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Abstract
Jonathan McCurdy, Ph.D. The University of Memphis, August 2023. SAFE-NET: Secure And
Fast Encryption using Network of Pseudo-Random Number Generators. Major Professor: Dr.
Lih-Yuan Deng.

We propose a general framework to design a general class of random number generators suit-

able for both computer simulation and computer security applications. It can include newly pro-

posed generators SAFE (Secure And Fast Encryption) and ChaCha, a variant of Salsa, one of

the four finalists of the eSTREAM ciphers. Two requirements for ciphers to be considered se-

cure is that they must be unpredictable with a nice distributional property. Proposed SAFE-NET

is a network of n nodes with external pseudo-random number generators as inputs nodes, sev-

eral inner layers of nodes with a sequence of random variates through ARX (Addition, Rotation,

XOR) transformations to diffuse the components of the initial state vector. After several rounds

of transformations (with complex inner connections) are done, the output layer with n nodes are

outputted via additional transformations. By utilizing random number generators with desirable

empirical properties, SAFE-NET injects randomness into the keystream generation process and

constantly updates the cipher’s state with external pseudo-random numbers during each iteration.

Through the integration of shuffle tables and advanced output functions, extra layers of security

are provided, making it harder for attackers to exploit weaknesses in the cipher. Empirical results

demonstrate that SAFE-NET requires fewer operations than ChaCha while still producing a se-

quence of uniformly distributed random numbers.
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Chapter 1

Introduction

1.1 Stream Ciphers

We send confidential information over the internet every day, whether it is our email communi-

cations, banking login, or school dashboard information. However, very rarely do we pause to

contemplate the safety of our data and the protection mechanisms for this “secret” information.

Secret messages have played an important role throughout history; as they have been used to con-

vey vital information, making encryption and decryption a powerful tool in the hands of those

who know how to use them. In ancient times, messages were often encrypted using a simple sub-

stitution cipher, where each symbol was replaced with a corresponding symbol. Over the years,

more complex methods were developed, with one of the most well-known being the Enigma ma-

chine used by the Germans throughout World War II. The ability to send and receive secret mes-

sages has played a vital role in international relations. Now, in a world dominated by data, we

constantly transmit large amounts of sensitive data across the internet. Given the prevalence of

data, we must consider how we can keep this data secure as well as how companies protect our

data.

Ciphers play a crucial role in the encryption and decryption process. The role of a cipher is

to transform a plaintext message into an unrecognizable form, referred to as the ciphertext. To

maintain the security of the transmitted message, only the recipient of the message should then

know how to decrypt the ciphertext to obtain the original message using a key [73]. There are

two main ways in which this process of encrypting and decrypting a message is completed–

namely, using block ciphers and stream ciphers. Block ciphers carry out a transformation on

blocks of the plain-text message, while stream ciphers carry out a transformation on individual

bits of the plain-text message [63]. Our research focuses on the use of stream ciphers due to their

connection to random number generators.
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Modern stream ciphers were first used during World War I when Gilbert Vernam [67] pro-

posed a process to combine the plaintext message and a single-use secret key using the “exclusive

or” function (XOR) on individual bits. This single-use secret key is often referred to as a one-

time pad. One-time pads are secure if the secret key is random, its length is as long as the plain-

text message, and it is never reused [61]. While these properties are beneficial in obtaining a safe

way to transmit messages, one significant issue that arises is the need for the sender to commu-

nicate the secret message, to create an individual key for each message, and distribute it to the

receiver. This can potentially become problematic for large messages, as the secret key needs to

be random and as long as the original message.

Using a pseudo-random bit generator is one way to resolve the issues associated with using

one-time pads. This process requires the input of a smaller key, after which the generator carries

out a procedure that produces a stream of bits that appear to be random. One advantage of this

method is that the keystream is independent of the plaintext and ciphertext, allowing for it to be

generated before encryption/decryption [59]. Furthermore, this method can be used for messages

of any length. The general process of the stream cipher can be seen in Figure 1.1. There are var-

ious ways in which the keystream can be formed, and our research focuses on investigating and

enhancing this specific process. Several different stream ciphers will be discussed in Chapter 2

and Chapter 3.

Key

Key Stream
Generator

Encryption

Plain Text Cipher Text

Decryption

Key Stream
Generator

Key

Plain Text

Figure 1.1: Diagram of a Stream Cipher

Once the keystream has been formed, the process of encryption and decryption is a relatively

straight forward procedure. The keystream and the plaintext (or ciphertext) are combined using

2



the XOR transformation, where the XOR operator is often denoted as the symbol ⊕. The XOR

function is utilized as it is a balanced transformation, meaning that; if our plaintext bit is a 0, then

there is a 50% chance the ciphertext bit will be either 1 or 0. Additionally, the XOR operation is

invertible allowing the same keystream to be used for both encryption and decryption purposes

[54]. Figure 1.2 provides an example of a message being encrypted and decrypted with the XOR

operation. In this example, we see that using the same key-stream results in the correct original

message after the encryption and decryption process.

A B A⊕B
0 0 0
0 1 1
1 0 1
1 1 0

Encryption

Plain-text: 01010011 = S
Key-stream: ⊕00110110

Cipher-Text: 01100101 = e

Decryption

Cipher-Text: 01100101 = e

Key-stream: ⊕ 00110110

Plain-Text: 01010011 = S

Figure 1.2: Table of XOR Process and Diagram of Encryption & Decryption Process

1.2 Random Number Generators

One of the requirements for a secret key to be secure is that it must be a random sequence of bits.

Using a sequence of truly random numbers is not a feasible approach since the sequence, gener-

ated in non-deterministic ways, is not replicable. The replicability of the sequence is pivotal to

this process so that both the sender and receiver can use the same keystream to encrypt and de-

crypt the message. With this in mind, Pseudo Random Number Generators (PRNGs) are often

used to create the sequence of numbers, as they create a replicable sequence via a deterministic

algorithm. This process requires initial starting values, called the “seed”, which is then used to

run the algorithm that produces a “random” sequence. Changing the starting value will result in

a different sequence being outputted, and using the same starting value will result in the same

sequence. This consistency is essential for the replicability of the encryption/decryption process.

The key-stream should appear to be a random sequence, and this can be achieved in a sev-

eral ways. One of the simplest methods to produce a “random” key-stream is with the Linear-

3



Congruential Generator (LCG). This generator, proposed by Lehmer in the early 1950s [39], pro-

duces a sequence of random integers using a recursive process, taking the form:

Xi = (BXi−1 +A) mod p, i≥ 0 (1.1)

where X0 is the initial seed and B, A, and p are non-negative integers. The period length will be at

most p when A ̸= 0. Knuth [36] describes several conditions which must be met for the generator

of this form to have a maximal period length. When A = 0, the maximum period length of p− 1

is achieved when B and p are relatively prime. These generators are not recommended though,

as one can easily compute the next value in the sequence when the modulus is known. Marsaglia

[46] showed that consecutive points generated by an LCG will lie on a small number of parallel

planes. These phenomena can be seen in Figure 1.3 below:

Figure 1.3: Successive points of an LCG lying on parallel planes

Because of this predictable linear pattern, Linear Congruential Generators have been shown

to not be suitable for cryptographical purposes [14, 65]. It should be mentioned that there are

two different kinds of Random Number Generators. The first is used for computer and simulation

purposes when security is not required. These generators are fast, efficient, and have nice empir-

ical properties such as a long period length and good distributional properties. The second are

used for security applications. These are often slower generators that aim to mix or transform the

values so that one cannot predict what the next value will be.
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But, having a non-linear pattern is not enough for the generator to be cryptographically se-

cure. Katz [32] expands on the requirements in that the generator must pass the “next-bit” test,

which means that given the past k bits of the sequence, one can only predict the next bit with a

success of 50%. Additional requirements and a discussion of common cryptographic attacks will

be discussed in future sections.

The Multiple Recursive Generator (MRG) is a natural extension of the linear congruential

generator (LCG), but instead of computing the next pseudo random number from the previously

computed number, an MRG computes the next value based on a linear combination of the past

k random numbers generated. The pseudo random numbers are generated sequentially from the

k-th order linear recurrence:

Xi = (α1Xi−1 + · · ·+αkXi−k) mod p, i≥ k, (1.2)

where the multipliers α1, · · · ,αk and initial seeds X0, · · · ,Xk−1 are integers in Zp but are not all

zero, and the modulus p, usually a prime number, is a positive integer. It is well known that the

maximum period of the MRG in (1.2) is pk− 1, which is achieved if and only if its characteristic

polynomial

f (x) = xk−α1xk−1−·· ·−αk (1.3)

is a primitive polynomial [36]. While these MRGs have better empirical performances than LCGs,

they are still not secure generators due to the fact one can compute the next value by observing

the previous values and solving a system of linear recurrence equations [52].

Both MRGs and LCGs have been shown to not be suitable for cryptographic purposes. But,

they do have useful attributes in that they are efficient and have nice empirical properties regard-

ing the generation of random numbers, even though they are predictable. Therefore, even though

they are not cryptographically secure, they will be utilized in later sections for building and im-

proving cryptographically secure generators.

Another way to generate the keystream that should be mentioned is using a Linear Feedback

Shift Register (LFSR), which can be viewed as a Multiple Recursive Generator with modulus

5



2. These generators generally work by outputting the right-most bit of the current state into the

keystream and then updating the current state of the generator by introducing a bit which is a lin-

ear combination of the previous state onto the left-most side and shifting the remaining bits to

the right. Given n as the length of the generator’s state, the period length will be 2n− 1 when the

feedback polynomial is a primitive polynomial [19]. These LFSRs have played an important role

in previous stream ciphers and random number generators. A diagram of the procedure can be

seen in Figure 1.4, but it can be designed with any choice of bit combinations and does not neces-

sarily have to be the one drawn.

Bit 1 Bit 2 Bit 3 Bit 4 Bit 5 Bit 6 Bit 7
Output

Figure 1.4: Diagram of a General Linear Feedback Shift Register

There are several different cryptographically secure generators available to use when creating

a keystream. Some of the more popular ones in use include HC-256, ChaCha20, RC4, and Rab-

bit. Their general procedures and properties will be discussed in future sections. Most all cryp-

tographically secure generators are susceptible to attackers, and thus precautions should be taken

when using them to minimize the risk. We will propose a method to minimize some of the risks

and increase the efficiency of the keystream generator.

In this dissertation, a stream cipher called SAFE-NET is proposed to be used for both cryp-

tographic purposes as well as simulation purposes. Utilizing random number generators which

have been shown to have nice empirical properties, but are not secure, we can populate a cur-

rent state matrix and then transform it through mixing and shuffling. A major contribution of this

model is the fact that it should require fewer iterations of mixing in order to be secure, resulting

in a faster generator. Additionally, utilizing random number generators to populate the matrix in-

creases security as well as provides theoretical support for the outputted keystream to be deemed

random.
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The main body of the thesis is organized as follows:

Chapter 2 will include an overview of the notation that will be used throughout the

dissertation as well as provide a literature review of cryptographically secure ciphers and

discuss their security aspects. This chapter will also provide some insight into the different

cryptographic attacks that are used to “break” the cipher.

Chapter 3 will give an overview of the popular stream cipher “ChaCha”. We will dis-

cuss the motivations behind the cipher, as well as how the stream cipher works. Addition-

ally, we will discuss the empirical performance of the cipher, known security attacks on the

cipher, and some potential weaknesses of “ChaCha”.

Chapter 4 will introduce a general method for Secure And Fast Encryption using Net-

work of Pseudo-Random Number Generators, which we will call SAFE-NET. It will in-

clude a discussion on the initialization of the cipher, the procedure carried out, and a few

different output functions which could be used.

Chapter 5 covers some special cases of the SAFE-NET method proposed in Chapter 3.

In this section, we will look at some extensions of ChaCha and show that they are special

forms of the SAFE-NET method.

Chapter 6 will give an overview of the ideal properties of a sequence of random num-

bers and how we can test for these properties using the TESTU01 library. This chapter will

also provide empirical evaluations for all of the methods discussed in the previous chapters.

Chapter 7 will provide a conclusion for the material presented and give insight into

potential future work on the topics.
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Chapter 2

Overview of Cryptographically Secure Ciphers and Common Attacks

2.1 Notation and Terminology

When it comes to stream ciphers and random number generators in general, some special ter-

minology and notation is often used. A “user-key” is a secret-key used by the sender and the

receiver during the encryption and decryption process to generate the keystream. For crypto-

graphic purposes, a “nonce” is a number used once. This is done, often with random numbers,

so the keystream generator does not produce the same sequence for different encrypted messages.

Multiple messages can be sent under the same “user-key” as long as the “nonce” is changed for

each message sent. Producing the same keystream sequence would open one up to replay attacks,

thus allowing for the message to be more easily broken. More details will be presented on the

nonce in later chapters.

Given x and y as two 32-bit integers, we can define some functions that transform their val-

ues. To begin with, x&y will correspond to the bit-wise “logical and”. This means the result-

ing bit is only a 1 if the corresponding bits in both x and y are also 1’s. So, given a = 1001 and

c = 1100 then a&c = 1000. Additionally, x⊕y corresponds to bit-side “exclusive or”. This means

a resulting bit is only a 1 if only one of the corresponding bits in both x and y are also 1’s. There-

fore, given a = 1001 and c = 1100 then a⊕ c = 0101. We can also define addition modulo 32

with x⊞ y corresponding to (x+ y) mod 232. Additionally, we will let “||” be the concatenation

function, allowing for a 32-bit integer to be broken up into smaller pieces.

We can also define x ≫ b to correspond to the logical right shift operation of b units with

x≪ b corresponding to the logical left shift operation of b units. For example, this means the bits

are either shifted the right or left b bits with the right or left b most bits being “dropped off” and

b 0’s being added on the left or right side respectively. For instance, if a = 10010101 and b = 3

8



then a≫ b = 00010010. With these functions in place, we can define the transformation x ≪ b

corresponding to the rotation of b bits. This can be defined as (x≪ b)⊕ (x≫ (32− b)). So, if

a = 10010101 and c = 3, then a≪ c = 10101000, and a≫ (8− c) = 00000100, so 10101000⊕

00000100 = 10101100. Finally, we will say 1b corresponds to the number 2b− 1 which has the

binary representation of b 1’s,

2.2 Cryptographic attacks

The goal of a stream cipher is to relay sensitive information so that others cannot identify what

the information actually is. However, no stream cipher will be completely immune to attackers

trying to identify information about the plaintext, user-key, or cipher. There are a number of dif-

ferent cryptographic attacks that have been used over the years, but we will just discuss a few

below.

The most basic example of this process would be a brute-force attack, which is also known

as an exhaustive search attack. In this attack, every possible key and IV is checked to see if the

correct plaintext is generated. This becomes more time consuming and infeasible with larger and

larger keys and IVs, as the number of possibilities would grow exponentially. For instance, RC4

accepts a key length of up to 2048-bits, which means a brute-force attack would have a complex-

ity of 22048, meaning up to 22048 keys would need to be tested in order to find the correct one. A

cipher should be considered secure if this method of attack is the least complex computationally,

assuming it is sufficiently large [54].

Another possible attack is the related-key attack [11]. This attack requires the attacker to have

knowledge about the relationship between the keys and the cipher. If messages are sent under

different keys, but portions of the keys remain the same, then it may be possible to identify pat-

terns in the keystream related to the unchanged portions of the key. This might be exploited if the

cipher is run with large pieces of the key unchanged.

In addition to attacks on the key, attacks can also be carried out on the keystream. One such
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attack is the distinguishing attack [37], which aims to distinguish the keystream from a truly ran-

dom sequence. If the keystream is distinguishable, then information may be gathered about the

plaintext. For instance, there are documented attacks based on the fact that the second output bit

for the RC4 cipher is biased towards 0 [45]. This means that the second bit has a higher likeli-

hood of being a 0 when the bit should have an equal probability of being a 0 or 1. These sorts of

biases in the keystream could allow attackers to obtain information about the cipher. Because of

this reason, it is important to have a keystream generator that acts as a good random number gen-

erator.

One of the most powerful and successful attacks is the differential attack, first published by

Biham [12] but known by others at the time. The idea of the attack tries to identify and exploit

differences in plaintext messages and their ciphertexts. This is done by encrypting a number of

messages under the same key with only slight differences to the plaintext and seeing how the ci-

phertext is changed. No information about the key is known though, so by studying enough pairs

of messages that are slightly different from each other, one could figure out the key and algorithm

for the cipher.

Finally, the last cryptographic attack which will be mentioned are algebraic attacks. This at-

tack relies on the ability to solve a system of algebraic equations modeled on the cipher’s opera-

tions with the key and initial states as variables [4]. This process can be very difficult if the cipher

is designed well though, as a system of equations may be hard to find. Wong, Carter, and Daw-

son [70] showed that while it is possible to construct a system of linear equations describing the

operations of RC4, solving the system of equations is infeasible with current methods. But, the

resistance to algebraic attacks is weakened if one of the operations is compromised. Using non-

linear outputs and feedback functions reduce the susceptibility to algebraic attacks.
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2.3 RC4 Stream Cipher

The Rivest Cipher (RC4), developed in 1987 and published in 1994, is a once widely used stream

cipher that was appreciated for its speed and simplicity. It is an output feedback algorithm that

updates itself when the keystream is outputted. The procedure, outlined in Schneier [60], is rela-

tively straightforward.

Given a key in a 256-byte array (K0,K1, . . . ,K255), the S-table (substitution-table) is initial-

ized during the Key-Schedule Algorithm (KSA) through a rearrangement of the S table. Then a

random byte is outputted for the keystream during the Pseudo Random Generation Algorithm

(PRGA) phase, which consists of incrementing the index i, calculating the index j, shuffling the

table, and outputting a byte based on the ith and jth index. The PRGA phase is then repeated until

the keystream is sufficiently long enough to encrypt/decrypt the plaintext. A general procedure

can be seen in the diagram below:

For i = 0 to 255
S[i] = i

User-key: K[i]

For i = 0 to 255
j = ( j+S[i]+K[i]) mod 256

Swap S[i] and S[ j]

i = (i+1) mod 256
j = ( j+S[i]) mod 256

Swap S[i] and S[ j]

k = (S[i]+S[ j]) mod 256
Deliver S[k]

Key Scheduling Algorithm (KSA) Pseudo Random Generation Algorithm (PRGA)

Figure 2.1: Diagram of RC4 Stream Cipher

RC4 outputs a single byte, with the S-table consisting of all the permutations of all 28 (256)

possible 8-bit words. This set-up could be expanded to both a larger S-table and larger word

sizes, but modifications would need to be made due to memory requirements and the large ini-

tialization time for the Key Scheduling Algorithm to thoroughly mix the S-table. For instance,

a 32-bit iteration of this process would require a table of size 232 and the KSA to perform 232

swaps just to initialize the cipher, which is impractical.

While the algorithm is very fast and was once considered to be secure, weaknesses have been

found which make it unsuitable for cryptographic use. For instance, the first portion of the out-
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putted keystream has been shown to be biased and thus needs to be discarded before encryption

and decryption purposes [32]. Additional attacks on the cipher that have been documented are re-

lated to the correlation between the key and the output values, rendering the cipher unusable [27].

An overview of additional attacks are provided in the following articles [31, 69, 72].

Many attempts have been made to remedy these deficiencies. One such method, proposed by

Maitra and Paul [44], called RC4+ adds additional layers to the KSA and PRGA to avoid corre-

lation between the user-key and the output byte. They later proposed another extension of RC4,

called Quad-RC4 [56], which produces a 32-bit word output using a combination of 4 RC4 states.

Additional attempts to expand RC4 to a 32-bit cipher have been made, with Nawaz, Gupta, and

Gong [51] proposing RC4(n,m). Their method allows the table size (2n) and the word size (m-

bits) to be changed, with an adjustment being made to the PRGA to include an integer addition

variable. This variant is not guaranteed to have nice distributional properties though, as only a

few m-bit words are represented in the table and able to be outputted into the keystream.

In all of these extensions, the user-key and thus the current state of the cipher determine the

selection of the index values. Additionally, the randomness of the keystream relies on the expec-

tation that the cipher updates itself in a random manner. This can be problematic if the key or

starting state is not thoroughly random. Deng et. al [23] proposed eRC4, which utilizes an ex-

ternal random number generator to assist with index selection and table initialization. They also

introduced a procedure for selection from multiple mixing output functions to increase the com-

plexity of the cipher and be more resistant to attacks. This incorporates empirically sound ran-

dom number generators to inject randomness into the cipher.

2.4 HC-256 Stream Cipher

Another prevalent stream cipher is HC-256 [71], which was proposed by Wu in 2004. It accepts

a 256-bit key and a 256-bit nonce, where a shorter key and nonce can be repeated to reach the

required length. A variant of it, HC-128, was submitted to eStream and selected as a finalist [58].
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The cipher relies on two secret tables, which we will call P and Q, which are initialized using a

combination of the key and IVs. Given 8 32-bit words for both the key and IV, the initialization is

done by populating an array W as:

Wi =


Ki, 0≤ i≤ 7

IVi−8, 8≤ i≤ 15

f2(Wi−2)+Wi−7 + f1(Wi−15)+Wi−16 + i, 16≤ i≤ 2559

where f1(·) and f2(·), which consist of XOR and rotational transformations, are utilized. Af-

ter W is populated, then the P and Q table are formed as P[i] = Wi+512 for 0 ≤ i ≤ 1023 and

Q[i] =Wi+1536 for 0≤ i≤ 1023, respectively.

The incremented index i determines which table will be updated. A series of functions up-

dates the tables based on the index j using XOR and rotational transformations. The outputted

value is computed using a function which adds multiple values in the respective table together,

with the indices of the selected values based on the value of the word at the ith or jth index. The

process of incrementing the index, selecting and updating the table, and outputting the value is

repeated until the key stream is the desired length. Further details about the cipher and the func-

tion definitions can be found in the referenced literature [71, 25]. A diagram of the process can be

seen below.

Initialize Tables P and Q
using key and IV

j = i mod 1024
if i mod 2048 < 1024

P[ j] = fP( j)
s = hP( j)

Q[ j] = fQ( j)
s = hQ( j)

Deliver s
Update i = i+1

Figure 2.2: Diagram of HC-256 Stream Cipher

It should be noted that a burn-in period is required before generating an output. The author

recommends 4096 steps before starting the keystream to allow the tables to be thoroughly mixed.

This results in the cipher having a long initialization time as well as very complex functions com-
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pared to other stream ciphers. The initialization of the P and Q tables also pose a weakness in

that there is no guarantee the values will be uniform or random after transforming the key and IV.

Additionally, much like RC4, HC-256 relies on increasing the index sequentially and does not

utilize a random number generator to better select the indices. Including a random number gen-

erator with good empirical properties to fill in the tables and make index selections could reduce

the initialization time and increase the security of the cipher.

Limited analysis has been published about this cipher. Sekar and Preneel demonstrated a dis-

tinguishing attack on HC-256 that required 2276.8 equations. Moreover, differential fault attacks

were able to recover the internal state of the cipher with 7968 faults [35], implying if an attacker

could induce a random error in the state tables 7968 times, they may gain information about the

cipher while observing the outputs. A side-channel attack was also proposed as a feasible method

under specific conditions and assumptions about the cipher [55], much like a differential fault

attack.

2.5 Rabbit Stream Cipher

Another stream cipher that was featured in eStream due to its security and efficiency was Rabbit

[13]. It was inspired by real-valued chaotic maps, meaning small changes cause different maps to

exhibit random and unpredictable behaviors. Rabbit takes in a 128-bit key, which helps initialize

the state variables x j,i and the counter variables c j,i through a combination and non-linear trans-

formation of the key.

The state of the function is then updated using a non-linear function, dependent on the pre-

vious state and counter variable. After that, the counter variables are updated and four 32-bit

words are output using an “exclusive or” function between pieces of x j,i words. Additional de-

tails about the specification of the functions can be found in the original proposal by the authors

[13]. A simplified diagram is provided below, with j typically ranging from 0 to 7:

The design of the stream cipher is fast. A distinguishing attack was recorded by Aumasson
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Initialize state variables
x j,0 and c j,0 using key and IV

Calculate Next-state
x j,i+1 = f j(x j,i,c j,i)

Update Counters
c j,i+1 = g(c j,i)

Deliver
s = h(x j,i)

i = i+1

Figure 2.3: Diagram of Rabbit Stream Cipher

[5] with complexity 2247, but Lu [40] was able to reduce the complexity of the attack to 2158. Dif-

ferential fault analysis was also performed on Rabbit, which revealed that with between 128-256

faults, one can recover the complete internal state in 238 steps [34].

One downside of the cipher is the extreme complexity of its design. Multiple functions are

provided for calculating the next state of the cipher, all dependent on the jth index. They all rely

on the non-linear transformation, which incorporates the square of the current state and counter

with additional transformations taking place. The number of functions and the complexity of the

functions could lead to issues on some systems.

2.6 Secure and Fast Encryption (SAFE)

While all of the previous ciphers discussed have nice properties, they do not utilize external gen-

erators to infuse randomness throughout the cipher. Deng et. al [22] introduced a class of genera-

tors known as Secure and Fast Encryption (SAFE) which uses two baseline generators throughout

the generating process.

The key and IV are used to populate the internal states of the two generators, with the two

tables populated using either the key or generators. Internal states are then computed by having

each random number generator produce a random variate. These values are then used to update

the tables and the select values are then used to determine the outputted word. The output func-

tion consists of a non-linear mixing function utilizing a combination of the values selected from

the table and the values produced by the baseline generators. A general diagram of the process

can be seen below:

The generator is very efficient, as minimal operations are carried out in the generating pro-
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RNG-x

RNG-y

Xi

Yi

Vi = Tx[r(Yi)]; Tx[r(Yi)]← Xi

Wi = Ty[r(Xi)]; Ty[r(Xi)]← Yi

Deliver
Si ≡ G(Xi,Yi,Vi,Wi)

Initialize Current States of
Baseline generators and Tables

using the key and IV

Figure 2.4: Diagram of SAFE Stream Cipher

cess. While there has been no in-depth cryptoanalysis carried out on the generator, Deng et. al

[22] argue that it is as secure (if not more) than HC-256 due to the similarity of the ciphers. One

thing that contributes to the security of the generator is having multiple layers of defense; such as

potentially using large-order MRGs for the generator to make it difficult to identify the next in-

ternal value, shuffling the tables, and using a complex mixing function to hide the internal values

when outputting the keystream.

An additional stream cipher that was presented to eStream is Salsa20 [8]. More in-depth de-

tails on this cipher will be given in future chapters due to its significant impact in motivating our

stream cipher SAFE-NET.
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Chapter 3

Overview of ChaCha

3.1 Overview of Salsa20 & ChaCha

ChaCha is a 256-bit stream cipher designed by Bernstein [10] for security applications. It came

about as a variant of the Salsa20 stream cipher, which was also proposed by Bernstein [8]. Salsa20

is a popular stream cipher that was selected as one of the four finalists for the eSTREAM Project;

which sought efficient stream ciphers that could be adopted in a wide variety of applications,

including security [58]. The ciphers operate using ARX transformations (Addition, Rotation,

XOR) to thoroughly mix their current state, with the only difference between successive starting

state matrices occurring in the counter position, which is increased by 1. This leads to questions

about the distributional properties of the outputted sequence though, as there is no theoretical

support that an increase of 1 in the counter block results in uniform and independent outputs for

the keystream. Despite these concerns, ChaCha is widely used due to its light-weight nature and

due to no known cryptographic attacks when the number of rounds is large.

Both Salsa20 and ChaCha have the same general structure, with the main differences coming

in the implementation of the quarter-round function, as well as the set-up of the initial matrices.

These small changes allow for ChaCha to have a better diffusion of bits due to the new quarter-

round definition, and due to each block having a chance to influence every other block [10].

For our purposes, diffusion is defined as the number of bits that are different between two

transformed words when the starting words only differ by 1 bit. For instance, if the starting val-

ues are a = 10101010 and b = 10101011, and the transformed values are at = 01101010 and

bt = 11101001, then the diffusion rate would be 3 since at and bt have only 3 bits which are dif-

ferent from each other. Having a better diffusion of bits is important, as with only a difference of

1 between successive matrices, we want the bits in successive matrices to become more different

from each other quickly. Bernstein notes that Salsa20 has a diffusion rate of roughly 8 bits per
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quarter-round while ChaCha has a diffusion rate of 12.5 bits per quarter-round operation [10].

3.2 General Procedure

Salsa20 and ChaCha both utilize a vector of sixteen 32-bit words, which after undergoing a trans-

formation, outputs a sequence of sixteen 32-bit words called a keystream. The vector of sixteen

32-bit words is composed of eight words from a 256-bit user-key (k = (k0,k1, · · · ,k7)), two words

from a 64-bit nonce (v = (v0,v1)), four words from a 128-bit constant (c = (c0,c1,c2,c3)), and

two 32-bit words that act as counters (t = (t0, t1)). The counter t0 is increased by 1 every time the

16-word keystream is outputted, and the counter t1 is increased by 1 only when t0 reaches 232 and

then returns to 0. The sixteen-word vector is often viewed as a 4× 4 matrix for visual simplic-

ity. Salsa20 and ChaCha are set up in the following ways, with the initial state matrix of Salsa20

denoted by X(0)
S and the initial state matrix of ChaCha denoted by X(0)

C :

X(0)
S =



c0 k0 k1 k2

k3 c1 v0 v1

t0 t1 c2 k4

k5 k6 k7 c3


X(0)

C =



c0 c1 c2 c3

k0 k1 k2 k3

k4 k5 k6 k7

t0 t1 v0 v1


(3.1)

Both ciphers work on a series of ARX operations, which we will call a quarter-round, in order

to diffuse the bits. The quarter-round function is a process that takes 4 words as inputs and then

transforms them. In addition to the matrix setup being different between the two ciphers, these

quarter-round functions are also slightly different. The Quarter-Round function, Q(a,b,c,d), is

defined in the following ways for both Salsa20 and ChaCha:
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Salsa20 Quarter-Round

b = b ⊕ ((a+d)≪ 7)

d = c ⊕ ((b+a)≪ 9)

d = d ⊕ ((c+b)≪ 13)

a = a ⊕ ((d + c)≪ 18)

ChaCha Quarter-Round

a = a+b; d = d⊕a; d = d ≪ 16

c = c+d; b = b⊕ c; b = b ≪ 12

a = a+b; d = d⊕a; d = d ≪ 8

c = c+d; b = b⊕ c; b = b ≪ 7

It should be noted that the Quarter-Round process gets its name as it is run four times in order

for 1 Round to be completed. Both Salsa20 and ChaCha partition the 4× 4 matrix into four vec-

tors of four words each. Each vector is then inputted into the Quarter-Round function, with four

Quarter-Round transformations resulting in 1 Round being completed.

The Quarter-Round transformation is traditionally done for 8, 12, or 20 Rounds depending

on how efficient and secure the user wishes the cipher to be. The higher the number of rounds

selected, the slower the cipher will be, but it will be a more secure cipher. It should also be noted

that there is nothing special about the specific functions/shifts being done on the partitions, as

Sobti [64] shows different Quarter-Round functions exist which have a better diffusion of bits.

The partitions for both ciphers both are done in a systematic way, with Salsa20 choosing column

or row partitions and ChaCha choosing column or diagonal partitions. Given that the current state

of the matrix is

X =



x0 x1 x2 x3

x4 x5 x6 x7

x8 x9 x10 x11

x12 x13 x14 x15


(3.3)

the partitions are defined as P(X) = (x0,x1,x2,x3), with x0,x1,x2, and x3 being determined de-

pending on if the stream cipher is currently on an odd or even round. A Full Round consists of
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four quarter-round transformations of Q(x0), Q(x1), Q(x2), Q(x3). The Quarter-Round partitions

are defined differently for even and odd-numbered rounds. Figure 3.1 shows the ways that they

are defined.

Salsa20: Odd Rounds

x0 = (x0, x4, x8, x12)

x1 = (x5, x9, x13, x1)

x2 = (x10, x14, x2, x6)

x3 = (x15, x3, x7, x11)

Salsa20: Even Rounds

x0 = (x0, x1, x2, x3)

x1 = (x5, x6, x7, x4)

x2 = (x10, x11, x8, x9)

x3 = (x15, x12, x13, x14)

ChaCha: Odd Rounds

x0 = (x0, x4, x8, x12)

x1 = (x5, x9, x13, x1)

x2 = (x10, x14, x2, x6)

x3 = (x15, x3, x7, x11)

ChaCha: Even Rounds

x0 = (x0, x5, x10, x15)

x1 = (x1, x6, x11, x12)

x2 = (x2, x7, x8, x13)

x3 = (x3, x4, x9, x14)

Figure 3.1: Salsa20 and ChaCha Quarter-Round Partitions

After completing R full rounds, the resulting matrix is then added to the initial state matrix

and, the sixteen 32-bit words are outputted as the key-stream. Then the initial state matrix is re-

set and the counters are increased in their respective ways. The process is then repeated all over

again until the stream cipher’s key-stream output reaches the desired length. Below is a list of

steps and a diagram of the overall procedure of both Salsa20 and ChaCha:

Step 0. Create an initial state matrix X(0) with running index i of the iteration. Counter

(t0, t1) can be set as i = i0.

Step 1. At the ith stage, initialize state matrix X(0) with counter t0 = i, and t1 = t1 + c

Step 2. Computer R-round transformation as X(R) = H(X(0);R)

Step 3. Output sixteen 32-bit words as Z = X(0)⊞X(R) and then the increase the index to

i = (i+1)&132 while also setting the carry bit to 1 when i = 0. We then repeat steps 1-3
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Step 0:
i = c = 0

t1 = 0

Step 1:
Reset X(0)

t0 = i; t1 = t1 + c

Step 2:
Compute

X(R) = H
(

X(0);R
) Step 3:

Deliver
Z = X(0)⊞X(R)

i = i⊞1; c = 0
if i = 0, then c = 1

Figure 3.2: General Procedure for ChaCha Stream Cipher
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Y1 = X1 ⊞ I1

Y4 = X4 ⊞ I4

Y5 = X5 ⊞ I5

Y12 = X12 ⊞ I12

Y13 = X13 ⊞ I13
Update counter

Y14 = X14 ⊞ I14
Update counter

Y15 = X15 ⊞ I15

Y16 = X16 ⊞ I16

Y1

Y4

Y5

Y12

Y13

Y14

Y15

Y16

Inputs Initial
State (X)

Intermediate
State (1)

. . . Intermediate
State (R)

Output State
Update Counter

Figure 3.3: Diagram of ChaCha Stream Cipher

3.3 Cryptanalysis

In order for both Salsa20 and ChaCha to avoid potential attacks, one should choose a large enough

number of rounds in order to have confidence in the security of the cipher. While a higher num-
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ber of rounds, R, will result in the cipher being slower, it will increase the confidence that the

cipher will be secure.

One of the first cryptographic attacks to be recorded on Salsa20 was demonstrated by Crow-

ley, who showed that a 2165 operation attack using truncated differentials could break parts of

the cipher for Salsa20/5, where 5 is the number of rounds [18]. Fisher showed that the key could

be recovered in Salsa20/6 with roughly 2177 operations and that Salsa20/7 may be open to key-

attacks of roughly 2217 operations [26]. Additional attacks on Salsa20/8 have been identified

[66] to break the starting state matrix. While there is no set number of rounds that will result in

Salsa20 being considered completely safe, 12 rounds is normally the traditionally agreed upon

number to balance security and efficiency [15].

ChaCha is also susceptible to attacks when the number of rounds is small. Aumasson intro-

duced a method of differential attack called Probabilistic Neutral Bits (PNB) which tries to re-

place a subset of key bits with fixed bits [6]. This allowed them to identify attacks on ChaCha6

and ChaCha7. Shi expanded on the idea of PNB by introducing a Chaining Distinguishers which

breaks ChaCha6 and ChaCha7 in fewer operations [62]. Attacks on Salsa20/9 and ChaCha8 have

also been recorded [30]. Additional attacks have been shown on Salsa20 and ChaCha with vary-

ing degrees of complexity [16, 24]. There are no proofs that ensure the safety of the cipher after a

certain number of rounds, but 12 rounds is traditionally accepted as secure.

One of the properties of Salsa20 and Chacha which opens them up to attacks with differen-

tial cryptanalysis is the fact that initial state matrices are virtually identical aside from the counter

function being increased by 1. This makes it easier for attackers to “work backward” and identify

pieces of the key. Increasing the number of rounds being run will help transform the matrix even

more, thus protecting it against this type of attack, but this results in a slower cipher. Addition-

ally, the increased transformations do not guarantee an independent and uniform keystream.
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3.4 Weaknesses of the ChaCha cipher

Based on the ChaCha’s construction, it appears that there are a few potential weaknesses with the

stream cipher:

Poor Distributional Properties: ChaCha only differs by 1 within the counter blocks for succes-

sive pages. It is not intuitive and there is no theoretical support that this small change will

result in outputted blocks being independent of each other even when the number of rounds

is large.

Majority of blocks are unchanged In the ChaCha cipher, the vast majority of blocks are sta-

tionary and do not change, both within a single message as well as across different mes-

sages (as only the nonce changes between different messages). This stationary property

opens the cipher up to attacks, as it is easier to identify the contents of the blocks and thus

the user-key and nonce if the blocks are always the same.

Limited Key/IV size The key and nonce are relatively small with ChaCha, with the key being

eight 32-bit words and the nonce being two 32-bit words. This results in fewer messages

being able to be sent under the same key.

Simple Output Function The output function for ChaCha is 32-bit addition with the initial ma-

trix and the transformed matrix. This might open up the user to attacks as well, as the ci-

pher just uses addition between the unaltered starting block and the transformed block, re-

sulting in it being easier to determine what the starting matrix is as well as what the other

blocks are.

Relatively small Period Length The period length of the ChaCha stream cipher is 264 since the

counters are two 32-bit words. While this will be long enough for most general purposes,

it can be viewed as a negative when other random number generators have much longer

periods.
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Previous methods have been proposed that attempt to improve upon ChaCha by addressing some

of the weaknesses listed above. These will be discussed later in the paper as they are all special

cases of SAFE-NET (Secure and Fast Encryption Network of RNGs), a method which we pro-

pose.
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Chapter 4

SAFE-NET

4.1 Secure and Fast Encryption using Network of RNGs

As has been mentioned previously, ChaCha has a few apparent weaknesses due to the two succes-

sive initial state matrices being virtually identical to each other; with the only difference occur-

ring within the counter blocks. This potentially opens one up to several attacks, such as a related-

key attack, as a majority of the blocks are stagnant and unchanged. Secondly, there is no theoret-

ical justification for successive pages to be independent of each other when there is just a one-bit

difference between them. Finally, since there is a relatively simple output function, attackers are

more likely to be able to determine pieces of the starting and intermediate states, potentially al-

lowing them to crack portions of the cipher.

Because of this, a method called Secure And Fast Encryption using Network of Pseudo-Random

Number Generators (SAFE-NET) is introduced, with the general idea of populating each block

with a baseline random number generator as well as implementing a “shuffle” table and more

complex output functions. This method takes advantage of the nice theoretical/empirical proper-

ties of the baseline random numbers generator while allowing the quarter-round and output func-

tions to break the linearity of the generators while still maintaining nice empirical properties.

4.2 Design of SAFE-NET

The general method of SAFE-NET uses baseline RNGs to populate the initial state matrices to

ensure that the blocks are always populated with new numbers. This property, along with a new

initialization procedure to allow for a larger nonce/user-key and a different output function to fur-

ther hide the starting states, should allow for a more secure generator with fewer rounds. Along

with the diagram below, the general method can be stated as:
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Step 0. Initialize n RNGs with the user keys and IV using an initialization procedure like the one

described below and populate the n shuffle Tables T using the RNGs already initialized.

Step 1. Generate Internal Values X using the RNGs.

Step 2. Compute the Initial States Y(0) as Yi = Ti[r(Xi+1)] and then update Ti[r(Xi+1)]← Xi

Step 3. Computer R-round transformation as Y(R) = H(Y(0);R)

Step 4. Output n 32-bit words as Z = f (Y(0),Y(R)). Then repeat steps 1-5 as needed.

For simplicity, we will refer to the initial state matrix Y(0) as Y with the ith block being Yi.

Additionally, Ii will refer to the ith block of the intermediate matrix after R rounds of transforma-

tion have been carried out, and Ti will refer to the ith Table.

Several different cases that will be examined later on in this paper, mainly focusing on us-

ing different numbers of RNGs to populate the blocks as well as methods that can be considered

special cases of SAFE-NET. It should also be mentioned that any number of blocks/words could

be used to do the mixing, and it is not just limited to the standard 16 words that ChaCha utilizes.

We do propose a way to initialize the random number generators using a mixing of the keys and

nonces as well as an updated output function which adds an extra layer of security to the cipher.

4.3 Initialization

When it comes to the Salsa and ChaCha stream ciphers, one of the limitations is that it only al-

lows for two 32-bit nonces and eight 32-bit user-keys. This has some drawbacks as it limits the

number of messages which can be sent under the same user-key, meaning larger nonces are more

desirable. Extensions, such as XSalsa and XChaCha [9, 3], have been proposed which allow for

the nonce to be six 32-bit words instead of just two 32-bit words while maintaining all the other

characteristics of Salsa and ChaCha. Additionally, the Salsa and ChaCha stream cipher has the

key and nonce as unchanging blocks in the initial state matrix. Fischer notes that it is important to

thoroughly mix the key so that no portions of it have any “traceable influence on the initial state”
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[26]. Therefore, more should be done to hide the key/IV to add a layer of security, so we propose

a new general method for initializing the key/IV outside of the initial state matrix.

With the SAFE-NET family of ciphers, there is no limitation on the size of the nonce or user-

key, as the nonces and user-keys will be mixed and then used to populate the initial state of the

baseline RNGs. This process could be done in a variety of different ways, but we will only dis-

cuss two of them. The first and probably most common way would be to use the key and IV

as internal states for a RNG, and then undergo a burn-in period. The length of the burn-in pe-

riod could be determined based on some value relating to the key and IVs, but it should be long

enough to thoroughly mask the key and IV. After this burn-in period is complete, the outputted

values will appear independent of the key and IV and thus be suitable to be used as internal states

for the baseline RNG. This method requires the key and IV to be large enough to populate all of

the internal states for the RNGs, which might be infeasible if large order RNGs are used.

An additional method for generating the internal states would be to use the key and IV with

a Matrix Congruential Generator (MCG) as the mixing function. To demonstrate, we take the

input of two 32-bit nonces, v = (v0,v1) and eight 32-bit user keys k = (k0,k1, . . . ,k7), though

more or fewer nonces and keys could be used with minimal adjustments to the procedure. To start

with, we will define an additional vector D = (v0,v1,k0,k1,k2, . . . ,k7)
′. The user-key will also be

utilized using some transformations of the key to fill in a 10× 10 matrix B = (Bi j). We are then

able to mix the nonce and user-key by E = BD mod 232. Therefore, we have:

E j =
10

∑
r=1

B jrDr mod 232

which could be changed to the bit-wise “and” function for efficiency instead of multiplication:

E j =
10

∑
r=1

(
B jr&Dr

)
mod 232

After obtaining the E j values, we can then replace them with D and repeat the process until

we have obtained enough variates to populate all of the internal states of the baseline generator.
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As this process will only output ten 32-bit words at a time, it might be necessary to carry out this

process multiple times. After obtaining the required amount of internal states, we decide to allow

for a small burn-in period to further increase security.

With this process, we have used the nonce and user-key to produce the initial internal states

of the RNG that we will use to populate the state matrices in SAFE-NET. It should be noted that

we can expand this to cover any size nonce and user-key. This process increases security as the

key and nonce are transformed before loading them into the internal states, and the burn-in period

will help further hide the user-key and nonce. This makes it infeasible for attackers to determine

the user-key and nonce even if they were able to obtain the initial state matrix.

4.4 Shuffle Table

An additional procedure that we can include in the method is using a “Shuffle Table” to break the

linearity of the random number generators as well as further hide our internal states. Marsaglia

[42] proposed a method, sometimes referred to as Algorithm M [36], which uses 2 generators

with one acting as the baseline generator, which we will call Xi, and the other acting as the shuf-

fle generator, which we will call Xi+1. A Table T is filled in using the baseline generator X . The

value Yi is then generated using the shuffle generator, with the function r(x) being used to de-

termine the index of the number being outputted within the Table. The outputted number at the

index is then re-filled with Xi. An extension of this method was proposed by Bays and Durham

[7] which only required one generator instead of two. A diagram of the “shuffle table” is given

below:

Xi

Xi+1

Yi ≡ T [r(Xi+1)]
T [r(Xi+1)]← Xi

Yi

Figure 4.2: Shuffle Table Diagram
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4.5 Output Function

After the ChaCha procedure is carried out for R rounds, the resulting matrix I = Y(R) is then

XOR-ed with the page’s starting state matrix. This has a key drawback in that if one knows the

constants (which is typical) then they will more easily be able to determine the value of the other

words in the matrix Y(R). This opens one up for attack by allowing the attackers to know and

determine words that should be hidden. To get around this drawback, SAFE-NET proposes a

method to have the outputs shifted by some function, thus protecting our hidden words even

more. Given that j represents the index of the matrix where 1 ≤ j ≤ 16, the output function can

be written as:

Z j = f j (I,Y)

These functions theoretically could be any function one wishes it to be, but we propose the

following, with Yj representing the jth block in the initial state matrix and I j representing the jth

block in the Rth intermediate state:

f j
(
I j, I j+1,Yi

)
= f j1(I j)⊞ f j2(I j+1)⊞ f j3(Y j)

In this case, f j1(·) could be a shifting function that shifts the bits to the left by a certain num-

ber of bits depending on the input word or it could be a pre-set amount. Additionally, a circular

design is chosen due to its simplicity and its efficiency. Any combination of the initial matrix and

the Rth intermediate state could be used though, but it may not be efficient if it utilizes too many

blocks/operations. This proposed method gives an extra layer of security as our starting page and

ending page are hidden due to the combination of 3 blocks. While this method does require one

more addition than ChaCha’s output function, it should allow for fewer rounds to be used to be

secure, making up for the extra computations. ChaCha’s output function is a special case of this

general function.
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4.6 Advantages of SAFE-NET

Special Cases One thing that should be noted is that ChaCha is a special case of SAFE-NET

with 2 “bad” baseline generators being used to update the counter blocks sequentially.

Therefore, SAFE-NET will have better diffusion properties between successive pages as

all of the blocks are updated with an external RNG. This property will make SAFE-NET at

least as secure as ChaCha.

More size flexibility SAFE-NET can be used with any number of terms in the “starting” ma-

trix. There is no reason why 16 is used besides being the standard size for ChaCha. One

could use even more with only slight adjustments to the method to have a larger number of

blocks.

Larger Nonce/IV size The new initialization procedure allows for a much greater nonce and

user-key, which will allow for more messages to be sent under the same user-key.

Increased Period Length The period length has the potential to be much greater than the period

length of Chacha, which is 264. Choosing strategic a strategic modulus for the RNGs could

result in a much greater period length. Using the LCGs listed in the table below, the period

length will be roughly 0.52×10130.

Extra Layer of Security In addition to the initial state matrices continually changing, the out-

put function gives an extra layer of security, requiring potential attackers to solve a more

complicated linear equation before determining the initial state matrix.

Efficiency A disadvantage of SAFE-NET is that it is slightly less efficient than ChaCha when

carrying out a quarter-round transformation due to the extra operations in populating the

blocks with RNGs. On the other hand, SAFE-NET does require fewer rounds to pass em-

pirical tests, with R as low as 2, meaning the slight inefficiency with the RNGs requires

fewer rounds and thus is more efficient than ChaCha.
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Chapter 5

Exploring Special Cases of SAFE-NET

There are a few interesting cases of SAFE-NET which should be considered. Previous extensions

of ChaCha have been proposed which aim to improve upon the stream cipher while maintaining

the structure of ChaCha. Most of these previous extensions are all special cases of the SAFE-

NET family of ciphers. Additionally, we will discuss some special cases of SAFE-NET that we

have found to have nice empirical properties while still being considered a secure generator.

5.1 ChaCha

First, it should be noted that ChaCha is a special case of SAFE-NET in which all of the blocks

are constant random number generators except for the counter blocks. The counter blocks are

RNGs with t0 = i mod 232 and t1 = ⌊i/232⌋ where i is increased every iteration. In this case, all

of these generators are poor generators that have bad distributional properties and do not do much

to alter the initial state matrix in successive runs. Additionally, ChaCha does not have a mutual-

shuffle operation in place to increase the security of the generator. Finally, when it comes to the

output function, ChaCha uses a basic modulo addition operation to decide the output words,

which is a special/simple case of the SAFE-NET output function. Therefore, since ChaCha is a

special case of SAFE-NET, SAFE-NET should be as secure as ChaCha if not more. Empirical

evaluations on ChaCha are presented later.

5.2 Using RNGs to populate counter blocks

One possible alternative to improve ChaCha with minimal changes to the structure is to introduce

random number generators to fill in the counter blocks on initial state matrices. This method,

called eChaCha, can be set up to either update t1 with a baseline generator or both counters t0

and t1 using baseline generators. The way ChaCha is currently structured, the counter blocks do
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not provide much of a difference between successive initial state matrices, so by using a base-

line generator to fill in those blocks, it should have better diffusion properties than ChaCha and

be more secure. A general diagram of the procedure is shown below with only filling in t1 with a

baseline generator, but it could be done with t0 as well:

Initialize Baseline generator
using key and IV

Step 0/X:
Generate Xi

Step 1:
Reset X(0)

t0 = i; t1 = Xi

Step 2:
Compute

X(R) = H
(

X(0);R
) Step 3:

Deliver
Z = X(0)⊞X(R)

i = i⊞1

Figure 5.1: General Procedure for eChaCha Stream Cipher

Empirical evaluations shown in Chapter 6 demonstrate that just this small change to the ci-

pher increases the empirical properties of the generator.

5.3 Choice of Baseline Generators

Since we are starting to incorporate random number generators into the ciphers, thought should

be given to which generators are used. The most basic example would be the Linear-Congruential

Generator (LCG) which has the form

Xi = (BXi−1 +A) mod p, i≥ 0. (5.1)

These generators would be considered poor generators due to the small period length and because

they fail a majority of the empirical tests performed on them. But, even though they are not ideal

by themselves, we will later show that incorporating them into SAFE-NET results in excellent

empirical performances.

Natural extensions for this type of generator are Multiple-Recursive Generators (MRG) which

use the previous k values to compute the next one. The pseudo-random numbers are generated

sequentially from the k-th order linear recurrence:

Xi = (α1Xi−1 + · · ·+αkXi−k) mod p, i≥ k, (5.2)
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where the coefficients initial seeds are integers such that they are not all zero, and the modulus

p is a positive integer. It is well known that the maximum period of the MRG in (5.2) is pk− 1,

which is achieved if and only if its characteristic polynomial

f (x) = xk−α1xk−1−·· ·−αk (5.3)

is a primitive polynomial [36].

Deng and Xu [21] proposed the class of DX-k generators which take advantage of the nice

theoretical properties of kth order MRGs. They are very efficient in that they limit the number of

operations needed by having the nonzero coefficients be the same, resulting in only addition and

one multiplication. These are fast generators that have been shown to pass all empirical testing

[20]. The k-th order linear recurrences are:

DX-k-1 : Xi = BXi−1 +Xi−k mod p, i≥ k (5.4)

DX-k-2 : Xi = B(Xi−1 +Xi−k) mod p, i≥ k (5.5)

DX-k-3 : Xi = B(Xi−1 +Xi−⌈k/2⌉+Xi−k) mod p, i≥ k (5.6)

DX-k-4 : Xi = B(Xi−1 +Xi−⌈k/3⌉+Xi−⌈2k/3⌉+Xi−k) mod p, i≥ k (5.7)

These DX generators only achieve a maximal period length when the characteristic polyno-

mial is a primitive polynomial. Knuth [1] described these conditions are:

1. (−1)k−1αk must be a primitive root mod p.

2. xR = (−1)k−1αk mod ( f (x), p), where R = (pk−1)/(p−1).

3. For each prime factor q of R, the degree of xR/q mod ( f (x), p) is positive.

Choosing DX generators with different moduli will allow for a longer period length, meaning

it will take longer for all of the numbers to repeat at the same time. Choices for different moduli
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DX generators are provided in later sections along with their multipliers to achieve larger period

lengths.

Additionally, the popular MT19937 [50] could also be used as a baseline generator. But, a

downside is its large internal state of 623 values which need to be stored. It should be noted that

many different baseline generators could be used, but we will mainly focus on LCGs and DX-k

generators due to their speed and simplicity.

5.4 Using 16 RNGs to populate blocks

To expand upon eChaCha a little bit more, instead of just filling in the counter blocks with ran-

dom variates, we could use baseline generators to fill in all 16 blocks. While SAFE-NET can

be carried out using most any baseline random number generator, we evaluate the procedure

using 16 different LCGs to populate the blocks due to the simplicity and popularity of the gen-

erators. Later we will evaluate the possibility of using 16 higher-order MRGs to populate the

blocks, allowing for a much larger period length. Using 16 RNGs helps create a more secure

cipher as the blocks are continually changing and thus it is harder for attackers to determine the

pattern. Additionally, using 16 different RNGs with different period lengths will result in a cipher

with an extremely long period. In the table below, we give an example of 16 LCGs that could be

used that will result in a cipher with a very good empirical performance and a long period up to

5.2×10129.

Table 1: Strategic LCGs for maximal period length

Listing of B and m for LCGi = Bix mod mi
B1 = 32770 m1 = 2147483647 B2 = 32769 m2 = 2147483629
B3 = 32769 m3 = 2147483587 B4 = 32771 m4 = 2147483579
B5 = 32770 m5 = 2147483563 B6 = 32769 m5 = 2147483549
B7 = 32772 m7 = 2147483543 B8 = 32769 m8 = 2147483497
B9 = 32770 m9 = 2147483489 B10 = 32770 m10 = 2147483477
B11 = 32772 m11 = 2147483423 B12 = 32769 m12 = 2147483399
B13 = 32772 m13 = 2147483353 B14 = 32771 m14 = 2147483323
B15 = 32773 m15 = 2147483269 B16 = 32769 m16 = 2147483249

Additionally, we provide a table of 16 small-order DX-k generators that can be used in the
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SAFE-NET procedure. The generators listed are just for testing purposes and any DX generators

could be used, as they pass empirical testing even without mixing or transformations. When DX-

2-1 generators are used, the period length can be increased to 9.5× 10244, which is much larger

than when LCGs are used (5.2×10129) or for standard ChaCha (1.8×1019). Additional DX gen-

erators are given in the Appendix.

Table 2: Strategic DX-2-1 Generators for maximal period length (9.5×10244)

Listing of DX-2-1 Generators with different moduli
B1 = 32758 m1 = 2147483647 B2 = 32753 m2 = 2147483629
B3 = 32760 m3 = 2147483587 B4 = 32773 m4 = 2147483579
B5 = 32756 m5 = 2147483563 B6 = 32763 m5 = 2147483549
B7 = 32753 m7 = 2147483543 B8 = 32769 m8 = 2147483497
B9 = 32750 m9 = 2147483489 B10 = 32758 m10 = 2147483477
B11 = 32753 m11 = 2147483423 B12 = 32753 m12 = 2147483399
B13 = 32759 m13 = 2147483353 B14 = 32755 m14 = 2147483323
B15 = 32750 m15 = 2147483269 B16 = 32751 m16 = 2147483249

Table 3: Strategic DX-3-1 Generators for maximal period length (1.6×10260)

Listing of DX-3-1 Generators with different moduli
B1 = 32752 m1 = 2147483647 B2 = 32753 m2 = 2147483629
B3 = 32752 m3 = 2147483587 B4 = 32759 m4 = 2147483579
B5 = 32752 m5 = 2147483563 B6 = 32752 m5 = 2147483549
B7 = 32755 m7 = 2147483543 B8 = 32774 m8 = 2147483497
B9 = 32752 m9 = 2147483489 B10 = 32758 m10 = 2147483477
B11 = 32776 m11 = 2147483423 B12 = 32759 m12 = 2147483399
B13 = 32757 m13 = 2147483353 B14 = 32757 m14 = 2147483323
B15 = 32756 m15 = 2147483269 B16 = 32750 m16 = 2147483249

It should be noted that any number of RNGs could be used to populate the blocks as well as

most any kind of random number generator. Empirical testing, which will be discussed in the

next chapter, was done with 16 LCGs, 16 MRGs, 1 LCG, and 1 MRG to see how they performed.

The fewer the number of RNGs used, the less secure the cipher will be due to multiple blocks

being related to one another and the potential to do poorly in empirical testing.
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Table 4: Strategic DX-4-1 Generators for maximal period length (1.5×10258)

Listing of DX-4-1 Generators with different moduli
B1 = 32756 m1 = 2147483647 B2 = 32759 m2 = 2147483629
B3 = 32753 m3 = 2147483587 B4 = 32809 m4 = 2147483579
B5 = 32755 m5 = 2147483563 B6 = 32810 m5 = 2147483549
B7 = 32751 m7 = 2147483543 B8 = 32773 m8 = 2147483497
B9 = 32755 m9 = 2147483489 B10 = 32758 m10 = 2147483477
B11 = 32758 m11 = 2147483423 B12 = 32753 m12 = 2147483399
B13 = 32757 m13 = 2147483353 B14 = 32755 m14 = 2147483323
B15 = 32751 m15 = 2147483269 B16 = 32774 m16 = 2147483249

Table 5: Strategic DX-5-1 Generators for maximal period length (3.7×10276)

Listing of DX-5-1 Generators with different moduli
B1 = 32757 m1 = 2147483647 B2 = 32755 m2 = 2147483629
B3 = 32763 m3 = 2147483587 B4 = 32762 m4 = 2147483579
B5 = 32790 m5 = 2147483563 B6 = 32760 m5 = 2147483549
B7 = 32764 m7 = 2147483543 B8 = 32762 m8 = 2147483497
B9 = 32750 m9 = 2147483489 B10 = 32757 m10 = 2147483477
B11 = 32756 m11 = 2147483423 B12 = 32762 m12 = 2147483399
B13 = 32779 m13 = 2147483353 B14 = 32767 m14 = 2147483323
B15 = 32759 m15 = 2147483269 B16 = 32756 m16 = 2147483249

Table 6: Strategic DX-16-1 Generators for maximal period length (1.02×10376)

Listing of DX-16-1 Generators with different moduli
B1 = 32825 m1 = 2147483647 B2 = 32975 m2 = 2147483629
B3 = 32975 m3 = 2147483587 B4 = 32781 m4 = 2147483579
B5 = 32929 m5 = 2147483563 B6 = 32763 m5 = 2147483549
B7 = 32832 m7 = 2147483543 B8 = 32790 m8 = 2147483497
B9 = 32752 m9 = 2147483489 B10 = 32782 m10 = 2147483477
B11 = 32831 m11 = 2147483423 B12 = 32757 m12 = 2147483399
B13 = 32787 m13 = 2147483353 B14 = 32797 m14 = 2147483323
B15 = 32825 m15 = 2147483269 B16 = 32824 m16 = 2147483249

5.5 Additional Extensions

The standard Salsa20 and ChaCha cipher has a 64-bit nonce. Increasing the size of the nonce will

not necessarily increase the security of the cipher, but it will allow for more messages to be sent

without changing the user-key. A method, which is a case in the SAFE-NET family, proposed

to increase the nonce size is to increase the nonce to 96 bits and remove one of the counters (t1).
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Like ChaCha, this can be considered a special case of SAFE-NET with all 15 of the 16 blocks be-

ing generated with a constant RNG and one counter updated each time. This does allow for the

sender to send more messages under the same key, but it also reduces the number of key-stream

blocks that we can output in half to 232. The argument presented by the authors is that the in-

creased nonce is more beneficial as most 232 blocks will be more than enough for most uses [53].

This smaller period length though could result in the keystream being repeated when encrypting

the plaintext, which is a clear weakness [59].

XSalsa and XChaCha

Another method which can be viewed as a special case of SAFE-NET, proposed by [9], called

XSalsa20, allows for a 192-bit nonce without sacrificing any of the other components. This method

implements a specific “fancy” initialization procedure which allows for a larger nonce and IV

size while keeping the ChaCha set-up the same.

The idea of this method is to use a different initial state matrix (to initialize a new state ma-

trix) without the counters and instead composed of 128 bits of the 192 bit nonce as four 32-bit

blocks. The Salsa20 transformation is then carried out and sixteen 32-bit words are outputted.

Eight words are chosen from the outputted key-stream and are used in place of the user-key. The

other unused 64 bits of the nonce are also used in the new initial state matrix.

The nonce for this method consists of six 32-bit words, denoted (v′0,v
′
1, . . . ,v

′
5). An initial

round of Salsa20, without counters, is then run with the following initial state matrix:

Y(0)
S =



c0 k0 k1 k2

k3 c1 v′0 v′1

v′2 v′3 c2 k4

k5 k6 k7 c3


After running R rounds of Salsa20 on this initial state matrix, the resulting matrix’s, Y(R) =

H(Y(0);R), sixteen 32-bit words are outputted as K = (z0,z1, . . . ,z15). It should be noted that
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Y(R) is not added to Y(0) to get the keystream like in Salsa20 due to security reasons [9]. Of the

outputted key-stream, eight 32-bit words are chosen to use in our initial state matrix for Salsa20.

We define (k′0,k
′
1,k
′
2,k
′
3,k
′
4,k
′
5,k
′
6,k
′
7) = (z0,z5,z10,z15,z6,z7,z8,z9), with the indices of z chosen

for security purposes. The initial state matrix for the regular Salsa20 is then defined as:

X(0)
S =



c0 k′0 k′1 k′2

k′3 c1 v′4 v′5

t0 t1 c2 k′4

k′5 k′6 k′7 c3


Salsa20 is then carried out like normal without any additional modifications. This process al-

lows for XSalsa20 to have the same components and to maintain the same as shape Salsa20. A

similar procedure called XChaCha has been constructed in a way that would have similar proper-

ties of allowing a longer nonce while maintaining the shape and other components of ChaCha [3].

Below is a list of steps and a diagram of the overall procedure of both XSalsa and XChaCha:

Step X1. Given 192-bit nonce, (v′0,v
′
1,v
′
2,v
′
3,v
′
4,v
′
5), replace counter blocks (t0, t1) with

(v′2,v
′
3).

Step X2. Initialize state matrix Y(0) with (v0,v1) with (v′0,v
′
1).

Step X3. Computer R-round transformation as K = H(X(0);R).

Step X4. Given the output K = (z0,z1, · · ·z15, choose the new user-key (k′0, · · ·k′7) based off

of the cipher being used.

Step 0-3 Carry out the standard Salsa/ChaCha stream cipher with the new user-key (k′0, · · ·k′7)

and the nonce (v′4,v
′
5) instead of (v0,v1)

This procedure will take slightly more time, as this method generates an extra Salsa20 block

in order to initialize the initial state matrix. Additionally, a similar procedure, XChaCha, could be
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Step 0:
i = c = 0; t1 = 0
(v0,v1) as (v′4,v

′
5)

Step 1:
Reset X(0)

t0 = i; t1 = t1 + c

Step 2:
Compute

X(R)H =
(

X(0);R
) Step 3:

Deliver
Zi = X(0)⊞X(R)

i = i⊞1; c = 0
if i = 0, then c = 1

Step X-4:
Use output of K = (z0,z1, . . . ,z15) to choose

(k′0,k
′
1,k
′
2,k
′
3,k
′
4,k
′
5,k
′
6,k
′
7) = (z0,z5,z10,z15,z6,z7,z8,z9) for XSalsa20

(k′0,k
′
1,k
′
2,k
′
3,k
′
4,k
′
5,k
′
6,k
′
7) = (z0,z1,z2,z3,z12,z13,z14,z15) for XChaCha

Step X-2:
Set Y(0) with

(v0,v1) as (v′0,v
′
1)

Step X-1:
Replace (t0, t1)

with (v′2,v
′
3)

Step X-3:
Compute

K = H
(

Y(0);R
)

Figure 5.2: General Method for XChaCha

implemented with ChaCha. As for the security of XSalsa20, it has been shown to be as secure, if

not more secure, than Salsa20 [53].

Additional extensions have also been proposed to try and remedy some of the perceived weak-

nesses of the ChaCha cipher by increasing the rate of diffusion. Super ChaCha, put forward by

Mahdi et al. [43] is one method that has been proposed as an extension of ChaCha to alter the

Quarter-Round function and how the vector is partitioned to form the Quarter-round. The new

partition is decided as “Zigzag” and “Alternate” forms instead of “Column” and “Diagonal”. In-

stead of a fixed rotation amount in the Quarter-Round, the rotation amount is variable for each

Quarter-Round iteration. These values are decided based on the first 4 bits of ‘a’, ‘b’, ‘c’, and

‘d’ respectively. so y0 is the first four bits of ‘a’, y1 is the first four bits of ‘b’, and so on. While

this method introduces a process that will help pages diffuse differently, the issue remains of only

having 1 block update each successive initial state matrix. Additionally, while the author claims

this method passes empirical tests and improves randomness, implementing this method and test-

ing it with BigCrush shows clear failures, even for large R.
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“Zigzag”: Odd Rounds

x0 = (x0, x1, x4, x8)

x1 = (x5, x2, x3, x6)

x2 = (x9, x12, x13, x10)

x3 = (x7, x11, x14, x15)

“Alternate”: Even Rounds

x0 = (x0, x4, x1, x5)

x1 = (x8, x12, x9, x13)

x2 = (x2, x6, x3, x7)

x3 = (x10, x14, x11, x15)

ChaCha Quarter-Round

a = a+b; d = d⊕a; d = d ≪ 16

c = c+d; b = b⊕ c; b = b ≪ 12

a = a+b; d = d⊕a; d = d ≪ 8

c = c+d; b = b⊕ c; b = b ≪ 7

Super ChaCha Quarter-Round

a = a+b; d = d⊕a; d = d ≪ y0

c = c+d; b = b⊕ c; b = b ≪ y1

a = a+b; d = d⊕a; d = d ≪ y2

c = c+d; b = b⊕ c; b = b ≪ y3

Finally, another extension that falls under SAFE-NET infuses chaos theory in order to have

the user-key constantly changing was proposed by [2]. This method creates a 32-bit Chaotic

Key using some pre-defined function and updates the initial state matrix by doing XOR on 4 bits

of each user-key block using the Chaotic Key (bits 1-4 of block 1, bits 5-7 of block 2, ...). Al-

mazrooie et al. claims this increases the diffusion of bits and requires fewer rounds to be secure.

One of the downsides to this method is that this still has the issue of relatively few (up to 33) bits

on successive initial state matrices.
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Chapter 6

Empirical Evaluations using TESTU01

6.1 Overview of TestU01 Library

While random number generators (RNGs) are used for a variety of purposes, including simula-

tion and cryptography, it is important to make sure that one is using a RNG that is empirically

sound. This means that the sequence of generated variates closely resembles a uniform distribu-

tion and one which would be hard to distinguish from a truly random sequence. The TESTU01

library [41] allows RNGs to undergo a number of statistical tests for uniformity. The TESTU01

library differs from other testing packages, such as DIEHARD, the NIST package, and others, in

that TESTU01 is more stringent, contains more statistical tests, and has more flexibility for test-

ing generators compared to the other packages. It also allows one to test both random numbers

as well as random bits from a generator. This overview will mainly focus on the former, but that

implementation of the latter can easily be done with a similar approach and is in fact strongly re-

lated to each other theoretically.

It is important to note that the TESTU01 library does not contain every imaginable statisti-

cal test, as there are an infinite number of possible tests which could be created. The library does

contain a variety of different tests which helps give a good idea of the quality of the RNG. These

tests are also not meant to prove that a RNG will be “perfect”, but passing them gives confidence

that the RNG is virtually indistinguishable from a truly uniform sequence. L’Ecuyer notes that

“the difference between the good and bad RNGs, in a nutshell, is that the bad ones fail very sim-

ple tests whereas the good ones fail only very complicated tests that are hard to figure out or im-

practical to run” [38].

When testing RNG, p-values are computed for the tests. These p-values should follow a uni-

form distribution and thus can be used to measure the uniformity of the generator. If the p-value

is close to 1 then the generator is too uniform, while values close to 0 indicate the generator is not
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uniform enough. The TESTU01 library considers a generator to fail a test when the p-values are

extremely close to 0 or 1 (less than 10−10 or greater than 1− 10−10). If values are near the rejec-

tion boundary, then the tests may be replicated with different sequences until it is determined that

the test obviously passes or obviously fails. It is noted that a RNG that is expected to pass a test

will be labeled as “suspicious” about 2% of the time and undergo additional tests to determine if

it should be failed or passed. When generators fail tests decisively, the p-values will converge to 0

or 1 quickly.

In testing the RNGs, the TESTU01 library utilizes what is known as a two-level procedure,

which essentially means that a test statistic (Yi) is generated independently N times, and then

transformed so that the transformations (Ui) are i.i.d Uniform. This is beneficial in allowing the

test to have a larger sample size which increases its power, but it also allows for testing at the

local level instead of the global level. The latter benefit could be done through a spacing trans-

formation, which is done by seeing how far apart successive U(i) are from each other. This would

help detect clustering of an RNG and help determine if it is a good generator or not. Addition-

ally, it should be noted that most test statistics in the TESTU01 library will follow a chi-square, a

normal, or a Poisson distribution.

In addition to the test mentioned above, the library also carries out tests on a single stream

of numbers by measuring global uniformity, measuring clustering, as well as implementing run

and gap tests. When testing sub-sequences, a common technique is to divide the unit hyper-cube

into partitions and count the number of hits per piece, or how long it takes a partition to reach a

certain number of hits. Likewise, once the hyper-cube is partitioned, one can measure the time

gaps between visits to the cell. Additional types of tests, such as birthday spacing, are run in or-

der to test for randomness, for more information consult [38] for a more in-depth explanation of

the theory behind the tests.
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6.2 Background Information for Statistical Tests

Chi-square test

One popular test for testing the goodness-of-fit of a sequence of data is the Chi-square test, first

proposed by Pearson [57]. If we have data that falls into a finite number of categories, say k cat-

egories, then we might look into using the Chi-square test. Assume we have n independent ob-

servations, and that these observations fall into one of k categories. Then, Ei is the theoretical

frequency for the observations that will fall into category i, and Oi is the observed frequency for

the number of observations that do fall into category i. Then the test statistic will be

T =
k

∑
x=1

(Oi−Ei)
2

Ei
.

We can then consult tables or software to determine the p-value of the test statistic T and then

make a conclusion on whether the sample data fit the desired frequency table well.

Kolmogorov-Smirnov test

If our observations fall on a range with infinitely many values, say U(0,1), then we might look

into the Kolmogorov-Smirnov (KS) test [1951]. This will allow us to compare the difference be-

tween the theoretical distribution F(x) and our empirical distribution Fn(x). We should note that

if we have n independent observations ordered from smallest to largest, X(1),X(2), . . . ,X(n), then

the empirical distribution Fn(x) will be

Fn(x) =
number of X(1),X(2), . . . ,X(n) that are ≤ x

n
.

The test statistic will then be

K = sup
x
|F(x)−Fn(x)|.

We can then consult tables or software to determine the p-value of the test statistic K and then

make a conclusion on whether the sample data fit the desired distribution well.
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6.3 Statistical Tests

While there are a great number of statistical tests currently available in the literature, this section

aims to discuss a few types of tests which are commonly used, as described in Knuth [36]. For

the following section, we will denote ⟨Un⟩ = U0,U1,U2, . . . as a sequence of numbers between

0 and 1. Additionally we will denote ⟨Yn⟩ = Y0,Y1,Y2, . . . as a sequence of numbers between 0

and d−1. Because of this, we could write Yi = ⌊dUi⌋. There are a number of different additional

ways that we could transform ⟨Yn⟩ into the sequence ⟨Un⟩.

Frequency (Equidistribution) Test

One of the first tests that we might think to come up with is to test if the numbers do in fact fol-

low a uniform distribution. Given the sequence ⟨Un⟩, we could carry out a Kolmogorov-Smirnov

test with F(x) = x for 0 ≤ x ≤ 1. Additionally, we could also use the Chi-square test if the se-

quence, ⟨Yn⟩, is integer values or are broken up into a finite number of categories.

Serial Test

In addition to wanting the sequence to be independent and uniform, we also wish to have succes-

sive pairs (and t-tuples) to be independent and uniform. The Serial test, proposed by Good [28],

is used to see if successive pairs are independent and uniformly distributed. The general idea of

this test is to run the frequency test for higher dimensions. Say we want to look at successive

pairs, then we will partition the two-dimensional (0,1) square into k = d2 cells of area 1/k. We

will then count the number of times the pair (Y2i,Y2i+1) falls in each category, for 0 ≤ j < n. The

chi-square test is then run to compare the expected values for each square vs the observed values.

This test can be run for higher dimensions (successive t-tuples) with the same idea of dividing the

hyper-cube (0,1)t into k = dt cubes.

Gap Test

It may be useful to determine the length of time (or “gap”) between a sequence’s visit to a certain

range. Given 0 ≤ α < β ≤ 1, we want to find the lengths of the sub-sequence U j,U j+1, . . .U j+r
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such that both U j and U j+r are in the interval (α,β ) but the other values do not fall in the inter-

val. We will run the process n times (to end up with n gaps) and count the number of times each

gap length occurs. Since we are dealing with the interval (α,β ), we can denote the probability

of the next number being in the interval as p = α − β . We will then compare our observed gap

lengths with the expected gap lengths (following a geometric distribution) using a Chi-square

test.

Poker Test

Similar to a poker hand, we can also run a test called the Poker test [33] to count the number

of times each type of “hand” occurs. In this test, we will take n sets of five consecutive integers

Y5 j,Y5 j+1, . . .Y5 j+4, for 0 ≤ j < n and count the number of distinct values in the set of five. Due

to possibly having the range of Yi be very large, we might need to partition the domain into cate-

gories or take Yi = ⌊dUi⌋ where d is some chosen value. With the 5 consecutive integers, we can

either have 5 distinct values, 4 distinct values, . . . , or 1 distinct value. After determining the cate-

gories for the n sets, we can then do a Chi-square test to compare the observed probabilities with

the predicted probabilities. Knuth [36] notes the predicted probabilities of k-tuples for r distinct

values is

pr =
d(d−1) . . .(d− r+1)

dk

k

r

 ,

where

k

r

 are Stirling numbers. We can then compare the test statistic to determine the p-

value.

Coupon Collector’s Test

The Coupon Collector’s Test [29] examines how long it will take to “collect” all of the coupons.

Given the sequence Yj,Yj+1, . . . , where Yi = ⌊dUi⌋ for some d value, we calculate the length of

segments needed to “complete” the set of integers from 0 to d−1. We repeat this process n times

with different sequences and compare the observed lengths to the predicted lengths using a Chi-

46



square test. Derivations of the predicted probabilities can be found in Knuth [36] as well as Vonn

[68].

Permutation Test

Another test that can be run on a sequence of data is the Permutation test. This test divides se-

quence into n sub-sequences of t elements each, giving us U jt ,U jt+1, . . .U jt+t−1 for 0 ≤ j < n.

We then classify each sub-sequence according to the relative ordering of the numbers. We can

note that we will have t! possible relative orderings. We count the number of times each ordering

occurs and run a Chi-square test comparing the observed frequency vs the expected probability of

1/t!.

Run Test

The Run test focuses on the “runs up” and “runs down” a sequence may exhibit. That is, the test

looks at the length of the increasing monotone sections of the sequence. This test is different than

previous ones though, as the Chi-square test cannot be carried out on the counts of the runs, as

they are not independent of each other. This is because a long run will normally be followed by

a few short runs. Due to not having the independence condition met, we will need to find another

test statistic. Details about how to carry out this test are presented in [36].

Maximum-of-t Test

For the Maximum-of-t test, we take a sub-sequence of length t and record the maximum value

in the sequence a total of n times. So, let Vj = max(Ut j,Ut j+1,Ut j+t−1) for 0 ≤ j < n. We then

apply the Kolmogorov-Smirnov (KS) test on the sequence of ⟨Vi⟩ with the distribution function

F(x) = xt for 0 ≤ x ≤ 1. We choose this distribution function as the sequences are independent,

so the probability P(Ui < x) = x and thus the probability P(U1,U2, . . .Ut) = xt as xx · · ·x = xt .

Collision Test

The Chi-square test should only be used when a nontrivial number of items are expected for each

category. When the number of categories is greater than the number of observations then the cri-

47



teria would not be met. The collision test is rooted in the idea that we have m urns and n balls

with n≪ m. If we were to randomly throw the balls into the urns then most balls will land in urns

that are empty, but if more than one ball lands in the same urn then we have a “collision”. We

then count the number of collisions that occur. The generator will pass the Collision test if there

aren’t too few or too many collisions. The probability of c collisions is then

m(m−1) . . .(m−n+ c+1)
mn

 n

n− c

 ,

where

 n

n− c

 are Stirling numbers. We can then check the p-value to make sure it is not too

low or too high.

Birthday Spacings Test

The Birthday Spacings test proposed by Marsaglia [48] is similar to the Collision test in a few

ways. Instead of m urns and n balls, we will think about m days and n birthdays. Given the n

birthdays as Y1,Y2, . . .Yn, with 0 ≤ Yi < m, we then order the sequence as Y(1),Y(2), . . .Y(n). We

then calculate the spacing between the successive observations as Si = Y(i+1)−Y(i) and then we

sort the spacings as S(1),S(2),S(n) and count the number of equal spacings called R. We then re-

peat this process many times, say N times, and carry out a Chi-square test on the observed R’s

and the expected distribution. The expected distribution should follow a Poisson distribution with

a mean equal to Nn3/(4m). Additional explanation on the distribution can be found in [38].

Serial Correlation Test

Correlation is often used to indicate whether two quantities might be relatively independent of

each other. We can calculate the correlation of the observations (U0,U1, . . .Un−1) and (U1,U2, . . .Un)

with the Serial Correlation Test. The test statistic will be

C =
n(U0U1 +U1U2 + · · ·Un−2Un−1 +Un−1U0)− (U0 +U1 + · · ·Un−1)

2

n(U2
0 +U2

1 + · · ·U2
n−1)− (U0 +U1 + · · ·Un−1)2 .
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Since U0U1 and U1U2 are not independent of each other, we do not expect the serial correlation

to be exactly 0. A “good” value of C should be between µn ± 2σn where µn = −1
n−1 and σn =

n2

(n−1)2(n−1) for n≥ 2

Spectral Test

The Spectral test, first formulated by Coveyou [17], was designed to study the lattice structures

of Linear Congruential Generators (LCGs). In particular, the Spectral test studies the full period

of the LCG to detect global randomness. [36] mentions that this test is the “most powerful test

known” because all good generators will end up passing the test and all bad generators will end

up failing it. With LCGs, [47] showed that successive k-tuples of an LCG will fall on parallel

hyper-planes, with the upper bound being (k!m)1/k hyper-planes. The basic idea of the test is that

we want to determine the maximum distance between adjacent hyper-planes.

Given a sequence ⟨Un⟩=U0,U1,U2, . . . of period m, we create the set of all m points as:

{(Un,Un+1, . . . ,Un+k−1| 0≤ n < m},

which are k-tuples in k-dimensional space. When dealing with a full period length LCG with pe-

riod length m− 1 then it is necessary to add the point (0,0, . . .0) so that there are m points in to-

tal. We will rewrite the sequence as

{
1
m
(x,s(x),s(s(x)), . . . ,s[k−1](x))| 0≤ n < m

}
where s(x) = (ax+ c) mod m.

If we were to plot the set of points in k-dimensional space then we will see that we are able to

cover all of the points with a number of parallel lines. When we are dealing with a small modulus

this is easy to see, when the modulus is large you may be able to alter the scale of the x-axis to

view the phenomenon. These figures can be seen in [36] for both 2 and 3-dimensional figures.

We will define 1/v2 as the maximum distance between lines taken over all sets of parallel

lines that cover the points {(x/m,s(x)/m)} in two dimensions. We can also define 1/v3 as the
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maximum distance between lines taken over all sets of parallel planes that cover the points

{(x/m,s(x)/m,s(s(x))/m)} in three-dimensions. Likewise, we can extend this idea for 1/vk into

k-dimensions. With this, v2 is the two-dimensional accuracy, v3 is the three-dimensional accu-

racy, and so on. We usually only run the Spectral test for small k such that 2≤ k≤ 6. Just because

we pass the test when k is small does not mean we will always pass when k is larger. Though

when k is too large there is no practical significance of the test so we do not test for too large of

k.

Through some manipulation, we can show that we wish to determine the value of vk such that

vk = min
{√

x2
1 + . . .x2

k

∣∣∣∣ xa +ax2 + · · ·+ak−1xk ≡ 0 mod m
}

where t ≥ 2 and 0 < a < m and a is relatively prime to m. We wish to have high values for each vk

where the value is close to the theoretical value of m1/k. The value vk can be tricky to find when

working with a large modulus m. Knuth lays out steps to accomplish this task when k is small, as

it can be very difficult when k > 10.

6.4 Notes on Empirical Testing

The following sections provide the empirical evaluations for a number of different stream ci-

phers. For each stream cipher, the BigCrush test suite was run, resulting in 106 tests being per-

formed on the generator and 160 p-values being outputted. Running the BigCrush test suite took

between 4-8 hours to run, depending on the complexity of the generator and the number of rounds

being carried out. For each cipher, BigCrush was run 30 times with random starting seeds. In to-

tal, roughly 11,000 hours of computing time on the HPC (High-Performance Computer) at the

University of Memphis was used to evaluate the generators. For each of the following tables, the

number of “failures” is recorded (meaning the number of tests which result in a p-value smaller

than a certain threshold) as well as the proportion of tests that had p-values more extreme than

the columns indicate. Since the p-values should follow a uniform distribution, we would expect

roughly 0.1% to be less that 0.1%, meaning the proportion should be roughly 0.001. We can do
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the same for the other values as well. Ciphers that fail relatively few tests and have roughly the

ideal proportion of failed tests are considered empirically sound generators.

6.5 Empirical Testing for ChaCha and Variants

The first stream cipher tested was ChaCha. It is obvious that ChaCha fails spectacularly when

only 2 rounds are performed. When 4 and 6 rounds are run it appears that ChaCha passes the em-

pirical tests, and mimics a random uniform distribution. While this demonstrates that ChaCha

with 4 or 6 rounds is suitable to be used for simulation/statistical computing, it is already known

that ChaCha with 4 or 6 rounds is not secure.

Table 7: Counts/proportions of p-values for Big Crush on R rounds of Chacha

R < 10−15 < 10−5 < 10−4 < 10−3 > 1−10−3 > 1−10−4 > 1−10−5 > 1−10−15

2 3880 4039 4057 4084 209 202 186 0
4 0 0 2 9 3 0 0 0
6 0 0 0 6 5 1 0 0
8 0 0 0 3 5 0 0 0

2 0.80833 0.84146 0.84521 0.85083 0.04354 0.04208 0.03875 0.00000
4 0.00000 0.00000 0.00042 0.00188 0.00063 0.00000 0.00000 0.00000
6 0.00000 0.00000 0.00000 0.00125 0.00104 0.00021 0.00000 0.00000
8 0.00000 0.00000 0.00000 0.00063 0.00104 0.00000 0.00000 0.00000

A variant of ChaCha called Super ChaCha was also tested. In this version, the quarter-round

function does not have fixed rotational constants. The amount of rotation is determined based

on the last 4 bits of the inputted word. The author claims that this version is more secure than

ChaCha due to this quarter-round function, but it in fact makes it a worse generator. Even for a

large amount of rounds it spectacularly fails the empirical tests. Something that became apparent

when testing ChaCha is that the slightest change to the cipher can turn it into a bad generator.

Because of this, more thorough changes are recommended to make the generator more efficient

as well as resilient to small adjustments.
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Table 8: Counts/proportions of p-values for Big Crush on R rounds of Super-ChaCha

R < 10−15 < 10−5 < 10−4 < 10−3 > 1−10−3 > 1−10−4 > 1−10−5 > 1−10−15

4 1908 2267 2350 2442 189 180 173 0
6 175 253 266 286 29 18 15 0
8 169 240 258 281 22 16 13 0

20 131 173 190 209 13 10 9 0

4 0.3975 0.47229 0.48958 0.50875 0.03938 0.0375 0.03604 0.00000
6 0.03646 0.05271 0.05542 0.05958 0.00604 0.00375 0.00313 0.00000
8 0.03521 0.05 0.05375 0.05854 0.00458 0.00333 0.00271 0.00000

20 0.03899 0.05149 0.05655 0.0622 0.00387 0.00298 0.00268 0.00000

6.6 Empirical Testing of eChaCha

One way to incorporate external random number generators into the cipher is to have it popu-

late the counter blocks. This was done by having a low-order DX generator populate the counter

block t1 since it rarely changes. This resulted in a generator that passed most tests with the num-

ber of rounds as low as 2. Similar results were also displayed when both counter blocks were

updated with external DX-generators. One could even use an LCG to populate the counters, but

the period length will be reduced.

Table 9: Counts/proportions of p-values for Big Crush on R rounds of eChacha (1 counter)

R < 10−15 < 10−5 < 10−4 < 10−3 > 1−10−3 > 1−10−4 > 1−10−5 > 1−10−15

2 0 0 1 5 6 1 0 0
4 0 0 1 6 3 0 0 0
6 0 0 0 8 3 0 0 0
8 0 0 1 5 6 2 0 0

2 0.00000 0.00000 0.00021 0.00104 0.00125 0.00021 0.00000 0.00000
4 0.00000 0.00000 0.00021 0.00125 0.00063 0.00000 0.00000 0.00000
6 0.00000 0.00000 0.00000 0.00167 0.00063 0.00000 0.00000 0.00000
8 0.00000 0.00000 0.00021 0.00104 0.00125 0.00042 0.00000 0.00000

This shows that small adjustments which routinely change the bits after each iteration using

random number generators result in the stream cipher passing tests in as few as 2 Rounds. There-
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Table 10: Counts/proportions of p-values for Big Crush on R rounds of eChacha (2 counters)

R < 10−15 < 10−5 < 10−4 < 10−3 > 1−10−3 > 1−10−4 > 1−10−5 > 1−10−15

2 0 0 3 8 1 0 0 0
4 0 0 2 9 2 0 0 0
6 0 0 0 7 6 0 0 0
8 0 0 0 2 2 0 0 0

2 0.00000 0.00000 0.00063 0.00167 0.00021 0.00000 0.00000 0.00000
4 0.00000 0.00000 0.00042 0.00188 0.00042 0.00000 0.00000 0.00000
6 0.00000 0.00000 0.00000 0.00146 0.00125 0.00000 0.00000 0.00000
8 0.00000 0.00000 0.00000 0.00042 0.00042 0.00000 0.00000 0.00000

fore, by changing all the blocks after each run, we would anticipate the cipher to have even better

empirical performances.

6.7 Empirical Testing for SAFE-NET

Similar to ChaCha, one could use SAFE-NET which utilizes an external Random Number Gen-

erator which has been shown to have nice statistical and empirical properties of uniformity and

independence to populate all of the blocks. With this setup, ARX operations in the SAFE-NET

method help break up the linearity of the Random Number Generator and passes all tests with

just 2 Rounds when the baseline generator is chosen properly. A downside to this method is that

initially, it is not as efficient as ChaCha, as an external generator populates every block for each

initial state matrix. But fewer rounds would most likely be required for security which could lead

to it being more efficient overall. Additional combinations of this method could be explored in

order to improve the security of the cipher.

One could use a number of different baseline generators to populate the blocks. For instance,

16 different LCGs with differing moduli allow for simple generators with minimal memory.

Therefore, if the moduli are all relatively prime with one another, then the period length has the

potential to be very large. In addition to the extremely long period length, using multiple LCGs

also protects against potential attacks, as figuring out the pattern of one starting block will not
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make figuring out the other baseline generators any easier, as each individual block as they are all

moving targets that are independent of each other.

SAFE-NET with 16 LCGs seemed to do very well in all tests, which indicates that increasing

the number of LCGs being used to populate the blocks increases empirical performance. Addi-

tionally, one would be able to argue that it also increases the security of the generator as well as it

uses 16 different generators. This constant changing of blocks makes it difficult to determine the

pattern for each of the 16 blocks, as they are virtually unrelated in successive iterations.

Table 11: Counts/proportions of p-values for Big Crush on R rounds of SAFE-NET (16 LCGs)

R < 10−15 < 10−5 < 10−4 < 10−3 > 1−10−3 > 1−10−4 > 1−10−5 > 1−10−15

2 0 0 0 3 5 1 0 0
4 0 0 0 8 5 1 0 0
6 0 0 2 4 6 1 0 0
8 0 0 1 6 2 0 0 0

2 0.00000 0.00000 0.00000 0.00063 0.00104 0.00021 0.00000 0.00000
4 0.00000 0.00000 0.00000 0.00167 0.00104 0.00021 0.00000 0.00000
6 0.00000 0.00000 0.00042 0.00083 0.00125 0.00021 0.00000 0.00000
8 0.00000 0.00000 0.00021 0.00125 0.00042 0.00000 0.00000 0.00000

The same can be said when 16 low-order MRGs are used. They do very well even when the

number of rounds is as low as 2. This is expected though as the class of DX generators used pass

empirical testing without any transformation. The SAFE-NET procedure does help break the lin-

earity of the generators though which improves security while maintaining nice distributional

properties.

Another possibility that we have discussed is filling in all the blocks using a singular LCG.

This method is not recommended unless mutual-shuffle tables are used due to the fact that the pe-

riod length will usually be less than 232 without one. Choosing a RNG with a small period length

could result in the SAFE-NET stream cipher having bad empirical performance due to the num-

bers repeating sooner. But, using 1 LCG to populate the shuffle the tables and populate the blocks

does remarkably well. It is known that an LCG by itself fails the empirical tests miserably, but
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Table 12: Counts/proportions of p-values for Big Crush on R rounds of SAFE-NET (16 MRGs)

R < 10−15 < 10−5 < 10−4 < 10−3 > 1−10−3 > 1−10−4 > 1−10−5 > 1−10−15

2 0 0 0 8 9 2 0 0
4 0 0 1 7 3 1 0 0
6 0 0 0 7 9 0 0 0
8 0 0 0 5 4 1 0 0

2 0.00000 0.00000 0.00000 0.00167 0.00188 0.00042 0.00000 0.00000
4 0.00000 0.00000 0.00021 0.00146 0.00063 0.00021 0.00000 0.00000
6 0.00000 0.00000 0.00000 0.00146 0.00188 0.00000 0.00000 0.00000
8 0.00000 0.00000 0.00000 0.00104 0.00083 0.00021 0.00000 0.00000

using one LCG to fill and shuffle the tables does decently when no quarter-rounds are even per-

formed. Increasing the number of rounds results in a cipher that passes most tests and is empiri-

cally sound.

Table 13: Counts/proportions of p-values for Big Crush on R rounds of SAFE-NET (1 LCG)

R < 10−15 < 10−5 < 10−4 < 10−3 > 1−10−3 > 1−10−4 > 1−10−5 > 1−10−15

0 266 287 305 337 175 153 141 0
2 0 0 0 6 6 0 0 0
4 0 0 0 3 2 0 0 0
6 0 0 0 2 0 0 0 0
8 0 0 0 7 2 1 0 0

0 0.05542 0.05979 0.06354 0.07021 0.03646 0.03188 0.02938 0.00000
2 0.00000 0.00000 0.00000 0.00125 0.00125 0.00000 0.00000 0.00000
4 0.00000 0.00000 0.00000 0.00063 0.00042 0.00000 0.00000 0.00000
6 0.00000 0.00000 0.00000 0.00042 0.00000 0.00000 0.00000 0.00000
8 0.00000 0.00000 0.00000 0.00146 0.00042 0.00021 0.00000 0.00000

Another aspect that can be investigated is determining the effects of the table size on the em-

pirical properties of the cipher. For all previous analyses, a table size of 16 was in the shuffle-

table. For the results below, a table of size 2 was used. With it, we can see much of the same

results. When 1 LCG or 1 small order DX generator is used, it struggles to pass all tests with 0

rounds, but once the cipher starts transforming the values using the quarter-round function it ap-
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Table 14: Counts/proportions of p-values for Big Crush on R rounds of SAFE-NET (1 MRG)

R < 10−15 < 10−5 < 10−4 < 10−3 > 1−10−3 > 1−10−4 > 1−10−5 > 1−10−15

0 0 1 2 11 3 1 1 0
2 0 0 0 5 5 2 0 0
4 0 0 0 4 2 1 1 0
6 0 0 0 10 4 0 0 0
8 0 0 2 7 2 1 0 0

0 0.00000 0.00021 0.00042 0.00229 0.00063 0.00021 0.00021 0.00000
2 0.00000 0.00000 0.00000 0.00104 0.00104 0.00042 0.00000 0.00000
4 0.00000 0.00000 0.00000 0.00083 0.00042 0.00021 0.00021 0.00000
6 0.00000 0.00000 0.00000 0.00208 0.00083 0.00000 0.00000 0.00000
8 0.00000 0.00000 0.00042 0.00146 0.00042 0.00021 0.00000 0.00000

pears to do quite well. The same can be said regarding using 16 LCGs with a shuffle table of size

2.

Table 15: Counts/proportions of p-values for Big Crush on R rounds of SAFE-NET (1 LCG) with
Table size 2

R < 10−15 < 10−5 < 10−4 < 10−3 > 1−10−3 > 1−10−4 > 1−10−5 > 1−10−15

0 1839 1992 2024 2115 191 161 144 0
2 0 0 0 3 5 0 0 0
4 0 0 0 8 2 0 0 0
6 0 0 1 8 6 1 0 0
8 0 0 0 9 5 1 0 0

0 0.38313 0.41500 0.42167 0.44063 0.03979 0.03354 0.03000 0.00000
2 0.00000 0.00000 0.00000 0.00063 0.00104 0.00000 0.00000 0.00000
4 0.00000 0.00000 0.00000 0.00167 0.00042 0.00000 0.00000 0.00000
6 0.00000 0.00000 0.00021 0.00167 0.00125 0.00021 0.00000 0.00000
8 0.00000 0.00000 0.00000 0.00188 0.00104 0.00021 0.00000 0.00000

After empirical testing, it can be seen that the SAFE-NET method does extremely well and

passed empirical testing for small number of rounds. This can be attributed to routinely updat-

ing each block so that the values are greatly different in successive state matrices. Additionally,

the implementation of the shuffle table and mutual-shuffling technique further aids in the empiri-
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Table 16: Counts/proportions of p-values for Big Crush on R rounds of SAFE-NET (1 MRG)
with Table size 2

R < 10−15 < 10−5 < 10−4 < 10−3 > 1−10−3 > 1−10−4 > 1−10−5 > 1−10−15

0 60 67 77 95 5 0 0 0
2 0 0 0 7 6 0 0 0
4 0 0 0 6 2 0 0 0
6 0 0 1 5 1 0 0 0
8 0 0 0 8 3 0 0 0

0 0.0125 0.01396 0.01604 0.01979 0.00104 0.00000 0.00000 0.00000
2 0.00000 0.00000 0.00000 0.00146 0.00125 0.00000 0.00000 0.00000
4 0.00000 0.00000 0.00000 0.00125 0.00042 0.00000 0.00000 0.00000
6 0.00000 0.00000 0.00021 0.00104 0.00021 0.00000 0.00000 0.00000
8 0.00000 0.00000 0.00000 0.00167 0.00063 0.00000 0.00000 0.00000

Table 17: Counts/proportions of p-values for Big Crush on R rounds of SAFE-NET (16 LCGs)
with Table size 2

R < 10−15 < 10−5 < 10−4 < 10−3 > 1−10−3 > 1−10−4 > 1−10−5 > 1−10−15

0 60 60 60 65 25 13 6 0
2 0 0 0 6 11 1 0 0
4 0 0 0 5 5 0 0 0
6 0 0 0 5 1 0 0 0
8 0 0 2 4 4 1 0 0

0 0.0125 0.0125 0.0125 0.01354 0.00521 0.00271 0.00125 0.00000
2 0.00000 0.00000 0.00000 0.00125 0.00229 0.00021 0.00000 0.00000
4 0.00000 0.00000 0.00000 0.00104 0.00104 0.00000 0.00000 0.00000
6 0.00000 0.00000 0.00000 0.00104 0.00021 0.00000 0.00000 0.00000
8 0.00000 0.00000 0.00042 0.00083 0.00083 0.00021 0.00000 0.00000

cal performance of the generators. While it should be noted that passing empirical tests does not

make the generator cryptographically secure, it is an important aspect. Additional cryptanalysis is

needed in order to make the claim that it is secure for a certain number of rounds. But, given its

similarity to ChaCha, we can claim that the SAFE-NET procedure is as secure as ChaCha.

57



Chapter 7

Conclusion and Future Work

In this dissertation, a stream cipher was proposed that could be used for both simulation and se-

curity purposes. Secure And Fast Encryption using Network of Pseudo-Random Number Gener-

ators (SAFE-NET) is a cipher that utilizes baseline generators, shuffle-tables, as well as complex

output functions to produce a secure generator. The attributes address some of the weaknesses

shown in other popular stream ciphers such as ChaCha. Importantly, any “bad” random number

generator can be used as a baseline generator to inject randomness into the cipher and give good

empirical results.

The proposed cipher exhibits excellent empirical results, passing the TESTU01 battery of

tests with minimal number of rounds required to transform the initial state matrix. While the pro-

cedure does require more operation and initialization each round, it should require fewer rounds

to be considered secure. This is because our method incorporates uniform numbers throughout

the generator instead of sequentially increasing a counter block.

Future studies can be done in this field to improve the efficiency of the generator as well as

to increase security. Much of what we did was motivated by ChaCha, and thus we kept a lot of

the general framework the same. Investigating different approaches and mixing functions could

potentially increase the appeal of the cipher. In-depth cryptoanalysis can be performed on the

cipher to determine how secure the cipher is and to find potential weaknesses.
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Appendix A

Appendix: Small Order DX Generators

Table 18: Strategic DX-2-2 Generators for maximal period length

Listing of DX-2-2 Generators with different moduli
B1 = 32750 m1 = 2147483647 B2 = 32753 m2 = 2147483629
B3 = 32761 m3 = 2147483587 B4 = 32761 m4 = 2147483579
B5 = 32756 m5 = 2147483563 B6 = 32755 m5 = 2147483549
B7 = 32758 m7 = 2147483543 B8 = 32753 m8 = 2147483497
B9 = 32752 m9 = 2147483489 B10 = 32757 m10 = 2147483477
B11 = 32752 m11 = 2147483423 B12 = 32752 m12 = 2147483399
B13 = 32757 m13 = 2147483353 B14 = 32759 m14 = 2147483323
B15 = 32754 m15 = 2147483269 B16 = 32751 m16 = 2147483249

Table 19: Strategic DX-3-2 Generators for maximal period length

Listing of DX-3-2 Generators with different moduli
B1 = 32752 m1 = 2147483647 B2 = 32753 m2 = 2147483629
B3 = 32755 m3 = 2147483587 B4 = 32764 m4 = 2147483579
B5 = 32752 m5 = 2147483563 B6 = 32750 m5 = 2147483549
B7 = 32750 m7 = 2147483543 B8 = 32753 m8 = 2147483497
B9 = 32750 m9 = 2147483489 B10 = 32763 m10 = 2147483477
B11 = 32760 m11 = 2147483423 B12 = 32759 m12 = 2147483399
B13 = 32757 m13 = 2147483353 B14 = 32753 m14 = 2147483323
B15 = 32754 m15 = 2147483269 B16 = 32756 m16 = 2147483249
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Table 20: Strategic DX-4-2 Generators for maximal period length

Listing of DX-4-2 Generators with different moduli
B1 = 32750 m1 = 2147483647 B2 = 32753 m2 = 2147483629
B3 = 32753 m3 = 2147483587 B4 = 32753 m4 = 2147483579
B5 = 32783 m5 = 2147483563 B6 = 32774 m5 = 2147483549
B7 = 32768 m7 = 2147483543 B8 = 32779 m8 = 2147483497
B9 = 32755 m9 = 2147483489 B10 = 32766 m10 = 2147483477
B11 = 32753 m11 = 2147483423 B12 = 32755 m12 = 2147483399
B13 = 32773 m13 = 2147483353 B14 = 32761 m14 = 2147483323
B15 = 32759 m15 = 2147483269 B16 = 32769 m16 = 2147483249

Table 21: Strategic DX-5-2 Generators for maximal period length

Listing of DX-5-2 Generators with different moduli
B1 = 32752 m1 = 2147483647 B2 = 32766 m2 = 2147483629
B3 = 32767 m3 = 2147483587 B4 = 32754 m4 = 2147483579
B5 = 32752 m5 = 2147483563 B6 = 32752 m5 = 2147483549
B7 = 32756 m7 = 2147483543 B8 = 32774 m8 = 2147483497
B9 = 32753 m9 = 2147483489 B10 = 32753 m10 = 2147483477
B11 = 32750 m11 = 2147483423 B12 = 32751 m12 = 2147483399
B13 = 32757 m13 = 2147483353 B14 = 32774 m14 = 2147483323
B15 = 32759 m15 = 2147483269 B16 = 32786 m16 = 2147483249

Table 22: Strategic DX-16-2 Generators for maximal period length

Listing of DX-16-2 Generators with different moduli
B1 = 32760 m1 = 2147483647 B2 = 32832 m2 = 2147483629
B3 = 32760 m3 = 2147483587 B4 = 32813 m4 = 2147483579
B5 = 32818 m5 = 2147483563 B6 = 32754 m5 = 2147483549
B7 = 32800 m7 = 2147483543 B8 = 32836 m8 = 2147483497
B9 = 32787 m9 = 2147483489 B10 = 33021 m10 = 2147483477
B11 = 32870 m11 = 2147483423 B12 = 32868 m12 = 2147483399
B13 = 32891 m13 = 2147483353 B14 = 32895 m14 = 2147483323
B15 = 32964 m15 = 2147483269 B16 = 32759 m16 = 2147483249
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Table 23: Strategic DX-3-3 Generators for maximal period length

Listing of DX-3-3 Generators with different moduli
B1 = 32754 m1 = 2147483647 B2 = 32755 m2 = 2147483629
B3 = 32752 m3 = 2147483587 B4 = 32752 m4 = 2147483579
B5 = 32765 m5 = 2147483563 B6 = 32750 m5 = 2147483549
B7 = 32755 m7 = 2147483543 B8 = 32785 m8 = 2147483497
B9 = 32754 m9 = 2147483489 B10 = 32753 m10 = 2147483477
B11 = 32751 m11 = 2147483423 B12 = 32756 m12 = 2147483399
B13 = 32791 m13 = 2147483353 B14 = 32757 m14 = 2147483323
B15 = 32751 m15 = 2147483269 B16 = 32751 m16 = 2147483249

Table 24: Strategic DX-4-3 Generators for maximal period length

Listing of DX-4-3 Generators with different moduli
B1 = 32760 m1 = 2147483647 B2 = 32753 m2 = 2147483629
B3 = 32761 m3 = 2147483587 B4 = 32756 m4 = 2147483579
B5 = 32798 m5 = 2147483563 B6 = 32752 m5 = 2147483549
B7 = 32763 m7 = 2147483543 B8 = 32753 m8 = 2147483497
B9 = 32772 m9 = 2147483489 B10 = 32757 m10 = 2147483477
B11 = 32785 m11 = 2147483423 B12 = 32753 m12 = 2147483399
B13 = 32757 m13 = 2147483353 B14 = 32761 m14 = 2147483323
B15 = 32756 m15 = 2147483269 B16 = 32760 m16 = 2147483249

Table 25: Strategic DX-5-3 Generators for maximal period length

Listing of DX-5-3 Generators with different moduli
B1 = 32752 m1 = 2147483647 B2 = 32753 m2 = 2147483629
B3 = 32752 m3 = 2147483587 B4 = 32777 m4 = 2147483579
B5 = 32770 m5 = 2147483563 B6 = 32754 m5 = 2147483549
B7 = 32765 m7 = 2147483543 B8 = 32762 m8 = 2147483497
B9 = 32765 m9 = 2147483489 B10 = 32767 m10 = 2147483477
B11 = 32756 m11 = 2147483423 B12 = 32769 m12 = 2147483399
B13 = 32772 m13 = 2147483353 B14 = 32757 m14 = 2147483323
B15 = 32750 m15 = 2147483269 B16 = 32751 m16 = 2147483249
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Table 26: Strategic DX-16-3 Generators for maximal period length

Listing of DX-16-3 Generators with different moduli
B1 = 32827 m1 = 2147483647 B2 = 32832 m2 = 2147483629
B3 = 32851 m3 = 2147483587 B4 = 32756 m4 = 2147483579
B5 = 32797 m5 = 2147483563 B6 = 32855 m5 = 2147483549
B7 = 32833 m7 = 2147483543 B8 = 32772 m8 = 2147483497
B9 = 32753 m9 = 2147483489 B10 = 32822 m10 = 2147483477
B11 = 32877 m11 = 2147483423 B12 = 32883 m12 = 2147483399
B13 = 32933 m13 = 2147483353 B14 = 33157 m14 = 2147483323
B15 = 32816 m15 = 2147483269 B16 = 32827 m16 = 2147483249

Table 27: Strategic DX-4-4 Generators for maximal period length

Listing of DX-4-4 Generators with different moduli
B1 = 32772 m1 = 2147483647 B2 = 32811 m2 = 2147483629
B3 = 32771 m3 = 2147483587 B4 = 32756 m4 = 2147483579
B5 = 32802 m5 = 2147483563 B6 = 32813 m5 = 2147483549
B7 = 32763 m7 = 2147483543 B8 = 32753 m8 = 2147483497
B9 = 32750 m9 = 2147483489 B10 = 32780 m10 = 2147483477
B11 = 32752 m11 = 2147483423 B12 = 32760 m12 = 2147483399
B13 = 32772 m13 = 2147483353 B14 = 32755 m14 = 2147483323
B15 = 32756 m15 = 2147483269 B16 = 32774 m16 = 2147483249

Table 28: Strategic DX-5-4 Generators for maximal period length

Listing of DX-5-4 Generators with different moduli
B1 = 32770 m1 = 2147483647 B2 = 32767 m2 = 2147483629
B3 = 32766 m3 = 2147483587 B4 = 32752 m4 = 2147483579
B5 = 32752 m5 = 2147483563 B6 = 32771 m5 = 2147483549
B7 = 32786 m7 = 2147483543 B8 = 32753 m8 = 2147483497
B9 = 32770 m9 = 2147483489 B10 = 32763 m10 = 2147483477
B11 = 32760 m11 = 2147483423 B12 = 32756 m12 = 2147483399
B13 = 32764 m13 = 2147483353 B14 = 32767 m14 = 2147483323
B15 = 32809 m15 = 2147483269 B16 = 32760 m16 = 2147483249
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Table 29: Strategic DX-16-4 Generators for maximal period length

Listing of DX-16-4 Generators with different moduli
B1 = 32773 m1 = 2147483647 B2 = 32829 m2 = 2147483629
B3 = 32826 m3 = 2147483587 B4 = 32884 m4 = 2147483579
B5 = 32841 m5 = 2147483563 B6 = 32855 m5 = 2147483549
B7 = 32760 m7 = 2147483543 B8 = 32753 m8 = 2147483497
B9 = 32791 m9 = 2147483489 B10 = 32787 m10 = 2147483477
B11 = 32902 m11 = 2147483423 B12 = 32764 m12 = 2147483399
B13 = 32817 m13 = 2147483353 B14 = 32942 m14 = 2147483323
B15 = 32754 m15 = 2147483269 B16 = 32812 m16 = 2147483249
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