/post gene expression profile of adipose tissue in men 

with six-weeks exercise illustrated 18% increase in RNF5P1 expression. They also concluded 

that study participants showed reduced waist circumference and low waist/hip ratios implicating 

the role of this gene in weight management [99]. A higher methylation level of this CpGs was 

also association of lower odds of being in early transient overweight and early persistent obesity 

trajectories (data not shown).  

In a meta-analysis by PACE Consortium, the CpG sites cg00488692 and cg14434213 

showed an inverse association with prenatal BMI. Children born to mothers with higher BMI 

displayed lower methylation levels at these CpG sites. Mulder et al also demonstrated that 

these CpGs showed a change from birth to 6 and 9 years and were stable thereafter. This study 

observed that a higher methylation of these CpGs to be associated with lower BMI 

(0.2kg/m2/unit change in methylation), which is in agreement with the findings where offspring’s 

of mothers with higher BMI showed lower methylation which may constitute an adverse setting. 

Sharp et al has reported that higher maternal pre-pregnancy BMI is associated with 

lower methylation of cg23089913 of the NANOS1 gene at birth [85] which in our study is 

associated with higher BMI of F1 offspring , suggesting that maternal BMI may be mediated to 

higher offspring BMI by cg23089913. Cg23089913 was also associated with BMI growth 

trajectories from infancy to 26 years of age [100]. Participants with higher methylation levels of 

this CpGs showed a higher risk of being in delayed overweight trajectory group. Cg23089913 is 

located on the transcription start site of the gene NANOS1 on chromosome 10. In a multiphase 

dietary intervention study NANOS1 was found to be highly expressed in obese individuals 

compared to normal weight individuals suggesting its relationship with obesity [101]. NANOS1 is 
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differentially expressed in obese high insulin resistant individuals compare to non-obese 

individuals. We only identified one transcript that is related to NANOS1 [102]. 

Cg26862527 belong to the promoter region (TSS1500) of the gene BAI3. Children born 

to mothers with lower prenatal BMI tend to have higher methylation levels of cg26862527 

compared to normal weight mother [85]. Findings from our study demonstrated that higher 

methylation of this CpGs was associated with decreased BMI of 0.1k/m2. BIA3 (Brain-Specific 

Inhibitor 3) also known as Adhesion G Protein Couples Receptor B3 (ADGRB3) is associated 

with G protein-couples receptor activity and transmembrane signaling receptor activity. BIA3 is 

the cell surface receptor and the sole mediator of the inhibitory effects of C1ql3. Signaling 

protein- compliment 1q-like-3 (C1ql3) is a metabolic regulator of insulin secretion from 

pancreatic β-cell in response to glucose levels. Alterations in the C1ql3/BIA3 signaling pathway 

were suggested to alter insulin secretion and may contribute to the type 2 diabetes in obese 

individuals [103]. BIA3 was also known to be significantly differentially methylated in obese 

women with systemic insulin resistance [104]. 

Cg17812850 is located upstream of the transcriptional start site of TMEM184C (also 

known as TMEM34/FLJ10846) on chromosome 4. TMEM184C is a protein encoding a gene 

that plays a crucial role in cell growth and is highly expressed in thyroid tissue 

https://www.proteinatlas.org/ENSG00000164168-TMEM184C. It has been  demonstrated that 

FLJ10846 is highly expressed in individual with Prader-Will syndrome [105]; children with this 

syndrome in early childhood tend to consume more food if not monitored strictly and then are at 

higher risk of overweight and obesity [106]. From EWAS-based analysis, Sharp et al reported 

that the cg17812850 is inversely associated with maternal pre-pregnancy BMI [36]. A higher 

maternal pre-pregnancy BMI was associated with reduced methylation of cg17812850, which, in 

turn, in our study was connected with increased BMI. Hence, if we could modify the methylation 

of cg17812850, we might be able to minimize the risk of overweight in offspring. 
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This study has some limitations. The study population comprises of Caucasians only. 

Future studies should be conducted with more racial diversity and the identified associations 

should be replicated in independent cohorts. Using internal standardized BMI z-scores could be 

a limitation. BMI z-scores used in our analysis were calculated and standardized by the 

standard deviations within the IOW but not as per the CDC recommendations. BMI z scores 

derived as per CDC guidelines were criticized as poor measures of obesity and degree of 

adiposity in children younger than 9 years of age. Our sample consisted of participants from 

infancy to young adulthood (age 1 to 26 years) and BMI z-scores are yet considered a valid 

measure of BMI across different time periods and as a screening tool for obesity [107] 

concluding that the study results are acceptable. 

Conclusion 

The study showed that certain CpG sites, located near/on SP3, RNF5P1, NANOS1, 

BAI3, and TMEM184C genes, were differentially methylated and may serve as potential 

markers for identifying children at birth who are at risk of developing a higher BMI. These genes 

were known to be influenced by lifestyle factors, such as diet and exercise. Future studies 

should focus on interventions that modify these CpG sites, as well as identify conditions that 

may modify the association between the CpG sites and BMI, which may modify the risk of 

overweight in childhood and adolescence. 
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Chapter 5 

5. Conclusion 

It is well established that intrauterine risk factors, such as the prenatal body mass index 

(BMI) of the mother, have an effect on the offspring’s BMI growth trajectories and BMI from 

childhood into adulthood. BMI trajectories were developed and studied to understand the 

dynamics and developmental patterns of BMI. In specific aim 1 (SA1) of this dissertation we 

aimed to study if the BMI trajectories established in early childhood can be extended to 

adulthood and are influenced by prenatal maternal BMI. Using the trajectory analysis and the 

data from IOW birth cohort, F1-generation, established in 1989 IOW, UK, which provided 

information on BMI from infancy to adulthood and gestational maternal BMI, SA1 investigated 

(1) whether existing BMI trajectories reported by Ziyab et al., [21] from infancy to age 18 years 

can be extended 26 years or alternatively if their patterns change; (2) whether BMI trajectories 

extended to 26 year are influenced by intrauterine risk factors- prenatal BMI and smoking. 

After excluding participants with no BMI information at all ages (1, 4, 10, 18, and 26 

years) and utilizing the group-based trajectory analyses four distinct developmental trajectories 

that covered the first 26 years of life were identified. These BMI trajectories were labelled as 

‘normal’, ‘early persistent obesity’ (EPO), ‘early transient overweight’ (ETO), and ‘delayed 

overweight’ (DOW) trajectories. These trajectories agree (overlap of about 74% to 98% 

individual trajectories) with the BMI trajectories that were identif ied in the IOW for the age-span 

between infancy and 18 years. Individual BMI trajectories of EPO and the ‘normal’ trajectory 

group were set as early at age four years and remained consistent through adolescence (26 

years age) highlighting the critical timeline in the early childhood that need preventive attention. 

Unlike the EPO and ‘normal’ trajectories, ETO and DOW trajectories were set later between age 

4 and 10 years of age. 
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Prenatal maternal BMI was found to be associated with increased odds of being in EPO 

and DOW trajectories illustrating the impact of the maternal prenatal BMI on the -trajectories of 

their offspring from age 1-26 years. We also observed a consistent and statistically significant 

association of early risk factors such as gestational age, birth weight, age of initiation of formula 

feeding, duration of breastfeeding, and gender with EPO and/or DOW trajectories. 

The underlying biological explanations for the aforementioned associations between 

intrauterine risk factors and offspring BMI may include an interplay of genetic, epigenetic, and 

other behavioral changes during and after pregnancy. Maternal pre-pregnancy BMI has been 

shown to have prominent influence on the offspring BMI from childhood to adolescence and was 

suggested to be mediated via epigenetic alterations such as DNAm. In specific aims 2 and 3 of 

this dissertation, we studied if epigenetic markers of prenatal BMI identified at birth in offspring 

predict offspring BMI trajectories and BMI from infancy to adulthood. 

A literature review was performed to identify studies that performed epigenome wide 

associations (EWAS) between maternal pre-pregnancy BMI and the offspring DNAm at birth. 

Academic databases - PUBMED, GOOGLE SCHOLAR, & EMBASE were queried using search 

terms such as “Maternal BMI”, “Maternal pre-pregnancy BMI”, “Pregestational BMI”, 

“Preconception BMI”, and “Maternal obesity” along with “Cord blood DNA methylation”, “DNA 

methylation”, and “Epigenome-wide association” within a 10 years’ time span of 2007 -2017 to 

capture all past studies that reported results on maternal BMI and DNAm. Studies with similar 

exposure of interest (maternal pre-pregnancy BMI) and confounders (sex of the child, age of the 

mother, cell proportions etc.) were considered. The query identified 1,773 candidate CpGs from 

three EWAS studies with maternal pre-pregnancy BMI as exposure and DNAm of the offspring 

at birth. 
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Of 1,773 differentially methylated CpGs at birth that were reported in at least one prior 

study to be associated with maternal pre-pregnancy BMI, 1,090 CpGs were also found in the F1 

generation data set and thus could be evaluated for their odds of developing a specific BMI 

trajectory in offspring from infancy to age 26 years. Most other CpGs not found in the F1 

generation dataset were eliminated since they did not pass quality control. The CpG excluded 

via quality control includes- i) CpGs with low quality; ii) CpGs that are missing at random; iii) 

CpGs located on sex-chromosomes; and iv) CpG sites that have a potential single nucleotide 

polymorphism (SNP) within 10 base pairs (a probe SNP) and with a minor allele frequency of 

greater than 0.007 since these probe-SNPs may interfere with the DNAm measurement. 

After adjusting for multiple testing, with the normal trajectory as reference group, CpG 

sites cg23089913 (NANOS1) and cg13217064 (SOX14) were statistically significantly 

associated with EPO and DOW trajectories, respectively. Higher methylation levels of 

cg23089913 (OR: 0.84, 95%CI: 0.76-0.93) at birth displayed lower odds of being in EPO while 

increased methylation of cg13217064 (OR: 1.4, 95%CI:1.13-1.67) showed positive association 

concluding higher odds of progressing into DOW trajectory compared to the normal trajectory. In 

a gender-stratified analysis, the odds of developing into delayed overweight developmental 

trajectory was 1.8 times (95%CI:1.36-2.27) higher per methylation level of cg13217064 in 

female participants while no such association was detected in males. 

In aim 3, epigenetic markers of maternal pre-pregnancy identified at birth in the offspring 

and available in IOW were further evaluated for their association with BMI from infancy to 26 

years using repeated measurement of BMI in linear mixed models. Of the 1,090 CpGs tested, 

20 unique CpGs were found to be associated with BMI at age 1, 4, 10, 18, and/or 26 years of 

age. Of these 20 CpGs, five sites cg14434213 (RNF5P1; TACC1), cg00488692 (SP3-nearest 

gene), cg23089913 (NANOS1), cg26862527 (BAI3), and cg17812850 (TMEM184C) showed a 

statistical significance after controlling for the false discovery rate (FDR). For every unit 
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decrease in the methylation level of these CpGs, the BMI increased by 0.1 to 0.3 kg/m2. In a 

gender stratified analysis, cg14434213 and cg00488692 showed a statistically significant 

association in males and females while cg23089913 displayed significant relation with BMI in 

male participants only. However, for cg26862527 (BAI3) and cg17812850 (TMEM184C), no 

such associations were observed in either gender. In addition to these finding focused on 

epigenetics, female participants who were exposed to paternal smoking during pregnancy and 

mixed infant feeding during infancy (breast milk and formula) were at higher risk of weight gain 

or becoming obese. It was also observed that the male participant with lower birthweight 

showed 0.3 kg/m2 higher BMI than those with normal birthweight while no significant 

associations were observed in females. 

The outcome of BMI in the first 26 years of life was addressed with three different 

approaches in this dissertation. First, identification of trajectories of BMI from infancy to 26 years 

of age, which were classified into normal, overweight, and obesity; second, investigating the 

association of these trajectories with differential DNAm related to gestational BMI (candidate 

CpGs) at birth using multinominal logistic regression models; third, examining the relation 

between BMI and differential DNAm (candidate CpGs) with generalized linear regression 

models using the repeated measurements of BMI from age 1 to 26 years. Observations from 

these approaches demonstrate that the developmental pattern of BMI were set as early as the 

age of four years and were associated with candidate CpGs (differential DNAm at birth related 

to maternal BMI during pregnancy).  Of the seven candidate CpGs that showed a statically 

significant associations, cg23089913 (NANOS1) was linked with BMI developmental trajectories 

as well as repeated measurements of the BMI from infancy to 26 years of age. The odds of 

developing in the EPO decreased with higher methylation levels of cg23089913. Also, every unit 

increase in methylation of this CpG was associated with 0.2 kg/m2 decrease in BMI.  These 

findings suggest that methylation of this specific CpG (cg23089913) is linked to BMI 
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developmental trajectories and may play a role in the development of obesity. The candidate 

CpGs identified in this work were also known be located on the genes that play critical role in 

metabolic disorders such as overweight/obesity, type 2 diabetes and physiological process like 

cell growth, differentiation, proliferation, and fat deposition. These findings constitute reliable 

base for further investigations that understand the biological role of the identified DNAm sites 

and BMI developmental patterns and BMI development with age. 

Limitations and Strengths 

1. Five measurements of BMI at age 1, 4, 10, 18, and 26 years were available for the trajectory 

analysis. Developments in the intervals cannot be assessed. However, these repeated BMI 

measurements prospectively cover the first 26 years of life in contrast to the other studies 

that are restricted to a specific time periods of childhood and/or adolescence. 

2. The BMI z-score calculated are standardized by the standard deviations within IOW but not 

as per the CDC recommendations. Use of internal standardized BMI z-scores for trajectories 

and association analysis could be a limitation. BMI z scores derived as per CDC guidelines 

were criticized as poor measures of obesity and degree of adiposity in children younger than 

9 years of age. Our sample consisted of participants from infancy to young adulthood (age 1 

to 26 years) and BMI z-scores are yet considered a valid measure of BMI across different 

time periods and as a screening tool for obesity [107] concluding that the study results are 

acceptable.  

3. Early pregnancy BMI was used as main predictor of offspring BMI trajectories is a plausible 

limitation in our study. Harris et al [55] suggested that the weight gain in first trimester is less 

compared to the second or third trimesters and prenatal maternal BMI reliable measure that 

represent the pre-pregnancy BMI. 
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4. Gene expression levels based on Guthrie card (F1) were not available to additionally 

explore the biological relevance of the identified CpGs. Therefore, additional research 

should be carried out to investigate the biological significance of these CpGs. 

5. The study participants are only Caucasians. Future studies should consider the racial 

diversity. Nevertheless, the CpGs that showed an association in this study were located on 

genes that were recognized as potential biomarkers for obesity and were known to be 

influence by environmental exposures or lifestyle changes. 

6. Although these investigations focused on DNAm sites, that were previously linked to the 

exposure of maternal BMI, this study did not test whether the identified CpGs act as 

mediators between maternal BMI and offspring BMI, neither for trajectories nor for the 

repeated BMI assessments. It was investigated whether differential DNAm shown to be 

associated with maternal BMI also was linked to offspring BMI and BMI developmental 

pattern from infancy to adulthood. It is likely that epigenome-wide analyses may detect other 

CpGs not linked with maternal BMI but associated with offspring BMI for other reasons. 

However, all the CpGs that showed an association with trajectories and/or repeated BMI 

assessments showed a lower methylation at birth. A higher gestational BMI was associated 

with lower DNAm at these CpG in offspring’s at birth in IOW which is in agreement with the 

direction of association reported in literature. 

7. This study focused solely on examining the association between DNAm and maternal BMI, 

BMI trajectories, and repeated BMI measurements, while intrauterine and early life risk 

factors such as maternal smoking during pregnancy, early formula feeding, and birth weight 

were not fully investigated. This limits our understanding of the potential influence of these 

risk factors on BMI. To gain a more comprehensive understanding of the relationship 

between modifiable risk factors, DNAm, and the risk of overweight/obesity, future studies 

should explore the effects of other risk factors on DNAm. 
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In conclusion, the analysis from SA1 identified four distinct developmental BMI 

trajectories across the first 26 years of life are set in early childhood that show strong agreement 

with BMI trajectories from infancy to 18 years identified in a prior investigation. Among the 

offspring trajectories, prenatal maternal BMI seems to be associated with increased odds of 

developing two specific trajectories, namely early persistent obesity’ (EPO) and ‘delayed 

overweight’ (DOW), but not ‘early transient overweight’ (ETO).  Early life risk factors such as 

gestational age, birth weight, duration of breastfeeding and gender are related to increased risk 

of offspring being in EPO and/or DOW trajectories. 

In trajectory modeling, various subgroups of individuals with distinct patterns of change 

are identified. When performing association analysis with trajectories, the focus is on exploring 

the relationship between the predictor variable and the changes in the outcome variable pattern 

of interest. During SA2 (trajectory analysis), the association between differentially methylated 

CpGs collected from existing literature and BMI developmental trajectories identified in SA1 was 

examined. Two differentially methylated CpGs that might predict BMI pattern changes over time 

(in the first 26 years of life) were identified by SA2. However, it's important to note that these 

associations may not fully account for the correlation between repeated measurements and 

within-subject variations in the same individual. 

On other hand, repeated measurement examines the association between the outcome 

and exposure accounting for within-subject changes of the outcome overtime while accounting 

for the correlation between the repeated measurements on the same individuals. SA3 (repeated 

measurement analyses ignoring trajectories) of this dissertation identified two and six distinct 

CpGs that may predict BMI growth trajectories and BMI measurement from infancy to 

adolescence respectively, which were known to be associated prenatal BMI. 
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This dissertation tested CpGs reported in the literature with the aforementioned 

approaches and identified CpGs that were linked to the changes in BMI patterns and/or 

repeated BMI measurements over time. The associations of the CpGs reported in this 

dissertation as well as functional roles of the genes on which there CpGs are outlined as below.   

1. Of the two CpGs that presented an association with BMI developmental trajectories and 

repeated measurement of BMI from infancy to 26 years respectively, cg23089913 (NANOS1 

gene) was identified to be statistically significant in both association models- namely using BMI 

trajectories and repeated measurements of BMI. SA2 demonstrated that lower methylation of 

this CpGs was associated with increased odds of developing into developing into EPO. In the 

repeated measurement analysis (SA3), the BMI increased by 0.2kg/m2 with every unit decrease 

in the methylation of this CpG. Cg23089913 is located on the transcription start site of the 

NANOS1 gene on chromosome 10. NANOS1 is known to be differentially expressed in obese 

individuals with high insulin resistance completed to non-obese individuals [102]. A multiphase 

dietary intervention concluded that NANOS1 is highly expressed in obese individuals compared 

to normal weigh individuals’ suggestion its connection with altered BMI [101].  

2. The cg13217064 belongs to promoter region of SOX14 gene on chromosome 3, a 

member of SOX (sex-determining region on Y box) family transcription factors that play critical 

role in cell fate determination as well as tissue development including pancreas. An EWAS 

demonstrated that children born to underweight mother displayed higher methylation of this 

CpGs at birth and our demonstrated that a higher methylation of this CpG increased the risk of 

developing into DOW trajectory. Existing evidence suggests that SOX14 plays a crucial role in 

cell proliferation via Wnt/-catenin activation, which in turn was implicated in fat deposition in 

adipose tissues although not direct association of SOX14 and obesity was reported [76]. SOX14 

was shown to be methylated differently in siblings born before and after bariatric surgery and 

substantial weight loss in the mother [78]. Also, when compared to non-diabetic patients, 
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diabetic patients omentum had an excess of the transcription factor SOX14 [79].This evidence 

emphasizes the role SOX14 in fat deposition and obesity related health ailments. 

3. In SA3 (repeated measurement analyses) we observed that BMI increased by 0.2kg/m2 

per unit change in methylation of cg00488692. This CpG site is located in the intragenic region of 

the genes SP3 and OLA1 with close proximity to SP3 on chromosome 2. SP3 transcription factor 

belongs to the SP1 family transcription factors that regulate transcription of several genes by 

binding to consensus GC- and GT-box regulatory element in target genes and cell-cycle 

regulation. Glucose-dependent Insulinotropic Polypeptide (GIP) has shown to potentiate insulin 

release in β-cells of the pancreatic islets and appears to play a vital role in maintaining glucose 

homeostasis. SP3 in conjugation with SP1 stimulates the GIP expression via GIPR (Glucose-

dependent insulinotropic polypeptide receptor) [98]. Animal studies suggested that overnutrition 

and high food intake induced obesity can be explained by abnormal expression of GIPR 

expression followed by absorption of fat and glucose [108]. This series of events reveals that SP3 

plays a critical role in food induced obesity via GIPR expression and glucose uptake in obese 

individuals. Interventions focusing on modifying children’s diet may alter the cascade of diet 

induced GIPR glucose absorption followed by reduced risk of obesity. 

4. Also in SA3, cg14434213 was identified. It is an intragenic CpG located between the 

genes RNF5P1 (Ring Finger Protein 5 Pseudogene 1) and TCCA1 with RNF5P1 as closest 

upstream gene on chromosome 8. Cg14434213 near RNF5P1 was known to show lower 

methylation in children born to mother with high prenatal BMI.  When the pre-/post gene 

expression profile of adipose tissue in men with six-weeks exercise illustrated 18% increase in 

RNF5P1 expression. They also concluded that study participants showed reduced waist 

circumference and low waist/hip ratios implicating the role of this gene in weight management 

[99]. 

5. In addition, in SA3, the repeated measurement analyses, identified cg26862527 on the 

gene BIA3 (Brain-Specific Inhibitor 3) also identified as Adhesion G Protein Couples Receptor B3 
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(ADGRB3) to be associated with G protein-couples receptor activity and transmembrane signaling 

receptor activity. Signaling protein- compliment 1q-like-3 (C1ql3) is a metabolic regulator of insulin 

secretion from pancreatic β-cell in response to glucose levels. BIA3 is a cell surface receptor and 

the sole mediator of the inhibitory effects of C1ql3. Gupta et al. outlined that impairment in the 

C1ql3/BIA3 signaling pathway may effect insulin secretion followed by contributing to type 2 

diabetes advancement in obese individuals [103]. BAI3 is equally expressed in brain and islets of 

pancreas compared to other tissues. Cg26862527 is located on the to the promoter region 

(TSS1500) of the BAI3 gene. Findings from our study demonstrated that higher methylation of 

this CpGs to be associated with decreased BMI of 0.1k/m2. BIA3 was also known to be 

significantly differentially methylated in obese women with systemic insulin resistance [104]. 

6. Lastly, the repeated measurement analyses, found that among CpGs previously related 

to maternal BMI, cg17812850 seem to play a role. This CpG is on the TMEM184C gene 

encoding a protein that regulates cell proliferation and is highly expressed in thyroid tissue. 

Cg17812850, which is situated upstream of the promoter of TMEM184C (also known as 

TMEM34/FLJ10846). FLJ10846 is significantly expressed in individuals with Prader-Will 

syndrome [105], where young children prefer to consume more food if not closely controlled and 

are at a greater risk of overweight and obesity [106]. The existing evidence is in agreement with 

findings of SA3, where every unit decrease in the methylation of cg17812850 increased BMI by 

0.2kg/m2 showing an increased risk of overweight. 

This dissertation concludes that maternal pre-pregnancy epigenetic markers identified at birth 

could predict the BMI development from infancy to adolescence. SA2 and SA3 identified 

differentially methylated CpGs that could be used as potential biomarkers for identifying children 

who are at risk of being overweight. Future studies are warranted to further test the biological role 

of these genes and emphasize conditions that may modify these CpGs in early childhood and test 

whether respective modification also change the risk of overweight/obesity in offspring. Also, this 
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dissertation illustrates that maternal pre-pregnancy markers have long term impact on offspring. 

Population strategies should be developed to bring awareness in women of childbearing age 

about the impact of prenatal maternal BMI on offspring’s BMI development. 
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