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Abstract

In three-dimensional structured illumination microscopy (3D-SIM) where the images

are taken from the object through the point spread function (PSF) of the imaging system,

data acquisition can result in images taken under undesirable aberrations that contribute

to a model mismatch. The inverse imaging problem in 3D-SIM has been solved using

a variety of conventional model-based techniques that can be computationally intensive.

Deep learning (DL) approaches, as opposed to traditional restoration methods, tackle the

issue without access to the analytical model. This research aims to provide an unrolled

physics-informed generative adversarial network (UPIGAN) for the reconstruction of 3D-

SIM images utilizing data samples of mitochondria and lysosomes obtained from a 3D-SIM

system. This design makes use of the benefits of physics knowledge in the unrolling step.

Moreover, the GAN employs a Residual Channel Attention super-resolution deep neural

network (DNN) in its generator architecture. The results indicate that the addition of both

physics-informed unrolling and GAN incorporation yield improvements in reconstructed

results compared to the regular DL approach.
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Chapter 1

Introduction

1.1 Overview

This thesis discusses the study, development, and implementation of computational

reconstruction of Structured Illumination Microscopy (SIM) pictures using an unrolled

physics-informed generative adversarial network (UPIGAN), as well as its SIM applica-

tions. SIM computational reconstruction is a procedure that recovers the five-dimensional

information stored in a SIM computationally instead of optically. The data for the iterative

reconstruction approach in this thesis were gathered by [2] and [1]. The main objective is

to correlate the reconstruction findings with the analytical information from the SIM sys-

tem in order to boost confidence, enhance image quality, and finally create a computational

platform that is effective and reliable for microscopy and general medical image recon-

struction.

1.2 Structured Illumination Microscopy (SIM)

Light microscopy enables the study of three-dimensional (3D) live cell structures. Specif-

ically, 3D structured illumination microscopy (3D-SIM) is a technique that utilizes struc-

tured illumination to modulate the fluorescence emission, thereby enabling higher frequen-

cies to be transmitted than in wide-field (WF) fluorescence microscopy, and consequently,

higher spatial resolution can be achieved in restored images after data processing [25].

WF is a type of fluorescence microscopy that enables the imaging of a large field of view

in a sample with high resolution and contrast. It involves the use of a broad excitation

light source to illuminate the entire sample, which is then captured by a sensitive camera.

This makes it ideal for applications such as live-cell imaging and high-throughput screen-

ing [26].

SIM is a powerful super-resolution imaging technique that enables the visualization of

fine details in biological specimens beyond the diffraction limit of light that restricts the res-

olution to about half the wavelength of light ( 200-300 nm). SIM works by illuminating the
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sample with a series of light patterns; in the case used in this study, five sinusoidal patterns

at three pattern orientation angles, as shown in Fig. 1. The illumination pattern modulates

high-frequencies in the sample enabling them to be transmitted by the imaging system and

then extracted computationally to reconstruct a super-resolution image. Gustaffson first

introduced 2D-SIM in 2000 [27] and has since been further developed and optimized by

several researchers. The traditional computational processing involves shifting and aver-

aging the multiple images taken at various illumination angles, while other model-based

approaches are shown to provide more accurate image restoration to remove the unwanted

high-frequency information [28], [29].

A three-dimensional (3D) image captured using a conventional WF microscope can be

modeled by applying a 3D convolution to the underlying object, o(x, y, z), with the point

spread function of the microscope, h(x, y, z); resulting in d(x, y, z) as the observed raw

image standing for ”data”. This equation is known as the 3D WF forward imaging model

(Eqn. 1.1), where (x, y, z) are the coordinates in the space domain:

dWF (x, y, z) = o(x, y, z)⊗3 h(x, y, z) (1.1)

Fluorescence intensity in a 3D-SIM image recorded using axial scanning can be mod-

eled as follows:

dSIM(x, y, z) = [o(x, y, z).j(x, y)]⊗3 h(x, y, z).i(z), (1.2)

where i(z) and j(x, y) are the axial and lateral functions in the SI pattern, respectively

[28]. The goal of reconstruction in this study is to solve Eqn. 1.2 to recover the information

from the ground truth. The deconvolution task of the Eqn.1.1 is also utilized for the physics-

informed unrolling, explained later in methodologies. As shown in the previous equation

the images and PSF are functions of x, y, and z. However, in what follows, we suppress

the dependent variables for simplicity, without loss of generality.
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Figure 1. 3D-SIM imaging is used. (A and B) show the impact of the striped interference
patterns on detection in frequency space using structured illumination (B) and regular WF
illumination (A, respectively). (C) 3D-SIM allows the separation of displaced compo-
nents and their restoration to their correct placement in frequency space by recording five
phases of the sine wave pattern at each z point, extending the axial support while main-
taining within the resolution limit. Additionally, the diffraction grating is rotated into
three places that are 60 degrees apart from one another, producing support that is almost
rotationally symmetric throughout a broader frequency space area. Three picture stacks
are then captured. Compared to the original image, the 3D-SIM reconstruction shows
more accurate image details. A rise in resolution is seen by the frequency space graphic
on the right. [4]
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1.3 Image Reconstruction

Image reconstruction refers to the process of creating a high-quality image from a set

of lower-quality or incomplete image data. This is typically done through the use of math-

ematical algorithms and techniques, such as filtering and interpolation, to enhance and fill

in missing information in the image. One application of image reconstruction is in medical

imaging, where it is used to create high-resolution images from low-resolution scans. For

example, computed tomography (CT) and magnetic resonance imaging (MRI) scans use

mathematical algorithms to reconstruct 3D images of the body based on a series of 2D im-

ages. Another example of image reconstruction is in digital photography, where algorithms

are used to enhance and improve the quality of images captured by digital cameras. This

can include techniques such as denoising, sharpening, and color correction [30]. Inverse

imaging is a term used to describe recovering or reconstructing the ground truth image o

from the captured image d. The term ”inverse” comes from the fact that these methods

involve inverting the imaging process as in 1.1 or 1.2

Several classical methods such as Generalized Wiener Filter (GWF) [25] and iterative

model-based methods [28] are known to solve the ill-posed inverse imaging problems in

3D-SIM microscopy, by dealing with the listed challenges. Image reconstruction methods

are aimed at enhancing the quality of the image by reducing noise, filling in missing in-

formation, and improving image resolution. The Wiener filter is a linear filter that aims to

minimize the mean square error between the noisy input signal and the estimated signal.

It achieves this by using a statistical approach that considers the statistical properties of

the signal and noise to estimate the desired signal. The filter is designed using the power

spectral density of the noisy signal and the signal of interest. The Wiener filter has been

applied in various fields such as image denoising, speech enhancement, and channel equal-

ization. It has been shown to be effective in reducing noise while preserving important

features of the signal, such as edges and sharp transitions. The GWF is an extension of the

classic Wiener filter that allows for non-linear, non-Gaussian noise and signal models. The
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GWF uses a Bayesian approach to estimate the signal of interest by considering the prior

knowledge of both the signal and noise models [31].

Figure 2. SIM super-resolution compared to Wide-Field Microscopy: a) 15 Raw SIM In-
put Images (5 phases, 3 orientation angles of SI pattern). b) SIM reconstruction using
GWF: Frequency component decomposition and filtering in Fourier space. c) Wide-Field
Image: Sum of 15 raw SIM images. d) SIM provides approximately 2x resolution im-
provement over wide-field microscopy [1].

1.3.1 Image-to-image translation

Image-to-image translation refers to the task of converting an input image from one

domain to another while preserving relevant visual characteristics [32]. It involves map-

ping images from a source domain to a target domain, such as transforming images from

grayscale to color or converting sketches to realistic images. Image-to-image translation

has gained significant attention in the field of computer vision and has been addressed us-

ing various techniques.

One popular approach is the use of generative adversarial networks (GANs), which

consist of a generator and a discriminator network. The generator generates transformed

images in the target domain, while the discriminator tries to distinguish between the gener-
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ated images and real images from the target domain. The generator and discriminator are

trained together in an adversarial manner, where the generator aims to generate realistic

images that fool the discriminator, and the discriminator aims to correctly classify real and

generated images.

1.3.2 Image Super-Resolution

Optical image super-resolution and digital image super-resolution are two different

image-to-image translation techniques used to enhance the resolution of images.

Optical image super-resolution

Optical image super-resolution refers to the use of physical optics to improve the res-

olution of an image captured by an optical system, such as a microscope or a telescope.

This can be achieved by using techniques such as deconvolution or adaptive optics, which

can reduce the effects of aberrations and improve the overall resolution of the system. Im-

age super-resolution in SIM refers to the computational process of reconstructing a high-

resolution image from multiple lower-resolution images obtained through structured illu-

mination [33]. The structured illumination patterns used in SIM produce a series of images

that are then processed using algorithms to extract high-frequency information and generate

a super-resolved image [25]. The resulting image has a resolution beyond the diffraction

limit, allowing for the visualization of structures that would otherwise be invisible using

conventional microscopy techniques [33].

Digital image super-resolution

Digital image super-resolution, on the other hand, refers to the use of computational

algorithms to enhance the resolution of a digital image [34]. This technique is used in

various fields, including medical imaging, satellite imaging, and surveillance imaging. The

image super-resolution process involves the use of computational algorithms to generate a

high-resolution image from a low-resolution image. One common approach is to use deep

learning methods, such as convolutional neural networks (CNNs), to learn the mapping

between low-resolution and high-resolution images [35]. Another approach involves the
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Figure 3. Super-Resolution in 3D SIM. The passage describes the observable regions for
various types of microscopes, including WF, SIM using two or three illumination beams,
and their corresponding spatial-frequency components. It also highlights the highest pos-
sible spatial frequencies that can be generated by illuminating through the objective lens
in the case of the three-beam structured illumination microscopy [5].

use of statistical methods, such as sparse coding and dictionary learning, to generate a high-

resolution image from a set of low-resolution images [34]. However, classical methods

cannot always address all the issues at once with sufficient accuracy, due to unknown or

not observable system parameters required by an analytical model-based computational

approach, and some can be computationally intensive.

Figure 4. Digital Image Super-Resolution [6]

While both techniques aim to improve the resolution of an image, they operate at dif-

ferent stages of the imaging process and have distinct limitations and applications. Optical

super-resolution is typically limited by the physical properties of the imaging system and

is more suited for specialized applications such as microscopy or astronomy.
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1.4 Challenges

There are different challenges in the area of SIM microscopy imaging. Finding a micro-

scopic dataset for deep learning applications can be challenging for several reasons. First

of all, capturing microscopic images is time and energy-consuming, and for a deep net-

work, hundreds or thousands of samples of captured images are required. These samples

also need to be paired with their ground truth because they are usually blurry, of low res-

olution, under low light conditions, etc. There is a possibility of using a non-microscopic

dataset such as DIV2K (DIVerse 2K resolution high-quality images) [36] with 1000 sam-

ples of low-resolution and high-resolution images. The network can be trained on non-

microscopic data and later tested on microscopic images. However, there are risks in not

using microscopic data, and there are significant differences between non-microscopic and

microscopic data. Thus, it will be better if a microscopic dataset is used for image restora-

tion. If you train a deep neural network (DNN) for microscopy image reconstruction using

a non-microscopy dataset, there are several risks that you should be aware of:

• Domain shift: The non-microscopy dataset may be very different from the microscopy

dataset in terms of the visual characteristics of the images, such as resolution, tex-

ture, contrast, and illumination. As a result, the DNN may learn to recognize and

exploit features that are specific to the non-microscopy dataset but not relevant to the

microscopy dataset, leading to poor performance and generalization [6].

• Overfitting: If the DNN is trained on a non-microscopy dataset that is too small or too

simple, it may memorize the dataset and fail to generalize to new, unseen microscopy

images. This can lead to overfitting, where the DNN performs well on the training

set but poorly on the test set [37].

• Biases and artifacts: The non-microscopy dataset may contain biases or artifacts

that are not present in the microscopy dataset, which can lead to the DNN learning

spurious correlations that do not generalize well to microscopy images. For example,
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if the non-microscopy dataset contains images with a certain color balance or noise

pattern, the DNN may learn to rely on these features instead of learning the true

underlying structure of the microscopy images [38], [39].

• Ethical concerns: If the non-microscopy dataset contains sensitive or personal infor-

mation, such as medical records or faces of individuals, there may be ethical concerns

about using the dataset for training a DNN without proper consent and privacy safe-

guards.

Another challenge in SIM is the low signal-to-noise ratio, which can limit the resolu-

tion and quality of the reconstructed image. Several algorithms have been developed to

improve the signal-to-noise ratio, such as the Maximum-Likelihood SIM (ML-SIM) algo-

rithm, which uses statistical methods to enhance the quality of the reconstructed image [40].

1.5 Motivation

To overcome these issues, it is necessary to come up with new algorithms to reconstruct

the SIM images accurately. Here are a few reasons why it is important to develop new

algorithms for SIM image reconstruction:

• Improved resolution: The main advantage of SIM is its ability to enhance the res-

olution of the images beyond the diffraction limit. However, the reconstruction al-

gorithm used plays a critical role in achieving this goal. New algorithms that can

better suppress artifacts, noise, and other factors can lead to even better resolution

and better visualization of biological structures.

• Better accuracy: Accurate image reconstruction is essential for quantitative analysis

of biological structures. With better reconstruction algorithms, we can achieve higher

accuracy in measuring biological parameters, such as the size, shape, and orientation

of cellular structures.

• Reduced acquisition time: SIM imaging typically requires multiple image acqui-

sitions, which can be time-consuming. By developing new algorithms that require
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fewer acquisitions, we can reduce the overall acquisition time and improve the through-

put of the imaging process.

• Compatibility with different biological samples: Different biological samples require

different imaging parameters, such as the illumination pattern and frequency. New

algorithms that are adaptable to different samples and imaging parameters can im-

prove the versatility and applicability of SIM imaging.

1.6 Contribution

When working with general datasets, which include images of nature and objects, it is

possible that there is no consistent source of low-resolution images in all instances. Due

to this variability, deep learning (DL) has emerged as the most effective method for image

reconstruction [41]. On the other hand, by utilizing a dataset generated from a SIM system,

we can obtain a reasonable approximation of the point spread function in the SIM model.

However, it is important to note that the analytical model is still an estimation rather than an

exact function. Additionally, classical deconvolution methods have limitations, and there

may be noise present in the data. Therefore, it is advisable to employ both the known

parameters in the model and deep learning techniques to address the challenges arising

from poor estimation, partially known or unknown parameters, and noise.

In this thesis project, it is expected to achieve visually and computationally enhanced

resolution by converting a regular deep super-resolution algorithm to a generative adver-

sarial super-resolution algorithm. Another expectation is to receive even more enhanced

images by unrolling the network using physics-informed terminology. Furthermore, we

want to see how training on two-dimensional images versus three-dimensional volumes is

different. We plan to answer which one is preferred in the case of 3D imaging. Achieving

more efficient training is another purpose of this project by improving the physics-guided

aspect of the algorithm.
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Chapter 2

Background and Related Work

The development of physics-guided deep learning has revolutionized the field of mi-

croscopy super-resolution. Physics-guided deep learning incorporates physical principles

into deep learning algorithms to achieve better accuracy and generalization. One crucial as-

pect of physics-guided deep learning in microscopy super-resolution is the availability and

quality of datasets. High-quality big datasets are essential for training deep learning mod-

els effectively. In recent years, several datasets have been developed for this purpose. The

use of these datasets in physics-guided deep learning has led to significant improvements

in microscopy super-resolution [21]. As follows, several studies will be reviewed in case of

finding the required datasets and possible deep neural network (DNN) architectures to train

and evaluate the datasets with them. For the current thesis project, we have investigated

multiple different datasets and deep learning models. Here we present some of those works

related to our task. In this chapter, we first discuss our findings of datasets, what various

types of datasets can be more beneficial for our project, and what the final datasets selected

to complete this project are. The next section, explains the background knowledge and

related work using deep neural networks for image reconstruction and specifically, digital

image super-resolution.

2.1 Datasets

Considering the data capturing challenges discussed in the previous chapter, it is gen-

erally recommended to use a microscopy dataset for training a DNN for microscopy image

reconstruction, or at least to fine-tune a pre-trained DNN on a non-microscopy dataset using

transfer learning techniques to mitigate the risks mentioned above. Different datasets for

this project have been reviewed. Three types of microscopes were selected as the potential

datasets more appropriate for the purpose of this project. IDR [42] includes several micro-

scopic datasets. Providing four studies regarding wide-field microscopy images, 44 studies

for confocal microscopy images, and seven studies for structured illumination microscopy.
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The biggest number of studies are related to confocal microscopy. However, regarding the

fact that confocal microscopes take images using optical sectioning [43], their output seems

to be pretty clear. Meaning that their images are of high resolution. Therefore, there will

be not much need for image restoration. Comparing wide-field and SIM datasets, restoring

SIM images are of higher value for us as the extra data results in doubling the spatial res-

olution in comparison with WF microscopy [44] [5]. Moreover, SIM will give us a higher

range of spatial frequencies. In this way, the optical transfer function can cover a greater

region. In contrast with confocal microscopic images, SIM images still need reconstruc-

tion. As a result, it will be best if we stick to the SIM datasets.

2.1.1 SIM datasets

One of the available SIM datasets is FairSIM [1] with five 3D-SIM volumes from a

biophotonic group. The biggest problem regarding this dataset is that they are too few.

For deep learning training, we need much more image samples than only five. A possible

solution for this issue is to use data augmentation such as cropping, flipping, rotating, etc.

By doing so, it is possible to increase the number of samples. In SIM reconstruction,

however, one should be cautious not to lose critical information by applying augmentation

techniques to the original images.

Another dataset has recently been published by Opstad et al. [2] from this point on ref-

ereed to as ”Fixedcell”. The article describes the methods and procedures used to obtain

high-resolution 3D images of mitochondrial dynamics and lysosomal function in live and

fixed H9c2 rat cardiomyoblast cells. The images were acquired using a DeltaVision OMX

V4 Blaze imaging system and reconstructed using the manufacturer-supplied softWoRx

program. The data is available in the DataverseNO repository in the UiT Open Research

Data collection. The 3DSIM data were of high quality and suitable for use in the develop-

ment of SIM reconstruction algorithms. Considering the publication date and the variety

of the dataset samples, it is a perfect candidate for the purpose of our study. For simplicity,

we are using 18 samples of the fixed cell mitochondria.
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Luhong’s et al. [20] provides an overall of 558 sample images that can be sufficient for

training. These images are 2D slices of a 3D-SIM. They include images of the samples

under high and low exposure to light. The ground truth is obtained by reconstructing them

using a generalized wiener filter (GWF). As one of the goals of this project is to compare

3D and 2D results, even though this dataset has been used in our previous studies, it is not

being used for this thesis project, and we will only focus on images that offer 3D volumes

for training.

2.1.2 Simulated datasets

Another way to achieve the required number of samples is to simulate data. The use

of simulated data for microscopy image super-resolution poses several challenges that may

affect the generalization of the method to real data. Some of these challenges are: 1. Lack

of variability in the data: Simulated data may not fully capture the variability and complex-

ity of real microscopy data, which could lead to overfitting of the model to the simulated

data and poor generalization to real data. 2. Lack of realistic noise and artifacts: Simulated

data may lack the noise and artifacts present in real microscopy data, which can affect the

ability of the model to generalize to real data. Modeling the realistic artifacts is a possibil-

ity, but aggravates the complexity of the problem. 3. Mismatch between the simulated and

real data distributions: The distribution of the simulated data may not perfectly match the

distribution of real microscopy data, leading to poor generalization and performance. 4.

Difficulty in accurately simulating complex biological structures: The simulation of com-

plex biological structures, such as organelles and subcellular structures, can be challenging

and may not fully capture their true complexity. 5. Difficulty in simulating realistic imaging

conditions: Simulating realistic imaging conditions, such as different wavelengths, photo-

bleaching, and photo-toxicity effects, can be challenging and may not fully represent the

true imaging conditions [45], [46].

One 3D-SIM star-like object is accessible by Van and Preza [28]. Boland et al. [7] also

provide two 3d-SIM simulation studies with their open-access codes. One study builds
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spherical point clouds, and the other one prepares 24 withheld chromatin images. Their

study also uses a generalized wiener filter to get the reconstructed images as their ground

truth. By varying the number of points in the simulation, it is possible to generate multiple

samples with different levels of light. Furthermore, the Poisson noise level can be changed

Boland et al. used their method to train a Residual Channel Attention Network (RCAN, will

be further explained in the following section); the simulated SIM image stacks were used

to train the model, while an up-sampled confocal picture served as the ground truth [7].

Figure 5. Poisson noise’s impact on sample simulated chromatin architectures [7].

2.2 Deep Learning Background

To have a better understanding of Deep Learning (DL) in the first place, we are going

to review the definition of a system in general. A system is composed of interconnected

components that take inputs and produce one or more outputs. Traditionally, these systems

were described using analytical or physical equations that explained the relationship be-

tween the components and the inputs/outputs. An example of a feedback system is shown

in Fig. 6. where analytical solutions need to be found for components A and B. Knowing

the analytical model of a system can help understand, explain, and control it. However, in

some cases, finding the analytical model can be difficult, inaccurate, or impossible. This is

where DL come in - they can find the analytics themselves, making them useful in situa-

tions where traditional analytical methods fall short [47].
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Figure 6. A simple feedback system: for the forward direction, ”A” corresponds to the
analytical transfer function indicating how outputs are driven from the given inputs, and
”B” explains the analytical formula of how the output is observed by sensors, etc. then,
returned as an addition to the input of the system [8].

DL has revolutionized the world of modeling. Its purpose is to consider the system

as a black box. By feeding the system with tones of various data samples as input, then

capturing their outputs, it tries to learn the analytical relation between inputs and outputs

using back-propagation. For each iteration, the current output of the improvised model is

compared with the expected output of the system known as ground truth. Ground truth

has previously been labeled for its specific given input. The backpropagation process then

updates the model weights to minimize the difference between the current system’s output

and the expected output known as the loss function. Finally, after testing the model with

unseen data samples, the analytic is ready to be used as the physical description of the

model. As follows, we will discuss different Deep Learning algorithms [48]. These algo-

rithms not only review the potential methods to apply image reconstruction, but they also

give a background of the networks that help us further understand the finalized UPIGAN,

the DL architecture introduced in this project. Image reconstruction is a crucial task in

various fields, and there are several methods available to solve it. As follows, we explore a

few state-of-the-art reconstruction methods using DL.
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2.2.1 Fully Connected Neural Networks (FCN)

In Fig. 7. a fully connected neural network (FCN) is seen. An FCN, also known as

a multi-layer perceptron (MLP), is a type of artificial neural network where all neurons in

one layer are connected to all neurons in the next layer. This allows the network to learn

complex non-linear relationships between inputs and outputs. The architecture of a fully

connected neural network typically consists of an input layer, one or more hidden layers,

and an output layer. Each layer contains a set of neurons that apply an activation function

to the weighted sum of inputs from the previous layer. During training, the network adjusts

the weights and biases of each neuron to minimize a loss function, such as mean squared

error or cross-entropy, using backpropagation [49].

Figure 7. An example of a Fully Connected Deep Neural Network [9].

2.2.2 Convolutional Neural Networks (CNNs)

Another commonly used method for image reconstruction is the use of convolutional

neural networks (CNNs). CNNs have been shown to be effective in solving various image

reconstruction problems, such as super-resolution, and denoising. For example, in medical

imaging, CNN-based methods have been used for brain MRI reconstruction [50]. Convo-

lutional neural networks (CNNs) are a type of neural network that are designed to process

data with a grid-like topology, such as images or videos. They use convolutional layers,

which apply a set of filters to the input data to extract features at different spatial locations.
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Pooling layers are also used to reduce the spatial dimensions of the feature maps while

preserving the most important information.

CNNs have become the state-of-the-art method for various computer vision tasks. They

are more common than fully connected neural networks because they can exploit the spatial

structure of the input data and capture local patterns and correlations between neighboring

pixels. This makes them more efficient and effective at learning complex features from

high-dimensional inputs, while reducing the number of parameters and computation re-

quired [49] [37].

Figure 8. A example of a typical Convolutional Neural Network (CNN) [10].

2.2.3 Super-Resolution Convolutional Neural Network (SRCNN)

The Super-Resolution Convolutional Neural Network (SRCNN) is a deep learning method

for single image super-resolution, which aims to recover a high-resolution image from a

low-resolution input. SRCNN was introduced in the paper ”Image Super-Resolution Using

Deep Convolutional Networks” by Dong et al. in 2014.

SRCNN uses a deep neural network with three convolutional layers to learn a mapping

between low-resolution and high-resolution image patches. The network takes as input a

low-resolution image patch and outputs a high-resolution patch of the same size. During

training, the network is trained to minimize the mean squared error between the predicted

high-resolution patches and the ground truth high-resolution patches.

SRCNN has shown superior performance compared to traditional image super-resolution

methods, such as interpolation-based and sparsity-based methods. The learned filters in the
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convolutional layers capture complex image features, such as edges and textures, and are

able to generate visually pleasing high-resolution images [35].

Figure 9. Convolutional Neural Networks architecture for single image super resolution
[11].

However, CNNs are simple, and a complicated network might look more attractive

and accurate at first sight, they are capable of building complicated and strong networks.

Label2Label [51] is a new architecture introduced to restore the cellular structure in fluo-

rescence microscopy. This study claims that they can assess the performance of a Cycle-

GAN [52].

2.2.4 UNET

The U-Net structure was first introduced to apply image segmentation to biomedical

images. Its main application is still to perform segmentation. [12] However, its structure

helps training more accurately. Therefore, it can be used for more general applications,

making the network popular in various fields. By looking at Fig. 10. the significance of

the network is shown. In the beginning, the network is down-sampling the input image to

extract features. Then, while up-sampling the features to achieve the desired output, some

layers are concatenated with the up-sampling layers from the beginning stages. This helps

to bring direct information from the input image to ease the reconstruction. U-Net is also

capable of training using fewer training samples than other networks. [15]

The explained structure recently is being used for applications beyond just segmentation

by choosing the corresponding ground truth and making some enhancements in the network

design. Several studies are using U-Net for image restoration applications. MIMO-U-Net

[13] is one of the enhanced architectures for image deblurring using U-Net to deconvolve
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Figure 10. Original U-Net Architecture for biomedical image segmentation [12].

blurred images. This architecture is later enhanced to have even better performance on

deblurring with deep residual Fourier transformation [14].

Figure 11. MIMO U-Net architecture used for image deblurring [13].

These data were tested on general blurry datasets such as GoPro [53] with more than

3000 blurred images and their reconstructions. But, they are not trained and tested on mi-

croscopic data. Among the studies concentrating on microscopy image restoration, Luhong

et al. [20] propose four different U-Net-based architectures, including U-Net-SIM15, U-
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Figure 12. Deep Residual Fourier Transformation deblurring based on MIMO-U-Net
[14].

Net-SIM3, scU-Net, and U-Net-SRRF5 for image super-resolution under low light condi-

tions. This architecture is trained on 2-dimensional images from structured illumination

microscopy. Other than that, using a simple U-Net structure, Lin et al. [15] claim that they

are able to perform segmentation, localization, super-resolution, denoising, and deblurring

all using the same architecture given in Fig. 13. on their atom data from atomic-resolution

scanning transmission electron microscopy (STEM).

Figure 13. U-Net structure used for image segmentation and restoration on atom images
[15].
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2.2.5 Residual Channel Attention Network (RCAN)

As Residual Channel Attention Network (RCAN) [16] has been utilized in our intro-

duced architecture further discussed in this thesis, it can be a good idea to have a short sur-

vey of what it has to offer. RCAN applies single image super-resolution (in contrast with

imaging communities, in the deep learning community super-resolution means achieving

double the spatial resolution). Fig. 15. shows its main parts. Shallow feature extraction

happens in a simple convolutional layer. Its output is followed by a ”residual in residual”

deep feature extraction module, including multiple residual groups. Finally, the output of

the deep feature extraction module gets up-sampled to provide a high-resolution result.

Each residual group consists of multiple residual channel attention blocks concatenated to-

gether. This architecture is known for super-resolution applications. However, originally,

it was not applied to any microscopy or medical data, it has later been used by several mi-

croscopy papers.

Figure 14. RCAN Architecture, consists of an array of residual groups following a con-
volution layer and followed by the up-sampling layer and another convolution layer. Each
residual group itself includes an array of residual blocks in it followed by a convolutional
layer [16].

Soft attention, according to their study, occurs when the context vector is calculated

as a weighted sum of the encoder’s hidden states. Channel attention, in this case, is more

flexible than SR-CNN approaches for the real data [16].

Residual networks are the ones that connect the output of one layer not only to its next

layer’s input but also to another layer’s input. Skipping some connections helps deal with
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the gradient vanishing problem while learning the network’s weights. It also helps to avoid

saturation of the accuracy [17]. Besides, a channel attention network is a deep learning

model that focuses on individual channels with soft attention [54].

Figure 15. Residual Network [17].

The RCAN method is later utilized by various studies concentrating on microscopy

image restoration. For example, it is used in image sharpening and denoising of fluores-

cence microscopy [55]. Boland et al. in [7] present a way to rebuild 3D SIM image stacks

with twice the axial resolution possible through standard SIM reconstructions by utilizing

current developments in image up-scaling through an RCAN deep learning model. They

additionally show that their approach is noise-resistant and test it against two-point situ-

ations and axial gratings. Eventually, they talk about how the approach may be modified

more to boost resolution [7].

2.2.6 Generative Adversarial Netowrks (GANs)

So far, the networks examined to optimize the pixel difference between predicted and

output HR pictures. Although this measure works well, it is not perfect; humans discrimi-

nate images based on perceptual quality rather than pixel difference. Generative models (or

GANs) attempt to optimize perceptual quality in order to create pictures that are pleasing

to the human eye [56]. GANs have become an important tool for image super-resolution
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due to their ability to generate high-quality and realistic images. Specifically, GAN-based

methods such as SRGAN have shown significant improvements in terms of visual quality

and perceptual similarity to the ground truth image compared to traditional methods [18].

In addition, GAN-based methods are also more flexible and can be easily adapted to differ-

ent types of images and resolutions. Such as ”different upscaling factors, e.g., from 2× to

8×, and various image formats including gray-scale, RGB, and hyperspectral images” [16].

Therefore, studying GANs for image super-resolution is important for advancing the field

of image processing and enabling a wide range of applications in various domains [57].

Conditional GAN (CGAN)

CGAN (Conditional Generative Adversarial Network) is a type of GAN that allows

for the generation of samples conditioned on additional information, such as class labels

or input images. The generator takes both a noise vector and the additional information

as input, while the discriminator is trained to distinguish between real and fake samples

based on both the generated image and the additional information. GAN architectures

discussed in this thesis can be considered as CGANs since the ground truth is present in all

methods [58].

Super-Resolution GAN (SRGAN)

To produce higher resolution images for super-resolution, GAN prepares a deep net-

work in conjunction with an adversary network. Fig. 16. shows that compared to a simi-

lar design without GAN, SRGAN (Super-Resolution Generative Adversarial Networks) is

more appealing to the human eye with more details. SRGANs use a generator network to

upscale the low-resolution image and a discriminator network to distinguish between the

generated high-resolution images and real high-resolution images.

The SRGAN architecture was proposed by Ledig et al. in 2017 and showed significant

improvements over traditional single-image super-resolution methods. The authors intro-

duced a new loss function, called perceptual loss, which incorporates both a content loss

and an adversarial loss. The content loss ensures that the generated image is semantically

23



similar to the ground truth image, while the adversarial loss encourages the generator to

produce visually realistic images [18].

Figure 16. ”From left to right: bicubic interpolation, deep residual network optimized for
MSE, deep RGAN optimized for a loss more sensitive to human perception, original HR
image. Corresponding PSNR and SSIM are shown in brackets. [4x upscaling]” [18].

Pix2Pix

The pix2pix algorithm is a deep learning model used for image-to-image translation

tasks. It was proposed by Isola et al. in their paper ”Image-to-Image Translation with

Conditional Adversarial Networks” [32]. The algorithm employs conditional generative

adversarial networks (CGANs) to learn the mapping between an input image and an output

image using a modified U-Net. It leverages a generator network that generates the output

image from the input and a discriminator network that tries to distinguish between the

generated output and the real output.

The pix2pix algorithm uses a loss function that combines an adversarial loss, which

encourages the generated output to be realistic, and a pixel-wise loss, which ensures the

similarity between the generated output and the real output. This combination allows the

model to produce high-quality and visually coherent output images.

The pix2pix algorithm has been widely adopted in various image translation tasks, such

as image colorization, image segmentation, and style transfer. It has shown impressive re-

sults in generating realistic and visually appealing output images that preserve the structural

characteristics of the input.
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Channel Attention GAN (CAGAN)

Bringing up the idea of using channel attention networks for image restoration, besides

using GANs for the same application, another study proposes to combine the two to reach

out to an even stronger network [19]. In their study, a conditional GAN is being used and

trained by combining pixel-wise loss and discriminative loss. It claims that conditioning

the losses of both the discriminator and the generator will result in higher performance in

specifically, biological image restoration.

Using channel attention structure in the GAN’s generator, Qiao et al. introduce the

architecture in Fig. 17. They use this network to super-resolve 3D-SIM images using 3D

processing. Their work is also the major inspiration for the current thesis project [19].

Figure 17. Network architecture for the proposed caGAN [19].

caGAN-SIM uses 15 times less signal intensity than the standard technique while yet

achieving equivalent or superior reconstruction quality. Using the example of dynamic in-

teractions between microtubules and lysosomes in live cells, better effectiveness of caGAN-
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SIM is presented for diverse subcellular structures and its capability in long-term multi-

color 3D super-resolution imaging [19].

Figure 18. The input performance of the mitochondrial inner membrane using various
forms of raw pictures is compared. (a) A single wide-field raw picture volume slice. (b)
GT-SIM image, which is a 3D-SIM image that was created using a conventional algo-
rithm from raw data with high SNR. First column, the caGAN-SIM-WF picture was cre-
ated from a single wide-filed image volume. (15 raw SIM image volumes) were used to
rebuild the caGAN-SIM picture in the second column. In third and forth columns the
scU-net [20], and the caGAN-SIM image were compared respectively. The caGAN-SIM-
RP was created using fewer phase pictures and comprised of three raw SIM image vol-
umes plus a WF image volume [19].

The task of RCAN architecture in this project is to play the role of the generator, in

which the super-resolution results are generated. What happens in the generator, is pretty

much similar to the procedure of the study in [7]. The difference is the usage of a discrimi-

nator in addition to the physics-guided section. The discriminator is a simple convolutional

classifier. Its task is to classify the output of the generator as real ground truth or gener-

ated ones. If the generator succeeds to trick the discriminator to make the wrong decision

in half of the situations, this means that the discriminator is performing randomly and the
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generator is doing a good job in generating super-resolved images. The loss function of

this network includes three terms as described in Eq. 2.1

LG|D(Ŷ , Y ) = Lsr(Ŷ , Y ) + αLWF (Ŷ , YWF ) + βLD(Ŷ ) (2.1)

Where G and D stand for the generator and discriminator respectively, Y is the ground

truth and Ŷ is the reconstructed image, and LWF = ||YWF − Ŷ ∗ PSF ||2. In the later

equation, mentioned as the physics-guided term, YWF stands for the true input WF image

which is the average of SIM frames along all phases and angles for each z slice. α and

β are the weights of the losses beside them. The physics-guided terms take into account

the effect of the wide-field point spread function on the reconstructed image in comparison

with the original WF input.

The Residual Channel Attention Network (RCAN) was originally designed for 3-color

channels and made use of the relationship between distinct color channels for super-resolution.

3D-SIM datasets consist of images acquired using different phases/angles of the structured

illumination pattern, which can be thought of as different channels. Thus, RCAN sounds

like a suitable candidate for SIM reconstruction. The loss function in the caGAN archi-

tecture includes the known widefield point spread function (PSF) of the optical system to

compare the simulated outputs from the restored images with the input images. However,

in the proposed UPIGAN, we replace the loss function with the common loss function in-

troduced initially by the GAN paper as the “min-max” loss function [57].

The other significant difference between the proposed UPIGAN and the caGAN is the

unrolling step; the network is also unrolled by the optical transfer function information.

To clarify, caGAN adds a physics-informed term to the loss function mentioned previ-

ously as LWF (Ŷ , YWF ). In the next section, the physics-informed deep learning is going to

be introduced. The proposed Unrolled Physics-Informed Generative Adversarial Network

(UPIGAN) replaces the term LWF (Ŷ , YWF ) with a physics-informed unrolling architec-

ture that will be deeply discussed in the next chapter. The basic reason for this replacement
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is that there is an inconsistency in the implementation of the LWF (Ŷ , YWF ) in the original

Python program provided by the authors with the equation provided in the paper. Initially,

the inconsistency mentioned was not readily apparent or easily discernible. The fact that

the paper in question was published in a renowned and respected academic journal further

contributed to the lack of doubt regarding the accuracy of the implementation. Given that

deep learning, as a field, is still not entirely explainable or transparent, the results presented

by the authors seemed satisfactory and yielded acceptable outputs. However, upon closer

examination, it became evident that the implementation diverged from the mathematical

propositions and theories put forth in the paper. To delve into the specifics of this incon-

sistency, a comprehensive and detailed explanation can be found in the Appendix chapter,

which provides a thorough analysis of the deviation between the stated methodology and

the actual implementation.

2.2.7 Physics Informed DL

Recently, DL methodologies have been proposed to solve the inverse imaging problem

without knowing the analytical model, and hence they can be biased toward the trained data.

Although Deep Learning models, if trained properly, are reliable enough and even more

accurate than the classical model-based method, they have their own downsides. DNNs can

learn unknown parameters to describe a model. However, they require high memory, high

computational usage, and a vast amount of data. Providing these three are time, energy,

and money-consuming. In order to learn the relation of inputs and outputs, a big amount of

input data has to be fed to the model, there are overwhelming challenges to gathering too

much data on many specific applications. After gathering all the required data, they need

to be kept in memory. Furthermore, depending on the complexity of the network, it also

consumes memory. All the model calculations have to be performed by a high-performance

computer and the process usually takes a considerable amount of time. As a result, there

are different approaches presented in this article that prefer to combine a DNN with an

analytical model. The reason is that in many situations, only a few parameters of the model
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are unknown. Thus, it is a good idea to only learn the unknown parameters, and keep the

known parts to be calculated classically. Or on the other hand, if the model includes only

a few known parameters, the known parts of the DNN can be replaced with the known

analytic [22].

Figure 19. Recurrent physics-informed ML engine. Where N = 1 − α.HT .H , and alpha
is a small step size [21]
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One way is to follow the physical model by a recurrent network. The input is the raw

intensity measurement. α indicates the step size. In the cascaded method (Fig. 20.), the

recurrent architecture is sequenced in m infinite number of steps. The difference here is

that N does not return as current network input, but it is passed to the next step. HT in both

figures 19. and 20. corresponds to the transpose of the linear physical model. In the case

of non-linearity, the inverse needs to be approximated. This method is also known as the

”Deep unfolding” algorithm [22]. This algorithm is commonly used in knowledge-based

methods that are combined with deep learning.

Figure 20. Cascaded physics-informed ML engine [21].

Presented a sample result from 20. in Fig. 21. the input improvement can be easily

seen in the result of passing the under-sampled input to 5 sequential cascaded networks.

As time passes, one more level of enhancement in the resolution is presented.

2.2.8 Unrolling

The unrolling algorithm involves expanding the iterative computation of a given algo-

rithm over multiple time steps or iterations, effectively creating a longer but fixed compu-

tation graph that can be more easily optimized using traditional gradient descent methods.

This approach can be used to improve the convergence rate and accuracy of iterative algo-
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Figure 21. Sample image resolution enhancement using cascaded physics-informed ML
engine. From left, the first is the raw input image. Then, each image corresponds to the
output of first, second, third and fourth layers of the cascaded network [21].

rithms for a wide range of signal and image processing applications, including compressed

sensing, image deblurring, and image denoising [41].

In the context of deep neural networks (DNNs) and generative adversarial networks

(GANs), ”unrolling” refers to the process of unfolding or expanding the iterative computa-

tion of the network over multiple time steps or layers. This approach allows for the efficient

computation of gradients during backpropagation, which is used to optimize the parameters

of the network. Unrolling is commonly used in optimization methods for training DNNs

and GANs. The basic idea is to unroll the iterative computation of the network, creating a

longer but fixed computation graph that can be more easily optimized using traditional gra-

dient descent algorithms. In addition to improving optimization efficiency, unrolling can

also be used to improve the stability and convergence of training algorithms for DNNs and

GANs. By unrolling the computation graph over multiple time steps or layers, the network

can more effectively capture long-term dependencies and better approximate the true data

distribution [59].

Unrolled GAN

The ”Unrolled Generative Adversarial Networks” paper proposes a modification to the

training algorithm for GANs that involves ”unrolling” the iterative computation of the dis-
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criminator network. The authors argue that this modification can improve the stability and

convergence of the GAN training process, by making it easier to optimize the discriminator

network. The unrolled GAN algorithm involves computing multiple steps of the discrimi-

nator network for each step of the generator network, effectively creating a longer but fixed

computation graph that can be optimized using traditional gradient descent methods. The

authors demonstrate that this modification can lead to improved performance on a variety of

image generation tasks, including generating high-resolution images from low-resolution

inputs. Overall, the paper provides a novel approach to improving the training stability

and quality of GANs, and has been cited extensively in subsequent research on GANs and

related generative modeling techniques [59].

Physics Informed Unrolling

Model-Based Deep Learning involves incorporating prior knowledge about the under-

lying data model into the training process. The model-based DNN algorithm involves

formulating a mathematical model for the data generation process, which can then be used

to design an appropriate architecture for the DNN. By incorporating prior knowledge into

the training process, it is possible to improve the accuracy and generalization performance

of DNNs, particularly in cases where the available training data is limited or noisy [41].

Figure 22. Algorithm unrolling [22]

The unrolling method in the current thesis project utilizes deep neural networks as

prior knowledge to guide the restoration process using the unrolled optimization with deep

priors algorithm (UODP) [60]. The UODP formulates an optimization problem as a series

of iteratively-refined neural network architectures, with each iteration serving to refine the
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prior knowledge that is used to guide the optimization process. This approach can lead to

faster and more accurate optimization, particularly in cases where the optimization problem

is ill-posed or noisy. The major reason to select this algorithm for this project is that the

physics-informed block used in this algorithm is a very similar approach to the classical

wiener filter algorithm for image reconstruction.

Figure 23. UODP

2.2.9 Conclusion

The background provided can help us better articulate the general steps required to

prepare and implement the UPIGAN architecture listed below:

1. Prepare the dataset: The first step is to prepare the structured illumination microscope

dataset for super-resolution. This involves collecting, pre-processing, and partition-

ing the data into training, validation, and testing sets.

2. Build the generator: The generator is responsible for up-sampling low-resolution im-

ages to high-resolution images. In this case, we’ll use an unrolled residual channel

attention GAN. This involves building a neural network that can learn how to gener-

ate high-quality images.

3. Build the discriminator: The discriminator is responsible for distinguishing between

real and generated images. It’s used to train the generator by providing feedback on
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how well the generator is doing. We’ll use a convolutional neural network for the

discriminator.

4. Train the GAN: We’ll train the GAN by alternating between training the generator

and discriminator. This involves feeding low-resolution images into the generator,

up-sampling them, and then passing them through the discriminator to see how well

they match the high-resolution images in the training set. We’ll use loss functions to

measure the difference between the generated and real images.

5. Test the model: Once the model is trained, we’ll use the testing set to evaluate its

performance. We’ll measure the PSNR and SSIM of the generated images and com-

pare them to the ground truth images.

6. Fine-tune the model: If the model doesn’t perform well on the testing set, we can fine-

tune it by adjusting the hyper-parameters, changing the architecture of the generator

and discriminator, or modifying the training process.

The mentioned steps will be further explained in the upcoming chapters of this thesis

document. The results inform us how classical methods can be combined with or replaced

by deep learning modeling. They also provide information about the dependency of the

relevance of the images to the training procedure.
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Chapter 3

Data Processing

3.1 Data Preprocessing

The major problem regarding most datasets including the introduced datasets above is

that they have too few samples. For deep learning training, much more image samples are

needed. A possible solution for this issue is to use data augmentation such as cropping,

flipping, rotating, etc. By doing so, it is possible to increase the number of samples. In

SIM reconstruction, however, one should avoid losing critical information by applying

augmentation techniques to the original images. In this section, it is explained how these

samples have been cropped into smaller 2D and 3D patches to apply data augmentation and

reduce volatile memory usage. However, one should keep in mind not to crop the images

into such small patches that it will be hard to determine the details of the images anymore.

3.1.1 Crop to Patches

Regarding the selected patch size, the patches are cropped from the original image with

the lowest possible overlap. Thus, the number of cropped sections would be equal to:

quotient(
original pixel size

patch size
) + 1 (3.1)

The overlap depends on the division ratio. Fig. 24. shows how the patches are cropped.

The SIM images are stored in 3D volumes of (x, y, angles× z×phases). In this program,

it is essential to keep in mind that the cropping in the z-axis should only crop the z-planes

and keep all the angles and phases of each z-plane separately. Thus, the 3D volumes are

converted to 5D volumes of (x, y, z, angle, phase). After completing the crop, the images

are reordered to the standard 3D volumes of (x, y, angles× z× phases) and stored for the

main project.

To accomplish the purpose of this project, utilizing a microscopic dataset for image

restoration is essential, owing to the significant disparities between non-microscopic and

microscopic data. [38, 39]. One of the available SIM datasets is FairSIM [1], with five
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Figure 24. Crop the input images of sizes of 512x512xvariable depths to 128x128x3 us-
ing the crop2patches function.

3D-SIM volumes from a biophotonic group. The 3D data available from ”FairSIM” comes

from different SIM systems. The ones selected for this project come from a 3D SIM system

with a wavelength of 525nm making the number of samples even smaller (three samples).

One sample is shown in Fig. 25.

Furthermore, it’s crucial to avoid combining all of these photos and then randomly

dividing them since, in certain situations, they overlap or are clipped samples of the same

item, which might lead to a strong training but a poor generalization.

The raw SIM samples with various input dimensions are cropped to 128 × 128 × z ×

3 × 5 where 3 is the number of phases and 5 is the number of angles (also mentioned

as orientations). The ground truth which is the reconstruction of the raw SIM images

using a conventional (discussed in [28] and references therein) method is also cropped to

256 × 256 × z. The values of z are limited to 1, 3, and 5 due to the memory constraints

of our computing machine. Our project aims to evaluate the effect of training on three-

dimensional volumes.

3.1.2 Normalization

Normalization is performed to ensure that the input data used for training a deep learn-

ing model has consistent scales and distributions across different features or variables. By

normalizing the data, we bring it into a range where the values are more comparable and

easier for the model to process. Normalization helps in improving convergence, avoiding
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vanishing or exploding gradients, and achieving better generalization [37]. Normalizing

data in deep learning is crucial for several reasons [61] including:

1. Gradient-based Optimization: Normalization helps in preventing gradient explosions

or vanishing gradients during the training process, making it easier for the model to

optimize and converge.

2. Balanced Learning: Normalization ensures that all features contribute more evenly

to the learning process, preventing dominance by features with larger scales.

3. Regularization: Normalization acts as a form of regularization by imposing con-

straints on the model’s weights, promoting better generalization, and reducing over-

fitting.

4. Faster Convergence: Normalized data can lead to faster convergence during training,

reducing the number of iterations required for the model to reach optimal perfor-

mance.

5. Increased Model Stability: Normalization reduces the sensitivity of the model to the

scale of input features, making it more stable and robust to variations in the input

data .

Min-Max Norm

Min-Max normalization scales the data to a fixed range, typically between 0 and 1. It

linearly transforms each feature value based on the minimum and maximum values ob-

served in the data. The formula for Min-Max normalization is:

Xnormalized =
X −Xmin

Xmax −Xmin

(3.2)

Here, X is the original feature value, Xmin is the minimum value in the dataset, and

Xmax is the maximum value in the dataset.
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Percentile Norm

Percentile normalization is a data normalization technique that aims to transform the

values of a dataset to a common scale based on their relative position within the data dis-

tribution. It ensures that each data point is mapped to a percentile value, representing its

position within the distribution. This normalization method is particularly useful when

dealing with skewed or heavy-tailed datasets where extreme values can heavily impact the

analysis.

The percentile normalization process involves the following steps: 1. Sorting: First,

the dataset is sorted in ascending order. 2. Assigning Percentiles: Each data point is then

assigned a percentile value based on its rank within the sorted dataset. The percentile value

represents the percentage of data points that are equal to or below a particular data point.

3. Rescaling: Finally, the dataset is rescaled using the calculated percentiles. The original

values are replaced with their corresponding percentile values. This mapping ensures that

the transformed values represent the position of each data point within the data distribution.

Percentile normalization allows for better comparison and analysis of data across dif-

ferent scales or when dealing with outliers. By mapping the data to percentiles, it mitigates

the impact of extreme values and ensures that data points are represented in a relative man-

ner.

It is worth noting that percentile normalization does not guarantee that the resulting

distribution will have a specific statistical property (such as zero mean and unit variance).

Instead, it focuses on preserving the relative positions of data points within the distribution.

In this project, all images are normalized using percentile norm, then passed to a min-

max norm to ensure the pixel values range between 0 and 1 to provide the full accepted

range of image processing in the Python programming language.

3.2 Datasets

Selected samples from the FairSIM dataset include LSEC Actin data with a depth of

7 and U2OS Actin data with a depth of 53 for training, and one U2OS Tubulin image
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Figure 25. 3D data sample, [1].

with 8 z-planes as the test data shown in Table 1. This set of samples has been chosen for

training and testing since there has been a limit in the number of available samples from

a SIM system of the wavelength of 525nm. It was important to keep U2OS samples in

both training and validating to make a better generalization. However, as there is no Actin

sample in the validation, that might result in an inappropriate training result. It is better to

look at the images altogether and then decide to choose the validation and training sets.

Table 1. Training, Validation, Testing, split of FairSIM dataset including raw 3D-SIM
images and the corresponding reconstructed images [1].

Original 2d (z = 1) z = 3 z = 5
Training 2 960 336 208

Validation & Testing 1 126 48 32
Total 3 1086 384 240

Opstad, Ida S., et al. [2] has recently published another dataset. The article describes the

methods and procedures for obtaining high-resolution 3D images of mitochondrial dynam-

ics and lysosomal function in liver and fixed H9c2 rat cardiomyoblast cells. The images

were acquired using a DeltaVision OMX V4 Blaze imaging system and reconstructed using

the manufacturer-supplied softWoRx program. The 3D-SIM data are of high quality and

suitable for developing SIM DL reconstruction algorithms. Considering the publication

date and the variety of the dataset samples, it is a perfect candidate for our study. In this

project, we are using 18 samples of fixed-cell mitochondria.

It should be understood that while the SIM images are generally of good quality, they
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may still exhibit reconstruction artifacts. These artifacts can be of lower intensity com-

pared to the actual biological features of interest and can be removed by linearly adjusting

the image brightness. Negative intensity values, resulting from the reconstruction algorithm

and considered non-physical, can usually be disregarded without losing the biological con-

text [2].

Table 2. Training, Validation, Testing, split In this study, we used 18 samples of raw 3D-
SIM images and the corresponding reconstructed images of mitochondrial dynamics in
fixed H9c2 rat cardiomyoblast cells [2], [3].

Original 2d (z = 1) z = 3 z = 8
Training 13 6032 2011 754

Validation 3 1616 539 22
Testing 2 928 310 116
Total 18 8576 2860 892
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Chapter 4

Methodology and Implementation

Introducing UPIGAN (Unrolled Physics Informed Conditional Generative Adversar-

ial Network), an advancement in the field of generative models. UPIGAN represents a

fusion of two powerful concepts: conditional generative adversarial networks (CGANs)

and physics-informed learning. By combining the ability of CGANs to reconstruct raw

images conditioned on the ground truth with the incorporation of analytical laws and con-

straints, UPIGAN pushes the boundaries of DL specifically designed for SIM image super-

resolution. In this paper, we present a comprehensive exploration of UPIGAN’s architec-

ture and training methodology.

Previously introduced physics-informed caGAN architecture [19] utilizes the advan-

tages of an analytical model and an adversarial generative network combined with a deep

residual channel attention network (RCAN) [16] and provides a powerful means specifi-

cally for microscopy image restoration. The loss function in the caGAN architecture in-

cludes the known wide-field point spread function (PSF) of the optical system to compare

the simulated outputs from the restored images with the input images. The neural network

is trained in various training conditions, including training with both 2D and 3D data with

two different datasets introduced earlier in this chapter.

Training a deep learning model with 2D or 3D patches of a 3D dataset involves certain

trade-offs that need to be considered. Here are some key trade-offs:

1. Memory and Computational Requirements: Working with 3D datasets requires han-

dling volumetric data, which significantly increases memory and computational re-

quirements compared to 2D datasets. Processing and training models on 3D patches

can be more computationally intensive and memory-demanding, potentially limiting

the scale of the dataset or model complexity that can be utilized.

2. Data Representation: 2D patches capture spatial information from individual slices

of the 3D volume, while 3D patches capture both spatial and contextual information
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across neighboring slices. By using 2D patches, the model may lose some valuable

contextual information present in the 3D data. On the other hand, 3D patches can re-

tain more comprehensive spatial relationships but may increase the risk of overfitting

due to larger input sizes and higher model complexity.

3. Training Efficiency and Convergence: Training with 2D patches typically converges

faster compared to training with 3D patches due to smaller input sizes. 3D patches

introduce additional challenges, such as increased sample correlation, which can lead

to slower convergence and longer training times. Balancing training efficiency and

convergence is crucial to achieving optimal model performance.

4. Generalization and Robustness: Training with 3D patches can enhance the model’s

ability to generalize and robustly handle unseen 3D data, as it learns from the inherent

volumetric patterns and structures. However, if the available dataset is limited or

lacks diversity, training a 3D model may be more susceptible to overfitting. In such

cases, 2D patches might provide a more stable training process and generalization

capability.

5. Interpretability and Visualization: 2D patches offer a simpler and more intuitive vi-

sual representation, making it easier to interpret and visualize the learned features

or model outputs. Conversely, 3D patches may provide more complex and detailed

representations, but visualizing and interpreting them can be challenging due to the

inherent volumetric nature of the data.

Ultimately, the choice between using 2D or 3D patches for training a deep learning

model on a 3D dataset depends on various factors, including available computational re-

sources, dataset size and diversity, training efficiency requirements, desired generalization

capabilities, and the specific characteristics of the problem at hand.
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4.1 Unrolling

To clarify the unrolling process, unrolling the generator involves inputting raw sim im-

ages into the first layer of the generator, which has the same dimensionality as the input

images. However, after unrolling, there is a dimensionality mismatch when feeding the

output back into the input. To address this issue, there are several possible solutions avail-

able.

The first solution involves down-sampling the output, but this is not a correct approach

because the goal of the project is to up-sample the input images. Down-sampling the up-

sampled images is inappropriate and defeats the purpose of the project.

The second solution is to up-sample the raw sim images first and then use the residual

channel attention network (RCAN) to increase the image quality. While this solution is

effective in solving the dimensionality mismatch in the z dimension, it does not address

the dimensionality mismatch in the number of phases and angles, which is another issue

between the input and the output.

The third and final solution involves incorporating two distinct super-resolution archi-

tectures in the generator design. In the first part of the generator, a super-resolution RCAN

architecture is used to produce an output that is equivalent to the ultimate output of the

system and the ground truth. This output is then fed into another unrolled network that

contains physics-informed terminology. This network can use the same RCAN structure

without an up-scaling layer, or any other image reconstruction network. For this project,

the network used in the unrolling step is RCAN with a scaling factor of 1. By incorporating

two distinct super-resolution architectures, the dimensionality mismatch can be effectively

addressed, leading to high-quality image reconstruction.

In the first layer of unrolling the generator, the input has the same size as the raw sim

images. After unrolling, we need to feed the output of the network to its input, which may

result in a dimensionality mismatch. Therefore, we need to develop a robust mechanism to

handle the dimensionality changes during the unrolling process effectively.
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The proposed unrolled Physics Guided Channel Attention Network (UPICAN) is il-

lustrated in the block diagram 26. The generator architecture is depicted on the right side

of the diagram and is designed to process raw simulated images. The generator acts as

a regular super-resolution RCAN architecture, which takes both the input and the ground

truth and minimizes the loss function in a DNN training iterative process to enhance the

visual quality of the output, making it look like the ground truth with double the resolu-

tion of the raw input. The discriminator is responsible for distinguishing between real and

generated images. It trains the generator by providing feedback on how well the generator

performs. A convolutional neural network classifier has been used for the discriminator.

The GAN is trained by alternating between training the generator and discriminator. This

involves feeding low-resolution images into the generator, up-sampling them, and passing

them through the discriminator to see how well it can be tricked by the generator to confuse

the high-resolution generated images and the ground truth images.

Algorithm 1 Pseudocode of the physics-informed unrolling process.
Require: n ≥ 0 ▷ number of unrolling iterations
Require: γ0 ≥ 0

1: N ← 1
2: SR← RCAN2x(d(x, y, z))
3: OTFWF (u, v, w)← FT [PSF T

WF (x, y, z)] ▷ FT is the Fourier Transform
4: ô0(x, y, z)← SR(x, y, z)
5: while N ̸= n do
6: ÔN(u, v, w)←

FT [SR⊗3PSFT
WF (x,y,z)+SR+RCAN1x(ôN−1(x,y,z))]

γN−1|OTFWF (u,v,w)|2+1

7: ôN(x, y, z)← IFT [ÔN(u, v, w)] ▷ IFT is the Inverse Fourier Transform
8: γN ← γN−1/2
9: N ← N − 1

4.2 Loss Function

4.2.1 Adversarial Loss Function

Adversarial loss is a popular technique used in deep learning for generative models. It

involves training two models simultaneously: a generator model that produces synthetic

samples and a discriminator model that distinguishes between the synthetic and real sam-
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ples. The generator model is trained to produce samples that fool the discriminator, while

the discriminator model is trained to accurately distinguish between the two types of sam-

ples [37]. The adversarial loss is defined as the objective function used to train the GAN,

which involves minimizing the cross-entropy loss between the discriminator’s predictions

and the true labels of the samples. The generator is trained to maximize this loss, while the

discriminator is trained to minimize it. This is called the mini-max loss. The min-max loss,

also known as the adversarial loss, can be represented as:

Lmin−max(G,D) = Eo[log(D(o))] + Ed[log(1−D(G(d)))] (4.1)

Here, G and D represent generator and discriminator network respectively, d denotes

the raw input, and o represents the ground truth. The loss consists of two terms: the ex-

pectation over the real data samples and the expectation over the generated samples. The

first term aims to maximize the probability of the discriminator correctly classifying the

real data samples (o) given the corresponding raw input (d). The generator tries to mini-

mize this term to improve the realism of its generated samples. The second term aims to

maximize the probability of the discriminator correctly classifying the generated samples

(G(d)) as fake, given the raw input (d). The discriminator aims to minimize this term by

correctly distinguishing the generated samples from real ones. The min-max loss formula-

tion in GANs represents the adversarial nature of the training process, where the generator

and discriminator networks play a game against each other to improve their respective per-

formances.

4.2.2 Generator Loss

As follows, we are introducing one loss function for the generator design and another

for the discriminator to reach the goal of the mini-max game. The loss function of the

generator includes two distinct terms as described in Eqn. 4.2

LG(ô, o, d) = LSR(o, ô) + α.Ladv(D(ô), 1) (4.2)
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Here G and D stand for generator and discriminator respectively, o is the ground truth

object image and ô is the reconstructed image, and d represents the raw SIM images. α

is the selected weight for the mini-max game, ranging between 0 and 1 inclusive. In a

word, the generator loss considers the effect of loss from the super-resolution architecture

itself, besides a weighted adversarial loss from the generator’s perspective. The super-

resolution loss in this study is selected as the super-resolution used in the original RCAN

architecture [16], which is the Mean Absolute Error defined as LSR(o, ô) = ||o − ô||. The

adversarial loss used in the generator (Ladv) is defined as follows (Eqn. 4.3):

Ladv(o, ô) = BinaryCrossEntropy(o, ô)

= −(olog(ô) + (1− o)log(1− ô))

(4.3)

4.2.3 Discriminator Loss

The loss function used for the discriminator is also a Binary CrossEntropy loss (Eqn.

4.3).

LD(o, ô) =

BinaryCrossEntropy(1, D(o))

+BinaryCrossEntropy(0, D(ô))

(4.4)

4.3 UPIGAN Design

The physics-informed caGAN architecture utilizes the advantages of an analytical model

and an adversarial generative network combined with a deep residual channel attention

network (RCAN) [16] and provides a powerful means specifically for microscopy image

restoration [19]. To do so, the residual channel attention generative adversarial network

is adopted and trained under various conditions with multiple datasets obtained from [2].
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The loss function in the caGAN architecture includes the known WF point spread function

(PSFWF ) of the optical system to compare the simulated outputs from the restored images

with the input images. The results will show us in the following chapter how deep learning

modeling can combine with or replace classical model-based methods. The unrolling step

in this project includes exploiting the benefits of the Unrolled Physics Informed Channel

Attention Network (UPICAN) by unrolling it to incorporate knowledge about the Point

Spread Function (PSF) of the WF Microscope. We intend to improve the adversarial loss

function by incorporating the mini-max loss to challenge the generator further to perform

better against the discriminator. As depicted in Fig. 26. one discriminator compares all

the discrimination from the ground truth with an array of ones. The other discriminator is

responsible for the faked generated results compared to zeros.

The role of the first RCAN is to generate the super-resolved image by twice the reso-

lution of the input raw SIM. The condition checks if the number of unrolled iterations has

been completed and outputs the final reconstruction from the super-resolution section if so.

Otherwise, it keeps unrolling through the RCAN architecture with a resolution mapping

of one-to-one until the completion of unrolling iterations. The physics-informed section in

this block is shown in the pseudocode presented in Alg. 1 mimics the behavior of a sim-

plified Wiener Filter. The Wiener Filter is a deconvolution method used to recover a signal

convolved with a known system response. It is based on the assumption that the signal and

the noise in the convolved signal are both random processes statistically independent of

each other [62].
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Figure 26. GAN Block Diagram. Respectively, (a) and (b) represent the discriminator
and the generator design, respectively. Each block takes the required inputs and passes
them to the discriminator/generator architecture. In this architecture, input d includes
15 raw SIM images from a single focal place of the object, o (corresponding to 3 angles
and 5 phases of the SI pattern, Fig. 1). o represents the ground truth, and h is the physics-
informed term (PSF). The generator architecture has a super-resolution network imple-
mented in it. After completion of training, ôn provides the final reconstructed image [23].
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Figure 27. UPIGAN Generator Block Diagram. This block magnifies the SR block from
Fig. 26. kx for k = 1, 2 is the super-resolution magnification in the RCAN block. At
first, the raw input’s resolution is doubled using RCAN architecture. In the unrolling step,
the resolution in the RCAN block stays the same, as we have already achieved double the
resolution; but it only enhances the quality of the image.
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Chapter 5

Experimental Results

In this chapter, we present the ablation study, our results, and the performance of the

deep learning model on our image data.

5.1 Ablation Study

An ablation study is a systematic analysis method that involves selectively removing or

disabling specific components, modules, or factors in a system or model to evaluate their

individual contributions and assess their impact on overall learning performance. It helps in

understanding the importance and relevance of each component, aiding in model optimiza-

tion, and providing insights into system behavior [63]. The primary purpose of conducting

an ablation study is to analyze and evaluate the impact of individual components or fac-

tors on the overall performance of the UPIGAN learning process. It helps in identifying

the most critical components, optimizing the system, and gaining insights into the func-

tioning and behavior of the system [64]. A typical ablation study involves the following

steps: 1) Identifying the components or factors of interest, 2) Systematically removing or

disabling these components, 3) Evaluating the performance of the modified system, and 4)

Comparing the results with the baseline system to determine the contribution and impact

of each component [65]. Ablation studies are widely used in various domains, including

deep learning, machine learning, and computer vision, to understand the behavior and sig-

nificance of different components in complex systems.

Training with each dataset requires a separate ablation study. In this thesis project, the

DNN architecture includes various sections that require tuning of separate hyper-parameters.

There is an RCAN super-resolution algorithm whose parameters need to be tuned. These

parameters include batch size, number of residual channel attention groups, number of

residual channel attention blocks (RCABs), and number of channels in the channel atten-

tion architecture. One of the limitations of the current study is the random access mem-

ory available. A light enough architecture is needed to provide enough space for the 3D
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unrolling of a DNN. At the same time, the performance of the system should not drop

significantly by making the network lighter. As a result, we start the training process by

choosing the parameters used in the original architecture of RCAN [16]. Then replace

them with smaller values and compare the effect of this change on the performance of the

super-resolution.

The ablation study on the FairSIM dataset is explained in detail. As noted in Table

3. not even a drop in the number of residual groups and the number of RCABs has a

negative impact on the training, but also improves the performance in most cases. It can

be due to the complexity of the system that might lead to overfitting. Decreasing the batch

size can have a slightly higher error or lower PSNR, however, it still increases the SSIM

value. Therefore, it is guaranteed that we can minimize the said three parameters. On the

other hand, using fewer channels in the architecture drops the performance significantly.

As a result, the number of channels will remain unchanged. The table is followed by the

performance metrics along the training in Fig. 28. The scenario numbers in the table are

color-coded in the figure.

Table 3. RCAN ablation study using FairSIM dataset. the first column is the scenario
number for each experiment. The following four columns correspond to the hyper-
parameters adjusted in this project. The # sign corresponds to ”the number of”. The last
four columns show the performance metrics as the result of training the network using the
parameters in the first four columns. The blue values represent the performance of the pa-
rameters that are finalized for completing the training. ”tr” and ”Chs” also stand for the
”training” and ”Channels” respectfully.

Batch
Size # Groups # RCABS # Chs tr MAE MSE PSNR SSIM

1 16 0.00490 0.01765 18.33 0.3181
2 3 5

64 0.00467 0.00722 22.55 0.4833
3 16 0.00495 0.02536 16.75 0.3047
4

8

0.00471 0.00752 22.13 0.4980
5 2

2 3
64

0.00479 0.00872 21.54 0.5308

After finalizing the parameters for the RCAN, the network will be promoted to a con-

ditional GAN architecture by adjusting the number of iterations for the generator (RCAN)
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(a) RCAN training MAE (b) Validation MSE

(c) Validation PSNR (d) Validation SSIM

Figure 28. RCAN FairSIM ablation Study metrics performance presented including a) the
MAE from the RCAN loss function during the training, b-d) MSE, PSNR, and SSIM on
the validation dataset along the time. The horizontal axis in each figure corresponds to
the number of epochs ranging from 0 to 800. The vertical axis shows the corresponding
metric value.

here while the discriminator is trained once. Finding the most effective number of iterations

for the generator, we start adjusting the α value responsible for the GAN loss. Table 4. and

Fig. 29. represent the background study to select number of iterations for the generator and

α. Adjusting the main parameters for the RCAN used as a Generator in a GAN, leaves us

with finding the best hyper-parameter to unroll the network. To find the optimum γ value

Table 5.

Table 4. GAN ablation study using FairSIM dataset. ”Gen” stands for ”Generator”
# Gen

Iteration
# Disc

Iteration α Gen MAE MSE PSNR SSIM

1 1 0.05644 0.00655 23.20 0.4510
2 3 0.05303 0.00552 23.84 0.4692
3 5 0.05639 0.00578 24.25 0.4720
4

0.1

0.04894 0.00408 26.27 0.4629
5 0 0.05033 0.00389 26.06 0.4451
6 0.5 0.05024 0.00411 26.00 0.4417
7

10

1

0.25 0.04862 0.00387 26.27 0.4495

52



(a) Gen MAE (b) MSE

(c) PSNR (d) SSIM

Figure 29. GAN FairSIM ablation Study metrics performance.

(a) Generator training MAE (b) Validation MSE

(c) Validation PSNR (d) Validation SSIM

Figure 30. γ FairSIM ablation Study metrics performance presented.
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Table 5. γ ablation study using FairSIM dataset.
γ RCAN Training MAE MSE PSNR SSIM
0 0.05916 0.01269 23.82 0.5540

0.05 0.05462 0.00576 24.29 0.6362
0.1 0.05477 0.00750 22.70 0.6033
0.3 0.05524 0.00639 23.36 0.6516
0.5 0.05600 0.00785 22.82 0.6233
0.8 0.05543 0.00534 24.60 0.5845
1 0.05380 0.00503 24.83 0.6742

10 0.05292 0.00597 23.75 0.6305

The major part of the current project ablation study is the presence of generative ad-

versarial networks. As a part of this ablation study on the Fixedcell dataset, unrolled super

resolution (USR) has been introduced and submitted for publication [24].

5.1.1 USR

The proposed USR is illustrated in the block diagram in Fig. 31. The generator ar-

chitecture is depicted on the left side of the diagram, and it is designed to process raw

simulated images. The generator acts as a regular super-resolution RCAN architecture,

which takes in both the input and the ground truth and minimizes the loss function in a

DNN training iterative process to enhance the visual quality of the output, making it look

like the ground truth with double the resolution of the raw input.
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Figure 31. Block Diagram of the proposed unrolled Super-Resolution (USR) architecture.
The math is shown on the right side where ŷk is the super-resolved output in kth unrolling
iteration, and x is the raw SIM input image [24].

5.2 Results

5.2.1 FairSIM Training

The training process for the proposed method was carried out using the finalized pa-

rameters as outlined in Table 6. These parameters were carefully selected based on prior

experimentation and expert knowledge to ensure optimal performance. The convergence

and effectiveness of the training procedure were evaluated through quantitative validation

metrics, depicted in Fig. 32. as plotted values over the validation iterations. Additionally,

Table 7. provides a comprehensive overview of the metric values obtained for the final

iteration of the validation process.

To further evaluate the performance of the proposed method, qualitative validation sam-

ples are presented in Fig. 33. showcasing the reconstructed images. And in 3D training,

Fig. 34. and Fig. 35. offer representative examples of the obtained results.

These visualizations and quantitative metrics serve as indicators of the effectiveness

and reliability of the developed approach. They provide insights into the capability of
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the 3D training of FairSIM data to enhance image resolution and accurately capture the

underlying details of the samples. The results demonstrate the potential of the proposed

method in advancing the field of 3D imaging and its application in various domains such

as medical imaging and microscopy.

Table 6. The fixed parameters used for training the FairSIM dataset. The character ”#”
stands for ”the number of” and ”lr” is the abbreviation for ”learning rate”.

# gen
iteration

batch
size

gen
start lr

Disc
start lr

lr decay
rate

# groups # RCABs α γ

10 2 10e-4 10e-6 0.5 2 3 0.25 1

Table 7. Metric performance for the architecture of RCAN super-resolution with or with-
out GAN, with or without physics-informed unrolling, and with both GAN and physics-
informed unrolling (UPIGAN) on the FairSIM dataset.

Network MSE PSNR SSIM
RCAN 0.008212 21.64 0.5321

CAGAN 0.003590 26.72 0.7091
USR 0.005056 24.81 0.6819

UPIGAN 0.003584 26.83 0.7043
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(a) MSE

(b) PSNR

(c) SSIM

Figure 32. FairSIM quantitative results comparison on various architectures.
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(a) Raw WF (b) RCAN (c) CAGAN (d) UPIGAN (e) GT

Figure 33. 2D FairSIM qualitative results of 3 different samples. Each row corresponds to
one sample.

5.2.2 FixedCell Training

The hyper-parameters for the Fixedcell dataset were determined using a similar ap-

proach. The training process was carried out with the specific parameters listed in Table

8. To evaluate the performance of the trained model under these conditions, the results are

presented both qualitatively and quantitatively.

The qualitative assessment of the trained model’s performance is demonstrated through

visual comparisons of the validation result images. Figures 37. 38. 39. and 40. showcase

the visual comparisons, allowing a detailed analysis of the reconstructed images.

In addition to the visual assessment, quantitative measures were employed to further

evaluate the model’s performance. The MSE, PSNR, and SSIM metrics were utilized to

provide objective insights into the quality of the reconstructed images. The results of these

metrics on the validation samples are presented in Figure 36. and Table 9.

The combination of qualitative visual comparisons and quantitative metrics provides

a comprehensive evaluation of the trained model’s performance on the Fixedcell dataset.
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(a) Raw WF (b) UPIGAN (c) Ground Truth

Figure 34. FairSIM qualitative results trained with 3d samples cropped to a 3D volume
with z = 3. The first row represents the first slice of the volume in the z-axis. followed by
z = 2 and in the last row z = 3.
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(a) Raw WF (b) UPIGAN (c) Ground Truth

Figure 35. Another FairSIM qualitative results trained with 3d samples cropped to a 3D
volume with z = 3.
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These results serve to illustrate the effectiveness and accuracy of the developed approach,

providing valuable insights for further analysis and discussion in the subsequent sections.

Table 8. The parameters used for training the Fixedcell dataset.
# gen

iteration
batch
size

gen
start lr

Disc
start lr

lr decay
rate

# groups # RCABs α γ

3 2 10e-4 10e-6 0.5 2 3 0.1 0.5

Table 9. Metric performance for the architecture of RCAN super-resolution with or with-
out GAN, with or without physics-informed unrolling, and with both GAN and physics-
informed unrolling (UPIGAN) on the Fixedcell dataset.

Network MSE PSNR SSIM
RCAN 0.011340 20.3 0.3379

CAGAN 0.009153 21.77 0.4971
USR 0.010210 20.97 0.3893

UPIGAN 0.009163 21.92 0.5809
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(a) MSE

(b) PSNR

(c) SSIM

Figure 36. Fixedcell quantitative results comparison on various architectures [24], [23].
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(a) Raw WF (b) RCAN (c) CAGAN (d) UPIGAN (e) Ground Truth

Figure 37. 2D Fixedcell qualitative results of 2 different samples. Each row corresponds
to one sample.

(a) Raw WF (b) UPIGAN (c) Ground Truth

Figure 38. Fixedcell qualitative results trained with 3d samples cropped to a 3D volume
with z = 3.
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(a) Raw WF (b) UPIGAN (c) Ground Truth

Figure 39. 3D FixedCell visual results with z = 3.
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(a) Raw WF (b) UPIGAN (c) Ground Truth

Figure 40. Another Fixedcell qualitative results trained with 3d samples cropped to a 3D
volume with z = 5.
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Chapter 6

Discussion and Conclusion

6.1 Discussion

In the discussion section, we delve deeper into the obtained results and their implica-

tions. Our findings reveal several important aspects regarding the impact of unrolling the

RCAN (Residual Channel Attention Network) and incorporating model-based widefield

(WF) point spread function (PSF) information in the UPIGAN (Unrolled Physics-Informed

Channel Attention Generative Adversarial Network) framework.

The visualizations of the results aim to demonstrate the efficacy of the proposed method

in capturing important details and improving the resolution and quality of the reconstructed

images. By visually comparing the reconstructed images against ground truth, it is possi-

ble to observe the enhancements achieved in terms of sharpness, texture, and overall image

fidelity. The qualitative samples presented showcase the successful reconstruction of chal-

lenging image features, such as fine structures, edges, and intricate patterns. Moreover,

the presented images demonstrate the ability of the proposed method to effectively address

common issues encountered in 3D-SIM reconstruction, including noise reduction, artifact

suppression, and contrast enhancement. These visual and quantitative validation results

provide strong evidence of the effectiveness and robustness of the proposed method. The

achieved improvements in image quality and resolution highlight the potential of the devel-

oped approach in advancing 3D-SIM image reconstruction and its applicability in various

microscopy and medical imaging applications.

Firstly, the results clearly demonstrate that unrolling the RCAN network alone has a

positive impact on the overall performance of the image reconstruction task. The unrolling

process takes advantage of physics-informed terminology, which aids in capturing the un-

derlying physical characteristics and improves the fidelity of the reconstructed images. This

highlights the effectiveness of integrating physics knowledge into the deep learning frame-

work.
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Moreover, the incorporation of model-based WF PSF information into the UPIGAN

framework further enhances the performance, contributing to even higher-quality recon-

structions. By leveraging the knowledge of the imaging system’s point spread function,

UPIGAN can effectively compensate for low-light conditions, electrooptical noise, and

other undesirable aberrations that are inherent in the acquired data. This signifies the im-

portance of utilizing prior information about the imaging system in solving inverse imaging

problems.

Additionally, the results shed light on the effectiveness of converting the RCAN net-

work to a CGAN (Conditional Generative Adversarial Network) architecture. The CGAN

approach allows for conditional image generation, where the generator learns to produce

higher-resolution outputs conditioned on the low-resolution inputs. This conversion demon-

strates promising improvements in performance compared to the RCAN model alone, em-

phasizing the potential of generative adversarial networks in the context of super-resolution

imaging.

However, it is noteworthy to mention that while the transition from RCAN to UPI-

CAN or from RCAN to CAGAN leads to significant performance enhancements, the same

level of improvement is not as prominent when comparing RCAN to UPIGAN in terms of

quantitative results. The quantitative metrics might not reflect the full extent of the per-

formance improvement achieved by UPIGAN. On the other hand, the qualitative results

visually exhibit the notable enhancements achieved by UPIGAN, showcasing the efficacy

of the physics-guided unrolling process and the integration of the CGAN architecture.

In addition to the aforementioned findings, it is important to address an aspect that re-

quires caution when interpreting the results: the presence or absence of fine details in the

reconstructed images. Although the images are converted into numerical matrices, it is ob-

served that certain fine details exist within the reconstructed images. These details possess

non-zero values in comparison to the black (zero) background. However, their values are
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incredibly small, to the extent that they are beyond the visual perception capabilities of the

human eye.

This phenomenon highlights the need for a careful interpretation of the reconstructed

images. While the quantitative evaluation metrics and visual comparisons demonstrate

improvements in image resolution, it is crucial to acknowledge that these subtle details

might not be visually discernible due to their minute magnitudes. The limitations of human

perception, particularly when it comes to distinguishing fine details, should be taken into

consideration while assessing the quality and completeness of the reconstructed images.

Moreover, it is worth exploring future research avenues to investigate techniques that

can potentially enhance the visibility of these subtle details. This could involve employing

advanced visualization methods or incorporating human perceptual models to better repre-

sent and display the reconstructed images, allowing researchers and medical professionals

to discern even the finest structural information.

It is important to maintain a cautious approach when evaluating the reconstructed im-

ages, recognizing that the absence of visually apparent fine details does not necessarily

indicate a failure in the reconstruction process. The primary focus should remain on the

overall improvement in resolution and the successful restoration of essential image features

rather than solely relying on the visual detection of every minuscule detail.

In summary, our discussion highlights the positive impact of unrolling the RCAN net-

work, incorporating model-based WF PSF information, and converting the RCAN to a

CGAN in the UPIGAN framework. While quantitative metrics might not fully capture the

performance improvement achieved by UPIGAN, the qualitative results substantiate its ef-

ficacy in enhancing image reconstruction quality. These findings underscore the potential

of combining physics knowledge with deep learning approaches, offering a promising av-

enue for more efficient and accurate 3D-SIM image reconstructions.

The comparison between 2D and 3D reconstruction approaches unveils distinct benefits

and considerations for each methodology. However, the results obtained from our study do
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not indicate a significant difference between the two. In the context of our research, two

alternative approaches were explored.

The first approach involved training a 2D network capable of handling each z-slice of

a 3D test volume independently. This approach allowed us to apply super-resolution tech-

niques to individual slices of the volume. The advantage of this method lies in its simplicity

and feasibility, as it eliminates the need to handle the full 3D volume during training and

testing. By training the network on 2D slices, we aimed to assess the effectiveness of a

simplified approach for achieving enhanced resolution in 3D-SIM reconstructions.

The second approach entailed training the network using complete 3D volumes and

subsequently feeding the entire test volume into the network for reconstruction. In this

case, the network had the capability to directly process 3D data, encompassing the full

volume. The advantage of this approach lies in its potential to capture more comprehensive

spatial dependencies within the 3D volume. It was anticipated that incorporating the 3D

point spread function (PSF) in the unrolling process would lead to superior reconstruction

results. However, as mentioned in the introduction chapter, training with 3D data introduces

its own set of challenges, such as increased complexity and resource requirements.

Interestingly, our findings did not reveal a significant discrepancy in terms of recon-

struction quality between the 2D and 3D approaches. The results suggest that, for the spe-

cific dataset and experimental conditions considered in this study, the benefits gained from

3D training did not substantially surpass those achieved with 2D training. This observation

implies that while incorporating the full 3D volume during training has its theoretical ad-

vantages, the practical gains in resolution enhancement may not be substantial enough to

justify the additional complexities and resource demands associated with 3D training.

It is important to note that the potential for achieving significantly better resolution

from 3D data could exist, particularly for larger volumes as proved by conventional meth-

ods such as in [28]. However, such gains might require a substantial investment of time,

computational resources, and expertise to overcome the inherent challenges associated with
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3D training. The decision to pursue 2D or 3D training should be based on a careful evalu-

ation of the specific requirements and constraints of the imaging application at hand.

Further investigations and refinements are necessary to explore the full potential of 3D

training and its implications in 3D-SIM image reconstruction. The complexities and trade-

offs associated with 2D and 3D training should be carefully considered, taking into account

the specific goals and limitations of each application scenario.

6.2 Conclusion

In conclusion, this research project focused on addressing the challenges faced in recon-

structing 3D-SIM images through the development of an unrolled physics-informed gener-

ative adversarial network (UPIGAN). By leveraging the advantages of physics knowledge

in both the unrolling step and the loss function, and incorporating a Residual Channel At-

tention super-resolution deep neural network (DNN) in the generator architecture, the goal

was to achieve visually and computationally enhanced resolution.

Traditional approaches to inverse imaging problems in 3D-SIM often fall short due to

model mismatches and computational limitations. Deep learning approaches, such as the

UPIGAN proposed in this study, offer a promising alternative by learning directly from data

without relying on an analytical model. The integration of physics-informed terminology

and the use of a generative adversarial framework aimed to provide improved reconstruc-

tion results.

The research objectives were multi-fold. Firstly, the project aimed to convert a regular

deep super-resolution algorithm into a generative adversarial super-resolution algorithm to

achieve enhanced resolution. Additionally, the investigation aimed to assess the differences

between training on two-dimensional images and three-dimensional volumes, determining

the preferred approach for 3D imaging. Furthermore, the project sought to improve training

efficiency by enhancing the physics-guided aspect of the algorithm.

Through the implementation and evaluation of the unrolled physics-informed chan-

nel attention GAN network, utilizing data samples from a 3D-SIM system, the research
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aimed to contribute to the advancement of image reconstruction techniques in microscopy

imaging applications. The combination of deep learning, physics-informed design, and

generative adversarial networks holds the potential to overcome limitations encountered

by traditional methods, leading to more accurate and efficient image reconstruction in the

context of 3D-SIM.

Overall, this thesis project explored novel avenues for improving the reconstruction of

3D-SIM images, leveraging the power of deep learning and physics-informed approaches.

The outcomes of this research have the potential to enhance image quality and computa-

tional efficiency in the field of medical and microscopy imaging, contributing to advance-

ments in various scientific and diagnostic applications.

This project serves as the foundation for further advancements and there are several

avenues for future work that can be explored. The following are some potential suggestions

for expanding upon this project:

• To address the issue of inadequate visibility of fine details in the reconstructed image,

there are a couple of suggested approaches. Firstly, one option is to employ a more

advanced normalization algorithm to enhance the presentation of the results. By

utilizing a superior normalization technique, the reconstructed image can be visually

optimized, allowing for better perception and analysis of fine details.

Alternatively, instead of solely focusing on reconstructing images for direct human

examination, an alternative strategy involves storing the reconstructed images and

employing them in other applications. For instance, integrating the super-resolution

approach with an AI algorithm designed for diagnosis can yield promising results.

Although the fine details might not be discernible to the human eye, they could still

be perceivable to the AI algorithm. By incorporating the reconstructed images into

an AI-based diagnostic system, it becomes possible to leverage the AI’s enhanced

perception to detect specific features of interest that may be crucial for disease diag-

nosis or other analysis purposes.
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This synergistic approach allows for a comprehensive utilization of the reconstructed

images, leveraging both human and artificial intelligence capabilities. While the hu-

man eye may not capture fine details, the AI algorithm can make up for this limita-

tion and identify significant features that might otherwise be overlooked. By com-

bining the strengths of super-resolution techniques, image reconstruction, and AI

algorithms, a more comprehensive and accurate analysis can be achieved, enhancing

the potential for improved disease diagnosis or other applications that rely on image-

based information.

• Application of Transfer Learning: Consider leveraging the power of transfer learning

by applying pre-trained networks to this problem domain. Utilizing a well-trained

network as a starting point can accelerate the learning process and potentially en-

hance the performance of the model.

• Integration of Stronger Physics-Informed Techniques: Explore the incorporation of

more robust physics-informed techniques in the unrolling process. For instance, in-

vestigate the utilization of techniques proposed in [66] to further enhance the physics-

aware aspects of the model. This could potentially improve the accuracy and relia-

bility of the predictions.

• Designing Specific Performance Metrics for 3D Comparison: Focus on developing

performance metrics specifically tailored for 3D comparison tasks. Rather than aver-

aging the metric for all z slices, the aim is to define appropriate evaluation measures

that enable control over each individual z slice independently. This would provide

more fine-grained insights and control over the analysis of the results.

• Data Cleanup Prior to Training: Prioritize data cleaning procedures to address dys-

functional samples. It is essential to preprocess the data by identifying and removing

any problematic or anomalous samples that could negatively impact the training pro-
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cess or lead to misleading results. This ensures the model’s training is based on

reliable and accurate data.

• Incorporation of Unrolled GAN as a Separate Unrolling Step: Explore the addition of

an unrolled GAN, as described in the background chapter [59], as a distinct unrolling

step within the framework. By introducing this technique, the overall performance

and effectiveness of the GAN itself can be further improved, potentially leading to

more realistic and higher-quality output generation.

• Incorporate Real-Time Data Augmentation Other than cropping: Explore the use of

data augmentation techniques to increase the diversity and quantity of the training

data. Techniques such as rotation, scaling, flipping, and adding noise can help im-

prove the model’s generalization and robustness to variations in input data.

• Investigate Model Architecture Variations: Experiment with different architectural

variations of the network, such as exploring deeper or wider models, introducing

skip connections, or incorporating residual blocks. These variations may enhance the

model’s capacity to capture complex patterns and improve its overall performance.

• Scale up to Large Datasets: Evaluate the scalability of your model to larger datasets.

Assess how well it performs when trained on a substantial amount of data, which can

involve handling data storage and processing challenges, as well as optimizing the

training process for efficiency.

By delving into these future work suggestions, this project can progress towards ad-

dressing more complex challenges, refining the model’s performance, and expanding its

applicability in various domains.
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Appendix A

Original caGAN WF Loss

Previously, it was mentioned that the WF loss introduced by Cagan et al. has not been

utilized in this project due to certain technical reasons. Now, we will delve into a detailed

explanation of these technical reasons. We will outline how the function was defined in

Python, its purpose, and the specific issue that arises.

d e f c r e a t e p s f l o s s ( p s f ) :

d e f l o s s w f ( y t r u e , y p r e d ) :

# Wide f i e l d l o s s

x wf = K. conv3d ( y pred , ps f , padd ing = ’ same ’ )

x wf = K. poo l3d ( x wf , p o o l s i z e = (2 , 2 , 1 ) , s t r i d e s = (2 , 2 , 1 ) , pool mode =” avg ” )

x min = K. min ( x wf )

x wf = ( x wf − x min ) / (K. max ( x wf ) − x min )

w f l o s s = K. mean (K. s q u a r e ( y t r u e − x wf ) )

r e t u r n w f l o s s

r e t u r n l o s s w f

The given function, create psf loss, is a higher-order function that returns a custom

loss function for use in Keras models. It takes a parameter, PSF, which represents the

point spread function. Inside the create psf loss function, there is another function defined

called loss wf. This inner function serves as the custom loss function for the wide-field

loss calculation. It takes two arguments, y true and y pred, which are the ground truth and

predicted values, respectively. The loss wf function performs the following steps:

1. Convolution: It applies a 3D convolution operation on y pred with the given psf as

the kernel. This simulates the effect of the point spread function on the predicted

output to get the estimated raw wf input.

2. Pooling: The resulting convolved output, x wf, is then down-sampled using 3D pool-
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ing with a pool size of (2, 2, 1), strides of (2, 2, 1), and an average pooling mode.

This down-sampling backward the super-resolution.

3. Normalization: Next, the min-max normalization is applied to ensure that x wf is

within [0, 1].

4. Loss Calculation: Finally, the wide field loss is calculated by the mean squared dif-

ference between y true and the normalized x wf.

The loss wf function returns the wide field loss, wf loss. When calling create psf loss(psf),

it returns the loss wf function, which can then be used as a custom loss function in a Keras

model. The returned loss function incorporates the provided PSF and calculates the wide

field loss based on the ground truth and predicted values during model training.

Based on the scientific explanation, to get the correct results, the estimated wide-field

input (calculated by convolving the predicted reconstruction to the PSF) should be then

compared with the actual wf raw input. However, based on the explanation given above,

the function in the original caGAN code compares the widefield predicted input, with the

ground truth, rather than the widefield raw input as stated in the paper. In another word, the

network tends to make the raw input look like the ground truth which is definitely not what

the purpose of this study is. This deviation from the original approach is a technical mistake

that, while it may have a positive impact on training, should be approached cautiously. It is

crucial to avoid any scientific inaccuracies or misconceptions.

Given these considerations, the decision was made to exclude the use of this particular

loss function from the project. This choice was made to ensure scientific rigor and to

mitigate any potential misinterpretation or unintended consequences.

By being mindful of the technical details and potential implications, it was determined

that omitting the utilization of this loss function is the most prudent course of action in

order to maintain the integrity and accuracy of the project.
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reconstruction of super-resolution structured illumination microscopy data in imagej,”
Nature Communications 2016 7:1, vol. 7, pp. 1–6, Mar. 2016. [Online]. Available:
https://www.nature.com/articles/ncomms10980
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