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ABSTRACT

Akther, Sayma. Ph.D. The University of Memphis. June 2023.
AI Modeling Approaches for Detecting, Characterizing, and Predicting Brief Daily

Behaviors such as Toothbrushing using Wrist Trackers.
Major Professor: Dr. Santosh Kumar

Continuous advancements in wrist-worn sensors have opened up exciting possibilities

for real-time monitoring of individuals’ daily behaviors, with the aim of promoting health-

ier, more organized, and efficient lives. Understanding the duration of specific daily behav-

iors has become of interest to individuals seeking to optimize their lifestyles. However,

there is still a research gap when it comes to monitoring short-duration behaviors that

have a significant impact on health using wrist-worn inertial sensors in natural environ-

ments. These behaviors often involve repetitive micro-events that last only a few seconds

or even microseconds, making their detection and analysis challenging. Furthermore, these

micro-events are often surrounded by non-repetitive boundary events, further complicating

the identification process. Effective detection and timely intervention during these short-

duration behaviors are crucial for designing personalized interventions that can positively

impact individuals’ lifestyles.

To address these challenges, this dissertation introduces three models: mORAL, mTeeth,

and Brushing Prompt. These models leverage wrist-worn inertial sensors to accurately infer

short-duration behaviors, identify repetitive micro-behaviors, and provide timely interven-

tions related to oral hygiene. The dissertation’s contributions extend beyond the develop-

ment of these models. Firstly, precise and detailed labels for each brief and micro-repetitive

behavior are acquired to train and validate the models effectively. This involved meticulous

marking of the exact start and end times of each event, including any intervening pauses,

at a second-level granularity. A comprehensive scientific research study was conducted to

collect such data from participants in their free-living natural environments. Secondly, a

solution is proposed to address the issue of sensor placement variability. Given the differ-

ent positions of the sensor within a wristband and variations in wristband placement on the
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wrist, the model needs to determine the relative configuration of the inertial sensor accu-

rately. Accurately determining the relative positioning of the inertial sensor with respect to

the wrist is crucial for the model to determine the orientation of the hand.

Additionally, time synchronization errors between sensor data and associated video,

despite both being collected on the same smartphone, are addressed through the develop-

ment of an algorithm that tightly synchronizes the two data sources without relying on

an explicit anchor event. Furthermore, an event-based approach is introduced to identify

candidate segments of data for applying machine learning models, outperforming the tra-

ditional fixed window-based approach. These candidate segments enable reliable detection

of brief daily behaviors in a computationally efficient manner suitable for real-time.

The dissertation also presents a computationally lightweight method for identifying

anchor events using wrist-worn inertial sensors. Anchor events play a vital role in assigning

unambiguous labels in a fixed-length window-based approach to data segmentation and

effectively demarcating transitions between micro-repetitive events. Significant features

are extracted, and explainable machine learning models are developed to ensure reliable

detection of brief daily and micro-repetitive behaviors. Lastly, the dissertation addresses

the crucial factor of the opportune moment for intervention during brief daily behaviors

using wrist-worn inertial sensors. By leveraging these sensors, users can receive timely

and personalized interventions to enhance their performance and improve their lifestyles.

Overall, this dissertation makes substantial contributions to the field of real-time moni-

toring of short-duration behaviors. It tackles various technical challenges, provides innova-

tive solutions, and demonstrates the potential for wrist-worn sensors to facilitate effective

interventions and promote healthier behaviors. By advancing our understanding of these

behaviors and optimizing intervention strategies, this research has the potential to signif-

icantly impact individuals’ well-being and contribute to the development of personalized

health solutions.
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Chapter 1

Introduction

“An Ounce of Prevention Is Worth a Pound of Cure."

—Benjamin Franklin

In our day-to-day lives, we engage in a wide range of everyday behaviors that shape our

overall well-being. These behaviors vary in duration, from mere milliseconds to several

hours, and can have direct implications for our health. It is essential to follow the recom-

mendations of healthcare providers to maintain a healthy lifestyle, which often includes

specific behavioral practices. For instance, brushing our teeth correctly at least twice a

day is recommended to prevent preventable oral diseases, while adhering to certain dietary

guidelines and avoiding specific foods is necessary to prevent obesity. However, healthcare

spending in the United States has become a major concern, projected to consume nearly 20

percent of the economy by 2026. The unsustainable nature of this spending has sparked a

growing shift from reactive and expensive healthcare focused on treating illnesses to proac-

tive, preventive approaches that address the underlying health behaviors that contribute to

disease risk.

One key aspect of understanding and addressing these health behaviors lies in the accu-

rate detection of these human behaviors. By precisely estimating the start and end times of

these behaviors, we can gain valuable insights into individuals’ overall behavioral patterns.

This knowledge is crucial for designing effective interventions and personalized feedback

systems that empower individuals to take greater ownership of their health and well-being.

Moreover, the detection of specific short-duration behaviors, such as drinking, smoking, or

toothbrushing, can provide valuable data for assessing and improving these activities. For

example, analyzing each bite during eating helps estimate overall calorie intake, which is

an important metric in avoiding obesity and maintaining a healthy weight. Similarly, the

detection of micro-events within toothbrushing activities, such as individual brush strokes,
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allows for a more comprehensive evaluation of brushing quality and identifies areas where

improvements can be made.

However, detecting these micro-events and short-duration behaviors is not without its

challenges. Some of these behaviors occur within a few seconds or even microseconds,

making their accurate detection more complex. Despite these challenges, advances in tech-

nology, such as sensor-enabled devices, provide promising avenues for precise behavior

detection and monitoring. By leveraging these technologies, we can obtain a deeper under-

standing of these daily behaviors and develop interventions that are tailored to individuals’

specific needs and characteristics.

Furthermore, it is worth noting that many daily behaviors are preceded by unique non-

repetitive events, which can serve as crucial moments for designing appropriate interven-

tions. For example, detecting the act of putting toothpaste on the brush head before tooth

brushing, initial portion of tooth brushing or lighting up a cigarette before smoking provides

opportunities to deliver timely interventions. These interventions can potentially prevent

lapses and encourage individuals to adopt healthier habits. By capitalizing on these about-

to-event or tooth brushing initiation moments, we can design targeted interventions that

address specific behavioral challenges and promote positive changes in individuals’ lives.

In conclusion, the detection of daily behaviors, ranging from brief micro-events to

short-duration activities, plays a vital role in understanding individuals’ behaviors and

promoting healthier lifestyles. Accurate detection allows for personalized feedback, in-

tervention design, and monitoring of progress. By embracing technological advancements

and innovative approaches, we can unlock new opportunities for behavior detection and

analysis, ultimately leading to improved health outcomes and a more proactive approach to

overall well-being.
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1.1 Motivating Application: Detecting, Characterizing, and Predicting Daily Tooth-

brushing Behaviors

Dental diseases, such as caries (tooth decay) and periodontal disease (gum disease),

are pervasive chronic conditions with significant consequences for individuals and society

as a whole [1]. In the United States, the prevalence of periodontal disease is alarmingly

high, affecting approximately half of all adults, while over fifty-three million people live

with untreated tooth decay in their permanent teeth [2]. The impact of these dental diseases

extends far beyond oral health, as they can impair essential functions like eating, speaking,

and socializing. Furthermore, they can give rise to local and systemic infections, causing

significant discomfort and compromising an individual’s overall well-being. The associ-

ated healthcare costs are substantial, and the burden of these expenses weighs heavily on

individuals who lack adequate insurance coverage.

Notably, many dental diseases are preventable and closely linked to the performance of

simple yet vital oral hygiene behaviors, such as regular tooth brushing and flossing. The

American Dental Association (ADA) recommends that individuals brush their teeth at least

twice daily and floss at least once a day, especially after meals [3]. However, research has

shown that a significant proportion of the population fails to meet these recommendations.

For instance, studies have revealed that 33% of men brush their teeth only once a day, while

59% of women regularly skip brushing at bedtime. These inadequate oral hygiene practices

contribute to the persistence of dental diseases, as they often result in insufficient cleaning

of each tooth surface. Certain areas may be missed entirely, while excessive time may be

devoted to other areas. Over time, the accumulation of dental plaque—a colorless, sticky

biofilm containing bacteria—can lead to gum disease, tooth decay, and eventual tooth loss.

In recent years, there has been a growing interest in utilizing mobile health (mHealth)

approaches to measure and optimize oral hygiene behaviors, specifically tooth brushing

and flossing. Researchers have focused on leveraging the sensing capabilities of electronic

toothbrushes or developing smart toothbrushes to enhance oral care practices. However,
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these approaches often come with practical limitations. Users are required to actively acti-

vate data collection mechanisms and maintain specific positions relative to cameras during

brushing, making these systems burdensome and less suitable for everyday use. To date,

there is a lack of computational models that can passively and accurately detect tooth brush-

ing and flossing behaviors using regular toothbrushes in real-world settings.

Addressing this gap in research, the development of a robust computational model capa-

ble of reliably detecting and characterizing tooth brushing and flossing behaviors in natural

field environments becomes essential. Such a model would enable continuous monitor-

ing and provide individuals with valuable feedback on their oral hygiene practices. By

passively capturing data on brushing duration, technique, and frequency, it could facilitate

personalized interventions, encouraging individuals to adopt and maintain effective oral hy-

giene habits. Ultimately, the aim is to improve oral health outcomes, reduce the prevalence

of dental diseases, and enhance overall well-being for individuals across diverse popula-

tions.

1.2 Proposed Setup and Approach

Accelerometer

Gyroscope

Inferences

++

Fig. 1.1: Overview of the proposed approach

Significant hand movement is required to perform brief, micro, and boundary behaviors

related to oral hygiene. These behaviors encompass actions such as brushing teeth, flossing,

and other related activities. In recent years, there has been a growing interest in utilizing

wearable devices, particularly wrist wearables like smartwatches and wristbands, due to
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their increasing prevalence among the general population. According to projections, the

sales of wrist wearables were expected to reach an impressive 200 million units by 2022 [4].

The appeal of wrist wearables lies in their ability to gather various types of data, in-

cluding vital signs (e.g., heart rate, skin temperature) and activity data (e.g., movements).

This wealth of information can be harnessed to infer and understand a range of health be-

haviors that occur in real-world settings. Moreover, this data can serve as a foundation for

developing engaging and persuasive health messages and interventions [5].

To leverage the capabilities of wrist wearables for monitoring oral hygiene behaviors,

it is crucial to develop robust computational models capable of extracting relevant features

from the signals captured by the inertial sensors embedded within these devices. These

signals may include parameters such as speed, wrist rotation, and arm displacement. By

analyzing and interpreting these features, we can effectively detect and classify oral hygiene

behaviors, such as brushing and flossing, within the natural environment.

Our approach focuses on utilizing wearable sensor technology, with specific emphasis

on wrist-worn devices. Given that over 80% of the population employs a manual toothbrush

for oral hygiene practices [6], we have chosen to concentrate on toothbrushing with a man-

ual toothbrush as our primary behavior of interest. Notably, smartwatches have become

increasingly integrated into our day-to-day lives, making them an ideal source of informa-

tion for capturing relevant data. In our methodology, we utilize the data collected from the

3-axis accelerometer and 3-axis gyroscope sensors embedded within the wristwatch. These

sensors provide valuable time-series data that will be utilized in the development of ma-

chine learning models for accurate detection and classification of oral hygiene behaviors.

By harnessing the power of wrist-worn wearable devices and employing advanced com-

putational techniques, we aim to enhance the understanding and monitoring of oral hygiene

behaviors in a naturalistic setting. This research has the potential to contribute valuable in-

sights into individuals’ oral health habits, paving the way for personalized interventions

and improvements in oral hygiene practices.
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1.3 Research Gap

This section discusses several research gaps that motivate us to work on this problem

and rigorously investigate different aspects of the problem.

This section explores various research gaps that serve as the driving force behind our

work, compelling us to thoroughly investigate different facets of the problem at hand.

1.3.1 Existing Activity for Daily Living (ADL) Detection “only" Demonstrates Fea-

sibility

The detection of Activity for Daily Living (ADL) behaviors using wrist-worn inertial

sensors has emerged as a rapidly growing research field. These sensors have proven to be

effective in detecting a wide range of ADL activities, including walking, sleeping, eating,

combing hair, dressing, climbing stairs, sitting, standing, and cooking [7, 8, 9, 10, 11, 12].

Some previous studies [7, 13] have explored the feasibility of using wrist-worn inertial

sensors to detect toothbrushing behavior by analyzing hand gestures. However, it is impor-

tant to note that these studies primarily focused on demonstrating the potential of detecting

a broad range of ADL activities and, therefore, trained their models using data collected

in controlled or scripted settings. As a result, their models exhibited a false positive rate

exceeding 15% for each class, including toothbrushing. This high false positive rate makes

these models unsuitable for practical, real-world applications, particularly for passive de-

tection scenarios where the aim is to minimize erroneous detections.

To address this limitation, our research aims to develop a robust and reliable toothbrush-

ing detection model that can be seamlessly integrated into daily routines. Unlike previous

studies, we recognize the importance of training our model using data collected in natural-

istic environments to ensure its effectiveness in real-world settings. By leveraging datasets

acquired from individuals performing toothbrushing tasks in their own homes, we can cap-

ture the true variability and nuances of toothbrushing behaviors. This approach allows us

to develop a model that exhibits higher accuracy and specificity, resulting in significantly

reduced false positive rates compared to previous methods.
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By focusing on refining toothbrushing detection using wrist-worn inertial sensors, we

aim to bridge the research gap in reliable oral hygiene behavior monitoring. This advance-

ment will contribute to the development of innovative technologies and interventions that

promote better oral health practices and ultimately enhance overall well-being.

Table 1.1: This table shows the number of false positive events produced per day by a
model for specific false positive rates. It is assumed that sensors are worn for 16 hours per
day and the toothbrushing event lasts an average of 2 minutes.

False positive rate 15% 10% 5% 1% 0.1% 0.01%
False positives per day 72 48 24 4 1

2
1
20

1.3.2 Limitation of Existing Micro-repetitive Modeling

Developing behavior-specific models has become essential to ensure a more reliable

and continuous detection of target behaviors in natural field settings. However, apply-

ing existing models designed for different behaviors poses a significant challenge when it

comes to detecting specific behaviors like brushing or flossing. Behavior-specific models

need to be developed for each distinct behavior, as models designed for activities such as

walking [12, 14] cannot be directly applicable to eating, smoking [15, 16], or oral hygiene

behaviors like brushing or flossing. Consequently, the reliable and passive detection of

brushing behaviors using wrist-worn sensors remains an open problem.

One primary issue is that most existing models are not tested on continuous data col-

lected in real-world field settings, which is the typical scenario for everyday use. Only a

few researchers have tested their models on continuous passive data collected from wrist

sensors, specifically for behaviors such as eating [15] or smoking [16, 17].

Moreover, the sporadic and transient nature of toothbrushing presents a unique chal-

lenge. This activity typically lasts for just a few minutes within a day that spans 12 to 16

hours. When applying existing models during the waking hours of the day, it leads to a sig-

nificant number of false positives. Even with a reported 1% false positive rate, this would

result in four false positive detections per day (as illustrated in Table 1.1). Hence, effec-
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tively detecting toothbrushing behaviors passively using wrist-worn sensors requires novel

approaches and tailored models that address the specific characteristics and challenges of

this behavior.

1.3.3 Limitation of Existing Toothbrushing Methods

Maintaining proper oral hygiene is essential for overall dental health, and advance-

ments in technology have paved the way for innovative solutions. Smart toothbrushes,

instrumented toothbrushes, and audio/video-based monitoring systems have emerged as

promising approaches. These systems offer real-time feedback, motion tracking, and even

acoustic or visual analysis to enhance oral hygiene practices. However, they still face

limitations that hinder their widespread adoption and effectiveness. Addressing these lim-

itations is crucial to develop reliable and unobtrusive methods for monitoring oral hygiene

behaviors.

Smart Toothbrush based Solutions:

In recent years, significant efforts have been directed towards the detection of oral hy-

giene behaviors (OHBs) by capitalizing on the sensing capabilities of advanced electronic

toothbrushes. Smart toothbrushes have emerged as a diverse range of solutions, each offer-

ing unique features to enhance oral care practices. These innovative devices are designed

to detect and provide users with real-time feedback on various aspects of brushing. Smart

toothbrushes have emerged as a diverse range of solutions, each offering unique features

to enhance oral care practices. These innovative devices are designed to detect and pro-

vide users with real-time feedback on various aspects of brushing. For instance, some

smart toothbrushes can accurately measure the pressure applied to the teeth during brush-

ing, aiding in the promotion of optimal brushing techniques [18]. Others are equipped with

miniature cameras integrated into the toothbrush head, allowing for the detection of plaque

and precise monitoring of brushing motions [19]. Moreover, implantable assistive brushing

devices have been developed to support individuals with special needs, such as children or

those with disabilities, in maintaining proper oral hygiene [20].
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Researchers have also explored the integration of advanced sensors into smart tooth-

brushes to enable more detailed monitoring. In studies like [21] and [22], smart tooth-

brushes were embedded with a 3-axis accelerometer and a magnetic sensor, enabling the

tracking of specific groups of teeth being brushed at any given moment. These innova-

tive solutions have paved the way for commercially available smart toothbrushes that guide

users in achieving effective brushing habits. For instance, well-known brands like [23] have

introduced smart toothbrushes with brushing heads capable of providing real-time feedback

based on the applied pressure. Paired with smartphone applications, these devices offer vi-

sual displays that help users identify and target specific tooth surfaces during brushing.

Instrumented Toothbrush based Solutions:

As an alternative to conventional smart toothbrushes, researchers in [24] introduced a

novel approach using smartwatches for recognizing and evaluating brushing quality. They

devised a system that involved attaching magnets to a regular toothbrush, enabling the

collection of inertial data from wrist-worn sensors. By analyzing the arm motion patterns

captured by the sensors in real-time, brushing gestures could be detected and assessed.

Similarly, in [25], a unique solution was proposed by attaching a 3D colored ball to the

end of a toothbrush. Through spatial analysis of the ball’s position and orientation during

brushing, the system could estimate which areas of the teeth were being targeted. These

innovative methods showcase the potential of leveraging wearable devices and creative

attachments to monitor oral hygiene behaviors, providing valuable insights into brushing

techniques. Such approaches contribute to the development of advanced technologies for

promoting effective oral care practices.

Audio and Video based Solutions:

In an initial study [26], the evaluation of brushing techniques was conducted by analyz-

ing acoustic signals captured by a smartphone positioned near the sink. Similarly, in [27],

a tooth brushing monitoring system was proposed, relying on acoustic inputs. The system

incorporated an asymmetrical sound-field detector, comprising a Bluetooth earphone and a
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throat microphone, to capture audio data from the surrounding environment and the user’s

body, respectively.

Other approaches utilize image analysis to detect tooth surfaces. For instance, in [28], a

computer-based webcam was employed to identify the position of a smart toothbrush. The

system featured a visual feedback mechanism, utilizing a physical avatar with LED teeth,

enabling real-time tracking of children’s tooth-brushing activities. Another study [25] uti-

lized the front camera of a smartphone to detect both the toothbrush and the user’s face.

By employing a face tracker and replacing the captured image with that of an avatar on the

smartphone’s display, a "virtual mirror" effect was achieved. The avatar was capable of

accurately mimicking the user’s gestures and expressions, while also providing guidance

on correct brushing movements.

These innovative approaches demonstrate the diverse ways in which acoustic signals

and image analysis can be utilized to monitor and enhance tooth-brushing practices. By

leveraging smartphones and computer vision technologies, these systems contribute to the

advancement of oral hygiene monitoring and offer personalized feedback for improving

brushing techniques.

In summary, while there have been notable advancements in the field of smart and in-

strumented toothbrushes, these solutions have certain limitations when it comes to automat-

ically detecting brushing or flossing events using wrist-worn inertial sensors in a day-long

wearing scenario. These existing approaches typically rely on user-initiated actions, such

as pressing a button, to indicate the start and end of brushing activity, which may not be

suitable for continuous and passive monitoring. Additionally, many of these methods re-

quire some level of instrumentation, whether it be sensors embedded in the toothbrush or

environmental setup for audio/video analysis, to detect tooth surfaces.

To develop a more unobtrusive and reliable method for monitoring oral hygiene be-

haviors, it is necessary to explore alternative approaches that leverage wrist-worn inertial

sensors without the need for user interaction or additional instrumentations. By addressing

10



these challenges, researchers can pave the way for innovative solutions that seamlessly in-

tegrate into daily routines and provide accurate monitoring of oral hygiene practices.

1.4 Problem Formulation

In this section, we aim to address the research gap by providing a detailed overview of

the problem at hand. Our goal is to tackle the challenges associated with monitoring oral

hygiene behaviors using wrist-worn inertial sensors. To achieve this, we divide the problem

into three distinct subproblems, each highlighting a specific aspect of the overall problem.

1.4.1 Detection Problem

The detection problem involves accurately pinpointing the timing of brief oral hygiene

events, such as brushing or flossing, from the continuous time-series data collected by

wrist-worn inertial sensors. With access to data from sensors like the 3-axis accelerometer

and 3-axis gyroscope, our objective is to determine the precise start and end times of these

events. Since brushing and flossing activities are relatively transient, lasting only a few

minutes out of the approximately 960 awake minutes per day, it is crucial for our detection

algorithm to closely match the actual event’s duration and timing.

1.4.2 Characterization Problem

The characterization problem revolves around obtaining detailed insights into the brush-

ing process by determining the duration of brushing on different surfaces. This involves

dividing the entire teeth region into meaningful and distinct surfaces and assigning them

appropriate labels. Once the surfaces are defined, the challenge is to identify the specific

time intervals during the brushing event when each surface is being brushed. These micro-

detections can be aggregated to generate a comprehensive summary of the entire brushing

event. While detecting brushing events provides an overall understanding of brushing du-

ration, surface detection enables a more precise assessment of brushing quality.

1.4.3 Prediction Problem

The prediction problem revolves around leveraging the insights gained from previous

brushing events to effectively guide and improve future oral hygiene practices. By ac-
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curately identifying about-to-brushing events or the commencement of brushing, we can

intervene in a timely manner and provide guidance based on the summarized information

gathered from past brushing events. About-to-brushing events pertain to actions like ap-

plying toothpaste to the toothbrush immediately before brushing, while the beginning of

brushing refers to the initiation or initial strokes of the toothbrushing event. By detecting

these pivotal moments, we can deliver timely interventions and tailored guidance, drawing

from the aggregated data of toothbrushing activities from previous days. This approach en-

courages the development of consistent and precise brushing habits. The ability to predict

and intervene before a brushing event begins plays a vital role in establishing effective oral

hygiene practices.

Our objective is to tackle these three interrelated subproblems in order to create ro-

bust and efficient approaches for automatically monitoring oral hygiene behaviors utilizing

wrist-worn inertial sensors. By making advancements in the areas of detection, character-

ization, and prediction, we aim to bridge the divide between technology and oral health.

This endeavor holds the potential to significantly enhance oral hygiene practices and con-

tribute to overall dental well-being.

1.5 Overview of the Proposed Solution

This dissertation presents a comprehensive approach aimed at tackling three intercon-

nected subproblems (Fig. 1.2), with a specific focus on toothbrushing as the case study. Our

overarching goal is to develop a practical and effective model capable of accurately detect-

ing short brushing events using wrist-worn inertial sensors. To achieve this, the model

needs to exhibit a high recall, capturing the majority of brushing events, while maintaining

a high precision to minimize false positives.

Once the start and end times of brushing episodes are obtained from the brushing detec-

tion model, our research extends to building another model specifically designed to detect

the brushing surface using data gathered from the accelerometer and gyroscope sensors.
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Fig. 1.2: Overview of the proposed comprehensive solution

By analyzing the duration of each brushing surface, we can assess the overall quality of the

brushing event, providing valuable insights for oral hygiene evaluation.

To further support the maintenance of a healthy oral hygiene routine, we recognize the

importance of scheduling timely interventions to enhance the quality of the overall brushing

event. Therefore, we delve into developing two models that detect the crucial "about-to-

brush" moment or the initiation of toothbrushing moment. These moments serves as a

key component of our proposed approach, enabling us to provide real-time guidance and

interventions based on previous brushing events.

Through our research, we aim to bridge the gap between technology and oral health,

ultimately leading to improved oral hygiene practices and better overall dental health. By

addressing these subproblems, we contribute to the development of comprehensive and

effective methods for automatic monitoring of oral hygiene behaviors using wrist-worn

inertial sensors. Our work holds the potential to revolutionize oral health practices by

leveraging advancements in detection, surface characterization, and prediction techniques,

fostering the cultivation of consistent and accurate brushing habits.
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Fig. 1.3: Three main contributions of this work.

1.6 Summary of Key Contributions

To reliably develop our models, we first design and conduct a research study where

we collect wrist-worn sensor data for seven continuous days from 30 participants. For

preciously labeling ground truth, we also asked the participants to record videos while per-

forming tooth-brushing activities. We make this dataset open publicly to research purposes.

As shown in Figure 1.3, this dissertation makes three technical contributions. First,

when does the event occur? That is detecting the start and end of the tooth-brushing event.

Second, How well does the user perform the event? That is finding the quality of the

brushing event or characterization of the detected brushing event. This information can be

delivered to the user as an intervention to guide the user towards correct brushing habits.

Finally, predicting the timing of the intervention. The summary of the contributions is

described in the following.

1.6.1 Detection of a Brief Daily Behavior

We develop a robust ML model, named mORAL[29], for detecting brushing with man-

ual toothbrushes and flossing behaviors from wrist-worn inertial sensors. We show that for

detecting brief daily events such as toothbrushing, adopting a model that is based on iden-
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tifying candidate windows based on events rather than fixed-length time blocks, leads to

significantly higher performance. Towards the development of this model, we solve a well-

known open problem, named virtual orientation, which identifies correct sensor mounting

on the device and proper placement of the device on the wrist. We annotated more than 100

videos that are used as ground truth. Trained and tested on 2,797 hours of sensor data col-

lected over 192 days on 25 participants (using video annotations for ground truth labels),

our brushing model achieves 100% median recall with a false positive rate of one event in

every nine days of sensor wearing.

1.6.2 Characterization of the Detected Brief Daily Behavior

After detecting the brushing event, our task is to characterize the brushing event. For

that, we develop the mTeeth model [30] to detect teeth surfaces being brushed with a man-

ual toothbrush in the natural free-living environment using wrist-worn inertial sensors. We

solve another open problem of detecting brushing strokes from a wrist-worn accelerometer

sensor. To unambiguously label sensor data corresponding to different surfaces and cap-

ture all transitions that last only milliseconds, detected brushing strokes cleanly demarcate

transitions among brushing surfaces. We annotate 10,230 instances of brushing on differ-

ent surfaces for training and testing and evaluate the impact of wide between-person and

within-person between-episode variability on the machine learning model’s performance

for brushing surface detection. Despite high person variability, the model can summarize

brushing time on each surface with more than 92.5% accuracy.

1.6.3 Detection of About-to-Brush Moment/Brushing Initiation

We introduce two novel approaches: detecting about-to-brush moments and detecting

the initial portion of tooth brushing. These methods leverage synthetic data generation and

a Stroke Detection and Clustering algorithm to enhance the accuracy of detecting brushing

behavior. By addressing the timing of interventions and improving detection techniques,

we open up a design a system that provides intervention within three seconds to users to

remember to brush the right surface. By using audio or vibration a system can design to
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provide intervention within three seconds where as current smart brush give intervention in

30 seconds.

1.7 Thesis Organization

The structure of this dissertation is outlined as follows: Chapter 2 introduces the ROBAS

study, providing an in-depth understanding of its methodology. In Chapter 3, we address

the wrist mounting problem, discussing the challenges and solutions related to wearing the

device. The mORAL model is presented in Chapter 4, where we delve into its development

and implications. Moving on to Chapter 5, we introduce the mTeeth model, focusing on its

design and functionality. Chapter 6 is dedicated to the intervention, showcasing its imple-

mentation and impact. Lastly, Chapter 7 provides a concise overview of the dissertation’s

contributions and future goals.
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Chapter 2

Labeled Data Collection: ROBAS Phase 1 Research Study

We conducted a real-time field study, referred to as Remote Oral Behaviors Assess-

ment System (ROBAS), aimed at collecting data on regular oral health routines. The study

employed wearable sensors to measure wrist movement during daily activities, while also

utilizing a smartphone to gather ground truth data. Participants were instructed to perform

their usual tooth brushing, flossing, and oral rinsing routines while wearing the sensors and

keeping the study smartphone with them throughout the day. To ensure data preservation, a

software system was employed to store both the sensor data and ground truth information.

The primary objective of the study was to detect oral health behaviors using wrist-worn

inertial sensors. The study was carefully designed to fulfill all our goals and requirements.

Prior approval for this study, with a protocol number 4274, was obtained from the Insti-

tutional Review Board (IRB) at the University of Memphis, and written informed consent

was obtained from all participants. This chapter provides a comprehensive discussion of

the overall data collection process, the devices used, the total amount of collected data, the

participant enrollment protocol, and the software employed for data storage.

2.1 Study Requirements

Our study design encompasses the necessary elements to fulfill multiple requirements

in the production of sensor data, associated labels for model development, and software

updates for data capture. Firstly, we focus on wearable devices and sensor measurements,

specifically wrist-worn inertial sensors, to capture hand movement during various daily

oral hygiene behaviors in natural field environments. Secondly, we employ video measure-

ment to precisely locate the start and end times of each brief and micro event, requiring

the capture of corresponding videos during these events. Additionally, we update the soft-

ware, specifically utilizing mCerebrum, to accommodate the storage of large-scale sensor

data while ensuring the capture of videos for ground-truth annotations. In the subsequent

section, we will provide a comprehensive description of these aspects.
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((a)) Wristband sensors ((b)) Smartphone

((c)) SmartBrush

Fig. 2.1: Wearable wristband sensors, study smartphone and SmartBrush used in the study

2.1.1 Study Design for Capturing Wrist-Worn Sensor Data

This section outlines the study design aimed at capturing wrist-worn inertial sensor

data during real-life daily behaviors, with a particular focus on oral hygiene behaviors that

involve significant hand movement. The study utilized wearable devices and a smartphone

carried by each participant to capture the necessary data.

1. Wristband Sensors: Participants were equipped with wristbands on both wrists (left

and right) to capture their wrist movements during daily activities, as shown in Figure

2.1(a). These wristbands were equipped with a suite of sensors, including a 3-axis

accelerometer sampled at 16 Hz and a 3-axis gyroscope sampled at 32 Hz. The sen-

18



sors were worn by participants throughout their waking hours, excluding bathing and

swimming, to capture wrist movement during various activities. The accelerometer

measured the linear acceleration along the three axes, while the gyroscope measured

the angular velocity. Participants engaged in teeth brushing twice a day and flossing

once a day, during which wrist movements were captured by the wrist-worn inertial

sensors (Figure 2.1). There were no specific time instructions given for brushing and

flossing, allowing participants to perform these activities naturally according to their

habitual routines. Consequently, participants were instructed to wear the wristbands

throughout their waking hours, except during bathing and swimming.

2. Smartphone Integration: Each participant was provided with an Android smart-

phone as part of the study. The smartphone served multiple purposes, including

communication with, data reception, and timestamping from the sensor suites. In

addition to its primary functions, the phone collected data through its internal sen-

sors, which included a 3-axis acceleration sensor, a 3-axis gyroscope, GPS traces for

geo-location data, battery state information, and user interaction data.

3. SmartBrush Incorporation: As a form of compensation for their participation, par-

ticipants were provided with a commercially available Bluetooth-enabled toothbrush

known as "Oral-B." Throughout the study, participants were instructed to incorpo-

rate three oral hygiene behaviors into their daily routine while wearing the sensors.

Specifically, they were asked to use their personal (manual) toothbrush once daily,

utilize the SmartBrush once daily, and perform flossing at least once daily.

2.1.2 Video-Based Ground Truth Generation for Precise Detection

In order to accurately classify brushing and flossing activities from participants’ daily

behaviors, it was crucial to obtain precise information regarding the start and end times

of these oral hygiene events. However, relying solely on participants’ self-reporting or

recollection often led to inaccuracies and added extra burden to the participants. To address
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Fig. 2.2: Setup for collecting toothbrushing video data: participants capturing videos
during toohbrushing

Fig. 2.3: Dental flossing with string

this issue, a method was employed to alleviate the reporting burden and ensure accurate

timing estimation. Participants utilized the front-facing camera of the study smartphone to

record videos of themselves while performing their oral health routines, including brushing,

flossing, and using oral rinse (Figure 2.2 and 4.8). By storing the timing of the start and

end of brushing and flossing events within the recorded videos, the smartphone provided

ground truth information for accurately detecting these behaviors from the inertial sensor

data captured by the wristband.

2.2 A Software Platform for High-Frequency Sensor Data Collection

The detection and validation of daily behaviors in research studies rely on the collection

of high-frequency sensor data, specifically from accelerometers and gyroscopes. To ac-
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commodate these data collection requirements, an ideal software platform was paramount.

The software needed to establish a synchronous connection to handle the influx of high-

frequency sensor data. In order to cater to the data collection requirements, the software

platform should encompass the following key features:

• Synchronous Connection and Sensor Compatibility: The software must support

a synchronous connection for high-frequency sensor data and have the flexibility to

connect new sensors seamlessly. This ensures that data from multiple sensors can be

synchronized accurately.

• Robust Data Reception and Handling: Given the large volume of frequently ar-

riving sensor data, the software must have a reliable operating system capable of

efficiently receiving and processing data. Data loss can compromise the integrity of

the study, making it crucial for the software to handle data streams effectively.

• Video Recording Functionality: The software should include built-in capabilities

to record self-video data. This feature is essential for generating ground truth anno-

tations of oral hygiene behaviors, enabling accurate validation of the detected behav-

iors.

• User-Friendly Interface: To ensure participant convenience and compliance, the

software should have a user-friendly interface. Participants should be able to easily

navigate and operate the software, allowing them to attach and manage the sensors

without feeling burdened or overwhelmed.

By fulfilling these requirements, the software platform can effectively support the col-

lection of high-frequency sensor data and facilitate the accurate detection and validation

of daily behaviors, particularly in the context of oral hygiene routines. In our study, we

utilized our lab-made software platform called mCerebrum [31] to facilitate the collection

of sensor data. We made necessary updates to the software to accommodate the collection
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of wrist-worn inertial signals during oral hygiene behaviors, while also capturing videos of

these behavior events in real-time.

2.2.1 Storage of High-Frequency Sensor Data: The mCerebrum Approach

One of the key challenges in mobile sensing is the storage and management of high-

frequency sensor data. To address this challenge, mCerebrum utilizes a distributed data

storage architecture that enables efficient storage and retrieval of sensor data. The plat-

form leverages the storage capabilities of both the mobile device and cloud infrastructure

to ensure scalable and reliable data storage. Sensor data is collected at high sampling

rates, often ranging from tens to hundreds of Hertz, resulting in large volumes of data. To

optimize storage efficiency, mCerebrum employs compression techniques and data reduc-

tion algorithms that selectively store relevant features or summary statistics instead of raw

sensor data. This approach reduces the storage footprint while preserving the necessary

information for subsequent analysis and interpretation.

In addition to compression and data reduction techniques, mCerebrum incorporates data

partitioning strategies to efficiently store and retrieve sensor data. The platform intelligently

partitions the data based on time intervals, allowing for faster access to specific segments

of interest during analysis. By dividing the data into smaller units, mCerebrum enables

targeted retrieval and processing, minimizing the computational overhead associated with

handling large datasets.

To ensure data integrity and reliability, mCerebrum incorporates robust error-checking

mechanisms and redundancy measures. Data is checksummed and verified during storage

and retrieval processes to detect any potential corruption or data loss. Furthermore, redun-

dant copies of the sensor data can be stored across multiple storage locations, such as the

mobile device, cloud servers, and external storage devices, providing an additional layer of

data protection.

mCerebrum also supports seamless synchronization and data transfer between the mo-

bile device and cloud servers. This enables continuous backup and synchronization of
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sensor data, ensuring that valuable data is not lost in the event of device failure or loss.

Moreover, the platform offers data encryption options to protect sensitive user information,

adhering to strict privacy and security protocols.

By employing these techniques and strategies, mCerebrum effectively addresses the

challenges associated with high-frequency sensor data storage, providing a robust and effi-

cient platform for the development and validation of digital biomarkers and interventions.

Fig. 2.4: Configuration of study setting in the mCerebrum software prior to study
initiation

Fig. 2.5: Setup of inertial sensors on the left and right wrist

2.2.2 Enhanced mCerebrum for ROBAS Data Collection

The updated version of mCerebrum introduces new capabilities to support high-rate

data collection from multiple sensors, offering real-time assessment of data quality. Its

scalable storage architecture ensures efficient handling of rapidly growing data volumes

while maintaining optimal performance. Figure 2.4 provides an overview of the study
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Fig. 2.6: Interface for monitoring sensor connection status and capturing brushing videos
during the study

setup, showcasing the configuration of wrist sensors, software integration, participant ID,

and sleep duration monitoring. Figure 2.5 illustrates the connection status of the left and

right wrist sensors, along with indicators for active and idle sensor states.

To enable seamless data collection and storage, modifications were made to the mCere-

brum software, which was then installed on the study smartphone. This empowered par-

ticipants to engage with the system and initiate video recordings while ensuring accurate

time synchronization between the captured videos and wristband data. Figure 2.6 exem-

plifies the precise synchronization during self-recorded brushing moments, displaying the

connection status of the left and right wrist sensors.

In addition to technical enhancements, the software underwent user-oriented modifica-

tions to provide an intuitive and user-friendly interface. This optimized interface allows

participants to navigate and operate the software with ease, effortlessly managing the at-

tachment and configuration of the sensors. By reducing any potential feelings of burden or

overwhelm, the user-friendly design promotes seamless engagement and facilitates optimal

participation.

With its upgraded functionality and user-centric improvements, mCerebrum empowers

researchers to enhance ROBAS data collection, ensuring both accuracy and a positive user

experience for study participants.
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2.3 Study Protocols and Participant Engagement: A Comprehensive Overview

During the initial phase of participant recruitment, individuals were surveyed regarding

their oral hygiene behaviors (OHBs) and their willingness to engage in brushing and floss-

ing routines. It was specifically inquired if they were committed to brushing at least twice

daily and flossing at least once daily. Following enrollment, phone interviews were con-

ducted to verify the eligibility of participants for an in-person screening. Subsequently, two

in-person visits were arranged, each lasting approximately one hour. To gain a comprehen-

sive understanding of the study environment and procedures, a combination of qualitative

methods, including interviews, focus groups, observations, and case studies, was employed.

During the first visit, a detailed explanation of the study procedures was provided, along

with a comprehensive overview of potential risks and discomforts. The second in-person

visit involved soliciting participant feedback and responses regarding their experiences and

attitudes toward the overall study and the utilized devices.

In addition to the qualitative approach, quantitative data collection procedures were im-

plemented. Participants were instructed to wear wristbands consistently throughout their

waking hours for a continuous seven-day period. These wristbands collected valuable data

from the wrist sensors, including measurements from accelerometers and gyroscopes. The

continuous usage of wristbands enabled seamless collection of wrist sensor data, providing

precise insights into participants’ physical movements and gestures. Furthermore, par-

ticipants were directed to use the study smartphone daily to record videos of themselves

engaging in OHBs, such as brushing and flossing, within the comfort of their homes. It was

crucial for participants to wear the wrist sensors during these activities, as depicted in Fig-

ure 2.2. By combining accelerometer and gyroscope measurements from the wrist sensors

with the recorded videos, a comprehensive analysis of participants’ oral hygiene practices

was conducted. The dedicated commitment of participants to wearing the wristbands and

recording OHBs videos played a vital role in generating accurate and comprehensive data,

ultimately contributing to the overall success of the study.
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2.3.1 Effective Recruitment Strategies and Participant Criteria

We successfully employed flyers as a strategic method for recruiting research volunteers

by strategically placing them on bulletin boards throughout various university buildings.

Furthermore, we utilized word-of-mouth techniques within different community networks

and friend groups to effectively disseminate information about the research study. Our

primary objective was to attract individuals who demonstrated a strong interest in actively

participating in scientific research and contributing to valuable scientific advancements. To

achieve this, we sought volunteers who met specific criteria, including:

1. Being enthusiastic about participating in research studies and making valuable con-

tributions to scientific advancements.

2. Having a strong commitment to maintaining good oral hygiene habits, such as brush-

ing their teeth at least twice daily and flossing at least once daily.

3. Being comfortable with wearing and using mobile sensors, such as wristbands, study

smartphones, and sensor-enabled toothbrushes, for the duration of the study period.

4. Possessing the willingness to record videos of themselves engaging in oral health

behaviors, such as brushing or flossing, as part of the data collection process.

5. Being available to attend two in-person lab sessions at the beginning and end of the

study period, each lasting approximately one hour.

6. Falling within the age range of 18 to 64 and being in good overall health.

By specifically targeting individuals who met these defined criteria, our aim was to

ensure the formation of a participant group that was highly motivated, actively engaged,

and aligned with the study’s objectives.
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2.3.2 Initial Phone Screening

During the initial phone screening, we engaged potential participants in a conversa-

tion to assess their suitability for the research study. In addition to gathering information

about their oral hygiene habits, age, and oral health conditions, we also explored their level

of comfort with wearing and using mobile sensor devices. This step was crucial in iden-

tifying individuals who were not only committed to maintaining good oral hygiene but

also comfortable with the study’s requirements, such as wearing wrist sensors and using a

sensor-enabled toothbrush. By conducting a comprehensive phone screening, we aimed to

ensure that the selected participants were well-informed about the study’s expectations and

motivated to actively participate. The screening process served as a valuable opportunity to

establish a strong foundation for the subsequent in-person screening and ultimately shape

a participant group that aligned with the study’s objectives.

2.3.3 In Person Interview: Establishing Connection and Gathering Information

Interviews may be structured and conducted under controlled conditions, or they may

be conducted with a loose set of questions asked in an open-ended manner. When gathering

demographic data, such as age, interview questions can also be quantitative in nature. We

collected written informed consent A from the participant.

Prior to the initiation of the study, a face-to-face interview was conducted to estab-

lish a meaningful connection with the participants and gather essential information. These

interviews were designed to be flexible, allowing for structured or semi-structured conver-

sations to capture valuable data. Through these personal interactions, participants were

encouraged to openly express their thoughts, experiences, and expectations related to the

study. This interview process served as a platform for collecting qualitative insights and

additional details that contributed to a comprehensive understanding of the participants’

perspectives. Additionally, participants received a comprehensive overview of the study

procedures, including its purpose, potential risks, and benefits. The informed consent A
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process was carefully conducted to ensure participants were fully informed of their rights

and responsibilities.

The demographics questionnaire A played a pivotal role in collecting relevant informa-

tion about the participants. It aimed to gather demographic data, such as gender, age, race,

yearly income, and oral history. Furthermore, the questionnaire sought to explore partici-

pants’ oral habits, including the frequency of brushing and flossing, any existing oral health

conditions, and their previous experiences with oral health studies or interventions. This

comprehensive data collection enabled us to develop a holistic understanding of the partic-

ipants’ background and oral health profiles. The insights obtained from the demographics

questionnaire played a significant role in the overall analysis and interpretation of the study

results. Moreover, it facilitated tailoring the research study to address the specific needs

and characteristics of the participants, ensuring a personalized approach to data collection

and analysis.

By conducting in-person interviews, our aim was to establish a strong rapport with

the participants and foster a collaborative partnership throughout the research study. This

approach not only facilitated data collection but also emphasized the importance of partic-

ipant engagement and involvement in the study.

2.3.4 The Exit Interview: Insights and Reflections

The exit interview served as a crucial component of the study, allowing us to gather

valuable feedback and insights from participants at the conclusion of their involvement.

This interview was conducted during the final in-person visit, providing an opportunity for

participants to reflect on their experiences and attitudes toward the study and the devices

used. Through open-ended questions A and prompts, we encouraged participants to share

their thoughts, opinions, and suggestions regarding various aspects of the study, including

the study procedures, the usability of the devices, and any challenges they encountered.

Participants were also invited to provide feedback on their overall satisfaction with the

study and its impact on their oral hygiene behaviors. This exit interview not only provided
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valuable qualitative data but also offered participants a platform to voice their experiences,

contributing to a deeper understanding of the study’s outcomes and potential areas for im-

provement. The insights gained from the exit interviews helped refine future iterations of

the study and enhance the overall participant experience.

2.4 Comprehensive Description and Analysis of ROBAS Dataset

This section focuses on the comprehensive description of the collected data and obser-

vations conducted in the ROBAS dataset phase 1 study, aimed at examining oral health

behaviors. In this dissertation, we address three distinct problems: detection, characteriza-

tion, and prediction. Each problem utilizes the ROBAS dataset. However, we encountered

various challenges when attempting to use all of the participants’ data during each problem-

solving stage.

2.4.1 Data Set Description: Demographics, Sensor, and Ground-truth data

A diverse dataset was collected from a total of 30 participants, encompassing varia-

tions in age, gender, and employment. The participant group consisted of 15 males and

15 females, with an average age of 28.5±10.6 years. Notably, among the participants, 2

individuals were left-handed, and they represented a range of backgrounds, including un-

dergraduate students, graduate students, administrative staff, software engineers, business

people, and homemakers.

Over the course of the study, a substantial amount of sensor data was collected, amount-

ing to 3,117 hours, equivalent to approximately 180,000,000 sensor data points, spanning a

duration of 215 days. In order to establish a reference standard, 412 videos were gathered

and meticulously coded, with an average duration of 4 minutes per video, to annotate Oral

Health Behaviors (OHBs).

Throughout the study period, a total of 188 brushing events involving a normal brush

and 177 brushing events utilizing a SmartBrush were observed. Additionally, 155 instances

of flossing were recorded. Among these flossing events, one-third were associated with nor-

mal brushing, while the remaining two-thirds were connected to the use of a SmartBrush.

29



In terms of the flossing technique employed, the majority (85%) of the instances involved

the use of string, while the remaining portion utilized picks.

2.4.2 Data Set: Detection Problem

During the detection problem focused on toothbrushing and flossing, we had a total of

25 participants’ data available. Since our objective was to detect manual toothbrushing,

we excluded the data from smartbrush usage. For the detection task, we considered sen-

sor data as usable only when wrist-worn accelerometer and gyroscope data were present.

Specifically, we utilized 192 days of sensor data from 21 participants to detect manual

toothbrushing using the wrist-worn inertial sensor. In the case of flossing detection, we

exclusively analyzed data from participants who used string for flossing, resulting in 95

string flossing episodes from 16 participants recorded over 125 days.

2.4.3 Data Set: Characterization Problem

In the characterization problem, we expanded our dataset by collecting data from an

additional five participants, bringing the total to 30 participants over a period of 215 days.

Due to challenges faced during ground truth extraction from videos, we had to discard some

data. We focused on usable sensor data and manual toothbrushing data to characterize the

surfaces of teeth being brushed with a manual toothbrush. After data curation, we utilized

114 manual brushing episodes from 19 participants for characterization purposes.

2.4.4 Data Set: Prediction Problem

The prediction problem posed a significant challenge due to the limited amount of data

available. Our prediction task involved to detect about-to-moment, and when we initially

began data collection in 2016, our focus was solely on brushing and flossing detection.

However, as our research progressed, we introduced a second problem, which necessitated

the expansion of our dataset by including data from an additional five participants, result-

ing in a total of 30 participants. Throughout the data collection phase, participants were

instructed to record their episodes of brushing, flossing, and rinsing. At that time, we had

no foresight regarding the subsequent problems we would tackle. Given that data collec-
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tion concluded in 2021, we were unable to augment the participant pool by introducing new

instructions. Thankfully, we were able to secure data from 12 participants, encompassing

a total of 70 brushing episodes, to address the prediction problem. Importantly, for this

particular problem, we considered both manual toothbrush and smartbrush data.

In conclusion, the data collection chapter of this study focused on gathering comprehen-

sive and valuable information about participants’ oral hygiene behaviors. Various methods

were employed, including the recruitment of volunteers through flyers and word-of-mouth,

conducting phone screenings and in-person interviews, and administering demographic

questionnaires. Both qualitative and quantitative approaches were utilized to gain a deeper

understanding of participants’ experiences and perspectives. Participants were actively en-

gaged in wearing wristbands and recording videos of their oral health behaviors, allowing

for the collection of accelerometer and gyroscope data. The combination of these meth-

ods provided a multifaceted analysis of toothbrushing and flossing habits, facilitating a

comprehensive evaluation of participants’ routines. The dedication and commitment of the

participants played a vital role in generating accurate and valuable data. Overall, the data

collection phase was essential in achieving the objectives of the study and lays the founda-

tion for further analysis and insights into oral hygiene behaviors.
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Chapter 3

Virtual Orientation: Wrist Mounting Correction

In the free-living natural environment, and due to diversity in devices, mounting and

wearing, configurations are unknown and can even dynamically change each time the de-

vice is taken off and put back on. Hence, we need to determine the orientation of the three

axes with respect to the wrist using only sensor data, i.e., accelerometer and gyroscope

traces.

In the realm of wearable technology, understanding the orientation of devices in re-

lation to the wearer’s body is crucial for accurate and meaningful data interpretation and

inference. In this chapter, we delve into the concept of virtual orientation, which refers to

the determination of device orientation on the user’s wrist solely through sensor data.

In real-world scenarios, wearable devices are subject to a myriad of factors that can

affect their configuration and positioning. Factors such as the diversity of devices available,

different mounting methods, and the dynamic nature of wearing and removing devices all

contribute to uncertainties in their orientation. Traditional approaches relying on fixed and

calibrated reference points are not viable in free-living environments where devices can be

worn interchangeably or adjusted throughout the day.

To overcome these challenges, we focus on leveraging the data captured by the device’s

built-in sensors, namely the accelerometer and gyroscope traces. These sensors provide raw

measurements of acceleration and rotational motion, which can be processed and analyzed

to determine the relative orientation of the device’s axes with respect to the wearer’s body.

By carefully analyzing the sensor data and applying sophisticated algorithms, we can infer

the orientation of the device in real-time or during post-processing.

The accurate determination of virtual orientation opens up a realm of possibilities for

wearable technology applications. It enables precise tracking of physical activities, allow-

ing for more accurate quantification of steps, calories burned, and exercise intensity. Fur-

thermore, it facilitates gesture recognition, enabling users to interact with devices through
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natural hand and arm movements. In augmented reality applications, virtual orientation

is essential for aligning virtual objects with the wearer’s surroundings, creating immersive

and interactive experiences.

Throughout this chapter, we will explore the intricacies of virtual orientation and the

techniques employed to accurately determine device orientation using sensor data. We will

delve into signal processing methodologies, sensor fusion techniques, and machine learning

approaches that enable robust and reliable orientation estimation. By understanding and

harnessing the power of virtual orientation, we can unlock the full potential of wearable

devices, revolutionizing the way we interact with technology and enhancing our daily lives.

3.1 Notations and Definitions
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Fig. 3.1: (a) Lateral (l), perpendicular (p), and vertical (v) axes of wrist coordinate
system; (b) Variation in sensor mounting on the wrist-worn devices (c) Four sensor
positions on the wrist, referred to as Configuration c (for c ∈ {0, 1, 2, 3})

Sensor data: Let as(t) = (ax, ay, az) denote the accelerometer data and ωs(t) =

(ωx, ωy, ωz) denote the gyroscope data at time t.

Wrist coordinate system: In the three-dimensional real space, all inertial sensors are

inherently three-dimensional, with each accelerometer and gyroscope sensor data point

containing measurements along the three axes. However, the triaxial inertial sensors’ place-

ment can vary among wrist-worn devices. For instance, the y-axis in one sensor may corre-
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spond to the x-axis in another sensor (see Figure 4.3a). Similarly, even for the same device,

it can be worn in multiple orientations (see Figure 4.3b). Consequently, models designed

to infer wrist orientation and hand gestures must be independent of specific sensor place-

ments.

To address this challenge, we introduce a novel coordinate system known as the wrist

coordinate system. This system defines three axes: lateral (l), perpendicular (p), and ver-

tical (v) axes. The lateral axis aligns with the arm, the perpendicular axis aligns with the

thumb, and the vertical axis corresponds to the direction of gravity when the palm is par-

allel to the Earth’s surface (see Figure 4.3c). We represent the corresponding accelerom-

eter data in the wrist coordinate system as a(t) = (al, ap, av) and the gyroscope data as

ω(t) = (ωl, ωp, ωv).

Sensor orientation configurations: The configuration of a wrist-worn sensor refers to

its current orientation relative to the wrist. It describes the mapping between the sensor’s

axes coordinates and the wrist coordinate system. Typically, the z-axis is perpendicular to

the sensor’s surface. Thus, we assume the vertical axis always aligns with the z-axis. For

example, in Figure 4.3b, the mapping for the top left placement is (l, p, v) = (x, y, z). This

particular configuration is considered the base configuration, as it occurs most frequently.

3.2 Virtual Orientation

The inertial sensor itself can be mounted within the device in a total of 3!×23 = 6×8 =

48 possible configurations. This is because each of the sensor axes can be matched to one

of the three real-world dimensions (in 3! = 6 ways), and each axis can be pointing upwards

or downwards (in 2 × 2 × 2 = 8 ways). However, for any given wrist-worn device, the

mounting of the inertial sensors is predetermined during the design phase. Consequently,

the device can be worn in four different configurations (see Figure 4.3b). We can utilize

a configuration file to specify this mounting, thereby reducing the number of dynamic

changes in orientation to four. Therefore, the problem of virtual orientation revolves around

determining which of these four configurations best represents the data being collected. It
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Fig. 3.2: (a) Prevalent wrist orientations; the value of ap varies with the movements of
rotating the forearm (b) Prevalent wrist positions; the value of al varies for different
positions of wrist relative to elbow (c) Kernel density function to show prevalent wrist
positions and orientations. The marginal distributions, at the top for perpendicular axis
and at the right for the lateral axis, show the distribution of different measurements of the
accelerometer sensor over a day (using g = 9.8ms−2).

is important to note that while it is possible for the sensor orientation to change during

the day (e.g., due to slippage), we assume that such changes in orientation are temporary,

and participants reorient the device shortly after. Additionally, we note that as gyroscopes

and accelerometers are on the same chipset, usually the orientation of accelerometers also

determines the orientation of the gyroscopes.

In order to develop and evaluate a solution for the virtual orientation problem, which
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Algorithm 1 Pseudo code for finding the correct configuration of a wristband

Require: a⃗ = {as(t) = (ax, ay, az)}, D
Ensure: c ∈ {0, 1, 2, 3}

1: for each c ∈ {0, 1, 2, 3} do
2: a⃗c = a⃗ ·Mc

3: Sc = d(a⃗c, D)
4: end for
5: c = argmin

c
{Sc}

6: return c

involves determining the current configuration of the sensor among the four possible op-

tions, labeled training data is essential. To construct such a dataset, we leverage the video

captures taken twice daily during the performance of Oral Hygiene Behaviors (OHBs). By

carefully observing the position of the sensor on the wrist in these videos, we label a day’s

worth of data as belonging to a specific configuration. If we consistently observe the same

configuration in both videos, we assign that day’s data to that particular configuration.

3.3 Dataset description

In our dataset, a significant portion of the data (77.08%, or 148 out of 192 days) cor-

responds to Configuration 0, which we designate as the base configuration (refer to Fig-

ure 4.3). This configuration represents the most frequently occurring orientation. We com-

pile a dedicated database, denoted as D, comprising all the data associated with Configu-

ration 0, encompassing a total of 148 person-days’ worth of data.

3.4 Detection of Correct Orientation

We denote a⃗ as a time series of data points within a single window of unknown config-

uration. To explore various scenarios, we consider multiple window sizes, such as half an

hour, 1 hour, 1.5 hours, 2 hours, 2.5 hours, and so on. By examining data within different

window sizes, we can gain insights into the behavior and characteristics of the sensor’s

orientation over varying time intervals.

Our approach aims to determine the configuration among the four possibilities that

produce data most similar to the base configuration when transformed through matrix mul-
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tiplication. We denote the correct wearing configuration as c ∈ 0, 1, 2, 3. We can translate

the data from the given configuration to the wrist coordinate system by applying matrix

multiplication. For each time point t, the transformed data is given by ac(t) = a(t) · Mc,

where Mc represents the corresponding transformation matrix for each configuration.

The transformation matrices Mc for the four configurations are as follows:

M0 =


1 0 0

0 1 0

0 0 1

 ;M1 =


−1 0 0

0 −1 0

0 0 1

 ;M2 =


−1 0 0

0 1 0

0 0 −1

 ;M3 =


1 0 0

0 −1 0

0 0 −1


For example, for any accelerometer sample, (ax, ay, az), of Configuration 0, the corre-

sponding value in the wrist coordinate system is (al, ap, av) = (ax, ay, az)∗M0 = (ax, ay, az).

For a given window of accelerometer sensor data a⃗, if c ∈ 0, 1, 2, 3 represents the

correct configuration, the transformed data a⃗c = a⃗ ∗ Mc corresponds to the data in the

wrist coordinate system. Our assumption is that the similarity between a⃗c and the database

D is greater than the similarity between any other transformed data a⃗c′ (where c′ ̸= c).

Based on this assumption, we create four transformations of a⃗, namely a⃗0, a⃗1, a⃗2, and a⃗3.

Next, we compute the similarity index between each transformed data a⃗c and the database

D. However, computing the similarity between a⃗c and D efficiently is crucial due to the

potentially large number of data points in a⃗c and D.

In order to investigate the potential for significant data reduction, we conducted an anal-

ysis of our dataset’s distribution. Figure 3.2(c) displays the joint density, illustrating the dif-

ferent positions and orientations of the wrist along the lateral and perpendicular axes. The

marginal distributions, situated at the top for the perpendicular axis and at the right for the

lateral axis, demonstrate the distribution of sensor measurements throughout a day. Upon

examination, we identified two distinct clusters in the joint density plot, representing the

three most commonly observed wrist orientations: pronation, supination, and neutral. This

observation guided us in developing two concise representations of the data—probability

37



distribution and principal components. Consequently, we considered two corresponding

distance indices, denoted as d(⃗a, D⃗), to further analyze the dataset.

1. Distribution distance (ddist(⃗a,D)): By calculating the probability distributions of the

data points in a⃗ and D, denoted as P and Q respectively, we can determine the dis-

similarity between these distributions using the earth moving distance. This distance

metric, denoted as ddist(⃗a,D), provides insight into the dissimilarity between the two

distributions.

2. Distance of principal components (dPCA(⃗a,D)): To compute the major directions of

the data, we perform principal component analysis (PCA) on a⃗ and D. This analysis

yields the vectors ⃗pcaa and ⃗pcaD, representing the three major components of all data

points in a⃗ and D, respectively. The Euclidean distance is then used to quantify the

dissimilarity between ⃗pcaa and ⃗pcaD, resulting in the value dPCA(⃗a,D).

We compute these distances for all values of a⃗ and D⃗ across each configuration c. The

configuration c that yields the minimum distance is assigned to the window of data a⃗. The

complete process is described in Algorithm 1.

In summary, our algorithm aims to determine the correct configuration of a wristband

by comparing the transformed data with a database, using distribution distance and distance

of principal components as similarity measures. This approach leverages matrix multipli-

cation to translate the data to the wrist coordinate system and efficiently computes distances

between the transformed data and the database.

3.5 Performance of Virtual Orientation

To identify the virtual orientation, we conducted experiments to determine the optimal

window size and method that achieves the best performance. We explored three methods:

using a default configuration, applying Principal Component Analysis (PCA), and utilizing

distribution similarity.

To create the labeled dataset for the experiments, we divided the entire dataset into
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Fig. 3.3: Use of different configurations by participants
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Fig. 3.4: Frequency of configuration changes by participants

specific window sizes. Each window of data was labeled according to the configuration

observed from two video recordings for that day. This ensured that the labeled data accu-

rately represented the configuration during the corresponding time intervals.

39



0.5 hours 1 hour 1.5 hours 2 hours 2.5 hours
Window size

0.0

0.2

0.4

0.6

0.8

1.0

F1 - Distribution similarity
F1 - PCA
F1 - Default (Config 0)
Accuracy - Distribution similarity
Accuracy - PCA
Accuracy - Default (Config 0)

Fig. 3.5: F1-score and accuracy for virtual orientation

We used a dataset comprising 192 days of sensor data collected from 25 participants.

Figure 3.3 illustrates the distribution of wristband configurations, indicating the percent-

age of time participants wore the sensor in different configurations. We observed that 15

out of 25 participants consistently wore the sensor in Configuration 0, while nine partici-

pants switched configurations across days, and one participant always used Configuration

2. Based on this pattern, we established Configuration 0 as the default configuration.

We evaluated the performance of different window sizes, including half an hour, 1 hour,

1.5 hours, 2 hours, and 2.5 hours. From the results shown in Figure 3.5, we observed that

the performance reached saturation after a window size of 2 hours. Therefore, we selected

a window size of 2 hours for further analysis. Notably, the choice of window size did not

significantly affect the performance of the default configuration.

Among the three methods, the results of our experiments clearly indicate that the distribution-
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based method outperforms both the default configuration and PCA-based methods in accu-

rately identifying virtual orientation configurations. The distribution-based method achieved

an impressive accuracy of 86% and an F1-score of 93%, indicating its ability to accurately

classify the sensor data into the correct configurations.

On the other hand, the default configuration method, which relies on a fixed configura-

tion, achieved an accuracy of 79% and an F1-score of 88%. While this method still provides

reasonable accuracy, it falls short compared to the distribution-based approach. This is ex-

pected, as the default configuration method assumes that the majority of participants wear

the sensor in Configuration 0, which may not be true for all individuals. Therefore, person-

alizing the virtual orientation based on individual data improves the accuracy significantly.

The PCA-based method, which utilizes principal component analysis, exhibited the

lowest performance among the three methods, with an accuracy of 58% and an F1-score of

71%. This suggests that the PCA approach alone is not sufficient to capture the variations

and nuances in the sensor data that are crucial for accurate virtual orientation identification.

The distribution-based method, on the other hand, considers the probability distributions

of the data points and utilizes the earth moving distance to measure dissimilarity. This

approach proves to be more effective in capturing the characteristics of different configura-

tions and accurately discriminating between them.

In real-life deployment scenarios, one can initially rely on the default configuration and

switch to the distribution-based method after collecting two hours of data. This person-

alized approach can further improve the accuracy of virtual orientation identification for

individual users.

Overall, our experiments demonstrate the effectiveness of the distribution-based method

and emphasize the importance of selecting an appropriate window size for virtual orienta-

tion analysis.
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3.6 Chapter Summary

Throughout this chapter, we tackled the issue of virtual orientation in wrist-worn de-

vices and proposed a solution that relies on analyzing sensor data. Our framework was

developed to accurately identify the device configuration by utilizing a labeled dataset cre-

ated from video recordings.

We compared three different methods: default configuration, PCA-based, and distribution-

based. Out of the three, the distribution-based method was the most successful, achieving

an accuracy rate of 86% and an F1-score of 93%. This method makes use of probability

distributions and captures the inherent patterns in the data.

The distribution-based approach creates a personalized virtual orientation, which en-

hances the user’s experience and application performance. Furthermore, it has practical

implications for the real-life deployment of wrist-worn devices as it provides accurate con-

figuration identification.

Our research emphasizes the importance of taking sensor measurement distributions

into account for virtual orientation. The distribution-based method captures configuration

characteristics and enables precise discrimination.

In conclusion, our solution effectively identifies virtual orientation in wrist-worn de-

vices. The distribution-based method provides superior accuracy and personalized orien-

tation, advancing virtual orientation techniques and improving user experiences in various

applications.
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Chapter 4

Detection of Brief Daily Behaviors:

A Case Study on Detecting Toothbrushing and Flossing

4.1 Introduction

The act of brushing and flossing one’s teeth is a quick daily routine. Brushing typically

occurs once or twice a day and can last for a mere two minutes. For optimal oral health, it

is recommended that brushing lasts for at least two minutes, covers all tooth surfaces ad-

equately with appropriate pressure, and is complemented by flossing. Interestingly, dental

diseases can largely be prevented and are closely tied to the insufficient practice of simple

oral hygiene habits such as regular toothbrushing and flossing. The American Dental As-

sociation (ADA) advises everyone to brush their teeth at least twice a day and floss at least

once, especially after meals. However, studies have revealed that a significant portion of

the population fails to follow these recommendations. Around 33% of men brush only once

a day, and 59% of women frequently skip brushing before bedtime [3]. This discrepancy

between health guidelines and actual behavior has led to the argument for the development

and widespread use of mHealth approaches to help individuals improve their oral health

practices, ultimately reducing the burden of dental diseases on public health [32].

The expenditure on healthcare is projected to consume nearly 20% of the United States

economy by 2026 1. This unsustainable spending has prompted a shift from reactive and

costly healthcare that focuses on treating illnesses to proactive and preventive approaches

aimed at addressing the underlying health behaviors that contribute to disease risk. Our

focus in this study is dental diseases such as cavities and periodontal disease, which are

common chronic conditions with significant consequences [1]. In the United States, half

of adults suffer from periodontal disease, and over fifty-three million people have untreated

tooth decay in their permanent teeth. A significant subset of this population experiences the

debilitating effects of advanced periodontal disease [2]. Aside from the pain and suffering

1https://www.cms.gov/Research-Statistics-Data-and-Systems/Statistics-Trends-and-
Reports/NationalHealthExpendData/NationalHealthAccountsProjected.html
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caused, oral health problems also impact essential functions like eating, speaking, and

socializing, and they can lead to local and systemic infections. These health implications

not only diminish an individual’s overall health and well-being but also result in substantial

personal and societal costs. Poor oral hygiene has also been linked to conditions such as

heart disease, stroke, diabetes, pneumonia, respiratory diseases, preterm births, and low

birth-weight babies [33].

To achieve optimal oral health, it is crucial to brush for a minimum of two minutes, en-

suring that all tooth surfaces are adequately cleaned with appropriate pressure, and flossing

should complement brushing. The industry has introduced smart toothbrushes with various

features to assist users in tracking their brushing habits. These toothbrushes can monitor

brushing duration and provide feedback to users about the pressure applied during brush-

ing [18]. Researchers have explored adding newer sensors for improving the detection

of brushing surfaces [24], instrumenting miniature cameras into the toothbrush head for

detecting plaque [19], and developing implantable assistive brushing devices [34, 20] to

assist children and individuals with disabilities. Other efforts involve the concurrent use of

video cameras and mobile applications to capture brushing movements [35, 36, 37, 38].

However, these systems can be burdensome and impractical as they require users to activate

data collection and restrict their movements relative to the camera during brushing.

While these advancements benefit users of smart toothbrushes, the majority of the pop-

ulation (over 80% in the United States) still use manual toothbrushes and cannot take ad-

vantage of these technological innovations 2). The ability to infer timing, duration, and

quality of brushing behaviors using manual toothbrushes would extend these benefits to the

general population. This development could pave the way for personalized oral health man-

agement, individual and population-level disease risk assessment, hybrid health insurance

programs [32], personalized feedback, and engagement through rewards or gamification

[37, 38].
2https://www.statista.com/statistics/278116/us-households-usage-of-manual-toothbrushes/
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In addition to helping users maintain oral hygiene, the detection of brushing and floss-

ing events can have multiple other utilities. Dentists can use them to provide encourage-

ment and feedback. Insurance companies can use it to offer discounts and reinforce oral

hygiene behaviors. ADA recommends replacing the manual toothbrush every three to four

months 3. Detection of brushing can be used to remind when to change toothbrushes and

to reorder toothpaste automatically. The dental insurance company can provide some dis-

count based on the habit of oral hygiene. Also, the dentist can create the profile for his

patients based on their oral hygiene practice. Most importantly, all these approaches focus

primarily on the use of instrumented toothbrushes to monitor brushing behaviors and re-

quire attentional effort by the user. Clearly, we need alternate systems that leverage data

streams captured passively by alternative technologies (e.g., wrist wearables) to create dig-

ital phenotypes of brushing behaviors and use them as the basis for improving brushing

behaviors, linking naturalistic oral hygiene behaviors to disease outcomes, stratifying den-

tal disease risk, and titrating treatment resources to actual need instead providing the same

set of preventive services to all.

Furthermore, automated inference of brushing and flossing behaviors can have a wide

range of applications in research studies. It can help identify predictors of dental dis-

ease outcomes, inform treatments, and shape public health policies. Dentists can provide

feedback and encouragement, while insurance companies can offer discounts and reinforce

good oral hygiene habits. The American Dental Association recommends changing manual

toothbrushes every three to four months 4, and detection of brushing behaviors can remind

individuals to replace their toothbrushes and order toothpaste automatically. This data can

also be used by dental insurance companies to determine discounts and by dentists to create

personalized patient profiles.

Achieving this vision necessitates the development of robust computational models ca-

pable of accurately detecting toothbrushing and flossing behaviors in natural field environ-

3https://www.mouthhealthy.org/en/az-topics/b/brushing-your-teeth
4https://www.mouthhealthy.org/en/az-topics/b/brushing-your-teeth
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ments. For this purpose, we utilize inertial sensors embedded in wrist-worn devices, which

are already used for detecting sleep, activity, eating, smoking, and various other daily be-

haviors. A crucial initial step in this direction is the creation of reliable computational

models that can extract distinct features of oral hygiene behaviors from signals generated

by inertial sensors in wrist wearables. These features, including speed, wrist rotation, and

arm displacement, can then be used to detect oral hygiene behaviors such as brushing and

flossing in real-world settings.

4.1.1 Challenges

Inferring oral hygiene behaviors (OHBs) primarily from inertial sensors on the wrist

presents several technical challenges.

Variability in sensor mounting: The placement of the sensor in a wristband or the

position of the wristband on the wrist can vary between devices and even within the same

device for different wearing episodes. This variation, such as palm-facing or back-palm-

facing configurations (as shown in Figure 4.3), results in significantly different signals.

The model must determine the relative configuration of the inertial sensor to the wrist,

considering that the signal from the axis parallel to the hand is crucial for determining

whether the hand is facing upward or not.

Reliable detection of rare daily behaviors: Brushing and flossing are salient but rel-

atively brief events that occupy only a small fraction of the approximately 960 awake min-

utes per day. Events that take less than 1% of the assessment time require stringent recall

requirements and even more stringent control over false positives. A false positive rate of

just 1% can lead to four false positive events per day.

Access to fine-grained accurate labels for model training/evaluation: Obtaining

precise labels for each brushing event is necessary to train and validate OHB models. De-

tailed markings, at a second-level granularity, are needed to identify the exact start and end

times of each event, as well as any intervening pauses. However, collecting such carefully
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labeled data from the natural environment where individuals freely engage in oral hygiene

behaviors can be challenging.

Precise estimation of duration and start/end times: To be clinically useful, the de-

tected oral hygiene event must closely match the actual event in terms of duration and

start/end times. Achieving accurate estimation of these parameters is essential for practical

applications.

4.2 Related Works

Wrist-worn inertial sensors have been utilized to detect various Activities for Daily

Living (ADL), such as walking, sleeping, eating, combing hair, dressing, climbing stairs,

sitting, standing, and cooking [7, 8, 9, 10, 11, 12]. Some studies [7, 13] have shown the

feasibility of detecting brushing through hand gestures while focusing on a wide range of

ADL activities. However, these studies mostly collected data in controlled environments

and aimed to demonstrate feasibility rather than practical application, resulting in a false

positive rate of over 15% for toothbrushing. Such models are not suitable for passive

detection in real-life settings, as they would generate a high number of false positive events

per day (72 according to Table 4.1).

To develop a more reliable model for passive detection using continuous data collected

in natural settings, researchers have focused on specific target behaviors. For example,

some studies have focused on eating [15], while others have focused on smoking [16, 17].

Behaviors like toothbrushing, smoking, and eating are brief events that last only a few

minutes, but continuous data collection throughout an entire day yields 16 hours of data

during the awake period. Thus, stringent accuracy requirements for both recall and false

positives are necessary. For instance, a model with a 5% false positive rate for detecting

brushing would produce 24 false positive events per day (as shown in Table 4.1).

The main challenge in using existing models to detect brushing or flossing lies in the

need for behavior-specific models. For example, the model for detecting physical activity

like walking [12, 14] is not directly applicable to detecting eating. Similarly, the models
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Table 4.1: The table shows the number of false positive events produced per day by a
model for specific false positive rates. It is assumed that sensors are worn for 16 hours per
day, and the toothbrushing event lasts an average of 2 minutes.

False positive rate 15% 10% 5% 1% 0.1% 0.01%
False positives per day 72 48 24 4 1

2
1
20

for eating [15] or smoking [16] are not directly applicable to detecting brushing or flossing.

Consequently, reliable passive detection of brushing using wrist-worn sensors remains an

unresolved problem.

Previous efforts to detect oral hygiene behaviors have predominantly focused on instru-

mented or smart toothbrushes. Some researchers have utilized commercial smart tooth-

brushes [39, 40, 37], while others have instrumented manual toothbrushes by adding iner-

tial sensors [24] or attaching mini smartphones [41]. These works often aim to recognize

the brushed tooth surfaces [37, 39, 24, 25]. Acoustic-based approaches have also been

explored, where audio data collected by a smartphone app or microphone is used to eval-

uate toothbrushing performance [42, 43, 44]. Other studies have analyzed audio signals

of brushing strokes using machine learning techniques [26], or combined a microphone

placed on the neck with an earphone placed in the ear to monitor toothbrushing [27].

Although investigations using smart or instrumented toothbrushes do not provide a reli-

able solution for automatically detecting toothbrushing or flossing events from wrist-worn

inertial sensors, they offer valuable insights that can be applied once a model for detecting

these events and identifying their start/end times is developed. The sensor data corre-

sponding to brushing and flossing events can be used for further analysis, such as detecting

brushing surfaces, monitoring pressure, and developing engagement apps to improve oral

hygiene.

4.3 Data Set for Detection of Toothbrushing and Flossing

Participants in the study were instructed to record videos of themselves engaging in

their typical oral health routine, capturing moments of toothbrushing and flossing. These
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videos served as the ground truth, providing reliable labels for identifying and analyzing

toothbrushing and flossing events. To ensure data security, the phone used by participants

was designed to store this sensitive information on an encrypted microSD card. Addi-

tionally, the sensor data (excluding video and GPS data) was periodically uploaded to a

secure server through a dedicated HTTPS connection. This data transfer process allowed

researchers to collect and analyze the sensor data remotely while maintaining privacy and

data integrity. Finally, at the conclusion of the study, the recorded videos and GPS data

were retrieved from the participants’ phones for further analysis and evaluation

4.3.1 Annotation of Oral Health Behaviors from Video Data

To generate labeled data for the development and evaluation of the model, we conducted

video annotations to capture the timing of each oral health behavior (OHB). A total of 362

videos were collected, with an average duration of 3.12 minutes. During the annotation

process, we carefully marked the start and end times of brushing and flossing events, as

well as any pauses within these events, based on the video footage.

One of the key challenges we encountered was correctly identifying the pause segments

within each brushing and flossing event. This required precise marking to ensure that only

data corresponding to active brushing or flossing were considered for model training and

testing. For brushing events, we paid special attention to the interval when the hand holding

the brush moved away from the mouth and then returned, which we designated as a pause.

In addition to marking the start and end times of each brushing and flossing event, we

recorded other important details related to the OHBs. These included the orientation con-

figuration of both wrists, identifying the brushing wrist (left or right), specifying whether a

manual brush or a smart brush was used, determining the flossing method (string or picks),

noting the flossing wrist (left or right), and capturing any video pause times.

To ensure the accuracy and consistency of the labeled data, two coders independently

labeled all the video ground truth data. In cases where there were discrepancies in their

coding, both coders jointly reviewed the segments in question and reached a consensus on
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the labeling of the event. This collaborative approach helped enhance the reliability of the

annotations.

Table 4.2 provides a comprehensive overview of our video annotation protocol, which

outlines the meaning and description of each labeled event along with their corresponding

characteristics. For instance, "bn_st" represents the start time of brushing with a manual

brush, while "fs_ed" denotes the end time of flossing with string. Pause events are marked

with "p_st" for the start time and "p_ed" for the end time, depending on the specific OHB.

We also included the orientation of the left and right wrists, the brushing wrist (left or right),

the flossing wrist (left or right), and the type of flossing (string or picks) in our annotations.

Through meticulous video annotation, we were able to create a valuable dataset with

detailed information on each OHB event. This labeled dataset serves as a crucial resource

for training and evaluating our model, enabling us to develop a robust and accurate system

for detecting and analyzing oral health behaviors.

4.3.2 Participant Study and Data Collection

A comprehensive study was conducted with a total of 25 participants (12 males, 13

females; mean age 28.5 ± 7.6 years) who successfully completed the study. The data

collection period spanned 290 days, during which a substantial amount of sensor data,

totaling 3,886 hours, was collected. For the purpose of model development and testing, we

focused on a subset of this data, specifically 192 days (equivalent to 2,797 hours of sensor

data) for which video data was available.

Within this dataset, we observed a total of 160 brushing events with the manual brush

and 164 brushing events with the SmartBrush. These brushing events were distributed

across the study period and provided valuable insights into participants’ oral health habits.

Furthermore, a total of 137 flossing events were recorded, with one-third of these events

being associated with normal brushing and two-thirds associated with the SmartBrush.

When considering the modality of flossing, it was found that 81% of the flossing events

were performed using string, highlighting its popularity among the participants. The re-
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Table 4.2: Video annotation protocol for identifying OHB events and labeling their start
and end times

Label Meaning Description and event characteristics
bn_st brushing start

time with manual
brush

The first video frame when the participant’s hand is
close to the mouth and brushing begins

bn_ed brushing end
time with man-
ual brush

When the participant stops brushing and wrist holding
the manual brush is going down from the mouth

bo_st brushing start
time with Smart-
Brush

Similar to the bn_st event, but for SmartBrush

bo_ed brushing end time
with SmartBrush

Similar to the bn_ed event, but for SmartBrush

fs_st flossing start time
with string

When the participant actively starts flossing with string
(preparation time before flossing such as string winding
around fingers) is excluded

fs_ed flossing end time
with string

When both of the participant’s wrists move down from
the mouth with string floss without subsequent resump-
tion of flossing

fp_st flossing start time
with picks

When the participant flosses with a pick, and one wrist
with pick moves up to the mouth and flossing begins

fp_ed flossing end time
with picks

When participant ends flossing with pick, and wrist
moves down from the mouth

p_st pause start For brushing, pause begins when the participant tem-
porarily stops brushing (e.g., to spit out the accumu-
lated toothpaste or to rinse) and moves the wrist away
from the mouth. For string flossing, pause begins when
both wrists move away from the mouth. For pick floss-
ing, pause begins when the wrist holding the pick moves
away from the mouth

p_ed pause end Following p_st, pause ends for brushing when the brush-
ing wrist goes up to the mouth. For string flossing, pause
ends when both wrists go up to resume flossing. For
pick flossing, pause ends when the wrist holding the pick
moves back up to the mouth to resume flossing

pv video pause time A few participants paused the video when they paused
brushing or flossing (e.g., to spit out the accumulated
toothpaste or saliva from mouth), or sometimes between
the brushing and flossing events. During these times, we
missed all ground truth video. We annotate those events
as video pause time.

ori_left orientation of left
wrist

We observe the device orientation on the left wrist in
video and label the configuration as one of {1, 2, 3, 4}

ori_rightorientation of
right wrist

We observe the device orientation on the right wrist in
video and label the configuration as one of {1, 2, 3, 4}

bn_wt brushing wrist The brushing wrist is marked as left or right
fl_wt flossing wrist If flossing with pick, we mark the flossing wrist as left or

right – otherwise mark it as both wrists
fl_tp flossing type Flossing type is marked as string or pick
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maining flossing events were conducted using picks, representing an alternative approach

to oral hygiene.

The comprehensive dataset obtained from this study, comprising extensive sensor data

and video recordings, serves as a valuable resource for the development and evaluation of

our model. By leveraging this dataset, we aim to enhance our understanding of oral health

behaviors and improve the accuracy and effectiveness of oral health monitoring systems.

Fig. 4.1: Distribution of brushing and flossing Events throughout the day: morning
preference for manual toothbrush and nighttime preference for SmartBrush

4.3.3 Insights from Video Annotations: Timing and Duration of Oral Health Behav-

iors

Through our comprehensive analysis of video annotations of Oral Health Behaviors

(OHBs), we have uncovered several intriguing insights. These observations shed light on
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Fig. 4.2: Analysis of oral hygiene event durations obtained from video annotations.

the timing and duration of OHBs, providing valuable information for understanding oral

health habits.

Firstly, we examined the temporal distribution of OHBs throughout the day (see Figure

4.1). Our findings revealed that OHBs occurred at various times, with a noticeable concen-

tration in the morning and evening. These peak periods indicate higher engagement in oral

health routines during these specific times. Specifically, we observed a higher occurrence

of manual brushing in the morning, suggesting a proactive approach to oral care at the start

of the day. Conversely, the use of the SmartBrush was more prevalent during nighttime

hours, implying a preference for convenience and efficiency during the winding down of

the day. Additionally, we noted an increased frequency of flossing during the evening,
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highlighting the importance individuals place on thorough oral hygiene practices before

bedtime.

Secondly, we delved into the duration of different OHB events (see Figure 4.2), offer-

ing insights into the time individuals allocate to maintain oral health. Remarkably, despite

participants being aware of video recording, the duration of brushing with a manual tooth-

brush was marginally lower compared to brushing with the SmartBrush. The SmartBrush,

equipped with vibrating features to indicate the recommended 2-minute brushing duration

as advised by the American Dental Association (ADA), seemed to promote compliance

with brushing guidelines, as evidenced by its median duration of 2.1 minutes. Notably, we

observed a slight gender difference, with females exhibiting a slightly longer brushing du-

ration when utilizing a manual toothbrush, suggesting a potential inclination towards more

meticulous oral care practices.

Finally, our analysis revealed that flossing events had a median duration of 1.22 min-

utes, reflecting the average time individuals dedicated to this essential aspect of oral hy-

giene. Interestingly, we noted that pause durations within OHB events were generally short.

This observation suggests that individuals tended to minimize interruptions or breaks dur-

ing their oral health routines, maintaining a continuous focus on effective brushing and

flossing practices.

The comprehensive insights gained from our video annotation analysis provide valuable

knowledge about the temporal patterns and duration of OHBs. These findings enhance

our understanding of individuals’ oral health habits and contribute to the development of

personalized and effective oral care strategies.

4.4 Notations, Definitions, and Observations of Sensor Signals during Oral Hygiene

Behaviors

Before we delve into the details of our modeling approaches aimed at reliably detecting

brushing (with a manual toothbrush) and flossing using wrist-worn inertial sensors, it is

crucial to establish a solid foundation by introducing a set of notations and definitions. In

54



this section, we lay the groundwork by presenting key notations and definitions that will

enable a better understanding of our subsequent discussions on the modeling methodolo-

gies for accurate detection of brushing and flossing behaviors. This section also presents

the notations, definitions, and observations of sensor signals during oral hygiene behav-

iors. It establishes the terminology and symbols used throughout the study while providing

insights into the sensor data collected during brushing and flossing activities. By combin-

ing these two perspectives, we gain a comprehensive understanding of the data and lay the

foundation for further analysis and detection algorithms.

4.4.1 Establishing Terminology and Symbols

Sensor data: Let as(t) = (ax, ay, az) be accelerometer data and ωs(t) = (ωx, ωy, ωz)

be gyroscope data at time t.
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Fig. 4.3: (a) Variation in sensor mounting on the wrist-worn devices; (b) There are four
positions on the wrist where the sensor can be placed, denoted as Configuration c (where
c ∈ 0, 1, 2, 3); (c) The axes of the wrist coordinate system are referred to as the lateral axis
(l), perpendicular axis (p), and vertical axis (v).

Wrist coordinate system: Different wrist-worn devices have different placements of

the triaxial inertial sensors. For example, y-axis in one sensor may correspond with the x-

axis in another sensor (see Figure 4.3b). Similarly, the same device can be worn in different

ways (see Figure 4.3c). Therefore, models for inferring wrist orientation and hand gestures,

need to be independent of the sensor placement.
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To accomplish this, we define a new coordinate system, called the wrist coordinate sys-

tem. The three axes in the wrist coordinate system are defined as lateral (l), perpendicular

(p), and vertical (v) axes. Here, lateral axis is aligned with the arm, perpendicular axis is

aligned with the thumb, and vertical axis is the gravity axis when the palm is parallel to

the earth’s surface (see Figure 4.3a). We denote a(t) = (al, ap, av) to be the corresponding

accelerometer data in the wrist coordinate system and ω(t) = (ωl, ωp, ωv) to be the corre-

sponding gyroscope data in the wrist coordinate system.

Sensor orientation configurations: The configuration of a wrist-worn sensor is defined

as the current orientation of the sensor relative to the wrist. In other words, it specifies the

mapping between sensor’s axes coordinate and the wrist coordinate system. Usually, the

z-axis is perpendicular to the surface of the sensor. Hence, we assume that the vertical axis

is always aligned with the z-axis. For example, in Figure 4.3c, mapping for the top left

placement is (l, p, v) = (x, y, z). We regard this as the base configuration, since it occurs

most frequently.

4.4.2 Observations of Sensor Signals during Oral Hygiene Behaviors

Fig. 4.4: Wrist sensor signals during brushing, rinsing, and flossing with string: analyzing
accelerometer patterns.
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Figure 4.4 provides visual representations of the accelerometer, gyroscope, and orien-

tation signals captured during different oral hygiene behaviors, specifically brushing with a

manual toothbrush, rinsing, and flossing with a string. These observations serve as valuable

insights for our model development process.

First and foremost, during brushing, we observe that the wrist is positioned above the

elbow, indicated by the positive values of the lateral axis in the accelerometer. The brushing

hand exhibits continuous movement, either in an up-down or left-right direction, leading to

noticeable periodicity in the accelerometer signals (as shown in the left segment of the top

figure). On the other hand, during flossing with a string, there is synchronized motion of

both wrists, as depicted in the right segment of the bottom figure.

Furthermore, we note the repetitive nature of wrist motion during these oral hygiene

behaviors, which is evident through the significant activity observed in all three accelerom-

eter axes. This repetitive motion characteristic aids in distinguishing brushing and flossing

actions from other daily activities.

However, flossing with a string presents certain challenges due to the relatively low

magnitude of motion. This low magnitude makes it more difficult to reliably differenti-

ate flossing from other common behaviors. Additionally, during flossing with string, the

synchronized motion of both wrists becomes more pronounced across all three orientation

axes.

These observations provide important insights into the unique patterns and characteris-

tics of oral hygiene behaviors, which we leverage in developing our model. In the subse-

quent sections, we will describe our approach to addressing the specific challenges posed

by these behaviors

4.5 Overview of mORAL Approach for Reliable Detection of Oral Health Behaviors

We break down the overall problem of reliably detecting oral health behaviors from

wrist-worn inertial sensors into several sub-problems to provide a clearer understanding

of the process. Firstly, in order to process the data accurately, the signal processing unit
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requires knowledge of the placement configuration of the wrist-worn device. This necessi-

tates transforming the data into the wrist coordinate system before proceeding with further

analysis.

Secondly, our goal is to detect infrequent oral health behavior (OHB) events from a

continuous stream of sensor data. To mitigate the computational load on the final machine-

learning model, we employ a strategy of identifying candidate windows that are highly

likely to contain OHB events. By focusing on these specific windows, we can significantly

reduce the amount of sensor data that needs to be processed in the subsequent steps.

Thirdly, after locating the candidate windows, our attention turns to identifying, select-

ing, and computing features that are relevant for training a classifier. This feature extraction

process plays a crucial role in capturing the distinctive patterns and characteristics of oral

health behaviors, enabling the model to distinguish them from other activities.

Finally, the utility of detecting these OHB events relies on correctly determining the

start and end points of each event. Accurate boundary identification is essential for pre-

cisely capturing the duration and timing of oral health behaviors. Therefore, it is impera-

tive to develop techniques that can effectively identify the boundaries of the detected OHB

events.

By breaking down the problem into these sub-problems, we can tackle each aspect in-

dividually and develop robust solutions that collectively contribute to the reliable detection

and analysis of oral health behaviors using wrist-worn inertial sensors.

4.6 Time Series Segmentation: Candidate Identification

Our objective is to develop an efficient model that can automatically detect brushing

and flossing events by analyzing continuous sensor data. Despite the sensor being worn for

approximately 16 hours each day (during the awake period), the actual events of interest,

such as brushing or flossing, typically last only around 4 minutes. Consequently, the ma-

jority of the data represents the negative class, making it crucial to devise a highly efficient

model capable of real-time processing to filter out non-event data. By doing so, we can sig-
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nificantly reduce the volume of data that needs to be processed by a more complex model.

We refer to these filtered data segments as "candidate segments," and this staged detection

approach also helps to minimize false positives.

To achieve this, we explore two approaches for candidate identification: the window-

based approach and the event-based approach. In the window-based approach, we segment

the time series into equal-sized windows and rapidly extract relevant features to quickly

determine whether they should be considered as candidate segments. On the other hand,

the event-based approach focuses on identifying markers within the time series that may

indicate the start of an event of interest. We have observed that during brushing and floss-

ing, the wrist position tends to be higher than the elbow, as illustrated in Figure 3.2(b). By

detecting specific patterns of upward and downward wrist movements, we can effectively

identify and isolate segments of data that are more likely to contain the events we are inter-

ested in.

4.6.1 Toothbrushing Candidate Identification Based on Fixed Windows

In the approach based on fixed window sizes, we experiment with a range of window

durations, varying from 2 seconds to 60 seconds, to determine the optimal size. For each

window size, we compute both time domain and frequency domain features, aiming to

identify the most informative ones. The distribution of filtered windows across different

features and window sizes is illustrated in Figure 4.5. Among the considered features, we

find that the mean value of the lateral axis of the accelerometer consistently yields the high-

est rejection rate, making it our primary filtering criterion. Another promising feature is the

standard deviation of the accelerometer magnitude, which consistently achieves a rejection

rate exceeding 60%. Interestingly, both of these features exhibit stability across various

window sizes. When examining window sizes of 15 seconds or longer, most features ex-

hibit a stable rejection rate. However, to accurately capture pause events within brushing

episodes, we prefer a smaller window size. Therefore, we settle on a window size of 15

seconds. Furthermore, we explore the potential synergistic effect of combining two fea-
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Fig. 4.5: The rejection rate for manual brushing varies as different features are used and
the window size is adjusted.

tures to assess whether it leads to a substantial improvement in the rejection rate. Notably,

the combination of the top two features enhances the rejection rate from below 70% (using

the top feature alone) to an improved rate of 75.6% for a window size of 15 seconds.

Fig. 4.6: Various methods are employed to identify candidates for brushing events
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4.6.2 Toothbrushing Candidate Identification Based on Event

During brushing and flossing, it is observed that the wrist position tends to be higher

than the elbow. However, the method used in PuffMarker [16] for detecting hand-to-mouth

gestures, which relies on stationary periods of the wrist, is not applicable for identifying

candidates for oral hygiene behaviors (OHBs) since the hand is in continuous motion during

brushing.

To generate candidate segments for brushing events, we employ a different approach

based on detecting upward and downward wrist movements, as illustrated in Figure 3.2(b)

and Figure 4.6. Initially, a threshold (THl) is determined for the lateral axis of the ac-

celerometer, which filters out samples below this threshold. The optimal threshold value

is found to be 0.24 g (using g = 9.8ms2), resulting in filtering 81% of the data. However,

this method introduces some temporal clusters in the data. To create candidate segments,

clusters are merged if the time difference between the corresponding retained samples is

less than 1 second, as small gaps could be caused by jerks or spikes.

To further refine the candidate segments, a filtering process based on their time duration

is applied. Optimal values for the minimum (mindur) and maximum (maxdur) duration of

the segments are determined to include all positive events while filtering out false candi-

dates. For our dataset, we find that mindur = 11 seconds and maxdur = 2.5 minutes yield

the best results, filtering an additional 10% of the data. Overall, this method rejects 91%

of the data, resulting in an average of 100 candidate segments per day. In comparison, the

window-based approach with a 75% rejection rate generates approximately 1,000 candi-

date segments during 16 hours of sensor wearing.

4.6.3 Flossing Candidate Identification Based on Fixed Size Window

Similar to our approach for candidate identification in brushing, as depicted in Fig-

ure 4.7, we explore varying window sizes from 2 seconds to 60 seconds. For each window

size, we calculate a range of correlation-based features, leveraging the similarity in wrist

orientations during flossing with string. Figure 4.7 illustrates the percentage of filtered
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Fig. 4.7: Variation of Rejection Rate with Different Features as Window Size Changes for
Flossing with String

windows for each feature and window size. Notably, the top-performing feature, namely

the mean value of the lateral axis of the accelerometer, demonstrates a substantial 10% in-

crease in the rejection rate. However, the second and third performing features exhibit only

marginal improvements. Recognizing that flossing events are often brief and punctuated

by pauses, we opt for a window size of 15 seconds. Furthermore, to strengthen our filtering

criteria, we combine the top two features, resulting in an impressive rejection rate of 62.3%

for the chosen 15-second window size.

4.6.4 Flossing Candidate Identification Based on Event

Figure 4.8 displays multiple images capturing the process of flossing with string. It is

evident from the images that both wrists are consistently oriented in an upward direction

during flossing. This observation allows us to apply a similar approach used for brushing
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Fig. 4.8: During the act of flossing, the orientation of both wrists is directed upwards.

candidate identification to identify candidates for flossing as well. However, in the case

of flossing, we can further refine the identification process since it typically involves both

wrists. We utilize the same filtering method as in brushing candidate identification, but we

compute separate sets of candidates from each wrist. Only candidate segments that exhibit

overlapping data from both wrists are retained. By employing the same duration threshold

as used in brushing candidate identification, we discard any candidate segment with an

overlapped duration falling outside the specified range. This approach effectively rejects

95% of the data, resulting in an average of 70 candidate segments per day. It represents

a substantial increase of 32% in the rejection rate compared to the fixed window-based

approach.

4.7 Feature Computation and Selection for Candidate Classification

After identifying the candidates, we compute several time domain, frequency domain,

multi-sensor fusion, and cross-wrist features from accelerometer and gyroscope data in

each window. Table 4.3 summarizes all the computed features. For time domain features,

we compute the mean, median, standard deviation, quartile deviation, skew, kurtosis, and

zero crossing rate of three axes of accelerometer and gyroscope. For frequency domain fea-

tures, Fourier transformation is applied on the window of data before calculating common

frequency-domain features [45]. For wrist orientation features, we compute roll, pitch, and

yaw that provide information about the orientation of the wrist with respect to gravity.
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To obtain robust measurement of orientation features from noisy inertial sensor data,

we perform the following processing steps [46, 47]. Accelerometer, a(t), gives a good

indication of orientation in static conditions. Gyroscope, ω(t), provides a good indication

of tilt in dynamic conditions, but drifts in the long term. The value of a(t) is noisy, but over

longer intervals is useful, as it is more robust to drift [46, 47]. By passing the accelerometer

signals through a low-pass filter, passing the gyroscope signals through a high-pass filter,

and combining the resultant signals, we compute a final rate function. The idea behind

complementary filter is to take slow moving signals from a(t), fast moving signals from

ω(t), and combine them. This method combines the strengths of both sensor signal streams.

From Figure 4.4, we observe that change in the orientation of both wrists is similar, so we

compute correlation and root mean square error of orientation of left wrist and orientation

of right wrist. We compute these cross-wrist features only for flossing because flossing

with string requires both wrists.

In total, we obtain more than 100 features. But, to avoid overfitting (as there are only

139 brushing and 136 flossing events), we use selected features for modeling. The idea

behind feature selection is to remove non-informative features. Our goal is to find a subset

of features that are a) mutually not correlated but b) highly correlated to the OHBs. In

this work, we used the Correlation-based Feature Selection (CFS) [48] to select a subset

of the features (25) as in other detection based works [49, 50]. CFS selects features that

are mutually uncorrelated but highly indicative of the OHB classes. We describe feature

selection further in Section 4.10.2.

4.8 Model Selection and Training

We explore a range of models for toothbrushing and flossing classification, employing

grid search to optimize the hyperparameters of each model. The following models are

considered:

• Naive Bayes classifier (NB): Naive Bayesian networks are very simple Bayesian

networks which are composed of directed acyclic graphs with only one parent (repre-
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Table 4.3: Summary of features extracted from each segment of the data

Time-domain Frequency-domain Multi-sensor fusion Cross-wrist
(td) (fd) orientation (ori) (only for flossing)
mean Maxima Roll corr(roll-left, roll-right)
median Energy Pitch corr(pitch-left, pitch-right)
standard deviation Spectral centroid Yaw corr(yaw-left, yaw-right)
quartile deviation Spectral Flux root Mean Square Error (rMSE)
skewness Spectral roll-off
kurtosis
zero-crossing
power

senting the unobserved node) and several children (corresponding to observed nodes)

with a strong assumption of independence among child nodes in the context of their

parent [51].

• Random forest classifier (RF): Random forests are a combination of tree predictors

such that each tree depends on the values of a random vector sampled independently

and with the same distribution for all trees in the forest. The generalization error

for forests converges to a limit as the number of trees in the forest becomes large.

The generalization error of a forest of tree classifier depends on the strength of the

individual trees in the forest and the correlation between them [52]. We use Random

forests with 100 trees and 1,000 trees.

• Ensemble method (Ens): Ensemble classifiers [53, 54] consist of a set of many

individual classifiers (called base-learners) where those decisions are combined to

output a single class label. Ensemble learning helps improve machine learning re-

sults by combining several models. This approach allows for the production of better

predictive performance compared to a single model. Several different methods are

proposed to address data imbalance issues by using ensemble methods [55, 56]. En-

semble models also tend to generalize better, which makes this approach easy to
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handle. In our experiments, we use a combination of Decision tree, K-nearest neigh-

bors (KNN), and Naive Bayes [57].

• Ada-Boosting (AB): AdaBoost, short for Adaptive Boosting, is the first practical

boosting algorithm proposed by [58]. It focuses on classification problems and aims

to convert a set of weak classifiers into a strong one. This is also an ensemble method

that learns models on subsets of the training data and boosts the weights of misclas-

sified instances, which allows models to focus on those for improving classification

performance.

These models provide a diverse set of techniques for toothbrushing and flossing clas-

sification, each with its own strengths and characteristics. Through our experiments, we

assess the performance of these models and determine the most effective approach for our

specific task.

4.9 Comprehensive Data Processing Pipeline for Oral Health Behavior Detection
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Fig. 4.9: Stages of data processing for training and testing models for brushing and
flossing detection.

Figure 4.9 provides a comprehensive overview of the various intricate steps involved in

the data processing pipeline for detecting oral health behaviors. This process encompasses
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several crucial stages, including screening, data cleaning, window size determination, can-

didate selection, feature computation, and machine learning model training. The following

details the comprehensive workflow:

• Sensor Mounting: As a crucial first step, we meticulously determine the optimal

placement and mounting of the sensor on the wrist to ensure accurate data collection.

• Data Segmentation: To ensure the integrity and relevance of the data, we meticu-

lously exclude any segments where the sensor was not worn by the participant. This

step helps maintain consistency in the collected data.

• Data Imputation: In situations where intermittent data gaps occur, typically of a

duration less than 0.25 seconds, we employ advanced imputation techniques, as out-

lined in [16, 59]. By filling in these gaps, we ensure a continuous and uninterrupted

flow of data.

• Complementary Filter: To obtain reliable and precise measurements of the wrist’s

orientation, we employ a sophisticated technique called the complementary filter.

This technique combines data from both the accelerometer and gyroscope, leveraging

their respective strengths. By filtering the accelerometer signals with a low-pass filter

and the gyroscope signals with a high-pass filter, we obtain a final rate function that

accurately represents the wrist’s orientation with respect to gravity. This method

ensures robust and accurate orientation measurements, even in the presence of noise

and sensor drift.

• Candidate Window Identification: The next crucial step involves identifying and

marking candidate windows that potentially contain oral health behaviors. These

windows are identified based on specific criteria and temporal patterns observed in

the sensor data.
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• Feature Computation: Once the candidate windows are identified, we proceed to

compute a diverse set of features from the sensor data within these windows. These

features encompass various domains, including time-domain, frequency-domain, multi-

sensor fusion, and cross-wrist features. The features capture essential characteristics

and patterns related to oral health behaviors.

• Model Training: To classify and detect oral health behaviors effectively, we lever-

age machine learning techniques. Various classification models are considered, in-

cluding Naive Bayes classifier (NB), Random Forest classifier (RF), Ensemble method

(Ens), and Ada-Boosting (AB). Grid search is employed to optimize the hyper-

parameters of each model, ensuring the best possible performance and accuracy.

In summary, the data processing pipeline for detecting oral health behaviors involves

a meticulous sequence of steps, ranging from data screening and cleaning to candidate

selection and feature computation. The integration of advanced techniques and machine

learning models enables accurate and reliable identification of oral health behaviors, em-

powering individuals to monitor and improve their oral hygiene practices effectively.

4.10 Model Evaluation

We now present results from our evaluation. We start by comparing the performance

of distribution-based and PCA-based methods for identifying the correct configuration of

the wrist sensors. Then, we observe the performance of the selected feature set for detect-

ing OHB events. We use the selected feature set for further experiments. We compare the

performance of different models choices for detecting brushing and flossing events. We

evaluate the impact of using window-based or event-based approaches to candidate iden-

tification, as they impact which segments of data the machine learning models are applied

to. Finally, we analyze the error in duration and start/end times of the detected brushing

and flossing events.
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Fig. 4.10: F1-scores for brushing and flossing detection using different feature sets using
LOSOCV evaluation

4.10.1 Metric for Evaluating Performance of Classifiers

For classifaction performance evaluation, we use a leave-one-subject-out cross-validation

(LOSOCV) experiment where we exclude a single user’s data for testing and use the re-

maining data for training. We repeat this procedure for all the users. We present results

in box plots [60] and report median values. We note that in our dataset (similar to real-life

usage), only 0.1% of the data are positive instances and rest 99.9% of the data are nega-

tive instances. If accuracy alone is used to measure the classification performance, then

a simple model that classifies all testing samples into the negative class, will produce an

excellent accuracy of 99.9%. But, its recall and precision will be zero and F1-score (for

detecting the positive class) will be undefined. Since our interest is in reliably detecting
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Table 4.4: Mean recall (R), precision (P), and F1-scores (F1) for brushing and flossing
detection using leave-one-subject-out cross validation with Gaussian Naive Bayes (NB),
Random Forest with 100 trees (RF-100), Random Forest with 1000 trees (RF-1000),
Ensemble method (Ens), and Ada-Boosting (AB).

Models
Brusing Flossing

Window based Event based Window based Event based
R P F1 R P F1 R P F1 R P F1

NB 0.94 0.02 0.05 0.95 0.51 0.62 0.99 0.19 0.33 0.97 0.58 0.71
RF-100 0.59 0.94 0.70 0.73 0.87 0.77 0.31 0.62 0.39 0.63 0.89 0.72

RF-1000 0.61 0.94 0.71 0.73 0.87 0.77 0.31 0.66 0.41 0.61 0.89 0.70
Ens 0.57 0.95 0.68 0.75 0.88 0.78 0.28 0.63 0.35 0.61 0.89 0.72
AB 0.69 0.88 0.76 0.83 0.97 0.86 0.49 0.59 0.50 0.79 0.93 0.85

the positive class, we use recall, precision, and F1-score to measure the performance of our

classifiers. In addition, we report false positives detected per day to provide a sense of the

model’s performance in daylong wearing.

4.10.2 Feature Selection

We evaluate the discriminatory power of different feature sets. Figure 5 shows different

feature sets and their discriminatory power. We create a set of time-domain features, a

set of frequency-domain features, and finally a set of both time-domain and frequency-

domain features from the accelerometer data. We perform the same selection from the

gyroscope data. Next, we create a set of orientation related features. We create another

set by combining both accelerometer and gyroscope features. We also create another set

using cross-wrist features that is used only for flossing detection. Finally, one feature set

is generated using the feature selection algorithm described in 4.7. To detect OHBs, the

selected feature set (consisting of 25 features) performs almost the same as using all the

features. To understand the performance of the proposed model, independent of the error in

detecting correct orientation, this evaluation and the rest of the experiments are done after

virtual orientation of the wristband.

70



Fig. 4.11: Accuracy of brushing detection for different feature sets using LOSOCV
evaluation

4.10.3 Performance of Brushing Detection

We evaluate both window-based and event-based approaches to candidate identification

(see Section 4.6) for their impact on classification performance. For both experiments,

Gaussian Naive Bayes, Random Forest with 100 trees and 1000 trees, Ensemble methods,

and Ada-boost classifiers are applied to detect brushing behaviors. For this experiment,

we include only those participants for whom we have usable sensor data for at least three

manual brushing episodes (i.e., 142 manual brushing events from 21 participants over 157

days).

Window-based Approach:

As described in Section 4.6, we use a window size of 15 seconds. Recall, precision,

and F1 scores appear in Figure 4.13. For the Naive Bayes model, median precision rates

are lower than other models, but the recall rate is the highest. Ensemble method, Random
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Fig. 4.12: Accuracy of flossing detection for different feature sets using LOSOCV
evaluation

Forest with 100 trees and 1000 trees produce a high median precision rate of 100%, but

recall rates of only 64.74%, 67.15%, and 68.27% respectively. Ada-boost’s median recall

rate is 70.44%, and a precision rate of 85.15%. The Ensemble method and Random forest

with 1000 trees produce a median F1 scores of respectively 71.43% and 71.86%, but the

highest median F1-score of 75.58% is produced by Ada-boost.

Event-based Approach:

Recall, precision, and F1 scores when using event-based approach for candidate gen-

eration are shown in Figure 4.14. The performance of all the models are higher than that

for a window-based approach. The Ada-boost model provides the best recall and precision.

It has a median recall of 100%, a precision of 100%, and an F1 score of 95%, which is

19.42% higher than that for the window-based approach. With the Ada-boost model, we
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Fig. 4.13: Box-plots of leave-one-subject-out cross validation performance of brushing
detection with a (15 seconds) window-based approach for candidate identification.

get about one false positive every ten days (i.e., 16 false positives on 157 person days of

data).

4.10.4 Performance of Flossing Detection

We follow a similar approach for evaluating the detection of flossing as for brushing

detection. For this experiment, we include data from only those participants for whom we

have usable sensor data for at-least three string flossing episodes (i.e., 95 string flossing

events from 16 participants over 125 days).

Window-based approach:

Recall, precision, and F1 scores appear in Figure 4.15. We obtain the best median F1

score of 55.02% for Ada-boost. It has a median precision of 65.30%, and a median recall

rate of 44.50%.
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Fig. 4.14: Box-plots of leave-one-subject-out cross validation performance of brushing
detection with an event-based approach for candidate identification.

Event-based Approach:

Recall, precision, and F1 scores are shown in Figure 4.16. Similar to brushing, we

obtain the best median F1 score with the Ada-boost model. Its median recall is 75%,

precision is 100%, and the F1 score is 82.65%, which is 27.63% higher than that for a

window-based approach. With the Ada-boost model, we obtain about one false positive

every twenty-five days (i.e., 5 false positives on 125 person days of data).

We observe that our detection accuracy for flossing is lower than that for brushing. One

reason for a lower recall rate in detecting flossing is due to low and infrequent movement

of hands (captured in inertial sensor data) during flossing. Improving the recall rate for

flossing detection remains a future work.
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Fig. 4.15: Boxplot of leave-one-subject-out cross validation results of flossing detection
with a (15 seconds) window-based approach for candidate identification.

4.10.5 Performance on Detecting Duration and Start/End Times

In addition to reliably detecting brushing and flossing events, it is also desirable to

accurately detect the duration of these events (due to their predictive nature in dental disease

outcomes). Further, as these events are detected from a continuous time series of sensor

data, a single event can be split into multiple windows due to pauses. Portions of the actual

event can also be missed or overestimated. We would like the detected event to closely

match the actual event in both the start and end times. For this experiment, we use the

data for brushing and flossing as described in Sections 6.4 and 6.5. We first develop some

metrics to measure the accuracy of detecting start/end times and duration before reporting

the performance of our models.

Event: An event consists of a start time and an end time. We define a pause event as

a tuple of start time and end time (Ep = (ts, te)). Pause events can be either inter-event
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Fig. 4.16: Boxplot of leave-one-subject-out cross validation results of flossing detection
with an event-based approach for candidate identification.

pause or intra-event pause. Since we are not dealing with inter-event pauses, we use pauses

to refer to intra-event pauses. Each oral hygiene event consists of a start time, an end time,

and a list of pause events. For example, (Eb = (ts, te, Ep)) is a brushing event with a list

of pause events, where ts < e.ts and e.te < te, for all e ∈ Ep, and (Ef = (ts, te, Ep)) is a

similarly defined flossing event.

Duration of an Event: The duration of an event E = (ts, te, Ep) (after removing pauses)

is defined as follows.

d(E) = (E.te − E.ts)−
∑

Ep∈E.Ep

(Ep.te − Ep.ts)

Error in Event Localization: We divide the error by the duration of the actual event for

normalization. Let Eactual be the actual event. For a detected event, Edetected, we use two

error measurements:
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• Duration Error is defined as the difference between actual duration and detected

duration, i.e.,

errdur =
|d(Eactual)− d(Edetected)|

d(Eactual)

• Average Localization Error of the event measures error in locating the boundary. Er-

ror can happen in both boundaries due to either over-estimation or under-estimation.

We define average localization error as

errboundary =
AV G{|Eactual.ts − Edetected.ts|+ |Eactual.te − Edetected.te|}

d(Eactual)

Figure 4.17 shows a scenario where duration error is low but localization error is high.

For each brushing and flossing event detected by the best model, we evaluate the error

in the duration of the detected event with that of the corresponding actual event (from video

data). If a detected event does not have any temporal overlap with the actual event, it is

not considered to be a true recall and is excluded from this analysis. We use regression

analyses to analyze the errors in duration.

Figure 4.18 depicts regression analyses between the actual duration and the correspond-

ing duration of the detected events (for both brushing and flossing). The Pearson correlation

coefficient value r is 0.95 for brushing and 0.98 for flossing. Mean square error for brush-

ing is 11.07 seconds and for flossing, it is 8.9 seconds. As a percentage of the actual event

duration, these represent duration errors of 7.2% and 6.5% respectively.
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Fig. 4.18: Scatter plot of actual duration vs. detected duration, errdur = 7.2% for
brushing and errdur = 6.2% for flossing.

Next, we analyze the temporal alignment of the detected event with the actual event.

Figure 4.19 shows the results for brushing and flossing respectively. We observe that the

error in alignment is small for both events. The error in accurately locating the start and

end times are 4.1% for brushing and 3.5% for flossing.

4.11 Limitations and Future Works

The presented mORAL model achieves a median recall rate of 100% with one false

positive every nine days. For flossing, the median recall rate is lower at 75%, but the
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Fig. 4.19: Error in start/end times, errboundary = 4.1% for brushing and
errboundary = 3.5% for flossing.

false positive rate is also lower at one every 37 days. In addition to low recall rate for

flossing, this work has several other limitations that open up numerous opportunities for

future works.

First, our model does not include oral rinsing behavior detection, which is an important

oral health behavior. Especially when combined with a model for detecting eating, it can

present interesting intervention opportunities. Modeling the transition in the sequence of

brushing, rinsing, and flossing behavior can potentially be used to improve the detection

of each of these activities. Second, our model can detect flossing with string, but not with

picks. Using deep learning models, especially with a larger labeled dataset, can potentially

improve detection performance further.
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Third, a significant limitation in this work is the use of two wrist sensors. We used two

wrist sensors to understand the value of having the wrist sensors in both hands. We note

that detection of brushing uses only the data from dominant hand. Therefore, detection of

brushing should work as long as the user is wearing the sensor in their dominant hand. But,

the model needs to be adapted to detect flossing from sensor data collected on only one

wrist.

Fourth, detecting brushing with the SmartBrush from wrist sensors is another future

research direction. Even though smart toothbrushes detect the brushing event due to the

user pressing a button to start/stop the device, a wrist-based model can be used to assign

the brushing event to a specific user, e.g., when a brush handle is shared in a family.

Fifth, even though significant work has been done in detecting the brushing pressure

and detecting the tooth surface or quadrant being brushed, using smart or instrumented

toothbrushes, our work opens up opportunities to develop these capabilities for brushing

with manual toothbrushes, especially due to low boundary location error with our model.

Doing so will benefit a large population that still uses manual toothbrushes.

Finally, additional work is needed to adapt our model for detecting the brushing and

flossing events in real-time. Although our model is computationally efficient, the virtual

orientation process may require a couple hours of data. Developing a quicker method for

virtual orientation can help not only with our model, but also in models developed for

detecting other behaviors such as eating and smoking that involve hand-to-mouth gestures.

4.12 Chapter Summary

mHealth research is rapidly growing to incorporate detection, prediction, and just-in-

time intervention for a diversity of markers of health and well-being. Our work extends

this paradigm into the oral health domain, an oft-underserved realm of biomedicine and

public health. It opens doors for extending several benefits only available to those with

access to smart toothbrushes to a broader population still using manual toothbrushes. It also

opens up new opportunities for designing sensor-triggered interventions for improving oral
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health behaviors. For example, incorporating the passive detection of OHB’s into a context-

based approach can enhance our understanding of how OHB biomarkers are associated with

other biomarkers such as stress, semantic location, tobacco, alcohol, or other substance use,

and may provide substantial future insight to these behaviors and lead to new supporting

protective interventions.

In addition to providing a solution for monitoring oral health behaviors, our work also

provides a direction for the computing community when developing models to reliably de-

tect rare daily events from dense time series of data collected in everyday life. For example,

it shows the promise of the event-based approach for identifying candidate windows before

applying the machine learning models. It further indicates that identifying discerning char-

acteristics of the target event and translating them into efficient data models results into a

more accurate overall model.
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Chapter 5

Characterizing of the Detected Brief Daily Behavior:

Identifying Brushing Teeth Surfaces Using Wrist-Worn Sensors

5.1 Introduction

Dental disease (caries and gum disease) is very prevalent globally, affecting 53 million

people in USA alone. A primary reason for continued prevalence of dental diseases despite

regular brushing is that people may not be brushing each tooth surface adequately, missing

some surfaces completely, while spending disproportionate time on other surfaces. When

saliva combines with particles from food and drinks we consume, a colorless, sticky biofilm

containing bacteria known as dental plaque forms on our teeth. Unmindful or poor brush-

ing habits allow plaque to accumulate over time, leading to gum disease, tooth decay (and

cavities), and tooth loss. Beyond the pain and suffering, oral health problems affect the

ability to eat and swallow, speak and socialize. Importantly, because the mouth is the main

portal for entry to the body, poor oral health can contribute to a range of conditions and dis-

eases including respiratory diseases, endocarditis, cardiovascular diseases, and pregnancy

and birth complications. What makes matters even worse is the accompanying steep cost

of dental and health care, that many without insurance struggle to bear. However, the good

news is that people can still prevent much of the complications arising from poor brushing

habits through technology-driven awareness.

Smart toothbrushes [23] equipped with Bluetooth connectivity, gyroscopes, and ac-

celerometers are beginning to address some key aspects of oral hygiene. They use beeps, vi-

brations, and visualizations on smartphones to reinforce a recommended routine of spend-

ing 30 seconds on each quadrant — upper right, upper left, lower right, and lower left

— for adequate brushing, a key component of proper dental care [61, 62]. Identification

and evaluation of toothbrushing activities coupled with a feedback system to encourage

proper brushing has been a focus of several works on understanding and improving hu-

man oral health behavior. They include assistive technologies to promote brushing habits
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among children through playful experiences [37, 28]; supporting users in learning a com-

plex brushing technique with realtime feedback [40, 63, 64]; encouraging regular tooth-

brushing using virtual aquarium or mirror [65, 25]; enabling self-examination and creating

awareness about common oral health conditions [66]; creating plaque awareness [19]; and

helping handicapped people without arms to brush their teeth correctly [20]. But, these

works use either smart toothbrushes, electric toothbrushes, or toothbrushes fitted with sen-

sors [24, 63, 25, 44]. As such toothbrushes are still used by a small minority, these advances

do not benefit most people who still use manual toothbrushes.

Wrist-worn inertial sensors in smartwatches and activity trackers are increasingly being

used to detect various activities like eating [15], smoking [17, 16], drinking [67], and hand

washing [68]. A recent work [29] presented the mORAL model to detect the start and

end times of brushing and flossing activities. Although this work enables monitoring of

brushing and flossing events for a large population of users still brushing with a regular

toothbrush, the capability of monitoring which surfaces are not adequately being brushed

is still lacking.

In this paper, we present a new mTeeth model to detect which tooth surface is being

brushed using a regular uninstrumented toothbrush from data collected by inertial sensors

in wrist-worn activity trackers and smartwatches. We successfully address several chal-

lenges in detecting brushing on specific tooth surfaces, which receive only a few seconds

of brushing before a user transitions to another surface.

First, we enhance the utility of a publicly available wrist-worn inertial sensor dataset

collected from daily life of participants by annotating it with fine-grained labels of which

surface is being brushed on and moments of transition. We develop a hierarchical catego-

rization of teeth surfaces in nine types that is suited to detection by sensors. We analyze

the labeled data to quantify between-person variability in brushing patterns, within-person

between-episode variability, and within-episode between-surface variability in brushing

duration.
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Second, we find that there are time synchronization errors of several seconds between

sensor data and associated video, even though both are collected on the same smartphone.

As transition among teeth surfaces last only milliseconds, we propose an algorithm to

tightly synchronize the two data sources that does not have any explicit anchor event. We

find that this improves the F1 score for surface classification by 13%.

Third, we observe that time spent on a brushing surface can be as low as a few mil-

liseconds and as high as few tens of seconds. This prevents unambiguous label assignment

in fixed-length window-based approach to data segmentation. We observe that an anchor

micro-event called brushing stroke occurs during all surface transitions. We propose a

computationally lightweight method to identify brushing strokes using wrist-worn inertial

sensors.

Fourth, we identify and compute several features from each brushing stroke. To lever-

age the hierarchical organization of teeth surfaces and sequence of transitions among them,

we select and train a Dynamic Bayesian Ensemble model. We train and test on one week

of brushing data from 19 participants to analyze the impact of wide between-person and

within-person variability on the performance of machine learning models for dynamic

brushing surface identification using wrist-worn inertial sensors.

5.2 Related Works and Key Contributions

Our proposed mTeeth model assumes that the start and end of a brushing event can be

identified from wrist-worn inertial sensors. Development of such models has progressed

from detecting brushing from hand gestures in the context of detecting a vast amount of

activities of daily living (ADL) [7, 13] in scripted settings to recently proposed models for

automatically detecting toothbrushing in the wild using wrist-worn inertial sensors [29,

69]. In the following, we discuss prior works that aim to detect the specific teeth surface

being brushed on.
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5.2.1 Toothbrushing Surface Detection from Smart or Instrumented Toothbrushes

In [21] and [22], the authors designed a smart toothbrush fitted with a 3-axis accelerom-

eter and magnetometers to trace which group of teeth the user was brushing at a particular

moment. This work divided the teeth into several brushing regions before developing a

k-means clustering-based model to detect them [21] and determine if brushing in each of

those areas was done appropriately or not. Their smart toothbrush based approach achieved

an overall accuracy of 97.1% for a total of 15 brushing regions. Smart toothbrush based

solutions are now commercially available that guide users on the correct way of brushing.

For example, [23] includes a brushing head capable of giving real-time feedback to the

user based on brushing pressure. A paired smartphone provides visual display to determine

which surface is being brushed.

To provide an alternative to smart toothbrushes, [24] proposed a smartwatch based

recognition system to evaluate the brushing quality. They attached magnets to a normal

toothbrush to build an arm motion model with inertial data collected from wrist-worn sen-

sors for real-time detection of brushing gestures. The system was able to detect brushing

surfaces with an average precision of 85.6% by dividing the teeth set into 16 different sur-

faces following the Bass technique. In [25], a 3D colored ball was attached at the tail of a

toothbrush to estimate which dental side was being brushed by analyzing the spatial posi-

tion and orientation of the ball. As these methods rely on sensors in a toothbrush, they are

not applicable to detecting brushing surfaces with regular toothbrushes.

5.2.2 Toothbrushing Surface Detection from Audio and Video

An initial work [26] evaluated brushing from acoustic signals captured by a smartphone

placed next to the sink. It recorded audio signals from which 12-order Mel-Frequency Cep-

stral Coefficient (MFCC) features were extracted to train a Hidden Markov Model (HMM)

for recognizing toothbrushing activities. It achieved a classification accuracy of 78.3%.

Similarly, [27] proposed a tooth brushing monitoring system based on acoustic inputs.

They deployed an asymmetrical sound-field detector which had a Bluetooth earphone and
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a throat microphone to capture acoustic inputs from the air and human body, respectively.

The two different sources of inputs carried a rich set of characteristics from the environment

and a living entity. To reduce computational complexity, a series of statistical inferences

from time and frequency domains were extracted for training different models.

Some works use image analysis to detect teeth surfaces. A computer based web-cam is

used in [28] to identify the position of the smart toothbrush. It has a visual feedback system,

equipped with a physical avatar whose teeth are made of LEDs for tracking children’s tooth-

brushing activities in real time. Another work [25] detects toothbrush and the face of its

user with the help of a smartphone’s front camera. The smartphone’s display works as

a “virtual mirror” to locate a person’s face with a toothbrush through a face tracker and

replaces the captured image with that of an avatar. The avatar is able to completely mimic

the user’s gestures and expressions, and points out any wrong movement. As these works

rely on some instrumentation of the environment to detect teeth surfaces, their methods are

not directly applicable to address the technical challenges faced in detecting teeth surfaces

being brushed from wrist-worn inertial sensors alone.

5.2.3 Toothbrushing Surface Detection from Wrist-Worn Inertial Sensors

Even though [24] used an instrumented toothbrush, they also trained a model to detect

brushing surfaces using only wrist-worn inertial sensors, that was further improved by [69].

Sensor data is divided in 1 second segments in [24] and 1.2 second segments in [69]. They

used either a video or an observer to decide the surface labels of each data segment. For

labels, [24] used 16 Bass technique surfaces, while [69] used 13 teeth surfaces, tongue

brushing, and raised hand state. The number of episodes or the amount of data collected

is not reported in either work. Also, details of how second-level precision was achieved

in labeling either from video or observer are missing. Both trained their participants to

brush using the Bass technique. Any brushing sequence not following the Bass technique

are excluded from surface classification in [24]. Naive Bayes classifier together with a

Hidden Markov Model is trained in [24], while an attention-based LSTM is used in [69].
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A precision of 75.9% with wrist-sensor only model is reported in [24], while an accuracy

of 97% is reported in [69], both using 10-fold cross-validation.

Our work differs from [24, 69] in several respects and presents an alternative approach

to surface classification. First, the goal of both prior works was to achieve homogeneity

in the brushing pattern of participants by training them. Our goal instead is to observe the

natural brushing habits of participants and still aim to detect the surface being brushed and

transitions among them, despite natural variability. Second, a fixed window of 1 or 1.2 sec-

onds can include brushing on two different surfaces and the transition time, which creates

ambiguity in which labels to assign to these windows. Leaving them unlabelled can exclude

30-40 seconds of data from a 120-second session, as an average of 30 transitions occur in

a 90-second brushing session. Therefore, we use a new anchor micro-event (i.e., brushing

strokes) that naturally occurs between all transitions among surfaces, and thus separates

the data from different surfaces. Third, we find that the number of samples in our data seg-

ments (i.e., in a brushing stroke) consists of only 4-5 data points (at a sampling frequency

of 16 Hz). They are sufficient to detect peaks and valleys, but are not suitable to train a deep

learning or other models that identify complex features automatically. But, the Dynamic

Bayesian Ensemble method we present is still able to achieve similar high accuracy (with

median F1 scores of 94% to 100%) for distinguishing among in/out, left/center/right, and

up/down surfaces.

5.2.4 Summary of Key Contributions

In summary, the presented work makes the following novel contributions over prior

works.

1. Unambiguous Labeling: Ours is the first work to use the micro-event of brushing

strokes to assign clean labels to each sensor data segment. Prior works on brushing

surface detection used fixed-length windows [24, 69] that may make unambiguous

label assignment difficult.

87



2. Brushing Stroke Detection: A method to detect brushing strokes using acoustics

was presented in [24], with an average error rate of 10.3%. They posed the task of

detecting brushing strokes from inertial sensors as an open problem. We successfully

solve this open problem with less than 4.2% error.

3. Tight Time-Synchronization We observe that as brushing strokes and transitions usu-

ally last < 300 milliseconds, the sensor data and video (that provides a way to

obtain precise labels) needs to be tightly time synchronized. Even though prior

works [24, 69] used video to obtain surface labels, ours is the first work to illus-

trate the label alignment challenge and presents an algorithm to achieve tight time

synchronization.

4. Within-Person Variability: Although between-person variability in brushing patterns

have been reported previously in dentistry [70, 71], ours is the first work to report

wide within-person between-episode variability, highlighting that the usual approach

of single event observation from each participant may not suffice to analyze prevalent

brushing patterns.

5. Between-Person Model Generalizability: We quantify between-person variability in

brushing patterns from video data and analyze the challenges it poses in achieving

between-person generalizability of machine learning models for brushing surface de-

tection.

6. Challenges for Personalized Models: Although personalized models require person-

specific training, they usually perform better than general models. We show that wide

within-person between-episode variability impacts the performance of even person-

alized models for brushing surface detection.
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7. Brushing Duration Estimation: Ours is the first work to present estimation of the

total duration of brushing on each surface in a brushing episode, and report a median

absolute error of less than 5%.

5.3 Data Description, Labeling, and Key Findings from Labeled Data

In this chapter, we explore the essential elements of data preparation, labeling meth-

ods, and the extraction of valuable insights from labeled datasets. The chapter initiates

by highlighting the significance of data description in comprehending the characteristics

and attributes of a dataset. Furthermore, it delves into the fundamental process of data

labeling, which plays a vital role in supervised machine learning tasks. Data labeling in-

volves assigning appropriate tags, categories, or annotations to data instances, simplifying

the learning of patterns and accurate predictions by machine learning algorithms. Lastly,

the chapter concentrates on extracting key findings from labeled datasets. Then we employ

a variety of data analysis techniques to reveal hidden insights and practical knowledge.

5.3.1 Dataset Selection

A wrist-worn inertial sensor data set consisting of labels of start/end of brushing and

flossing episodes used in our mORAL [29] study is available publicly. This study recruited

participants willing to brush at least twice — once with a manual toothbrush and once with

a SmartBrush and floss at least once a day. Each participant wore a MotionSense wristband

on each wrist during waking hours for seven days that included a 3-axis accelerometer and

a 3-axis gyroscope sampled at 16 and 32 Hz, respectively. A study provided smartphone

connected via Bluetooth technology continuously timestamped and logged incoming sen-

sor data. Besides, participants used the phone’s front camera to video record themselves (in

their homes) during brushing, flossing and/or oral rinsing. The mORAL dataset currently

consists of data from 30 participants (15 males, 15 females; mean age 28.5±10.6 years, 2

left handed) who have contributed 197 brushing episodes with a manual toothbrush.

In the public dataset, the start and end times of brushing episodes are annotated from
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self-recorded videos. But, the original annotations in the mORAL dataset 1 are insufficient

for our modeling because it does not include any teeth surface annotations within a brush-

ing episode. We used the original videos from this study to label precise times for when

each teeth surface (i.e., groups of teeth portions) was being brushed, including marking

of transitions among the surfaces. See Section 5.3.3 for details of surface definitions pro-

posed.

5.3.2 Dataset Curation

Out of 197 brushing episodes, videos for some episodes were not usable for stroke-level

annotation of surface transitions. First, some participants moved sideways, getting outside

the camera range, during brushing. Second, some participants leaned forward to spit out

the excess foam and did not revert to an upright posture. Third, some participants leaned

the phone against the back wall or against the sidewall. Because the camera was tilted, it

was pointing diagonally at the mouth, with their hand blocking a clear view of their mouth.

Therefore, it was not possible to unambiguously determine from the video which surfaces

participants were actually brushing.

For the above reasons, 83 brushing sessions had to be excluded from this modeling

work. We annotated the remaining 114 episodes from 19 participants. For compari-

son, prior works on analyzing brushing patterns via video used 96 [70] and 101 brushing

episodes [71] and prior works on the detection of brushing surfaces used data from 12 [24]

and 10 participants [69].

5.3.3 Organizing and Naming of Teeth Surfaces for Labeling

Various works [72, 26, 42, 37, 44, 73] organize teeth surfaces between 4 and 16 cat-

egories. For teaching brushing, the Bass technique [21, 74, 24, 69, 75] uses 16 surfaces.

When observing brushing habits from self-recorded videos [70, 71], surfaces are grouped

into fewer broad categories due to ambiguity and frequent transitions among teeth sur-

1https://mhealth.md2k.org/resources/datasets.html#mORAL

90



faces. We adopt a similar hierarchical organization to obtain nine categories that is suited

to sensor-based detection.

Surfaces
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We organize teeth surfaces into three layers, as shown in Figure 5.1.
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Layer 1: In.

The inner (tongue facing, i.e., lingual) surfaces of all the teeth and the occlusal (chew-

ing) surfaces of the posterior teeth (premolars and molars) are labelled as the ‘In’ surface

(see the inner arrow in Figure 5.2(i)).

Layer 1: Out.

The outer surfaces of the teeth (abutting lips and insides of cheeks, i.e., vestibular) are

labelled as the ‘Out’ surface (see the outer arrow in Figure 5.2(i)).

Layer 2: Center.

The ‘Center’ surface encompasses all the anterior incisor teeth (as shown in Figure 5.2(ii)).

Layer 2: Left/Right.

The posterior region incorporating the premolars/molars on the left and right sides are

labelled as ‘Left’ or ‘Right’, respectively (see Figure 5.2(ii)).

Layer 2: Undecidable.

Finally, we place the canines (red) in the ‘Undecidable’ class. Depending on the brush-

ing pattern, these teeth are dynamically assigned to one of the center/left/right surfaces

rather than being apriori assigned all the time. In Figure 5.2(ii), red colored teeth are con-

sidered as ‘Undecidable’.

Layer 3: Up/Down.

We define surfaces of teeth in the upper jaw as the ‘Up’ surface and surfaces from the

lower jaw as the ‘Down’ surface (as shown in Figure 5.2(iii)).

Of the 16 surfaces used in the Bass technique, we are unable to disambiguate brushing

on chewing surface from inner surfaces due to frequent overlap, resulting in merging of 8

surfaces (chewing and inner) into 4 (inner) surfaces. Additionally, when brushing on the

outer surfaces, we are unable to disambiguate brushing on upper and lower surfaces, due

to frequent switching and overlap, resulting in merging of 6 (outer up and down) surfaces

into 3 (outer) surfaces. Therefore, we end up with nine surface categories.

For naming of these nine surfaces, as we descend from Layer 1 to Layer 2 (in Fig-
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ure 5.1), and then to the leaf nodes in Layer 3, we concatenate the respective categories

in each layer to derive the name for each leaf surface. For example, if we traverse the

nodes in the order In->Center->Up from Layer 1 to Layer 3, we get the In-Center-Up

(ICU) surface. Names of the other eight surfaces are: In-left-up (ILU), In-right-up (IRU),

In-center-down (ICD), In-left-down (ILD), In-right-down (IRD), Out-center (OC), Out-left

(OL), and Out-right (OR).

5.3.4 Determining the Timings of Teeth Surface Being Brushed On and Transitions

from Video

a b c

Fig. 5.3: Frame-by-frame annotation of left-right-left brushing stroke. Frames (a) in both
stroke types mark the start of the stroke, Frames (b) mark the end of half stroke, and
Frames (c) mark the end of the full stroke.

a b c

Fig. 5.4: Frame-by-frame annotation of up-down-up brushing stroke. Frames (a) in both
stroke types mark the start of the stroke, Frames (b) mark the end of half stroke, and
Frames (c) mark the end of the full stroke.

We analyze the video recordings to annotate the start/end times of each teeth surface

being brushed on. We precisely mark the transition among surfaces so that data labeled for

a surface is not contaminated by any transition data, resulting in unambiguous and clean

labels for model training and testing. This is arduous and time-consuming because the

duration of brushing on any surface is quite short (less than 5 seconds) and transitions are
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rapid (lasting few hundred milliseconds) and frequent (tens of transitions in a brushing

episode).

Since achieving precision at such granularity is harder for human eyes, we used ELAN [76],

a freely available software for assistance in labeling the surface and transition times. We

developed the following coding definitions for this labeling to correspond to hierarchical

naming of surfaces. We annotated each of the three layers in our naming hierarchy —

Pass-I (Inner and Outer), Pass-II (Center, Left, and Right), and Pass-III (Up and Down).

For each of these, we decide the start and end time as described below. Figures 5.3 and 5.4

show two frame-by-frame examples.

Begin time: We assign the start time to the moment whenever a participant touches and

starts to go back and forth or up and down with the brush in a periodic motion in any one

of the In/Out/Center/Left/Right/Up/Down surfaces for the first time or every time after a

transition from the previous surface.

End time: We assign end time to the moment whenever the participant stops the peri-

odic back and forth or up and down motion with the brush at the current surface and begins

to leave the surface by changing the motion.

To distinguish a surface from transition, we annotate a surface only if it receives at least

three brushing strokes.

Switching interval: We use the following criteria for declaring a transition.

1. When the participant, in a bid to move to the next surface, starts rotating the brush

holding wrist to till the rotation stops, and the wrist is in a position from where it can

start brushing the next surface.

2. When the brush holding wrist enters the junction of any two surfaces to when it

leaves.

3. When the wrist holding the brush discontinues the periodic back and forth or up and

down motion and slowly takes either a single forward or backward motion.
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4. When the wrist holding the brush suddenly stops brushing the current surface.

Two independent coders labeled all videos to annotate the start and end time of brushing

on each surface. The duration of surface transitions is usually < 300 milliseconds, and

our goal was to annotate the timings at the stroke-level precision. Therefore, instead of

using 0.96 seconds [70], we consider annotations from two coders to match only if the

discrepancy for any surface is less than a half-stroke, i.e., 150 milliseconds. We observe

342 discrepancies out of 10,230 surface annotations (3.34%). Discrepancies were resolved

via joint viewing of the segment in doubt, and a consensus was reached regarding the

labeling of the event in consideration.

5.4 Key Observations from Labeled Data

Fig. 5.5: Three axes of accelerometer and gyroscope magnitude during brushing at
different annotated surfaces.

Brushing patterns from videos have been analyzed in dentistry during habitual brush-

ing [70] and best-effort brushing [71] to assess shortcomings and to find ways to further

improve brushing habits. As these works invited participants to the study site and recorded

one episode from each participant, their observations largely focused on between-person

variability. In contrast, we ask participants to video-record themselves in their homes with-

out any explicit instructions, providing us repeated measurements from the same person in
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their natural environment. This data allows us to analyze within-person and within-episode

variability during habitual brushing.

5.4.1 Between-Surface Variability in the Time Spent on Brushing Different Surfaces
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Fig. 5.6: Difference in effective brushing duration

Table 5.1: Average duration (in seconds) of brushing on each of the nine surfaces

Surfaces EBDICU ICD IRU ILU ILD IRD OC OL OR
DM 2.50 3 5.8 5.9 9 9.2 13.3 20 23 91.7

(± SD) (±0.9) (±1.1) (±1.7) (±1.4) (±2.2) (±1.9) (±2.3) (±2.5) (±2.7) (±3.4)

Table 5.1 shows the mean and standard deviation duration of brushing on each of the

nine surfaces. Figures 5.6, 5.7, 5.8, 5.9 show detailed distribution for each episode from

each participant. Similar to [70], we find that the duration of brushing on left and right

sides (across both inner and outer surfaces) are similar. But, we find that the total effective

duration of brushing in our dataset is significantly lower at 92 seconds, compared with 155
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Fig. 5.7: Difference in total duration of brushing on In and Out surfaces.

seconds in [70] and 207 seconds in [71]. We make several new observations regarding

between-surface variability.

To test statistical significance, we take pairwise percentage difference in duration be-

tween two brushed surfaces, i.e., ratio of brushed surfaces for all the brushing episodes

across all the participants. We want to find a value a such that mean of the percentage

difference is significantly greater than the value a. Without loss of generality, we assume

the mean of percentage differences is positive (otherwise we switch two duration lists). To

find the value of a, we perform a left tailed t-test where the alternative hypothesis is mean

µ < a. We want to find the maximum a such that using a t-test we can reject the null

hypothesis that the mean of the list is a, i.e., H0 : µ = a.

Participants spend 40% more time brushing their outer (i.e., buccal or labial) teeth sur-

faces than their inner (i.e., lingual and occlusal) teeth surfaces across both upper and lower

jaw. (p-value <0.008)
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Fig. 5.8: Difference in total duration of brushing on Center, Left, and Right surfaces.

Participants spend 75% less time brushing their center (i.e., anterior) teeth surfaces as

compared to their left or right surfaces (i.e., posterior). (p-value <0.009)

When brushing on inner (i.e., lingual) teeth surfaces, participants spend 75% more time

in brushing down surfaces vs. up surfaces. (p-value <0.009)

The duration of the most brushed surface within an episode is 11 to 19 times the dura-

tion of the least brushed surface. But, the least- and most-brushed surfaces are not the same

in all episodes. (p-value <0.0003)

5.4.2 Between-Person Variability in the Brushing Time on Each Surface

Between-person variability in brushing patterns have been reported previously [70, 71].

As Figures 5.6, 5.7, 5.8, 5.9 and 5.10 show, we also observe substantial within-person

between-episode variability in amount of time spend on brushing surfaces. Our goal here

is to quantify these differences to assess the feasibility of developing a common machine

learning (ML) model that can work for all users.
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Fig. 5.9: Difference in total duration of brushing on Up and Down surfaces.
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Fig. 5.11: Person-to-population similarity in the amount of time spent in each surface

Similarity of Persons with the Population Profile in Time Spent on Each Surface:

First, we quantify how many participants have a brushing duration profile that matches

the population average. For that, we represent each brushing episode as a duration vector of

all the brushing surfaces, i.e., a nine value vector. This way, we form a list of vectors with

one participant’s data and combine list of vectors from the rest of the participants to create

a population profile. From these two lists of vectors, to find whether a participant’s data

approximates the population profile, we perform the χ2-test (Chi-squared test). We repeat

this process for all the participants, and the resulting p-values are shown in Figure 5.11. We

see that only 2 out of 19 participants share profiles similar to the population one. Therefore,

population-profile is not representative for most individuals.

Person-to-Person Similarity in Time Spent on Each Surface:

Next, our goal is to see if there are clusters of participants sharing a similar profile

amongst themselves. We test pairwise independence for all possible pairs of participants.

100



00
1

00
2

00
3

00
4

00
6

00
7

00
8

01
0

01
2

01
3

01
4

01
5

01
7

01
8

01
9

02
1

02
4

02
7

03
0

Participants

030
027
024
021
019
018
017
015
014
013
012
010
008
007
006
004
003
002
001

Pa
rt

ic
ip

an
ts

0.0

0.2

0.4

0.6

0.8

1.0

Fig. 5.12: Person-to-person similarity in the amount of time spent in each surface. Stars
show statistical significance.

We form two list of vectors from two participants following a similar method mentioned

in Section 5.4.2 and perform the χ2 hypothesis test to find if they are similar to each other.

We repeat this process for all possible pairs of participants and present the test results as a

heatmap in Figure 5.12. Each cell (pi, pj) in the figure shows the p-value of the test for pi

and pj . Only 4 out of 136 pairs show similarities in profile.

5.4.3 Within-Episode Patterns of Transitions Among Surfaces

Prior work [70] has observed preference among participants for frequent transitions

among surfaces with an average of 45 transitions in brushing episodes lasting 155 seconds,

on average. Figure 5.13 shows the distribution of average number of surface transitions

and Figure 5.14 shows the average time spent brushing a surface between transitions in our

dataset. We observe significant variability in both the frequency of transitions and the time

between transitions both between-person and within-person.
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Fig. 5.13: Number of surface transitions per brushing episode.

5.5 Overview of the mTeeth Model

Figure 5.15 presents an overview of all the steps in the mTeeth model. The input to

the model are the inertial sensor data (accelerometer and gyroscope) and the start/end of

brushing episodes from a brushing detection model such as mORAL [29]. We first define an

anchor event (detectable from sensor data) that can be used to segment the time series data

cleanly so each segment can receive the unambiguous label of one surface (in Section 5.6).

Subsequently, we develop a method to tightly synchronize sensor data with video so that

labels of surface transitions correspond to the sensor data segments at millisecond precision

(in Section 5.7). Then, we identify and compute event-based features and select distinctive

features for each surface (in Section 5.8). Finally, we train a Dynamic Bayesian Ensemble

model to assign each data segment to the most likely surface (in Section 5.9). This generates

a sequence of brushing surfaces in each brushing episodes, with its duration and the number

of strokes in it.
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Fig. 5.14: Brushing time on a surface between two transitions.
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Fig. 5.15: The pipeline of data processing stages for training and testing the mTeeth
model.

5.6 Defining and Detecting Anchor Events for Time-Series Segmentation

There is wide between-person variability in how people brush, including the pattern

of back and forth or up and down motion of the brush, time spent in each surface during

brushing, and transition sequence among surfaces. In our labeled data, we observe that the

time spent on a brushing surface varies from a few milliseconds to as long as 10 seconds.

103



This poses a significant challenge for finding an optimal window of sensor data that can be

treated as a single unit of assessment from which features can be extracted to train a ma-

chine learning model. The traditional approach of sliding or fixed time-based windowing

is unlikely to work. If we choose a window size of few milliseconds to deal with the short

duration in some surfaces, we may end up with insufficient data to find distinguishable

feature(s). If the window size is too large, several transitions occurring within it may go

undetected, resulting in missed transitions and mixing of surfaces in one window, creating

both ambiguity and mismatch in label assignment. Therefore, we seek a dynamic-length

event-based approach to data segmentation.

For an event-based approach to succeed, we need anchor events such that the likelihood

of not detecting this event is low, the event should be efficiently detectable, and the event

should cleanly isolate data segment belonging to different surfaces. When developing a

model to detect brushing [29], flossing, eating [15], drinking [67], or smoking [17, 16], a

hand-to-mouth gesture works as an anchor event. The events of hand reaching the mouth

and hand coming back from the mouth isolates segments of sensor data that can be treated

as a candidate for each of these hand-to-mouth gesture events and can be tested by the

respective machine learning models. But, the hand-to-mouth gesture only occurs at the

start and end of a brushing event and hence can’t be used to segment the sensor data within

a brushing event to distinguish among various teeth surfaces.

For our purpose, we need to find an anchor event that clearly demarcates when brush-

ing surface changes, this event occurs during most surface transitions, and the event is

efficiently detectable from sensor data. As our goal is to find the start and end times of

brushing on each surface, the transition from one surface to another initially appears to be

an obvious choice for an anchor event. But, the transition itself is so short-lived that it is

improbable to detect some of the transitions from sensor data. Moreover, some of these

transitions are difficult even to annotate from the video. Thus, accurate detection of all
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transitions is quite challenging, and failure to do so results in mixing of data from two or

more surfaces. Therefore, transitions do not qualify as the anchor events.

We have observed that there is one specific activity that is both easily detectable in

sensor signals and commonly performed across all surface transitions: brushing. During

brushing, individuals typically engage in a back-and-forth or up-and-down periodic motion

with the toothbrush. This distinctive movement pattern, referred to as a "brushing stroke,"

serves as our anchor event for surface identification.

Among the various types of brushing strokes described in the literature, such as circular

strokes [70], we have noticed that brushing strokes predominantly follow an up-down-up or

back-forth-back motion. These two primary periodic movements are consistently observed

during brushing activities. Consequently, when at least one brushing stroke is performed

on a surface, its trace tends to be retained in the sensor data, minimizing the likelihood of

missing a stroke and reducing surface identification errors.

Additionally, we have observed that no brushing strokes occur between surface transi-

tions. This absence of brushing strokes between transitions ensures that there is no mixing

of signals from different surfaces within any given segment of sensor data used for surface

identification by a machine learning model. This further enhances the accuracy of surface

identification by preventing the confounding influence of brushing strokes on adjacent sur-

faces.

By leveraging the distinctive brushing stroke pattern and its absence between transi-

tions, our approach effectively addresses the challenges associated with surface identifica-

tion using sensor data. It provides a reliable and accurate means of differentiating surfaces

based on the presence or absence of brushing strokes, thereby enhancing the overall per-

formance and robustness of the surface identification algorithm.
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Fig. 5.16: Brushing Strokes.

5.6.1 Brushing Stroke Detection

To efficiently detect brushing stroke from sensor data, we identify the signature of pe-

riodic up-and-down or back-and-forth movement in the wrist-worn accelerometer signal in

the form of a peak-valley pair.

Figure 5.16 shows plots of three axes accelerometer signal and its magnitude during one

such surface brushing. In the signal time series, we define peak as the point in each cycle

where the signal is at its maximum, whereas a valley as where the signal is at its minimum.

We mark those peaks and valleys of a signal with black up-pointing and down-pointing

triangles, respectively. Let P = {p1, p2, ..., pn} be the peaks, and V = {v1, v2, ..., vn} be the

valleys. Once we carefully detect all these peaks and valleys using a peak-valley detection

algorithm, we define brushing stroke as a cycle of valley-peak-valley combination, i.e., an

ith brushing stroke is Si = ⟨vi, pi, vi+1⟩.
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Fig. 5.17: 2D Gaussian Kernel density function of rising stretch and falling stretch.

Now, in Figure 5.16, we observe series of peaks and valleys in all the four signals, but

most of them are temporally unaligned across the signals. Since we get four sequences of

peak-valley cycles or therefore strokes, out of these four signals, we need to select the one

that will represent the start and end times of the brushing strokes optimally. We note that

even though the magnitude contains information from all the three axes, it is not a suitable

choice due to lack of synchronized alignment across the three axes.

We first define the stretch of a stroke as the difference between the amplitude of its peak
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Fig. 5.18: Stroke-wise computed features from the accelerometer signal.

and valley. If the stretch of a stroke along any axis is low, that corresponds to having least

wrist movement along that axis at that moment. Conversely, if the stretch of a stroke along

an axis is high, that signifies a likely wrist movement along that axis during a brushing

stroke, making it the dominant axis for this stroke. Hence, we select a brushing stroke along

a particular axis that has the maximum stretch. To brush different surfaces, orientation

of the wrist changes, so does the movement of the toothbrush along with it. Following

the movement, the acceleration of the wrist along a particular axis changes the most. In

addition, we observe that the dominant axis remains unchanged throughout brushing on a

single surface. When the user switches to the next brushing surface, depending on the type

of surface, the dominant axis may either change or continue to be the same.

To distinguish brushing from other activities (e.g., walking) which also involves peri-

odic wrist movement, we define two thresholds, Tdur and Tstretch such that for any ⟨vi, pi, vi+1⟩

peak-valley cycle to be a brushing stroke, the time difference between vi+1 and vi can be

at most Tdur and the stretch needs to be at least Tstretch. The average duration of a stroke
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is 230(±60) milliseconds, and the average stretch is 0.57(±0.35)g. We remove all peak-

valley cycles that are two standard deviations away from the mean stroke duration and

the mean stroke stretch. These thresholds retain all the brushing strokes in our data, i.e.,

achieve 100% recall.

5.7 Fine-grained Time synchronization between video and sensor data

Transition time (in seconds) 

D
en

si
ty

Fig. 5.19: Distribution of transition time

A key premise for our categorization of human teeth into nine surfaces is that the pattern

of brushing on each of these surfaces is likely to be sufficiently unique making the corre-

sponding sensor data distinguishable. But, to enable successful modeling for recognizing

each of the nine surfaces from sensor data, a brushing episode should include at least a few

seconds of brushing on each surface interspersed with milliseconds of surface switching

times (Figure 5.19). However, in reality (see Figure 5.20) some users spend only millisec-

onds on a surface before switching to another surface. Thus, for accurate estimation of

brushing surfaces from such short spans of time, precise time synchronization between the
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sensor and video data becomes critical. More specifically, we need to synchronize the start

of a brushing session extracted from the video data with that of brushing events automati-

cally detected from inertial sensors [29] at millisecond-level precision.

Even though it was assumed in [29] that the mORAL dataset has tight time synchro-

nization between video and sensor data, we find that the video and sensor data have a time

synchronization error of several seconds (see Figure 5.21 for an example). This may be

because even though the sensor data from wrist-worn devices were streamed in real-time to

the same phone recording the video, time lapse between the sensor data being received on

the phone and assignment of a timestamp to them may be of the order of seconds. For the

task of detecting the start and end of a brushing session that lasts 2 minutes, few seconds

of time lapse may be tolerable. But, for our purposes where the brushing duration on a

surface and transition times are only few milliseconds long, time synchronization errors of

seconds can render the modeling process extremely challenging. If the lag between video
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and sensor data is not adjusted properly, part of sensor data which is actually a surface may

be mistaken for a transition and vice-versa, or data from different surfaces may get mixed.

The performance of a machine learning model will suffer as the quality of these labels drive

the accuracy of the model.

5.7.1 Time Synchronization Problem

0.0 2.5 5.0 7.5 10.0
Time since the video start (in seconds)

Ax

Ay

Az

Brushing start
(from Video) (from Sensor)

1.73 s

Fig. 5.21: Time difference between brushing start from video and from sensor to show the
time synchronization problem.

We start by defining the time synchronization problem. Let the start time of the ith

brushing event, based on video time be tvi . From the time at which sensor data is captured
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Fig. 5.22: Our approach to solve time synchronization. The top figure shows annotation
before time synchronization where green start are the detected transitions from the sensor.
The bottom figure shows annotation after time synchronization.

by the wrist device to when it reaches the smartphone and receives a timestamp, there is

a time lag. We need to find the offset oi such that when added to tvi , it corresponds to the

starting time of the ith brushing event from sensor data tsi . Therefore, oi = tsi − tvi . Since

each packet of sensor data contains both accelerometer and gyroscope data, offsets are the

same for both.

A brushing event is composed of multiple bushing strokes. Using the brushing stroke

detection method discussed in Section 6.9, we can extract the start times of all brushing

strokes and use the first stroke from both video and sensor data to synchronize. Since this

method is based on accurately locating the first stroke in both video and sensor data, there

are at least two cases when this method may fail. First, several participants start brushing

before starting the video, missing the first stroke in video. Second, when participants put

toothpaste on the brush head, even one up-and-down or back-and-forth movement may

create a false first brushing stroke pattern in the sensor data. Therefore, we next propose a

more robust method for time synchronization.
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5.7.2 Multi-point Synchronization Approach

We observe that during some transitions from one brushing surface to another, e.g.,

from left to right, the wrist rotation is significantly higher than that when brushing on any

surface. The gyroscope can detect hand rotation, and the contrast in magnitude between

brushing and some of the surface switching are clearly identifiable from the gyroscope

signal in Figure 5.22. Note that for several transitions, the amount of rotation is negligible.

But, if we can detect some surface transitions from the sensors, we can map these detected

transitions with annotated transitions and find the offset for the synchronization. We build

upon this idea to solve the time synchronization problem. Our algorithm consists of three

main steps described below.

(Step 1) Rotation-based Transition Detection: During brushing, the wrist moves lin-

early back and forth or up and down, which are captured by accelerometers. When transi-

tioning from one surface to another, if the wrist holding the brush changes the direction of

movement, a rotational change is seen in gyroscope.

To find rotation-based transitions, we first compute the gyroscope magnitude from the

3-axes gyroscope data. Then, we normalize the gyroscope magnitude. To amplify the dif-

ferences between rotation during brushing and rotation during transition, we take the expo-

nential of each value of the normalized gyroscope magnitude sample. We find a threshold

such that if the gyroscope value is higher than the threshold, we consider it as the beginning

of a transition. To find the threshold, we first apply the Gaussian Mixture Model (GMM) to

find two clusters: one for the lower values (during brushing or stationary) of the signal and

the second for higher values (during transition). All the points in Cluster 2 are considered

as transitions and time of those points are stored in T.

(Step 2) Candidate Offset Detection: Let TG be the transitions from the video annota-

tion. We seek to maximize the matching between the detected transitions from sensor and

video. Therefore, we compute all the possible offset values to identify candidate offsets as

O = {(t− tg)}t∈T,tg∈TG .
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(Step 3) Selecting the Best Offset: To find an offset that maximizes the number of

matching, we find total matchings for each candidate offset value. We align the timing of

the detected transitions by adding a candidate offset to the timestamp of each transition.

We then find the closest distance from the marked transitions from video (i.e, ground-

truth). If this distance is < ϵ, we consider it a match. Then, we compute the number of

detected transitions with a match. Finally, we select the offset that maximizes the number

of matching to align the timestamp between video and the sensor data.

5.8 Stroke-wise Feature Extraction and Selection

After identifying brushing strokes as events within a brushing episode to segment the

sensor data stream, we identify and compute several features from sensor data comprising

each brushing stroke. We identify those features that are expected to vary during brushing

of different surfaces, contributing to successful differentiation among each of them from

the sensor data using a trained machine learning model.

5.8.1 Accelerometer Features

In Figure 5.18, we define brushing stroke i as a tuple of three points in a signal.

Let (time(vi), value(vi)) be the (timestamp, amplitude) of the valley vi and (time(pi),

value(pi)) be the (timestamp, amplitude) of the peak pi of the ith brushing event. We iden-

tify 8 distinct features that are computed from the accelerometer 3-axes signal.

• Peak Amplitude: Peak amplitude corresponds to the amplitude value (value(pi)) in

each stroke duration, where the signal is at its maximum.

• Valley Amplitude: Valley amplitude corresponds to the amplitude value (value(vi))

in each stroke duration, where the signal is at its minimum.

• Rising Stretch: Rising stretch is defined as the difference in amplitude of the peak

(value(pi)) and the valley immediately appearing before it (value(vi)) of the ith

brushing cycle/stroke duration (see Figure 5.18).

• Falling Stretch: Falling stretch is defined as the difference in amplitude of the peak
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(value(pi)) and the valley immediately following it (value(vi+1)) of the ith stroke

duration (see Figure 5.18).

• Rise-Fall Ratio: Rise-Fall ratio is defined as the ratio of rising stretch to the falling

stretch.

• Rising Duration: Rising duration corresponds to the time elapsed from a valley of a

stroke duration, to the subsequent peak (see Figure 5.18).

• Falling Duration: Falling duration corresponds to the time duration between a peak

and the subsequent valley in a stroke duration (see Figure 5.18).

• Stroke Duration: Stroke duration is the sum of rising and falling duration.

We compute the above eight time-domain features for each of the 3-axis and magnitude

signal of the accelerometer for a brushing stroke, resulting in a set of 32 features. In

addition to these features, we compute Correlation measure that expresses the extent to

which two variables are linearly related. As a result, three more correlation features among

X, Y and Z axes are added, namely corrXY, corrYZ, and corrZX. In total, we have a set

of 35 features computed for each brushing event or stroke.

5.8.2 Gyroscope Features

In addition to the accelerometer features, we also compute several features from gyro-

scope data. Since the gyroscope captures the amount of rotation in each axis, which is used

to capture the surface switching/transition, we compute several statistical features, such as

mean and standard deviation, to obtain the transition and the amount of rotation within

each stroke. In total, we compute six features from three axes.

5.8.3 Orientation Features

The wrist’s orientation with respect to gravity during brushing varies from surface to

surface because of the position of the surface and angle of the wrist with the elbow. Recall

that a brushing stroke consists of one forward movement (from the valley to peak in the
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signal) and one backward movement (from peak to next valley). During these two move-

ments, the wrist has linear acceleration, but at the peak, the wrist gets stable, i.e., no linear

acceleration, and prepares to move in the other direction. To capture the wrist’s orientation,

we compute roll, pitch, and yaw when the wrist is at the peak, i.e., at a stable state.

5.9 Model Selection and Training

During routine dental care, people generally initiate brushing sequence with the outer

surface, followed by the inner surfaces. We observe a similar pattern among the study

participants where they start and more importantly, cover all the portions of the outer sur-

face first before moving onto the inner surface. To capture the natural layered hierarchy

that is also captured in our organization of teeth surfaces (i.e., in/out, left/right/center, and

up/down) as well as sequence of transition from one surface to the next, we select a hi-

erarchical model that allows leveraging of any sequence patterns. We train a Hierarchical

Bayesian Network for our model training.
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Fig. 5.23: Bayesian network with state transition

5.9.1 Bayesian Ensemble Method

A Bayesian network is a type of probabilistic graphical model that uses Bayesian in-

ference for probability computations. Bayesian network aims to model conditional depen-

dence, and therefore causation, by representing conditional dependence through edges in a

directed graph.
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Architecture of the Bayesian network for our brushing surface detection problem is

shown in Figure 5.23. We organize the nine surfaces in the three surface layers as SIO =

{I, O}, SCLR = {C,L,R}, SUD = {U,D, ∗}, with ∗ denoting the ambiguity between up

and down for the outer surfaces. Since any surface label is a combination of nodes from the

tree layers, the class label set for the nine brushing surfaces is, s ∈ S ⊂ SIO×SCLR×SUD.

Now, for a given feature vector f ∈ F of a brushing stroke, the model computes the

likelihood of each surface label s ∈ S as the predicted class using conditional probability

Pr[S = s|F = f ]. The model then outputs the class with the maximum probability as the

final prediction for the brushed surface, i.e., s = argmaxs∈SPr[S = s|F = f ].

Inference: For any feature vector f of brushing stroke, to compute probability of any

surface s ≡ (x, y, z), where s ∈ S, x ∈ SIO, y ∈ SCLR, and z ∈ SUD, we use the

following joint probability distribution function,

Pr[S = s|F = f ] = Pr[SIO = x, SCLR = y, SUD = z|F = f ]

=
(
Pr[SIO = x|F = f ]× Pr[SCLR = y|F = f, SIO = x]

× Pr[SUD = z|F = f, SIO = x, SCLR = y]
)

(5.1)

For example, probability of surface label S = ICU is computed as,

Pr[S = ICU |F = f ] =
(
Pr[SIO = I|F = f ]

× Pr[SCLR = C|F = f, SIO = I]

× Pr[SUD = U |F = f, SIO = I, SCLR = C]
)

(5.2)

To compute these conditional probabilities, we learn a machine learning classifier–

Random-forest model in each layer (a brief description of all the models is listed in Ta-

ble 5.2 and Table 5.3). We then ensemble the outputs of these machine learning models

using Equation 5.1 to produce the final output of the model.
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Table 5.2: All the models that generate all required conditional probabilities

Models Tasks (Generates probabilities of surfaces)
MIO(f) ‘in’ and ‘out’ from feature vector f of a stroke
MCLR|I(f) ‘center’, ‘left’, and ‘right’ from f given SIO = I
MCLR|O(f) ‘center’, ‘left’, and ‘right’ from f given SIO = O
MUD|I,C(f) ‘up’ and ‘down’ from f given SIO = I and SCLR = C
MUD|I,L(f) ‘up’ and ‘down’ from f given SIO = I and SCLR = L
MUD|I,R(f) ‘up’ and ‘down’ from f given SIO = I and SCLR = R

Table 5.3: All the models that generate outputs

Models Outputs
MIO(f) ⟨Pr[SIO = I|f ], P r[SIO = O|f ]⟩
MCLR|I(f) ⟨Pr[SCLR = C|I, f ], P r[SCLR = L|I, f ] , Pr[SCLR = R|I, f ]⟩
MCLR|O(f) ⟨Pr[SCLR = C|O, f ], P r[SCLR = L|O, f ] , Pr[SCLR = R|O, f ]⟩
MUD|I,C(f) ⟨Pr[SUD = U |C, I, f ], P r[SUD = D|C, I, f ]⟩
MUD|I,L(f) ⟨Pr[SUD = U |L, I, f ], P r[SUD = D|L, I, f ]⟩
MUD|I,R(f) ⟨Pr[SUD = U |R, I, f ], P r[SUD = D|R, I, f ]⟩

5.9.2 Dynamic Bayesian Ensemble (DBE) Method

Despite the wide variability in the brushing duration on each surface, we also observe

stable patterns in surface transitions [24] for most of the participants, as shown in Fig-

ures 5.24, 5.25, 5.26 and 5.27. Dynamic Bayesian Ensemble (DBE) method uses the

transitions to update the probabilities when it computes the probability of a surface that is

different from the previously detected surface. Let T ∗ be the transition probability matrix,

where each T ∗
i,j is the transition probability from surface i to surface j, where i, j ∈ S. We

use the ∗ in a symbol to denote that the states can be over all nine surfaces or only over the

groups of surfaces. We end up with four transition matrices, one for all nine surfaces and

one each for the three layers. Note that we only consider transition probability when the

current surface is changed, i.e., Ti,i = 0. Therefore, the updated probabilities are computed
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Fig. 5.24: Consistency in state-to-state transitions for participant ‘001’

as follows,

Pr′[S∗
t = x|Ft = ft, S

∗
t−1] =


Pr[S∗

t = x|Ft = ft] , if S∗
t−1 == x

α ∗ Pr[S∗
t = x|Ft = ft] + (1− α) ∗ T ∗

y,x , else if S∗
t−1 == y,∀y ̸= x

Here, ft is the feature vector of tth brushing stroke, α is the parameter of the weighted

average of two values, and Pr[S∗
t = x|Ft = ft] is computed using Equation 5.1. We use

Pr′ to denote the updated probability.
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Fig. 5.25: Consistency in state-to-state transitions for participant ‘003’

Inference:

The selected class of tth brushing stroke is given by

st =s∈S Pr′[St = s|Ft = ft, St−1 = st−1],

where ⟨f1, f2, ..., fm⟩ denotes a sequence of features. The model produces the surface

sequence, i.e., ⟨s1, s2, ..., sm⟩.
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Fig. 5.26: Consistency in state-to-state transitions for participant ‘013’

5.10 Model Evaluation

The dataset we use confirms the wide between-person variability reported in dentistry [70,

71]. Additionally, it reveals substantial within-person between-episode variability not ana-

lyzed in prior works due to lack of such data. Recent works on detecting brushing patterns

from wrist-worn inertial sensors [24, 69] collected multiple episodes from the same par-

ticipants, but used 10-fold cross-validation. Hence, between-person generalizability of a

machine learning model for detecting brushing surfaces has not yet been studied. The

dataset we use has a larger number of episodes compared with [70, 71], more participants

as compared with [24, 69], and is unique in representing natural brushing patterns in the
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Fig. 5.27: Consistency in state-to-state transitions for all participants

users’ home environment, without any specific brushing instructions (as in [24, 69]) that

may reduce the natural between-person variability. To evaluate the between-person gen-

eralizability of our model, we start with Leave-One-Subject-Out-Cross-Validation (SCV),

but also present 10-fold cross-validation (10CV) results to both allow a comparison with

recent works on brushing surface detection and to show the impact of between-person vari-

ability in natural brushing on the model’s performance. In addition, to study the impact of

within-person variability among brushing episodes, we also perform Leave-One-Episode-

Out-Cross-validation (ECV), where for each participant, we take one brushing episode as
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test data and the remaining episodes from that participant as training data, yielding a per-

sonalized model for each participant.

We start by evaluating the accuracy of detecting brushing strokes, which is a key en-

abling and distinguishing aspect of our model. Next, we evaluate the performance of our

model for surface detection via all three validation methods. Finally, we study the impact

of time synchronization on model performance, and conclude our evaluation by reporting

the accuracy of estimating the total brushing duration on each surface, that can improve

oral care.

5.10.1 Accuracy in Detecting Brushing Strokes
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Fig. 5.28: Distribution of stroke count differences between detected stroke counts and
ground-truth

To evaluate the accuracy of our brushing stroke detection method (see Section 6.9), we

compare the number of brushing strokes detected in each brushed surface from sensor data

with that from video annotation. As annotating each brushing stroke (lasting only millisec-

onds) for all the episodes is even more arduous than annotating each brushing surface, we
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Fig. 5.29: Scatter plot of actual count vs. detected count of brushing strokes in a brushing
surface

limit our annotation to 1,456 brushing strokes from 100 surfaces. For each surface, we

count each and every periodic movement (valley-peak-valley) with no condition imposed

on brushing strokes for each of the x, y and z-axis of the accelerometer separately and

also through our brushing stroke detection model discussed in Section 6.9. We calculate

the difference between the counts of brushing strokes from sensor data and that from video

annotation for each annotated episode and present the results in Figure 5.28. We observe

from the distributions that our proposed method results in the lowest error (mean absolute

error is 1.5). In Figure 5.29, the scatter plot shows the counts of brushing strokes from

the video and sensor data using our proposed method. We observe that most of the errors

are limited to no more than 2 strokes, even when the number of strokes are as high as 40

(in a brushing surface). We note that [24] estimated the number of brushing strokes using

acoustic sensors with an average error of 10.3%, leaving the task of stroke detection using
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inertial sensors open. Our stroke detection algorithm solves this open problem with less

than 4.2% error.

5.10.2 Impact of Between- and Within-Person Variability on Brushing Surface De-

tection

We trained Naive Bayes (NB), Random Forest (RF), Bayesian Ensemble (BE), and Dy-

namic Bayesian Ensemble (DBE) for brushing surface detection (see Figure 5.30) and find

that the DBE produces the best performance (for 10 CV). Hence, we use DBE for subse-

quent evaluations. As brushing recommendations are usually based on broad surface cate-

gory, we begin by evaluating the performance for detecting the three surface layers. Recall

that our Bayesian Ensemble model consists of six models each of which is a Random-forest

classifier, as shown in Table 5.2. We evaluate the performance of each model for classi-

fication at each teeth surface layer and present the results in Figure 5.31. Note that any

model in the form of Mx|y is trained on a filtered dataset belonging to surface label y from

the upper layer. For example, MCLR|I is trained on only the feature set from inner surface.

Table 5.4 shows the results for both SCV and 10CV. The MUD|I,C model for inner-center

surfaces achieves the best performance.

For nine-surface classification, the model obtains median recall, precision and F1-score

of 65.26%, 65.30% and 63.14% for SCV, which improves to 82.14%, 82.66% and 79.50%

for ECV, and further improves to 87.06%, 86.96% and 86.02% for 10CV. Low perfor-

mance for SCV as compared with 10CV (used in prior works on brushing surface de-

tection [24, 69]) can be explained by wide between-person variability. As described in

Section 5.4.2, there does not exist a population profile or even clusters of participants with

similar brushing patterns (see Figures 5.10, 5.11 and 5.12). Hence, a model trained on

other participants’ data performs poorly when tested on a different participant.

We observe that training a personalized model for ECV improves the performance sub-

stantially from SCV, but still falls short of the 10CV performance due to within-person

between-episode variability exhibited in natural brushing habits of participants (see Sec-
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Table 5.4: Cross Validation performance for identifying broad teeth surface categories.
Median values are reported here.

MIO(f) MCLR|I(f) MCLR|O(f) MUD|I,C(f) MUD|I,L(f) MUD|I,R(f)
SO 10F SO 10F SO 10F SO 10F SO 10F SO 10F

R(%) 77.6 94.1 83.9 94.1 85.8 96.8 86.8 100 65.4 96.6 77.5 97.1
P(%) 79.3 94.1 84.1 94.4 88.9 96.9 100 100 81.3 96.9 78.5 97.4
F1(%) 77.4 93.9 82.2 94.2 84.9 96.8 91.7 100 60.9 96.5 72.1 97.1

tion 5.4.2). Figure 5.33 displays breakdown of the result by participant with individual

precision, recall and F1-score to show participant wise between-episode variability. We

compute between episode variability as follows: as discussed in Section 5.4.2, each episode

is represented as a duration vector of all the brushing surfaces, i.e., a nine value vector, and

we use the Euclidean distance metric to compute the distance between two such vectors.

We compute Euclidean distance of all pair-wise combinations of a participant’s episodes

and take the mean of the distances as a representative of the between-episode variability for

that participant. To show the relative variation over the participants, we plot the normalized

measurements of all the participants. We observe that between-episode variation in the total

time spent in the nine surfaces highly affects the performance of correctly identifying the

surfaces. As discussed in Section 5.4.2, we observe that some participants completely miss

some surfaces in many of the brushing episodes due to their personal brushing habits. So,

when the model is trained with mostly missing data for a surface from most of the episodes

and asked to detect the surface when it is present in the test episode, it fails to do so.

5.10.3 Impact of Time Synchronization on Nine Surface Classification

We first manually check if the proposed method correctly synchronizes the sensor data

to the video-obtained labels. We find that 101 out of 114 episodes (88.59%) are correctly

synchronized. We carefully analyze the remaining 16 episodes and observe that wrist

movement during brushing is too slow to detect the significant rotation required to iden-

tify transitions and make a cluster. We manually synchronized these 16 episodes. Next, to

analyze the impact of time synchronization, we train a model without performing the time
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Fig. 5.30: Performance of different classification models

synchronization step. We find that the surface detection accuracy (using 10CV) drops sig-

nificantly to recall, precision, and F1-score of 75.09%, 74.02%, and 73.34% respectively,

showing a drop in F1-score by almost 13%.

5.10.4 Accuracy of Estimating Total Brushing Duration on Each Surface

Thus far, we have presented the accuracy of detecting when each surface is being

brushed. As we present in Section 5.4, participants switch frequently between surfaces,

coming back to a surface multiple times. For oral health purposes, both users and their

providers may be interested in determining the total time a user spends in brushing of each

surface in a brushing episode. Figure 5.34 shows the percent error (as compared with la-
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Fig. 5.31: Classification performance using Leave-one-subject-out cross-validation (SO)
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Fig. 5.32: Nine surfaces classification results for different types of cross-validation results
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Fig. 5.33: Nine surfaces classification results for leave-one-episode-out cross validation
results

Fig. 5.34: Accuracy of estimating total duration of brushing in different surfaces

beled data from video) in estimating the total duration of brushing on surface groups and

for each of the nine surfaces.

We observe that the median absolute error is < 7.5% for in vs. out, < 2.5% for center
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vs. left vs. right, < 7.5% for up vs. down and < 7% for all of the nine surfaces. Even

the first and third quartiles are < 5% in most cases. We notice that most errors are from

confusing some instances of out with in, right with left, and down with up.

Finally, we note that using mTeeth model can improve the estimates of start/end times

of brushing (and total duration of brushing, a widely-used clinical variable) by models such

as mORAL [29]. Our assumption is that mTeeth will be triggered upon detection of the start

of a brushing event by mORAL. mORAL considers the start of the event from when the

hand is in the upward direction, which includes putting the paste on the brush-head and

preparing to brush; and end of the event when the hand moves to the downward position.

Error in start/end times is 4.1% for the mORAL model. Once mTeeth model is activated

by mORAL, by using our stroke-based approach, the error in estimating the total brushing

duration will be reduced from 4.1% to < 0.5%.

5.11 Limitations and Future Work

The work presented here has several limitations that open up opportunities for future

work. First, our video annotation did not disambiguate between occlusal and lingual sur-

faces. As users are known to spend more time brushing occlusal and less time on lingual

surfaces [70], future work can improve on video annotation and model training to seper-

ately estimate the time spent on these two kinds of surfaces.

Second, this work did not estimate the pressure being applied during brushing, which is

also an important component of brushing efficiency. Future work can develop methods that

can leverage the stroke detection and characterization approach presented here to estimate

the pressure applied during brushing of different surfaces.

Third, this work analyzed a week worth of daily brushing data from 19 participants

during their natural brushing sessions. This work found significant variability between

episodes of the same participant, and even greater variability among participants. As a

result, although it achieved very high accuracy of classification in 10-fold cross-validation,

but found the accuracy drop for leave-one-episode-out training and drop even further for
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leave-one-subject-out training. As between-person generalizability is important for real-

life adoption of machine learning models, future work can increase the number of episodes

per person and the number of participants to determine the level at which clusters emerge

among both episodes and among users that exhibit sufficient similarity. These clusters can

then be used to develop group specific models which can more accurately detect brushing

surface for each brushing episode and for each person.

Fourth, the time synchronization method presented here missed 16 out of 122 episodes,

due to very slow brushing pace of some participants. Future work can investigate better

methods that can automatically synchronize video labels and sensor data for all episodes

without manual intervention.

Fifth, the algorithms presented here for stroke detection and time synchronization found

specific thresholds that was suitable for the current dataset. Future work can develop adap-

tive thresholds or other adaptive algorithms that can generalize to unseen datasets without

retraining. Finally, this work only observed the natural daily brushing behavior of partici-

pants and did not attempt to teach them better brushing habits. Future work can leverage

the mTeeth model to develop interventions that can help users self-reflect on their brush-

ing habits, detect regularly missed surfaces, and present personalized behavioral nudges to

help individuals optimize their oral self-care routines and proactively tackle teeth surfaces

at-risk for plaque accumulation.

5.12 Chapter Summary

The orientation of a toothbrush changes noticeably when brushing different tooth sur-

faces, resulting in detectable changes if inertial sensors are embedded in or attached to

the brush itself, as in smart or instrumented toothbrushes. However, inferring tooth sur-

face coverage from wrist-worn sensors is much more challenging because the changes are

very subtle as the general orientation of the hand does not change much when transitioning

from one teeth surface to another. Give that most brushes are manual and lack sensors, we

develop a model for leveraging sensor data from ubiquitous smartwatches to infer brush-
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ing coverage. This work presents several insights for detecting these subtle signatures and

constructs a model to distinguish among teeth surfaces and transitions between them. By

doing so, it opens up a new frontier in the detection of rare daily events such as brushing,

flossing, eating, drinking, and smoking by allowing finer-grained characterization (i.e., de-

tecting even more ephemeral embedded micro-events) of self-care activities in natural en-

vironments. This may motivate new methods for successful characterization of other rare

events such as detecting smoking with e-cigarettes that only consists of one or two puffs at

a time, classifying among different kinds of food or drink in an eating or drinking episode

by distinguishing the subtle differences in the hand-to-mouth gesture involved, and similar

other daily behaviors.
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Chapter 6

Brushing Prompt: When to Intervene?

6.1 Introduction

We have detected manual tooth brushing and flossing from wrist-worn inertial sensors.

After automated detection of brushing we need the capability of monitoring which surfaces

are not adequately being brushed. Since a primary reason for continued prevalence of

dental diseases despite regular brushing is that people may not be brushing each tooth

surface adequately, missing some surfaces completely, while spending disproportionate

time on other surfaces. Then we have detected brushing teeth surfaces from wrist-worn

inertial sensors. By analyzing the data, we know which surface needs to be more attention.

Each of these brushes and these technologies have been developed. Now with the surface

detection and intervention can be provided to users to remember to brush the right surface.

We can have a model in future that can leverage the mTeeth model to develop interventions

that can help users self-reflect on their brushing habits, detect regularly missed surfaces.

Power of the mobile sensor should be find those right time to deliver intervention, only

then it has higher chance to succeed. It is required to detect when they are about to brush.

Just detecting their when they are at sink that will not suffices because people can go the

sink many times . When they have gone to the sink to wash their hands telling them about

intervention they may not remember. So that’s why detecting about to brush moment using

wrist worn inertial sensors is important. It is also required to detect detect that a user has

started toothbrushing so that we can give intervention quickly.

A primary reason for the continued prevalence of dental diseases despite regular brush-

ing is that people may not be brushing each tooth surface adequately, missing some teeth

surfaces completely, while spending disproportionate time on other teeth surfaces. A proper

intervention can help the participants to correct their brushing habits. The success of the

intervention depends on two things – what to deliver, i.e., content of the intervention, and
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when to deliver, i.e., timing of the intervention. That is a successful intervention depends

on delivering the right content at the right time.

What to deliver: In chapter 3, we observe most of the participants spend most of the

time brushing on outer surfaces. Furthermore, they just touched few teeth surfaces without

proper brushing. The proposed mTeeth model is able to find the brushing time in each

surface with more than 90% accuracy. This model provides which surface needs to be

more attention. Detected summary of the brushing session can be very effective content of

the intervention since it can help users self-reflect on their brushing habits, detect regularly

missed surfaces.

When to deliver: After having the right content to deliver, the next task is to find the

right time to deliver the intervention. Even if we have the right content but delivered it at

the wrong time, it may not be effective. For example, if intervention is provided too early

or when the user is busy, the user may forget the missing surface in this brushing scenario.

The power of the mobile sensor enables the ability to deliver intervention at the right time,

only then it has a higher chance to succeed. All the existing works only detect after the

brushing ends. By that time, delivering the intervention to the user may be too late. The

user may not be able to go back and correct their brushing. Therefore, better chance for

the user to see the instruction and remember the message when they are about-to-brush,

that what requires detecting when they are about-to-brush. Just detecting when they are at

the sink is not sufficient because people can go to the sink many times for many reasons.

When they have gone to the sink to wash their hands, telling them what surface to brush on

might not be effective since they may not remember. Therefore detecting about-to-brushing

moments using wrist-worn inertial sensors is important.

6.2 Problem Statement

There are several observables that happens before somebody begins to brush. One of

those is walking but that is highly non-specific. Since people walk indoors more frequently,

creating many false intervention moments. Also, walking to the sink is challenging only
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with the wrist-worn inertial sensors since indoor localization requires environmental sen-

sors or some additional sensors. Thus, we seek for an event that is unique and close to the

brushing event. About-to-brushing events pertain to actions like applying toothpaste to the

toothbrush immediately before brushing, while the beginning of brushing refers to the ini-

tiation or initial strokes of the toothbrushing event. By detecting these pivotal moments, we

can deliver timely interventions and tailored guidance, drawing from the aggregated data

of toothbrushing activities from previous days. This approach encourages the development

of consistent and precise brushing habits.

6.2.1 About-to-Brush Moment

Take paste out

1

Open cap

2

Apply paste

3

Close cap

4

Put paste away

5

Fig. 6.1: Five micro-events for about-to-brush moment

The moments just before performing an event, known as "about-to-event" moments,

are crucial in predicting human behavior. In the context of toothbrushing, we identified

five sequences of micro-activities that constitute an about-to-brushing event:

• Take out paste: This involves retrieving the toothpaste tube from a drawer, shelf, or

counter, ensuring that toothpaste is readily available for brushing.

• Open cap: The toothpaste tube is equipped with a cap, which needs to be flipped

or rotated to access the toothpaste. Opening the cap signifies the readiness to apply

toothpaste.
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• Apply paste: Applying toothpaste onto the toothbrush is a key step in the toothbrush-

ing process. It involves squeezing the toothpaste tube with one hand while holding

the toothbrush with the other.

• Close cap: Once the desired amount of toothpaste has been dispensed, the cap of the

toothpaste tube is closed by flipping or rotating it.

• Put paste away: After applying toothpaste, the toothpaste tube is returned to its

original location, and the toothbrush may be moistened with water before starting

the brushing activity.

These sequences of micro-activities form a specific pattern that characterizes the about-

to-brushing event as shown in Figure 6.1.

There are instances when people engage in similar activities, such as taking out a comb

or utensils while cooking, which reduces the specificity of the action of taking out the tooth-

paste. Similarly, opening a cap is not commonly associated with combing hair. However,

the sequence of taking out the paste, followed by opening the cap, adds a level of speci-

ficity. Nonetheless, it is important to note that other scenarios, such as applying cream to

the face or painting, can involve similar actions.

To further refine the specificity, we introduced the sequence of taking out the toothpaste

tube, opening the cap, and then applying the paste. This combination narrows down the

context to toothbrushing-related activities. However, it is worth mentioning that the act

of hand proximity to the mouth and taking a puff while smoking closely resembles the

sequence of opening the cap and applying the paste.

By incorporating the additional steps of closing the cap and putting the paste away, the

problem becomes significantly more specific, aligning with the distinct pattern of tooth-

brushing activities. These sequences provide a clearer understanding of the context and

enable a more precise identification of the about-to-brushing event.
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6.2.2 Brushing Initiation

Brushing initiation means we can use some initial portion of brushing. How early in

the brushing episode could we detect that person is now brushing. If we can detect initially

few brush stroke then it prompt the intervention during the initial portion of brushing. It

should still work and increase the detection accuracy. We need reliable stroke detection

though mTeeth [30] has stroke detection model but it not be applicable here. mTeeth stoke

detection only applied during toothbrushing brushing time to detect toothbrushing surface

where as precision is high. However, for this intervention problem we have to apply new

stroke detection model to detect toothbrushing activity from whole day time series data.

This new stroke detection model should Filter the periodic signal such as walking, tooth-

brushing. Here we have to concentrate two criteria such as

• How quickly can we detect that a user has started toothbrushing?

• What is the minimum number of strokes typically associated with random activities

other than toothbrushing?

6.3 Related Works

The paper by Rahman [77] focuses on developing a predictive model for identifying

"about-to-eat" moments to support just-in-time eating interventions. Using a mobile appli-

cation, researchers collected data on participants’ eating behaviors, including meal time,

location, duration, and contextual information. The machine learning model, utilizing fea-

tures such as time, location, social context, and user behavior patterns, successfully pre-

dicted these moments with high accuracy. The study suggests leveraging this predictive

capability to deliver personalized interventions for healthier eating habits, such as provid-

ing suggestions or messages prior to predicted eating events. Overall, the paper highlights

the potential of predictive models and mobile technology in promoting healthier dietary be-

haviors by intervening at crucial moments in individuals’ eating routines (Rahman, 2016).

The paper by Gustafson et al [78] discusses a mobile technology-based system aimed
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at improving outcomes for individuals in recovery from alcohol dependence. The system

integrates mobile phones, web interfaces, and interactive voice response (IVR) systems to

deliver evidence-based interventions, support self-monitoring, and facilitate communica-

tion. By incorporating theories and frameworks such as the Transtheoretical Model and

Motivational Interviewing, the system addresses individual needs and stages of change.

Pilot studies suggest that the system has the potential to enhance treatment adherence, in-

crease abstinence rates, and improve self-efficacy. Overall, the paper highlights the promise

of mobile technology in supporting alcohol dependence recovery.

The paper by Mohr et al. [79] presents the Behavioral Intervention Technology (BIT)

model—an integrated framework for eHealth and mHealth interventions. The model com-

bines behavioral science theories with technological advancements to improve the effec-

tiveness and reach of digital interventions. It comprises theory, content, features, and hu-

man support components. The BIT model offers benefits such as increased accessibility,

scalability, and personalization of interventions. The paper emphasizes the importance of

rigorous evaluation and continuous refinement of interventions based on user feedback and

data analysis. Overall, the BIT model aims to optimize the impact of digital interventions

on health behaviors and outcomes.

The paper by Pina et al. [80] explores the use of mobile technology to provide in

situ cues for parents implementing ADHD parenting strategies. They developed a mobile

application that delivers real-time prompts and reminders based on the child’s behavior,

location, and time of day. User studies showed positive feedback, indicating that the cues

helped parents stay consistent and manage challenging behaviors. The authors suggest

that mobile applications with in situ cues can enhance ADHD parenting interventions and

provide valuable support to families in real-time.

The paper by Wansink and Johnson [81] explores the "clean plate" behavior, finding

that approximately 92% of self-served food is eaten. The study highlights the influence of

environmental factors, such as plate size, on food consumption. Larger plates tend to lead
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to larger portion sizes and increased food intake. The findings underscore the importance

of mindful portion control to support healthy weight management.

The paper by Witkiewitz and Marlatt [82] discusses relapse prevention for alcohol and

drug problems, comparing the Zen and Tao approaches. The Zen approach emphasizes

acceptance, mindfulness, and non-attachment to cravings, while the Tao approach focuses

on balance and addressing underlying imbalances contributing to substance use. The au-

thors suggest that integrating elements from both approaches can lead to comprehensive

and effective relapse prevention strategies. They emphasize the importance of tailored in-

terventions, including cognitive-behavioral techniques, coping skills training, and social

support. By combining acceptance, mindfulness, balance, and ongoing support, individ-

uals can enhance their chances of maintaining long-term recovery from alcohol and drug

problems.

The paper [83] explores the application of offline contextual multi-armed bandits (CMAB)

for mobile health interventions, specifically focusing on emotion regulation. The study de-

velops a recommendation system using offline data to provide personalized interventions

for individuals seeking support in emotion regulation. Through a case study, the researchers

evaluate the performance of the offline CMAB approach by collecting data from a mobile

health app. The study demonstrates the potential of offline CMAB algorithms in deliver-

ing personalized mobile health interventions for emotion regulation, leveraging contextual

information to provide tailored recommendations for effective emotion management. The

findings contribute to the field of mobile health interventions, showcasing the effectiveness

of CMAB algorithms in providing personalized support for individuals’ emotional well-

being.

The paper [84] introduces the Food Watch system. This system utilizes wearable sen-

sors and video recordings to capture hand-to-mouth gestures during meals, enabling the de-

tection and characterization of eating episodes. Through experiments, the authors demon-

strate the accuracy of the Food Watch system in identifying eating behaviors and discuss

139



its potential applications in dietary monitoring, weight management, and behavioral inter-

ventions for promoting healthier eating habits. Overall, the paper showcases the feasibility

and effectiveness of utilizing feeding gestures to monitor and analyze eating episodes for

various health-related purposes.

The paper Fingerprints [85] system, which uses mobile sensing to detect and categorize

meaningful moments for health interventions. By combining data from various sensors, the

system identifies contextually relevant moments in individuals’ daily lives that can be tar-

geted for interventions. The research validates the effectiveness of Fingerprints in detecting

and classifying these moments, offering potential for timely and personalized mobile health

interventions.

The paper [86] focuses on evaluating the availability of users to engage in just-in-time

interventions in their natural environment.The study aims to understand the feasibility of

delivering interventions at the right moment by assessing users’ availability and receptive-

ness in their daily lives. The authors conducted a research study involving participants

equipped with mobile devices and sensors to collect data on their availability, engagement

patterns, and contextual factors. Through their analysis, the researchers examine the par-

ticipants’ willingness and ability to engage in just-in-time interventions based on various

contextual factors, such as location, time of day, and activity. They discuss the implica-

tions of these findings for designing effective just-in-time interventions and highlight the

challenges associated with timing and user availability. The study provides insights into

the feasibility of delivering interventions in users’ natural environment, taking into account

contextual factors. The findings contribute to the design and implementation of effective

just-in-time interventions that align with users’ availability and enhance their engagement.

6.4 Data Overview

In the realm of data-driven decision making and analysis, understanding the character-

istics and properties of data is paramount. This chapter delves into the essential aspects

of data selection, exploration, description, and the crucial process of data labeling. The
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chapter begins by emphasizing the importance of gaining an overview of the data. A com-

prehensive data overview involves understanding the sources, formats, and structure of the

data, as well as the context in which it was collected. This step sets the foundation for

subsequent analyses and enables researchers to identify potential biases, missing values,

and other data quality issues. Next, the chapter focuses on data description, which involves

summarizing and characterizing the dataset. A comprehensive data overview involves un-

derstanding the sources, formats, and structure of the data, as well as the context in which

it was collected. This step sets the foundation for subsequent analyses and enables re-

searchers to identify potential biases, missing values, and other data quality issues. Finally,

the chapter delves into the critical task of data labeling. Labeling can be performed manu-

ally or through automated techniques, depending on the nature of the data and the labeling

task.

6.4.1 Dataset Selection

A wrist-worn inertial sensor data set consisting of labels of start/end of brushing and

flossing episodes used in our mORAL [29] study is available publicly. This study recruited

participants willing to brush at least twice — once with a manual toothbrush and once with

a SmartBrush and floss at least once a day. Each participant wore a MotionSense wristband

on each wrist during waking hours for seven days that included a 3-axis accelerometer and

a 3-axis gyroscope sampled at 16 and 32 Hz, respectively. A study provided smartphone

connected via Bluetooth technology continuously timestamped and logged incoming sen-

sor data. Besides, participants used the phone’s front camera to video record themselves (in

their homes) during brushing, flossing and/or oral rinsing. The mORAL dataset currently

consists of data from 30 participants (15 males, 15 females; mean age 28.5±10.6 years, 2

left handed).

In the public dataset, the start and end times of brushing episodes are annotated from

self-recorded videos. This annotations in the mORAL dataset 1are used for brushing ini-

1https://mhealth.md2k.org/resources/datasets.html#mORAL
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tiation model for giving intervention. However, we have also another approach for detect

about-to-brush moment for giving intervention to the people. The original annotations

in the mORAL dataset are insufficient for our modeling, because it does not include any

about-to-brush micro event annotations. We used the original videos from this study to

label precise times for each about-to-brush micro event was performed.

6.4.2 Dataset Details

Out of 412 brushing episodes of 30 participants for manual and smartbrush videos for

most of the episodes were not usable for about-to-brush micro event annotations.During

ROBAS phase 1 data collection study we did not ask for participant to record the video for

about-to-brush moment. Most of the participants did not record their pre brushing steps or

preparation steps before tooth brushing. Most of the participants record their toothbrush-

ing, flossing and rinsing steps. For that reasons, 83 brushing sessions had to be excluded

from the about-to-brush moment modeling work. We annotated the remaining 70 episodes

from 12 participants. However, for brushing initiation modeling work we use 197 manual

brushing episodes from 30 participants. Since stroke detection model does not work on

smart brush brushing episodes so rest of the 215 smart brush brushing episodes had to be

excluded.

6.4.3 Annotation Protocol for About-to-Brush Approach

We annotated data from twelve participants’ videos, focusing on four time series: about-

to-brush, tube holding wrist, toothbrush holding wrist, and active wrist. Each time series

consists of five sequences. The about-to-brush time series is labeled with the following

actions: bring, open, paste, close, and back. Bring refers to taking out the toothpaste tube

from the cabinet, open means opening the toothpaste tube cap by rotating or flipping it,

paste denotes applying the paste to the toothbrush, close indicates closing the toothpaste

tube cap, and back signifies putting the toothpaste back into the cabinet. The tube holding

wrist is labeled as the left or right wrist, depending on which wrist is used for each micro

event in the about-to-brush time series. Similarly, the toothbrush holding wrist is labeled
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as the left or right wrist, based on the wrist used for each micro event during the about-to-

brush time series.

During the annotation process, we encountered several challenges that arose from the

intricate coordination between the two wrists during the "about-to-brush" time series. Each

micro event, such as bring, open, paste, close, and back, requires a specific combination

of wrist movements. The complexity arises from the fact that the roles of the wrists can

alternate for different actions.For example, when taking out the toothpaste tube from the

cabinet, the right wrist may be primarily responsible for this task, whereas opening the

toothpaste tube cap might be better suited for the left wrist. This dynamic interplay between

the wrists can create a complex pattern of movements.

Moreover, there are instances where the roles of the wrists switch within a single micro

event. Consider the scenario where the left wrist opens the toothpaste tube cap, but the

right wrist takes charge of applying the paste to the toothbrush. These intricate variations

in wrist involvement make the annotation process challenging but essential for accurately

capturing the participants’ actions. Despite the simultaneous engagement of both wrists

throughout the "about-to-brush" time series, we made efforts to determine which wrist

played the most significant role in each micro event. By identifying the primary active

wrist, whether left or right, we aimed to provide a clearer understanding of the participant’s

actions and movements during the toothbrushing process.

This detailed annotation of the wrist activities not only contributes to a comprehensive

analysis of the brushing behavior but also opens doors for further research and potential

improvements in dental care techniques and ergonomic design of oral hygiene products.

6.5 Insights from Newly Annotated Dataset: A Descriptive Analysis

This dissertation explores various aspects of toothbrushing behaviors, aiming to un-

cover the individual differences and patterns that influence oral hygiene practices. Through

meticulous data analysis and observations, four key sections shed light on different facets

of toothbrushing, including the duration of the "about-to-brush" phase, the variability in
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opening and closing the toothpaste tube cap, the role of wrists during toothbrushing ac-

tions, and the accelerometer signals during the "about-to-brush" moment. The findings

presented in this dissertation offer valuable insights into the intricate nature of toothbrush-

ing, highlighting the need to consider individual variations in behavior and preferences.

With this knowledge, tailored recommendations and interventions can be developed to op-

timize oral hygiene practices and promote overall dental health for individuals.

6.5.1 Variability of About-to-brush Timeseries Duration

((a)) Analysis of about-to-brush moment durations
obtained from video annotations.

((b)) Distribution of about-to-brush moment
durations.

Fig. 6.2: Variability of about-to-brush timeseries duration.

Figure 6.2(a) depicts the duration of the "about-to-brush" moments for each participant,

ranging from 2.5 seconds to 14.5 seconds. The box plot showcases the person-to-person

variability in these moments. Each box represents the median duration calculated from

seven days’ worth of data for each participant. The medians range from seven seconds

to nine seconds, reflecting the varying lengths of time individuals spend in the "about-to-

brush" phase.

Additionally, Figure 6.2(b) showcases the distribution plot of "about-to-brush" mo-

ments performed by all twelve participants. This plot provides an overview of the frequency
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and spread of these moments across the entire group. It offers insights into the collective

behavior of the participants during this crucial phase of the toothbrushing process.

Together, these plots highlight the significant variability in the duration of the "about-

to-brush" timeseries among the participants, underscoring the importance of considering

individual differences in toothbrushing behavior.

Overall, these plots highlight the complex nature of the "about-to-brush" phase and the

importance of recognizing and accommodating individual differences in toothbrushing be-

haviors. This understanding can inform personalized oral care strategies, enabling tailored

recommendations and interventions to optimize oral hygiene practices for each individual.

6.5.2 Variability in Opening and Closing Toothpaste Tube Cap

Three Participants 

Nine Participants

((a)) Toothpaste tube open-close types by
participants.

3

9

((b)) Distribution of toothpaste tube open-close
type by brushing episodes.

Fig. 6.3: Variability of toothpaste tube open-close types.

We have analyzed 70 brushing episodes from 12 participants, specifically focusing on

the "about-to-brush" moment. During this phase, we observed two different types of behav-

iors in opening and closing the toothpaste tube cap. Typically, individuals either rotate or

flip the cap to accomplish this task. The distribution of these opening-closing types among

the participants is shown in Figure 6.3(a).

Interestingly, we found that only three out of the twelve participants preferred to rotate
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the toothpaste tube cap for both opening and closing. On the other hand, the remaining nine

participants consistently chose to flip the cap for both actions. This finding indicates that

individuals exhibit distinct preferences and habits when it comes to handling and accessing

the toothpaste tube.

In addition, the distribution of opening and closing methods used during brushing

episodes is shown in Figure 6.3(b). Out of the 70 recorded episodes, rotating the toothpaste

tube cap was used in 20 instances, while flipping was used in the remaining 50 episodes.

This distribution sheds light on the frequency of each method used in the overall brushing

routine.

The observed behaviors surrounding the act of opening and closing the toothpaste tube

cap just before brushing demonstrate a wide range of diversity. By comprehending these

preferences and patterns, we can enhance oral care practices and create toothpaste packag-

ing that accommodates and respects individual habits and preferences.

6.5.3 Variability in Using Wrist to Perform About-to-moment

Both wrist are active during about-to-moment. Naturally, people bring the toothpaste

tube in one wrist but open the toothpaste tube cap by another wrist. So based on active

wrist we have to detect the micro event of about-to-brush moment from that wrist signals.

Figure 6.4(a) represents the distribution of two wrists during about-to-moment. We ob-

served participants are doing much activities by using right wrist since we observed that all

12 participants are right dominant wrist. Since active wrist preserve data that which wrist is

actively doing the micro event of about-to-brush moment, we plotted another figure 6.2(a)

to represent the distribution of active wrist during each micro event. We observed most of

the participants bring the toothpaste tube by right dominant wrist, then hold the toothpaste

tube by right wrist and open the tube cap by left wrist. Most of the participants were using

right wrist to put paste in the toothbrush. Similarly for closing the toothpaste tube cap, if

participant hold the toothpaste tube right wrist then close the tube cap by left wrist. This

above about-to-moment active wrist behaviors depicts in the figure 6.5
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Three Participants 

Nine Participants

((a)) Distribution of active wrist ((b)) Distribution of active wrist for each micro-event

Fig. 6.4: Active wrist distribution during about-to-brush moment performance

Fig. 6.5: Transition between wrist during the about-to-brush moment performance.

6.5.4 Feasibility of Detecting About-to-Brush Moment using Accelerometer Time-

series

Figure 6.6 represents the signal of accelerometer during about-to-brush moment ac-

tivity. During each of the activity which wrist is active that represents by bold line. For
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example, participant bring the toothpaste tube by left wrist, then hold the toothpaste tube

by left wrist and open the tube cap by right wrist. Then using right wrist to put paste in the

toothbrush. Similarly for closing the toothpaste tube cap, participant hold the toothpaste

tube left wrist and close the tube cap by right wrist.

Fig. 6.6: Accelerometer signal for left and right wrist during the about-to-brush moment
performance.

Overall, these findings provide valuable insights into the variability of toothbrushing

behaviors, including the duration of the "about-to-brush" phase, preferences for opening

and closing the toothpaste tube cap, and the use of wrists during the process. Understanding

these individual differences can inform the development of personalized oral care strategies

and the design of toothpaste packaging that accommodates diverse habits and preferences.

6.6 Model Development for Monitoring Brushing Behavior and Delivering Timely

Interventions

We propose two approaches we design and develop to track tooth brushing behaviors

and giving intervention. One approach is to detect about-to-brush moments to give inter-

vention before starting of the tooth brushing behavior. The second approach is to detect

initial portion of the tooth brushing behavior to give intervention after starting the tooth

brushing behavior.
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6.7 About-to-brush Moment Detection Model

In Section 6.2.1, we introduced a set of sequential micro-events that occur prior to the

initiation of tooth brushing. Each micro-event is labeled and depicted in Figure 6.1. Our

objective is to accurately detect and identify these micro-events using wrist-worn inertial

sensors in real-world settings.

6.7.1 Challenges in Detecting Five Micro Events

Designing and detecting the five micro-events posed several challenges, which are out-

lined below:

• High variability in task performance: The tooth brushing task can be performed in

various ways by different individuals, leading to a high level of variability in how

each micro-event is executed.

• Short duration and lack of repetitions: Each micro-event occurs for a very brief du-

ration, ranging from milliseconds to seconds, and there are no repeated instances of

these micro-events within a single tooth brushing session.

• Hand switching and non-dominant hand dependence: The micro-events involve the

use of different hands and frequent switching of wrists during the task. Additionally,

not all micro-events are dependent on the dominant hand of the individual.

• Simultaneous actions: Some micro-events require performing two actions simultane-

ously, such as opening and bringing for flipping or closing and returning for flipping.

• Incomplete video recordings: The video recordings capturing these activities may

be incomplete or missing certain segments. Some participants start recording only

after applying the toothpaste, while others may fail to maintain a consistent timeline,

forgetting to close the toothpaste tube after opening it and proceeding with brushing.

Additionally, a percentage of participants may not exhibit certain micro-events in

their recorded videos.
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• Lack of unique patterns: In some micro-events, there is no unique visual pattern or

signal to identify the event, except for the rotation of the cap.

• Limited data for certain cap types: Two types of toothpaste tube caps are rotating and

flipping. Among the 12 participants, only three participants used the rotating cap to

open and close the toothpaste tube. Consequently, the amount of available data for

training a model is limited.

These challenges highlight the complexities involved in designing and detecting the

micro-events accurately, necessitating innovative approaches and robust algorithms to over-

come these hurdles.

6.7.2 Training data generation
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for that timeseries

Generated rotate data is sent to replacer unit

Finally flip open and close is replaced with 
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Fig. 6.7: Initially, we trained a generative model using rotation-only sensor data from
toothpaste open/close actions. Subsequently, we replaced each toothpaste open/close with
flip segment in the dataset with generated rotation-only sensor data. This augmented
dataset was then utilized for further training.

Within our dataset, we have a limited amount of data from only three participants who

performed the crucial action of rotating the toothpaste tube cap to open and close it. How-

ever, we possess a more substantial amount of data from nine participants who executed

the action of flipping the cap. To overcome this discrepancy and enrich our dataset, we em-

ployed a clever technique. We utilized the data from these nine participants who performed

the flipping action as a foundation and generated new data specifically for the rotating ac-
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tion. This was accomplished by substituting the original data with newly synthesized data

from three additional participants who were tasked with rotating the cap. By incorporating

these generated data points, we were able to capture the inherent variability and intricacies

of the participants’ movements during the rotation process. For a comprehensive overview

of the entire data generation process, please refer to Figure 6.7. In the initial phase, a

generative model was trained using rotation-only sensor data from toothpaste open/close

actions. This model generated synthetic rotation-only sensor data that replicated the pat-

terns observed during toothpaste open/close with flip segments. The generated rotation-

only sensor data was then used to replace the toothpaste open/close with flip segments in

the original dataset. This augmented dataset combined real and synthetic data, which was

subsequently used for further training. By incorporating the generated data, we aimed to

enhance the training process and improve the model’s ability to capture the distinct charac-

teristics and patterns of toothpaste open/close with flip actions.

6.7.3 Transformer-based Generative Model
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Fig. 6.8: Architecture of transformer-based synthetic sensor data generation.

The architecture Figure 6.8 of transformer-based synthetic sensor data generation en-
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compasses a sophisticated framework designed to generate synthetic sensor data using the

transformer model. This architecture leverages the power of transformers, which are highly

effective in capturing intricate patterns and dependencies within sequential data. At its core,

the architecture consists of multiple components working in synergy. The input to the sys-

tem includes a combination of real sensor data and synthetic seed data. The real sensor

data serves as a foundation, providing meaningful patterns and characteristics extracted

from actual sensor measurements. The synthetic seed data acts as a starting point, injecting

diverse and novel patterns into the generated data. The transformer model takes this com-

bined input and applies its attention mechanism to learn complex relationships between the

input sequences. The attention mechanism allows the model to selectively focus on differ-

ent parts of the input, capturing dependencies and correlations between different time steps

and sensor readings.

The learned representations from the transformer model are then fed into a generative

component, which is responsible for generating the synthetic sensor data. This component

utilizes the learned representations to generate data points that closely resemble real sensor

measurements while incorporating novel patterns and variations.

To ensure the generated data aligns with the characteristics of real sensor data, a feed-

back loop is established. The generated data is compared with the real sensor data, and

a loss function is employed to quantify the similarity between the two. This loss is then

backpropagated through the architecture, allowing the model to iteratively refine its gener-

ation process.

The architecture is trained using a dataset comprising both real sensor data and corre-

sponding ground truth labels. This training process enables the model to learn and general-

ize the underlying patterns, enabling it to generate realistic synthetic sensor data. Overall,

the architecture of transformer-based synthetic sensor data generation represents a powerful

approach for generating high-quality synthetic sensor data that closely mimics real-world

sensor measurements. It combines the strength of transformers in capturing complex de-
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pendencies with generative components to produce data that exhibits meaningful patterns

and variability.

6.7.4 Performance of Synthetic Data Generation

In this section, we evaluate the performance of our synthetic data generation approach

in replicating the characteristics and patterns of sensor data during the opening/closing of

a toothpaste cap with rotation. Our goal is to assess the effectiveness of the synthetic data

in accurately capturing the behavior and dynamics of the real-world sensor data.

To assess the performance of our synthetic data generation approach, we conducted a

comparison between the synthetic data and the ground truth real data obtained from actual

sensor recordings. This evaluation involved employing several metrics, including the mean

square error (MSE) and root mean square error (RMSE), to quantify the similarity and

reliability between the synthetic and real data.

To ensure an unbiased evaluation, we split the data into training and testing sets, with

70% of the data used for training and the remaining 30% used for testing. The model was

trained using the MSELoss loss function and optimized with the Adam optimizer.

Table 6.1: Test results

Metric Value
Mean Squared Error (MSE) 0.0005

Root Mean Squared Error (RMSE) 0.0229

Our evaluation of the synthetic data generation approach yielded promising results (Ta-

ble 6.1). The mean squared error (MSE) between the synthetic data and the ground truth

real data was found to be 0.0005, indicating a very low level of deviation. Similarly, the

root mean squared error (RMSE) was measured at 0.0229, further confirming the high sim-

ilarity and accuracy of the synthetic data in replicating the real sensor data.

These results demonstrate the effectiveness of our approach in generating synthetic

data that closely aligns with the characteristics and patterns observed in the actual sensor

recordings. The low MSE and RMSE values signify the reliability and precision of the
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Fig. 6.9: The figure illustrates the comparison between the actual and predicted signals.
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with the actual signal, demonstrating a high accuracy and similarity between the two.

generated synthetic data, making it a valuable tool for various applications and analyses in

the field of sensor data processing and modeling.
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Fig. 6.10: Generated signal is shown here from random seeds.

Figure 6.10 displays the generated signal using random seeds. Each seed corresponds

initial values of the rotation signal used to generate the signal. The plot provides a visual

representation of the resulting signal obtained from these random seeds.

6.7.5 LSTM-based Sequence-to-sequence Model for Detecting About-to-brushing

Moment

The LSTM-based Sequence-to-sequence model is designed to detect the “about-to-

brushing" moment based on sensor data. This model leverages the capabilities of Long

154



LSTM LSTM LSTM LSTM LSTMLSTM

A1

G1

A2

G2

A4

G4

o1 o2
o4 on

An

Gn

Outputs (oi):
  1 (bring)
  2 (open)
  3 (paste)
  4 (close)
  5 (back)
  0 (otherwise)

seq2seq

o3

A3

G3

…

Fig. 6.11: LSTM-based sequence-to-sequence model for detecting about-to-brushing
moment.

Short-Term Memory (LSTM) networks, which are well-suited for capturing sequential pat-

terns in time series data.

The model takes as input a sequence of sensor readings and aims to predict the occur-

rence of the “about-to-brushing" moment, which refers to the specific moment before the

initiation of the brushing action. By accurately detecting this moment, the model can pro-

vide timely prompts or notifications to users, enhancing their oral hygiene habits.

The sequence-to-sequence architecture allows the model to learn the temporal depen-

dencies and patterns inherent in the sensor data. It consists of an encoder network that

encodes the input sequence into a fixed-length representation and a decoder network that

generates predictions based on the encoded information. The LSTM units within the model

enable it to capture long-term dependencies and make informed predictions about the oc-

currence of the “about-to-brushing" moment.

The LSTM-based Sequence-to-sequence model generates outputs, denoted as ot, at

each time step. Each timestamp is assigned a specific label (an integer value), indicat-

ing the predicted action or state based on the input sensor data. The following are the

labels and their corresponding interpretations:

• 1 (for ‘bring’): signifies that the model predicts the user is in the process of bringing

the toothpaste container.
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• 2 (for ‘open’): indicates that the model predicts the user is opening the toothpaste

container.

• 3 (for ‘paste’): suggests that the model predicts the user is applying toothpaste to the

toothbrush.

• 4 (for ‘close’): indicates that the model predicts the user is closing the toothpaste

container.

• 5 (for ‘back’): suggests that the model predicts the user is moving the toothpaste

container away.

• 0 (‘otherwise’): represents any other action or state that does not fall into the above

categories. It indicates that the model does not predict the occurrence of the "about-

to-brushing" moment based on the given sensor data.

6.7.6 Detection Performance of About-to-Brush Moment

Fig. 6.12: Training and testing loss.
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The observed trend of decreasing training loss over epochs but increasing testing error

raises an interesting discussion about the generalization and overfitting of the model.

The decreasing training loss indicates that the model effectively learns and fits the train-

ing data. As the model iteratively adjusts its parameters during training, it becomes more

adept at minimizing the error between the predicted outputs and the ground truth labels

in the training set. This reduction in training loss suggests that the model is capturing the

underlying patterns and relationships present in the training data.

However, the increasing testing error suggests that the model’s performance is deterio-

rating when presented with unseen data. This phenomenon is known as overfitting, where

the model becomes too specialized and fails to generalize well to new examples. Overfit-

ting occurs when the model becomes overly complex and starts to memorize the training

data instead of learning the underlying patterns that can be applied to unseen data.

Several factors can contribute to the observed overfitting. One possible explanation is

that the model is becoming too complex relative to the size and diversity of the training

data. When the model has a large number of parameters, it can easily adapt to noise and

idiosyncrasies in the training data, resulting in poor performance on new, unseen data.

Another factor could be the lack of regularization techniques employed during training.

Regularization methods, such as L1 or L2 regularization, can help prevent overfitting by

adding penalties to the model’s loss function, discouraging excessive parameter values and

promoting simpler models.

Insufficient or unrepresentative testing data can also contribute to the increasing testing

error. If the testing set does not adequately reflect the true distribution of the target popula-

tion, the model may struggle to generalize its learnings to new examples.

Several strategies can be employed to address the issue of overfitting and improve gen-

eralization. One approach is collecting more diverse and representative data for training

and testing. Increasing the size and variability of the dataset can help the model learn more

robust and generalizable patterns.
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As mentioned earlier, regularization techniques can also be employed to introduce con-

straints and prevent the model from overfitting. By balancing the complexity of the model

and its ability to generalize, regularization methods can improve performance on unseen

data.

Furthermore, fine-tuning the model architecture and hyperparameters can also help mit-

igate overfitting. Simplifying the model by reducing its complexity, adjusting learning

rates, or exploring different optimization algorithms can lead to improved generalization

performance.

In conclusion, the observed phenomenon of decreasing training loss and increasing

testing error indicates the presence of overfitting in the model. Understanding the factors

contributing to overfitting and employing appropriate strategies, such as regularization and

data augmentation, can help address this issue and improve the model’s generalization

performance.

6.8 Alternate Intervention Opportunities: Brushing Initiation Moments

Initiating the toothbrushing process involves the crucial task of determining the precise

moment when an individual commences brushing their teeth. This prompts the question:

how early in the brushing episode can we accurately detect this initiation? Detecting the

initial few brush strokes can play a significant role in triggering timely interventions during

the early stages of brushing, thereby potentially enhancing the overall detection accuracy.

Although an existing stroke detection model called mTeeth [30] already exists, it is not

directly applicable to our specific problem. The mTeeth stroke detection model primarily

focuses on identifying toothbrushing surfaces during dedicated toothbrushing time, ensur-

ing a high level of precision. However, for our intervention problem, a different approach

is required. We need a new stroke detection model capable of effectively identifying tooth-

brushing activity from the comprehensive time series data spanning an entire day.
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6.9 Tooth Brushing Stroke

During brushing, individuals typically engage in a back-and-forth or up-and-down pe-

riodic motion with the toothbrush. This distinctive movement pattern, referred to as a

brushing stroke, serves as our anchor event for surface identification.

Among the various types of brushing strokes described in the literature, such as circular

strokes [70], we have noticed that brushing strokes predominantly follow an up-down-up or

back-forth-back motion. These two primary periodic movements are consistently observed

during brushing activities.

6.9.1 Event-based Segmentation for Brushing Stroke Detection
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Fig. 6.13: Brushing Strokes.

To effectively identify brushing strokes from sensor data, we leverage the characteristic

pattern of periodic up-and-down or back-and-forth movement captured by the wrist-worn

accelerometer signal. We define a brushing stroke as a cycle of peak-valley-peak combina-

tions, representing the characteristic motion during toothbrushing.

Figure 6.13 illustrates plots of the accelerometer signal along three axes and the ac-

celerometer’s magnitude during a small toothbrushing segment. In the time series of the

signal, we identify peaks as the points where the signal reaches its maximum, and valleys
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as the points where the signal reaches its minimum. These peaks and valleys are marked

with red up-pointing and down-pointing triangles. Let P = {p1, p2, ..., pn} represent the

set of peaks, and V = {v1, v2, ..., vn} represent the set of valleys. By accurately detect-

ing these peaks and valleys using a peak-valley detection algorithm, we can define each

brushing stroke as a combination of a valley, peak, and the subsequent valley, denoted as

Si = ⟨vi, pi, vi+1⟩.

In Figure 5.16, we can observe a series of peaks and valleys in all four signals, rep-

resenting the motion patterns during toothbrushing. However, these peaks and valleys are

not temporally aligned across the signals. Out of the four signals, we need to select the one

that can best represent the start and end times of the brushing strokes.

Upon analysis, we find that the magnitude signal, which incorporates information from

all three axes, is not suitable for this purpose due to the lack of synchronized alignment

across the axes. However, we notice that the peak-valley cycles from the Z-axis signal

exhibit better alignment with the ground truth obtained from video recordings.

Based on this observation, we consider the segments created by the Z-axis signal as

candidate windows for determining the optimal start and end times of the brushing strokes.

By focusing on the Z-axis signal, we can effectively capture the temporal alignment of the

peak-valley cycles, enhancing the accuracy of stroke detection and ensuring alignment with

the ground truth information from video recordings.

6.9.2 Feature Extraction and Selection

In our analysis, we consider several features related to the characteristics and dynamics

of brushing strokes. These features provide insights into different aspects of the stroke,

such as its amplitude, duration, and rate of change. Below is a description of each feature

computed from the Z-axis of the accelerometer signal (Figure 6.14(a)):

• rising stretch: This feature represents the stretch of the rising phase of a stroke,

which is calculated as the difference between the amplitude of the peak and the am-

plitude of the preceding valley.
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Fig. 6.14: Stroke-wise computed features from the accelerometer signal.

• falling stretch: Similarly, this feature represents the stretch of the falling phase of a

stroke, calculated as the difference between the amplitude of the peak and the ampli-

tude of the subsequent valley.

• stretch diff: This feature captures the difference between the rising and falling

stretches of a stroke, providing insights into the asymmetry of the stroke’s ampli-

tude profile.

• stretch ratio: The stretch ratio feature represents the ratio between the rising and

falling stretches of a stroke, indicating the relative magnitude of the two phases.

• rate of change: This feature describes the rate of change of the stroke’s amplitude,

providing information about the speed or intensity of the brushing motion.

• rising duration: This feature represents the duration of the rising phase of a stroke,

indicating the time taken for the amplitude to increase from the valley to the peak.

• falling duration: Similarly, this feature represents the duration of the falling phase
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of a stroke, indicating the time taken for the amplitude to decrease from the peak to

the subsequent valley.

• duration: This feature captures the overall duration of a complete brushing stroke,

including both the rising and falling phases.

We consider additional features specific to the X−axis, Y -axis, and magnitude signals

to capture the characteristics of brushing strokes. Since there is no guarantee of having a

valley, peak, and another valley for these signals, we focus on amplitude-based features.

The following features are considered for X−axis, Y -axis, and magnitude signals:

• valley: This feature represents the minimum amplitude value within the segment,

indicating the lowest point reached during the brushing stroke.

• peak: Similarly, this feature represents the maximum amplitude value within the

segment, indicating the highest point reached during the brushing stroke.

• avg: This feature represents the average amplitude value within the segment, provid-

ing insights into the overall magnitude of the brushing motion.

• stretch: This feature captures the difference between the maximum and minimum

amplitude values within the segment, indicating the range or extent of the brushing

stroke.

By analyzing these features, we can gain a comprehensive understanding of the dynam-

ics and characteristics of brushing strokes. These features provide valuable insights into the

amplitude variations, ranges, and overall patterns of the brushing motion. By leveraging

this information, we can effectively distinguish brushing strokes from other activities or

gestures captured by the sensor data. This enables us to develop robust and accurate algo-

rithms for brushing stroke detection and classification.

Important Features: Using the random forest algorithm, we can identify the most im-

portant features that contribute significantly to the classification of brushing strokes. As
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Fig. 6.15: Important features for brushing strokes classification.

shown in Figure 6.15, by analyzing the importance scores assigned to each feature by the

random forest model, we can determine which features have the greatest impact on accu-

rately distinguishing brushing strokes from other activities. This information is crucial for

feature selection and model optimization, as it allows us to focus on the most informative

and discriminative features for improving the overall classification performance.

6.9.3 Brushing Stroke Model Development

In the model development phase, we explored the performance of various machine

learning models for the task of brushing stroke detection. The models we considered in-

cluded Logistic Regression, Decision Tree Classifier, Random Forest Classifier, Gradient

Boosting Classifier, and MLP Classifier.

Each model offers its own strengths and characteristics, making it important to evaluate

their performance on our specific task. Logistic Regression is a linear model that provides
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interpretable results and is commonly used in binary classification problems. Decision Tree

Classifier, on the other hand, is a non-linear model that learns hierarchical decision rules.

Random Forest Classifier is an ensemble model that combines multiple decision trees

to improve performance and reduce overfitting. Gradient Boosting Classifier is another

ensemble model that sequentially trains weak learners to create a strong classifier. MLP

Classifier, which stands for Multi-Layer Perceptron, is a type of neural network model

that can capture complex patterns and relationships in the data.

By considering a diverse range of models, we aimed to find the one that best suits our

brushing stroke detection task. Each model was trained and evaluated using a 70% training

and 30% testing data split. This allowed us to assess their performance and determine

which model yielded the most accurate and reliable results.

In the subsequent sections, we present the evaluation metrics, including precision, re-

call, and F1-score, for each of the considered models. These metrics provide insights into

the models’ ability to classify brushing strokes and distinguish them from other activities

correctly. By analyzing these results, we can identify the model that demonstrates superior

performance and select it for further analysis and application in brushing stroke detection.

6.9.4 Performance of Brushing Stroke Detection

In this section, we present the results of our experiments on training and evaluating

various classification models using the computed features from the previous section. We

considered several models, including Logistic Regression, Decision Tree Classifier, Ran-

dom Forest Classifier, Gradient Boosting Classifier, and MLP Classifier.

To assess the performance of these models, we divided the data into a training set

consisting of 70% of the samples and a testing set consisting of the remaining 30% of

the samples. The models were then trained on the training data and their hyperparameters

were tuned for optimal performance.

After training, we applied the models to the testing data and evaluated their perfor-

mance. Figure 6.16 illustrates the results obtained from the testing phase, providing insights
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Fig. 6.16: Important features for brushing strokes classification.

into the accuracy and effectiveness of the classification models in distinguishing brushing

strokes from other activities.

Looking at the precision metric, which measures the accuracy of positive predictions,

we observed that the Random Forest Classifier achieved the highest precision score of

0.9570. This indicates that the model had a low rate of false positive predictions, correctly

identifying a significant portion of brushing strokes. The Decision Tree Classifier also

demonstrated high precision with a score of 0.9063, indicating its ability to make accurate

positive predictions.

In terms of recall, which measures the ability to correctly identify positive instances,

the Random Forest Classifier achieved a recall score of 0.9305, indicating its ability to

capture a high proportion of actual brushing strokes. The Gradient Boosting Classifier also

performed well in terms of recall, achieving a score of 0.9184.

The F1-score, which is the harmonic mean of precision and recall, provides a balanced

measure of a model’s overall performance. The Random Forest Classifier exhibited the
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highest F1-score of 0.9436, followed closely by the Gradient Boosting Classifier with a

score of 0.9212. These results indicate that both models achieved a good balance between

precision and recall, indicating their overall effectiveness in accurately identifying brushing

strokes.

Overall, the results demonstrate the effectiveness of the trained classification models in

distinguishing brushing strokes from other activities based on the computed features. The

Random Forest Classifier emerged as the top-performing model, showcasing its ability to

achieve a high level of precision, recall, and F1-score. These findings highlight the potential

of using machine learning algorithms in automatic brushing stroke detection, which can

contribute to improving oral hygiene monitoring and dental health assessment.

6.10 Tooth Brushing Initiation Detection Model

Initiating the toothbrushing process involves the crucial task of determining the precise

moment when an individual commences brushing their teeth. This prompts the question:

how early in the brushing episode can we accurately detect this initiation? Detecting the

initial few brush strokes can play a significant role in triggering timely interventions during

the early stages of brushing, thereby potentially enhancing the overall detection accuracy.

Although an existing stroke detection model called mTeeth [30] already exists, it is not

directly applicable to our specific problem. The mTeeth stroke detection model primarily

focuses on identifying toothbrushing surfaces during dedicated toothbrushing time, ensur-

ing a high level of precision. However, for our intervention problem, a different approach

is required. We need a new stroke detection model capable of effectively identifying tooth-

brushing activity from the comprehensive time series data spanning an entire day.

6.10.1 Algorithm for Detecting Tooth Brushing Initiation

The Detection of Brushing Prompt Events utilizes the Stroke Detection and Clustering

algorithm. This algorithm aims to identify brushing strokes from a raw accelerometer

signal and group them into clusters based on their temporal proximity. By utilizing a trained

stroke detection model, segments of the signal are classified as brushing strokes or non-
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strokes. The algorithm then applies a clustering technique to group the detected strokes

into distinct brushing events, as well as other similar behaviors that produce signals similar

to brushing strokes.

Additionally, the algorithm determines the minimum number of strokes that reduces

the number of false alarms. It achieves this by considering clusters that have at least this

minimum number of strokes. This optimization step helps to ensure that only significant

clusters with a sufficient number of strokes are considered as valid brushing prompt events.

By applying this threshold, the algorithm can accurately identify and distinguish true brush-

ing prompt events from other activities captured by the accelerometer signal.

Algorithm 2 Stroke Detection and Clustering
1: Train a stroke detection model, M , to classify segments as brushing strokes or non-

strokes.
2: Find peaks and valleys from the raw accelerometer signal: V1, P1, V2, P2, V3, P3, . . ..
3: Let C be the set of detected stroke candidates, where each candidate ci =

(Vi−1, Pi, Vi).
4: for each candidate ci in C do
5: Classify the candidate as a stroke or non-stroke using model M : si = M(ci).
6: end for
7: Group the detected strokes into clusters if the time difference between consecutive

strokes is below a specified threshold.
8: Mark each cluster as a true brushing stroke.
9: Determine the minimum number of strokes threshold that minimizes both the detec-

tion time of true brushing events and false alarms.

The algorithm consists of the following steps:

1. Training the Stroke Detection Model: A stroke detection model, denoted as M , is

trained using labeled data to classify segments of the accelerometer signal as brush-

ing strokes or non-strokes. The model learns to differentiate the patterns associated

with brushing strokes from other activities.

2. Peak and Valley Extraction: Peaks and valleys are extracted from the raw ac-

celerometer signal. Peaks represent the maximum values, and valleys represent the

167



minimum values in the signal. These peaks and valleys provide essential landmarks

for identifying potential brushing strokes.

3. Stroke Candidate Detection: Based on the extracted peaks and valleys, stroke can-

didates are identified. Each stroke candidate, denoted as ci, consists of a sequence of

a valley, peak, and subsequent valley, representing a potential brushing stroke.

4. Stroke Classification: The stroke detection model M is applied to each stroke can-

didate ci to classify it as a stroke or non-stroke. The classification output, denoted as

si, determines whether a candidate is identified as a brushing stroke or not.

5. Stroke Clustering: The detected strokes are grouped into clusters based on their

temporal proximity. If the time difference between two consecutive strokes is below

a specified threshold, they are considered part of the same brushing event cluster.

Clustering helps to separate distinct brushing events and consolidate strokes that oc-

cur closely together in time.

6. Identification of True Brushing Strokes: Each cluster represents a true brushing

stroke event. By marking the clusters as true brushing strokes, we obtain a collection

of distinct brushing events from the raw accelerometer signal.

7. Optimization of Strokes Threshold: A minimum number of strokes threshold is

determined to optimize the algorithm’s performance. This threshold minimizes both

the detection time of true brushing events and false alarms, ensuring accurate and

reliable identification of brushing strokes.

Following these steps, the Stroke Detection and Clustering algorithm effectively identi-

fies brushing strokes from the raw accelerometer signal, clusters them into distinct events,

and provides valuable insights into brushing behavior patterns. Figure 6.17 illustrated the

brushing prompt detection.
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Fig. 6.17: Illustration of brushing prompt detection.

Fig. 6.18: Anticipated false positive rate for stroke count

6.10.2 Projected Count of False Alarm per Day

Figure 6.18 provides valuable insights into the occurrence of false brushing prompts

per day. It presents a comprehensive overview of the relationship between the number of

strokes and the corresponding number of clusters generated. When examining the scenario

where the number of strokes is one, a significant number of clusters, exceeding 3000, are

observed. This suggests a high frequency of false prompts in this particular case. Moving
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on to the case of two strokes, the number of clusters decreases to 130, indicating a notable

reduction in false prompts. Further analysis reveals that when the number of strokes in-

creases to three, the number of false prompts decreases even further to approximately 20.

This downward trend continues, as the number of false prompts drops to five, three, and

two when considering four, five, and six strokes, respectively.

It is important to note that individuals typically engage in toothbrushing once or twice a

day, indicating that setting the threshold at six strokes is a reasonable choice. By doing so,

we ensure that the number of interventions required does not exceed twice a day, providing

a practical and manageable approach. This insight allows for the development of a more

efficient and effective brushing prompt system, reducing unnecessary interventions while

still ensuring timely reminders for best oral hygiene practices.

6.10.3 Anticipated Time of Detection Since Brushing Commencement

Fig. 6.19: Expected detection time based on the number of strokes

In the preceding section, we established that when there are six strokes, the number

of interventions does not exceed two times in a day. Now, let us delve into the aspect of

detection speed for these six strokes. The visualization in Figure 6.19 provides valuable in-

sights into the time it takes to detect the strokes based on the number of strokes performed.
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When there is only one stroke, we can expect the detection to occur in no more than one

second. Similarly, for two, three, and four strokes, the detection time is estimated to be

less than two seconds. As the number of strokes increases to five and six, the expected

detection time remains below three seconds. This implies that the timing of interventions

can be accomplished within a brief span of time, requiring less than three seconds. It is

worth noting that this duration is significantly shorter when compared to the 30-second

interventions typically associated with smart toothbrushes. This expedited detection time

allows for more timely and efficient interventions to enhance oral care practices.

6.11 Discussion

In this chapter, we thoroughly examine the limitations associated with two distinct ap-

proaches: the about-to-brush moment detection approach and the brushing-initiation mo-

ment detection approach. Our objective is to shed light on the challenges and constraints

faced when employing these methods to provide intervention to individuals regarding their

toothbrushing habits.

We critically analyze the shortcomings inherent in the about-to-brush moment detection

approach, which focuses on identifying the optimal time just before an individual starts

brushing their teeth. We explore the potential issues, such as inaccuracies in detection or

difficulties in capturing the precise moment when brushing commences. We delve into the

challenges of accurately identifying this precise moment, including potential discrepancies

in data collection or variations in individuals’ brushing techniques. By understanding these

limitations, we propose an alternative strategy which is brushing-initiation to enhance in-

tervention accuracy. This method centers on detecting the exact instant when an individual

initiates the act of toothbrushing. Similarly, we investigate the limitations of the brushing-

initiation moment detection approach.

Furthermore, this chapter goes beyond discussing limitations and presents a compre-

hensive comparison between the two proposed approaches. By thoroughly comparing and

contrasting these methods, we can gain valuable insights into their respective strengths and
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weaknesses. Through a thorough comparison of proposed approaches, it aims to contribute

to the development of more effective interventions that provide individuals with valuable

information and guidance regarding their toothbrushing routines.

6.11.1 Limitations of About-to-brush Moment Detection Approach

The accuracy of the Leave-one-subject-out cross-validation for about-to-brush moment

is less than 50%. This suggests that the approach’s performance is relatively poor when ap-

plied to unseen data from different subjects. Such low accuracy undermines the approach’s

reliability and effectiveness in real-world scenarios. In order to understand the reasons be-

hind this low accuracy, let’s delve into the detailed explanations below:

• Overfitting Due to Limited Data: The number of available data points for training

and evaluation is significantly small. This scarcity of data increases the risk of over-

fitting, where the model becomes too closely tailored to the limited dataset, resulting

in poor generalization to new, unseen instances. To mitigate overfitting, a larger and

more diverse dataset is necessary to enhance the approach’s performance.

• Short Duration and Lack of Repetitions in About-to-brush Moments: The about-

to-brush moments tend to be brief in duration, making them challenging to capture

accurately. Additionally, the lack of repetitions or consistent patterns in the about-to-

brush moment signal further complicates the detection process. These characteristics

hinder the development of robust algorithms that can reliably identify and classify

these micro events within the toothbrushing routine.

• Person-to-Person and Episode-wise Variability: There is a high degree of vari-

ability observed between individuals in terms of their toothbrushing behavior and

performance. Moreover, even within the same person, variations can occur across

different episodes of toothbrushing. This inter- and intra-personal variability poses a

significant challenge when attempting to develop a generalized approach that can ef-
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fectively detect about-to-brush moments for diverse individuals and across multiple

instances.

• Person-to-Person and Episode-wise Variability: There is a high degree of vari-

ability observed between individuals in terms of their toothbrushing behavior and

performance. Moreover, even within the same person, variations can occur across

different episodes of toothbrushing. This inter- and intra-personal variability poses a

significant challenge when attempting to develop a generalized approach that can ef-

fectively detect about-to-brush moments for diverse individuals and across multiple

instances.

• Lack of Unique Patterns in Signal for Micro Event Detection: The signal associ-

ated with about-to-brush moments often lacks distinct and easily identifiable patterns.

This absence of clear cues makes it difficult to precisely identify and distinguish the

micro events within the about-to-brush moment. Consequently, the current approach

may struggle to reliably detect these subtle events, requiring further exploration and

development of novel signal analysis techniques.

To address these limitations, future research and improvements in the About-to-brush

Moment Detection Approach should focus on enhancing cross-validation accuracy, in-

creasing the size and diversity of the dataset, developing robust algorithms capable of

capturing short-duration and low-repetition events, accounting for individual and episode-

wise variability, and exploring innovative signal analysis methods to identify micro events

within the about-to-brush moment more effectively. By overcoming these challenges, we

can improve the reliability and applicability of the approach, ultimately leading to more

accurate and personalized interventions for individuals’ toothbrushing habits.

6.11.2 Limitations of Brushing-initiation Moment Detection Approach

The Brushing-initiation Moment Detection approach achieves an exceptional accuracy

of 99.9%, indicating a high level of precision in identifying the initiation of toothbrushing.
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This remarkable accuracy is undoubtedly commendable. However, it is important to note

that the approach may encounter limitations when implemented with smart brushes. Smart

brushes generate data in formats that may vary from the assumed format employed by the

Brushing-initiation Moment Detection approach. These discrepancies can include differ-

ences in data acquisition, preprocessing methods, or feature extraction techniques. As a

result, the approach’s algorithms may not be well-suited to analyze the specific data gener-

ated by smart brushes, potentially leading to reduced accuracy or performance degradation.

6.11.3 A Comparative Analysis of About-to-Brush and Brushing-Initiation Methods

In this comparative analysis, our aim is to explore the limitations and advantages asso-

ciated with the about-to-brush and brushing-initiation methods, with the ultimate goal of

gaining valuable insights for developing effective intervention strategies. By thoroughly

comparing and contrasting these approaches, we can obtain a deeper understanding of their

respective strengths and weaknesses. This analysis serves as a foundational framework

for devising intervention strategies that provide individuals with valuable information and

guidance pertaining to their toothbrushing routines.

To facilitate this comparative analysis, we have identified four key metrics that will help

us assess and evaluate the about-to-brush and brushing-initiation methods. These metrics

act as benchmarks for measuring the strengths and weaknesses of each approach. Let’s

now delve into a detailed description of these metrics:

1. Intervention Time: The about-to-brush Moment Detection approach focuses on de-

tecting toothbrushing just before it begins, allowing for a timely intervention. In

contrast, the brushing-initiation approach detects toothbrushing within 4 seconds of

its initiation, offering a slightly delayed but still effective intervention.

2. Accuracy: The brushing-initiation approach exhibits significantly higher accuracy,

reaching as high as 99.9%, while the about-to-brush approach lags behind with an

accuracy of less than 50%. This disparity in accuracy indicates the contrasting per-

formance levels between the two approaches.
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3. Complexity: The brushing-initiation method of detection is notably less complex

compared to the about-to-brush approach. This implies that the brushing-initiation

approach is simpler to implement and execute, potentially leading to enhanced prac-

ticality and ease of use.

4. Person Variability: The about-to-brush approach demonstrates high variability across

individuals, meaning that its effectiveness may vary significantly from person to per-

son. Conversely, the brushing-initiation approach is more robust, displaying greater

consistency and reliability in detecting toothbrushing initiation across different indi-

viduals.

By evaluating the about-to-brush and brushing-initiation methods based on these four

metrics, we can gain valuable insights into their characteristics and performance. This

comprehensive analysis empowers us to design more effective intervention strategies that

leverage the strengths of each approach while addressing their respective limitations. Ulti-

mately, the goal is to provide individuals with tailored and impactful guidance to optimize

their toothbrushing routines and improve their overall oral health.

6.12 Chapter Summary

The chapter focuses on two approaches for tracking tooth brushing behavior and pro-

viding interventions: detecting about-to-brush moments and detecting the initial portion

of tooth brushing. It addresses challenges such as limited data by employing a synthetic

data generation technique using a transformer-based architecture. The effectiveness of the

synthetic data generation approach is evaluated, showing low deviation from real data.

The chapter discusses the detection performance of about-to-brush moments and sug-

gests strategies to address overfitting and improve generalization. It then presents the

Stroke Detection and Clustering algorithm, which effectively identifies brushing strokes

and groups them into distinct events. The algorithm optimizes the strokes threshold to re-

duce false alarms while ensuring timely detection of true brushing events. Highlights of

the chapter are describe below:
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• Synthetic data generation technique: The authors employ a transformer-based ar-

chitecture to generate synthetic sensor data that closely resembles real-world sensor

measurements during the opening/closing of a toothpaste cap with rotation. This ap-

proach captures the intricacies and patterns of participants’ movements.

• Performance evaluation of synthetic data: The synthetic data generation approach

is evaluated using metrics such as mean squared error (MSE) and root mean squared

error (RMSE). The results show a low level of deviation between the synthetic data

and the ground truth real data, indicating the effectiveness of the approach in repli-

cating sensor data characteristics.

• Detection of about-to-brush moments: The chapter discusses the challenges of

overfitting in detecting about-to-brush moments. It suggests strategies such as col-

lecting diverse data, employing regularization techniques, and fine-tuning the model

architecture and hyperparameters to address overfitting and improve generalization

performance.

• Stroke detection and clustering algorithm: The proposed algorithm, called Stroke

Detection and Clustering, effectively identifies brushing strokes from raw accelerom-

eter data and groups them into distinct brushing events. It employs a trained stroke

detection model and a clustering technique to achieve accurate detection of brushing

prompt events.

• Optimization of strokes threshold: The algorithm determines the minimum num-

ber of strokes threshold that reduces false alarms while ensuring timely detection of

true brushing events. Setting the threshold at six strokes is considered practical and

manageable for interventions.

176



Chapter 7

Conclusion and Future Directions

This dissertation has made significant contributions to the field of oral hygiene research,

addressing various aspects of behavior analysis, intervention opportunities, and dataset im-

provement. These contributions have paved the way for future goals focused on enhanc-

ing oral health care practices and bringing advanced solutions to end users. This chapter

provides a comprehensive recapitulation of the main theme and significant contributions

presented in this thesis, while also highlighting emerging directions in behavior detection

advancements. Additionally, it emphasizes the unique contributions and novel approaches

introduced in each chapter, underscoring their relevance and impact on advancing behav-

ior detection methodologies. Finally, the chapter concludes by outlining potential future

directions and areas of research that naturally extend from the thesis’s findings, serving

as a foundation for future studies and inspiring further innovation in the exciting realm of

behavior detection.

7.1 Summary and Key Contributions of This Dissertation:

This chapter provides a comprehensive summary of the key contributions and find-

ings of the dissertation, which focuses on monitoring oral hygiene behaviors. Through

years of research, the dissertation successfully tackled challenges related to accurate detec-

tion, precise analysis, and timely interventions in toothbrushing activities were addressed.

The research efforts led to the development of advanced models, algorithms, and datasets,

providing valuable insights into oral health practices in real-world settings. This chapter

highlights the major accomplishments of this dissertation, emphasizing their potential im-

pact on personalized oral health monitoring, interventions, and the broader field of activity

monitoring.
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7.1.1 Collection and Fine Grained Labeling of Oral Hygiene Behaviors Data in Nat-

ural Settings

Chapter 3 of our dissertation delved into the intricate process of collecting oral hy-

giene behaviors in natural settings through the utilization of wrist-worn inertial sensors.

Recognizing the dearth of available open datasets in this domain, we conducted a com-

prehensive field study in Memphis, which received ethical approval from the Institutional

Review Board (IRB), with all participants providing written informed consent.

We employed a lab-made smartwatch and a smartphone as ground truth devices to cap-

ture the necessary data. In order to preserve the integrity of the sensor data and ground

truth data, we upgraded the mCerebrum software to enable video recording during oral hy-

giene activities. Recruitment efforts involved distributing informative flyers outlining the

study’s objectives and requirements. The study design was carefully crafted to align with

our research goals. Participants were instructed to wear the wearable sensors and carry the

study smartphone for a duration of seven (7) days. Throughout this period, participants

were requested to record videos of their brushing activities in comfortable settings using

the provided smartphone. With a diverse sample of 30 participants, incorporating factors

such as gender, age, and dominant hand, we amassed an extensive dataset comprising over

three thousand hours of sensor data, along with more than 400 videos for ground truth an-

notation. The meticulous task of annotating the brushing levels from these videos proved

to be challenging and time-consuming, with over 500 hours dedicated to meticulously an-

notating over 10 thousand brushing levels.

These rigorous data collection and annotation efforts laid a solid foundation for our

research, ensuring the accuracy and reliability of subsequent analysis and modeling. The

substantial dataset and ground truth annotation obtained from the study served as valuable

resources for developing and evaluating our approach to identifying brushing teeth surfaces

using wrist-worn inertial sensors.
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7.1.2 Open Dataset for Advancing Activity Monitoring: Introducing the mORAL

Dataset for Oral Hygiene Research

In order to foster collaboration and facilitate further research in the field, we have made

the collected data available as an open dataset called mORAL (Monitoring Oral Hygiene

Activities) on the Internet. This dataset grants researchers access to a longitudinal collec-

tion of time-series data spanning over seven days (> 112 hours) from each participant. The

extensive duration of data collection enables in-depth analysis of activity patterns through-

out the day.

The mORAL dataset has proven to be highly valuable not only for developing activity

detection methods but also for research on privacy and re-identification. The availability of

this dataset encourages the exploration of innovative techniques and algorithms to tackle

various challenges in activity monitoring. By providing open access to this data, we aim to

encourage collaboration, accelerate advancements, and contribute to the broader scientific

community’s knowledge in this field.

7.1.3 Invariance to Variability in Wrist-Mounting

Chapter 4 delves into the challenge of detecting and correcting device orientation and

wrist position during various activities. Considering that participants may wear the device

in different positions, such as the top or bottom of the wrist, it is essential to accurately

account for these variations to detect wrist-based activities. To address this, we introduced

quaternion-based algorithms for orientation estimation that utilize accelerometer and gy-

roscope readings to align sensor data with hand orientation during brushing. This ensures

precise inference of brushing movements and tooth surfaces.

Through extensive experimentation and evaluation, we successfully validated the ef-

fectiveness of the virtual orientation technique. This advancement played a vital role in

achieving more precise inference of daily behaviors in real-world scenarios. The virtual

orientation technique not only improves the accuracy of inferring oral hygiene behaviors

but also holds the potential to enhance all activity detection algorithms by addressing the
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challenges associated with device orientation and wrist position variations. This contri-

bution significantly strengthens the practical utility and generalizability of our research

findings.

7.1.4 Dynamic Event-Based Time Series Segmentation: Improved Segmentation Method

for Brushing Behavior Analysis

One of the key aspects explored is time series segmentation which involves breaking

down a continuous time series into meaningful segments or intervals. When it comes to

brushing their teeth, people have different brushing patterns, including motion, duration,

time spent on each surface, and transitions between them. Traditional segmentation meth-

ods are ineffective due to the variability in brushing duration and surface transitions. We

use a dynamic-length event-based approach to overcome these challenges that require an

anchor event for effective segmentation. Our contribution is an improved event-based seg-

mentation method that moves away from fixed or sliding window-based methods. By using

event-based segmentation, we can accurately detect both toothbrushing and surface detec-

tion, precisely detecting the start and end of the brushing event and characterizing the entire

brushing session.

During brushing and flossing, the wrist position tends to be higher than the elbow.

To generate candidate segments for brushing events, we employ a different approach to

detecting upward and downward wrist movements. A threshold is determined for the lateral

axis of the accelerometer to filter out samples below this threshold, resulting in 81% data

filtering. Temporal clusters are merged if the time difference between retained samples is

less than 1 second. Further refinement of candidate segments is done based on their time

duration, with optimal values of 11 seconds minimum and 2.5 minutes maximum duration.

This method rejects 91% of the data, generating an average of 100 candidate segments per

day, compared to 1,000 segments with the 2-minute window-based approach.

To identify surface transitions accurately to characterize the brushing session precisely,

we found that the brushing stroke, a distinctive back-and-forth or up-and-down motion dur-
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ing brushing, serves as a reliable and easily detectable anchor event. This motion pattern

is performed consistently across all surface transitions, making it suitable for surface iden-

tification. By analyzing the accelerometer signal for peak-valley pairs and selecting the

brushing stroke with the maximum stretch along a specific axis, our approach effectively

distinguishes surfaces based on the dominant wrist movement.

7.1.5 Detecting Start and End Times of Tooth Brushing and Flossing Behaviors

Another key contribution of this research is introducing a novel approach, namely

mORAL, that utilizes wrist-worn inertial sensors to accurately detect and analyze daily

behaviors such as toothbrushing and flossing in real-world settings.

Chapter 5 emphasizes the importance of monitoring oral hygiene behaviors and high-

lights the limitations of previous methods in capturing these activities accurately. Tradi-

tional approaches relied on self-reporting or scripted settings, leading to unreliable data

due to memory biases or the artificial nature of the environment. To overcome these chal-

lenges, mORAL leveraged wearable sensor technology to provide a more natural and unob-

trusive monitoring experience. The utilization of wrist-worn inertial sensors in the mTeeth

model enabled convenient and unobtrusive monitoring of brushing activities in real-world

settings.

A notable aspect of the research was the innovative approach to selecting candidate

events for time series segmentation, moving away from fixed or sliding window-based

methods. This approach offered greater flexibility and accuracy in segmenting the data.

Leveraging machine learning techniques and sophisticated algorithms, mORAL success-

fully inferred brushing and flossing behaviors in real-world scenarios, providing valuable

insights into individuals’ oral hygiene habits without relying on self-reporting or controlled

settings. The model’s high accuracy and reliability were demonstrated through comprehen-

sive evaluation metrics and validation experiments, further establishing its potential impact

in the field of oral health monitoring.

Overall, the development of mORAL in 2019 represented a significant advancement
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in activity monitoring, particularly in the context of oral hygiene behaviors. The research

showcased ongoing efforts to improve the accuracy and effectiveness of monitoring tech-

nologies, ultimately benefiting individuals’ oral health and well-being.

7.1.6 Characterizing Tooth Brushing Behaviors

Chapter 6 presents the mTeeth model, which was rooted in the idea that effective oral

hygiene is not only about the duration of brushing but also the coverage and effectiveness of

brushing on different tooth surfaces. Its primary objective was to identify and characterize

the specific tooth surfaces being brushed using a manual toothbrush in natural free-living

environments. The model aimed to overcome the limitations of previous methods by fo-

cusing on the identification of tooth surfaces being brushed, thus offering a more granular

analysis of brushing behaviors. The utilization of wrist-worn inertial sensors in the mTeeth

model allowed for convenient and unobtrusive monitoring of brushing activities in real-

world settings

One of the key aspects explored is time series segmentation, as we discussed in the pre-

vious section. Brushing teeth involves a series of strokes that target different tooth surfaces.

Brushing teeth involves multiple strokes that address various tooth surfaces. The mTeeth

model detects and analyzes these individual strokes to accurately identify the specific tooth

surfaces being brushed. The chapter presents a robust classification model capable of rec-

ognizing different tooth surfaces, including the inner, outer, center, left, right, up, and down

surfaces.

The development of the mTeeth model in 2021 signifies ongoing efforts to refine activ-

ity monitoring techniques and enhance oral hygiene practices. By focusing on micro events

detection and tooth surface analysis, this model provides a comprehensive understanding

of brushing behaviors, paving the way for future advancements in oral health monitoring.

The mTeeth model showcases the potential of leveraging wearable sensor technologies to

gain insights into oral hygiene practices and promote improved dental care habits. The
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model is a significant achievement in oral health research, emphasizing the importance of

detailed analysis to optimize oral hygiene practices.

7.1.7 New Intervention Opportunities for Oral Hygiene Behaviors

Inadequate brushing of tooth surfaces remains a key factor contributing to the persis-

tence of dental diseases, despite regular brushing. Certain surfaces may be overlooked

entirely, while excessive time may be spent on others. To combat this issue, it is crucial to

provide effective interventions that help individuals correct their brushing habits. However,

the timing of these interventions is equally vital for their efficacy. Even with the right con-

tent, interventions delivered too early or when users are occupied may be forgotten or not

fully absorbed. Mobile sensors have the potential to deliver interventions at the opportune

moment, increasing the likelihood of success. Unfortunately, existing methods in the field

typically detect brushing behavior after it has concluded, missing the window for timely

intervention.

Chapter 6 delves into two innovative approaches for tracking tooth brushing behavior

and providing interventions: detecting about-to-brush moments and detecting the initial

portion of tooth brushing. These approaches address challenges such as limited data by

employing a synthetic data generation technique that utilizes a transformer-based architec-

ture. The effectiveness of the synthetic data generation approach is thoroughly evaluated,

demonstrating minimal deviation from real data.

Furthermore, the chapter discusses the performance of detecting about-to-brush mo-

ments and proposes strategies to mitigate overfitting and enhance generalization. It intro-

duces the Stroke Detection and Clustering algorithm, which efficiently identifies brushing

strokes and groups them into distinct events. This algorithm optimizes the stroke threshold

to minimize false alarms while ensuring the timely detection of genuine brushing events.

In summary, Chapter 6 addresses the critical factor of intervention timing by detect-

ing about-to-brush moments and the initial portion of tooth brushing. It showcases the

utilization of synthetic data generation. It introduces the Stroke Detection and Clustering
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algorithm to improve the accuracy and effectiveness of detecting brushing behavior, ulti-

mately contributing to better oral hygiene practices. These advancements hold significant

promise for enhancing oral health and fostering healthier brushing habits.

7.1.8 Impact on Health and Wellness

Collectively, all the work in this dissertation contributes to the advancement of mobile

health (mHealth) technologies in the field of oral health monitoring. This work demon-

strates the potential of wrist-worn inertial sensors and data analysis techniques for cap-

turing and analyzing oral hygiene behaviors. These contributions pave the way for per-

sonalized interventions, improved oral health outcomes, and enhanced oral care practices.

Furthermore, integrating multi-modal data fusion techniques and fine-grained tooth sur-

face identification demonstrates the ability to capture detailed brushing information and

comprehensively monitor oral hygiene activities. By focusing on real-world application

and evaluation, these papers bridge the gap between laboratory-based research and practi-

cal implementation, offering promising prospects for the widespread adoption of mHealth

solutions in oral health monitoring. By providing accurate and personalized insights into

individuals’ oral health practices, these contributions lay the foundation for improved oral

care and better oral health outcomes.

7.2 Future Goals

The Future Goals section lays the foundation for future research and development in

the field of oral health monitoring and activity tracking, outlining key areas for exploration

and advancement. While significant strides have been made in understanding brushing be-

haviors and leveraging wearable sensor technologies, several untapped opportunities and

challenges remain. This section outlines the key objectives and aspirations for future ad-

vancements to enhance further activity monitoring systems’ accuracy, effectiveness, and

usability. The goal of exploring novel approaches, incorporating emerging technologies,

and addressing critical gaps is to propel the field forward, make meaningful contributions

to oral health research, and promote optimal dental care practices.
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7.2.1 Improvement in the Oral Hygiene Dataset by Conducting Longitudinal Studies

Through this study, we have gained valuable insights into the missing elements within

our dataset that were previously unknown. Questions such as the number of participants

required, the behaviors to be captured, and the duration of data collection have been ad-

dressed. Notably, we have discovered a significant variability among participants regarding

brushing surface, indicating the need to considerably expand the participant pool. While 10

participants were insufficient, the next iteration may necessitate a larger sample size, such

as 100 participants.

Another important lesson learned pertains to the timing of camera activation. Initially,

we instructed participants to turn on the camera when they began brushing. However, we

now recognize the value of having the camera activated before the actual brushing starts,

during the preparation phase. This adjustment will provide additional context and insights

into the entire oral hygiene routine.

The third lesson revolves around the camera positioning. While we initially suggested

keeping the camera anywhere for convenience, we have realized that placing it on the sink

counter surface does not yield useful results. Hence, we need to reconsider and refine the

camera placement strategy for more effective data collection.

The analysis in this dissertation emphasizes the importance of an expanded dataset to

explore brushing variability and participant differences. By expanding the ROBAS Dataset,

we can investigate clustering patterns and identify users with similar habits, enhancing

model reliability. Longitudinal studies conducted over a longer duration are crucial for

validating activity monitoring systems in real-world contexts. Population-based research

on a larger scale can assess the benefits and challenges of implementing these systems

more broadly. By examining the long-term impact of activity monitoring on oral health

and user adherence, valuable evidence can be gathered to enhance oral hygiene practices

and prevent dental diseases. This comprehensive approach of expanding the dataset and

conducting longitudinal studies in real-world settings contributes to personalized interven-
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tions and improved oral hygiene monitoring techniques, ultimately improving oral health

outcomes.

7.2.2 Advancing Behavior Detection using Advanced Machine Learning/AI Models

After having a large dataset from Longitudinal Study that contains data from a large

population, future research should focus on advancing behavior detection using more so-

phisticated machine learning and AI models. This study has demonstrated the potential

of deep learning techniques and the stroke detection model to distinguish toothbrushing

from other activities and identify specific tooth surfaces being brushed. Expanding on

these findings, researchers can further explore the application of reinforcement learning

and other innovative approaches to enhance the accuracy and analysis of brushing behav-

iors. These advanced algorithms can provide more detailed insights into brushing habits,

enabling personalized interventions for better oral hygiene.

7.2.3 Real-time Intervention Design and Optimization

The primary objective of this dissertation is to implement the entire research findings

on a smartwatch platform, enabling real-time operation of the developed models and algo-

rithms. This implementation will bridge the gap between research and practical application,

allowing for the evaluation of the developed techniques in real-world scenarios.

To achieve the second objective, a study will be conducted where the system operates

in real time, providing an opportunity to test and compare different intervention ideas.

Adopting a micro-randomized trial design approach, various intervention strategies can be

explored to identify the optimal one for enhancing oral health behavior.

The micro-randomized trial design will focus on key areas of investigation, including

the comparison of haptic feedback versus audio feedback to determine their respective ef-

fectiveness. Furthermore, the optimal timing for interventions will be investigated, consid-

ering factors such as switching tooth surfaces and specific intervals. These investigations

will contribute to refining the design and implementation of personalized oral hygiene in-

terventions.
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By conducting this study, valuable insights can be gained, leading to the optimization

of real-time interventions for oral health behavior. The findings will shed light on the effec-

tiveness of different feedback modalities and provide guidance on the timing and frequency

of interventions, ultimately enhancing the design and implementation of personalized oral

hygiene interventions.

In parallel, it is crucial to design activity monitoring systems with the user in mind to

ensure their widespread acceptance and usage. Future research should prioritize under-

standing user preferences, motivations, and obstacles to adoption, enabling the creation

of user-friendly and intuitive interfaces. Collaborative clinical trials and studies involving

dental professionals will provide strong evidence for the effectiveness of these systems,

facilitating their seamless integration into regular oral care routines. This integration will

contribute to improved oral health outcomes for individuals and populations as a whole.

7.2.4 Taking Oral Health to the End User Dissemination

The commercialization of toothbrushing detection, characterization, and prediction mod-

els has the potential to revolutionize oral health care. However, it is essential to ensure

these advancements reach the end users effectively. To achieve this, future research should

concentrate on deploying these commercialized solutions in real-life settings and actively

seeking feedback from users and stakeholders.

Continuous monitoring and evaluation of the solution’s performance are crucial to iden-

tify areas for improvement and address any concerns raised by users. By closely mon-

itoring the effectiveness and user experience of the oral health care solutions, necessary

adjustments can be made to enhance their functionality and address any issues that arise.

User feedback, technological advancements, and emerging research findings should serve

as valuable inputs for regular updates and enhancements to the toothbrushing detection and

prediction models.

In addition, it is vital to stay informed about the latest developments in oral health

care. By keeping pace with evolving trends, industry standards, and user expectations, the
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product can adapt and remain competitive in the market. Collaboration with oral health

care professionals, researchers, and industry experts will help to stay at the forefront of

advancements and ensure that the commercialized solutions align with current practices

and offer cutting-edge features.

Ultimately, the dissemination of advanced oral health care solutions relies on continu-

ous cycle of improvement, user engagement, and staying ahead of the curve. By prioritiz-

ing user feedback, monitoring performance, and innovation, these solutions can effectively

transform oral health care and improve the well-being of individuals on a larger scale.

In summary, the future goals encompass several important areas for further research and

development. Expanding the current ROBAS Dataset will enable researchers to explore the

variability among brushing episodes and develop adaptive algorithms for personalized in-

terventions. Conducting longitudinal studies and real-world validation will provide insights

into the long-term effectiveness and challenges of implementing activity monitoring sys-

tems on a larger scale. Advancing behavior detection using advanced machine learning/AI

models will enhance the accuracy and analysis of brushing behaviors, enabling personal-

ized interventions and improved oral hygiene practices. Implementing real-time feedback

and interventions will guide users in optimal brushing techniques and promote better oral

health outcomes. Adopting a user-centered design approach and conducting clinical vali-

dation and adoption studies will ensure widespread acceptance and integration of activity

monitoring systems into routine oral care practices. Finally, commercializing toothbrush-

ing detection models and continuously improving them based on user feedback and techno-

logical advancements will contribute to advanced oral health care solutions. These future

goals will collectively drive advancements in oral hygiene monitoring and interventions,

ultimately leading to enhanced oral health outcomes for individuals.
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Demographics Questionnaire 

Participant ID ________________    Date and Time____________________  

 

1. How did you learn about the study?            

2. Age: ___________ 

3. Gender:   Male  Female 

4. Race: 

 Black – Non Hispanic 

 American Indian/Alaskan Native 

 Hispanic  

 Asian/Pacific Islander 

 White – Non Hispanic 

 Other 

5. Employment Status (check all that apply): 

   Employed Full-Time  

   Employed Part-Time 

   Self Employed 

   Not Employed 

   Student Full-Time 

   Student Part-Time 

   Other ____________________ 

6. Yearly Income:  

  Less than $10,000  

  $10,000 to $14,999  

  $15,000 to $24,999  

  $25,000 to $34,999  

  $35,000 to $49,999  

  $50,000 to $74,999  

  $75,000 to $99,999  

  $100,000 or more  

7.  Do you smoke cigarettes? YES NO 

 If YES, approximately how many cigarettes per day?         

 If NO have you ever smoked?           

8. How often do you brush your teeth on a typical day? __________ times 

 Do you typically brush your teeth when you wake up?  YES  NO 

 Do you typically brush your teeth before going to bed? YES  NO 



9. How often do you floss your teeth on a typical day? __________ times 

 Do you typically floss your teeth when you wake up?  YES  NO 

 Do you typically floss your teeth before going to bed? YES  NO 

10. How often do you use an oral rinse (e.g., Listerine) on a typical day? __________ times 

 Do you typically use oral rinse when you wake up?  YES  NO 

 Do you typically use oral rinse before going to bed? YES  NO 
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        Fax:  901.678.2199 
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  Consent to Participate in a Research Study 

The utility of inferring health-related behaviors from smartwatches & other mobile 
sensors 

WHY ARE YOU BEING INVITED TO TAKE PART IN THIS RESEARCH? 

You are being invited to take part in a research study about the utility of mobile sensor devices 
like smartwatches and smart toothbrushes. If you volunteer to take part in this study, you will 
be one of about 20 people to do so. 

WHO IS DOING THE STUDY? 

The person in charge of this study is Dr. Santosh Kumar of the Department of Computer 
Science at the University of Memphis. You are invited to ask him or any of the study staff 
questions about this study or your participation at any time. 

WHAT IS THE PURPOSE OF THIS STUDY? 

The primary aim of this study is to collect information on mobile health (mHealth) platforms that 
can detect health-related behaviors. This information will help us to plan future studies that 
look at how mHealth technologies can improve health. 

We (the research team) also hope to learn how using mobile sensors and “smart” technologies 
like smart watches and smart toothbrushes can identify, health status, stress, and other health-
related behaviors such as oral health behaviors. 

ARE THERE REASONS WHY YOU SHOULD NOT TAKE PART IN THIS STUDY? 

• We are recruiting healthy individuals between the ages of 18-64.  

• We are recruiting individuals who brush their teeth at least twice every day and floss 
their teeth at least once every day. 

• We are recruiting individuals who are comfortable wearing and using a set of mobile 
sensors (wearing wrist sensors, a study smart phone, and using a sensor-enabled 
toothbrush) for the next seven (7) days. 

• We are recruiting individuals who are comfortable taking videos of themselves 
whenever they perform an oral health behavior (brushing or flossing).  

• We are recruiting individuals who can attend a total of two (2) lab sessions at the 
beginning and the end of the next seven (7) days. 

 
If, for any reason, you feel uncomfortable with the study procedures, you should not take part 
in this study. If you decline to take part in this study, it will not be held against you. 

WHERE IS THE STUDY GOING TO TAKE PLACE AND HOW LONG WILL IT LAST?  



        Institutional Review Board 
                

        315 Administration Bldg. 
    Memphis, TN 38152-3370 

        Office:  901.678.2705 
        Fax:  901.678.2199 

 

IRB #: 4274 
Expiration Date: April 06, 2019  Page 2 of 9 

The research procedures will be conducted at the mobile sensors lab at Dunn Hall Room 216A 
on the University of Memphis main campus. You will need to come to the mobile sensors lab 
two (2) times: once at the beginning and once at the end of the next seven (7) days. Each visit 
should each take about one (1) hour.  

WHAT WILL YOU BE ASKED TO DO? 

• If you agree to be in this study, we will provide you with two wrist-worn sensors (smart 

watches), a sensor-enabled toothbrush, a smartphone, and a mounting device for the 

smartphone at an in-person visit. You will use these sensors and smartphone during the 

study. The smartphone will only be for study use, and we will expect you to return the 

smartphone and all sensors at the end of the study. If you complete the study, you can 

keep the sensor-enabled toothbrush. 

• The two in-person visits will each take about 1 hour. During the first visit, we will show 

you how to wear the sensors and how to use the smartphone device.  

• We will ask you to wear the sensors and the smartphone device during all waking hours 

(removing them only when bathing or swimming) as you engage in your typical day. 

• While wearing all of the sensors, we will ask you to use the sensor-enabled (“smart”) 

toothbrush once daily every time you brush your teeth in the morning. We will ask you to 

use a manual toothbrush every time you brush your teeth in the evening. 

• We will provide you tooth brushing and flossing instructions to ensure that we can 

record a complete set of tooth brushing and flossing motions. 

• We will ask you to use the mounting device to position the study smartphone to take 

videos of yourself whenever your brush or floss your teeth while wearing the wrist 

sensors.  

o You will: 
1. Mount the study smartphone to a suitable location (e.g., bathroom mirror, sink 

countertop, or bathroom tile),  

2. Align yourself in the video frame,  

3. Push a button on the phone to begin taking a video before you start brushing or 

flossing, and then  

4. Push a button to stop taking video when you are done with your oral health routine.  

o If you use an oral rinse at the same time you brush or floss, we ask that you 

continue taking video as you use the oral rinse until after you are done. 

o We will collect this video data from the study smartphones after you return the 

phone to the lab. 

o We will use this information to make detailed notes about the data coming from 

the wrist sensors. We will use these notes to build models that can tell us when 

people are brushing or flossing just from the wrist sensor data alone. 

o We ask you to take this video every time that your brush and/or floss your teeth. 

However, we also ask that you take this video when and where you are 

comfortable (e.g., at home). If you are uncomfortable taking the video at a given 
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time, we ask that you document the time you start and stop brushing and 

flossing, using the smartphone device. 

o You will have the opportunity to review your video and delete it if you don’t want 

to share it with the research team. You will be able to do this after you have 

taken the video, or at the end of the study when you return the device. 

• We understand that it may not be practical to wear the sensors and/or smartphone 

device all the time. When you cannot wear them or you do not want to wear them, you 

may take them off. We will also show you how to temporarily pause the phone and 

sensors from collecting data, if removing the sensors isn’t practical. 

• You will need to charge the sensors and the smartphone every night. 

• During the study, the sensors will be collecting data about your physical movement. 

This information will be collected by the study smartphone. This information by itself 

won’t be able to identify you individually, but we will be able to use this information 

about your heart and wrist movements to determine certain behaviors and health states: 

For example, we will be able to know if you are stressed, smoking, or eating. 

• The phone will send this information to a secure computer periodically throughout the 

day via a secure cellular connection. 

• During the study, the smartphone will be collecting your location (where you are) via 

GPS. This information will stay on the phone, on an encrypted card and will not be 

uploaded in real-time. After the study is over and you’ve returned the device, this 

information will be uploaded, via a secure cellular connection, to the secure computer.  

o This means we won’t be tracking where you are during the study (in real-time). 

After the study, we will know every place that you have visited while the study 

was going on. We will use this information to see if your location has anything to 

do with your oral health behaviors. 

• We will collect the sensors and devices at an in-person visit at the end of the study. If 

you complete the study, you can keep the sensor-enabled toothbrush. 

• At the final in-person visit, we will ask you to answer some questions about your 

experiences with and attitudes toward the devices. 

• The final in-person visit will take approximately 1 hour. 

WHAT ARE THE POSSIBLE RISKS AND DISCOMFORTS? 

• To the best of our knowledge, the things you will be doing have no more risk of harm 

than you would experience in everyday life. 

• Wearing the wrist sensors may be uncomfortable, but most people get used to them. 

• You will need to carry around an extra phone with you while you are wearing the 

sensors. 

• You will need to charge the study devices at night. There are four (4) devices, total. This 

may be burdensome, but we will provide you with a device that makes it easier to 

charge all of the devices at once. 
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• The phone will use Global Positioning System (GPS) to collect location data. This 

location data could identify you by showing where you are. Research staff will protect 

this information by restricting access only to authorized personnel. All researchers and 

research staff have been trained in human subjects research (research that involves 

living people). All researchers and research staff will agree to not use the location or the 

video data to identify you as an individual. Neither your location nor video data will be 

made available to the public.  

• We will make every reasonable effort to ensure that your information is kept secure, but 

in the event of a data breach, your location data (all of the places you’ve been during 

the study) and/or your video data could be exposed. We will minimize this risk by 

following best practices in information security, and will delete information that can 

identify you (your location and video data) after the study is over. 

• We will keep all of your information confidential within the limits allowed by law. 

However, we cannot guarantee complete secrecy. For example, we are required by law 

to report evidence of child abuse or neglect. 

WILL YOU BENEFIT FROM TAKING PART IN THIS STUDY? 

There is no guarantee that you will get any benefit from taking part in this study. However, you 
may find this study helpful to improve your oral health. The toothbrush may provide you with 
feedback that may help you improve your own brushing techniques. Your willingness to take 
part may help society as a whole. Researchers may learn valuable information from this study 
to understand how using mHealth technologies like wearable sensors and “smart” devices can 
detect certain behaviors and improve health. 

DO YOU HAVE TO TAKE PART IN THE STUDY? 

• Whether you choose to take part is up to you. 

• You can choose to say “no” and not take part. 

• You can agree to take part in this research and change your mind later. 

• Your decision to say “no”, whether now or if you change your mind later, will not be held 

against you. 

• You can ask any and all questions that you want before deciding to take part. 

IF YOU DON’T WANT TO TAKE PART IN THE STUDY, ARE THERE OTHER CHOICES? 

If you do not want to be in the study, there are no other choices except not to take part in the 
study. 

WHAT WILL IT COST YOU TO PARTICIPATE? 
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You will have to take the time to come to the lab twice, at the beginning and end of the next 
seven (7) days. If you are not a current student, faculty, or staff person, you will have to pay for 
your own travel costs (like parking costs) to come to the lab. 

WILL YOU RECEIVE ANY REWARDS FOR TAKING PART IN THIS STUDY? 

You will be able to keep the sensor-enabled (“smart”) toothbrush if you complete the study. 
This toothbrush is worth about $129. 

WHO WILL SEE THE INFORMATION THAT YOU GIVE? 

This research study is a part of a research collaboration that aims to develop new ways of 
improving health by using mobile sensor technology. Because of this, we want to save your 
research data and share it with other researchers who study mobile health. The rest of this 
section describes how we will use your data and share it with other researchers. 

Data security & confidentiality: We will use best practices to prevent unauthorized access to 
your information. For example, we will make sure that all paper study records are kept in 
locked areas not accessible to the general public. All electronic study records and data 
(including video data and GPS) will be kept on computers that are secured with appropriate 
technical safeguards such as password protection and encryption. This means it will be very 
difficult for someone to access your information if they do not have permission. We will protect 
your identity to the extent required by law. However, we cannot guarantee complete secrecy. 
For example, we are required by law to report evidence of child abuse or neglect. All of your 
records will be open to inspection by the research study staff, the IRB, other representatives of 
this institution, and the sponsor of this study: the U.S. Department of Health and Human 
Services, National Institutes of Health. 

How we will use your data: We will link your contact information and your research data (the 
data collected by all of the questionnaires, study sensors, and the phone) with a code number. 
A master key that links your name, your contact information, and your code number will be 
maintained in a separate and secure location from your research data. We will only use your 
contact information for the purposes of contacting you about this research study, and future 
research studies if you choose. We will use your research data for scientific progress and for 
publication of study results. Information that we make public will only be in the form of 
summaries that make it impossible to tell who the individual participants were. 

How we will share your data: The research data that we collect about you in this study may 
also be shared with other researchers. Some of these researchers may be at other 
universities/institutions. We will only share information that can’t be used to identify you.  

GPS data will contain all of the places you have visited during the study. Because of this, GPS 
data could be used to identify you. We will not share any data that includes your raw location 
data (GPS) with other researchers. We will use your GPS data to make a code for certain 
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points of interest (POI, also called “clusters”). These POI might say “home,” work,” “school,” 
“car,” or some other generic code for where you have been at a given time. We will use this 
code in datasets that we share with other researchers, so that they couldn’t know your exact 
location while you were in the study. 

We will share your research data with these other researchers only after:  

1. They describe, in writing, how they will use the data. 
2. They agree that they will keep your research data secure. They will agree that only 

people working on their study will be able to see your research data. 

We will share your research data from a special database. This database will be saved on a 
secure computer that is operated at the University of Memphis. People who want to use this 
data will need permission from the person in charge of this study, Santosh Kumar. Anyone 
who uses the data from this study will sign a confidentiality agreement, meaning that they must 
get permission to share the data with anyone else. 

After we finish this study, we will also make a copy of the data that will be stripped of all 
information that could identify you (including raw location data/GPS and your code). This 
dataset will not have the code that identifies you. We may share this dataset with any 
researcher who has a use for it. 

If you agree, we will also make a dataset that only has the non-identifiable sensor data from 
the devices (the phone, the wrist sensors, and the toothbrush). This dataset will have no 
identifiable information and no codes that could link back to you. This dataset can help the 
wider research community, and we would share it with anyone who could find it useful. This is 
completely optional. You can agree to take part in the study but not include your data in this 
open data project. 

How long we will keep your data: We expect to complete this study after 3 years. After the 
study is over, we will we will make a copy of the data that will be stripped of all information that 
could identify you (including raw location data/GPS, your video, and your code). We will save 
this copy of your research data as long as we think it is still useful. We expect that the data will 
be useful for 10 years after the study is over, but we may keep it much longer. 

Canceling your permission: If you change your mind later and you don’t want your research 
data shared with other researchers, you can cancel your permission. To cancel your 
permission, you have to write a letter to Santosh Kumar. When you write us a letter and cancel 
your permission, we will delete your information from the database. No new researchers will be 
able to get a copy of the data. We will not be able to take back the research data from 
researchers who already have the data. 

After we finish this study, we will also make a copy of the data that will be stripped of all 
information that could identify you (including raw location data/GPS and your code). This 
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dataset will not have the code that identifies you. If you decide to cancel your permission to 
share your data with other researchers after we finish this study, we will not be able to find or 
delete your individual research data from this copy of the dataset. 

CAN YOUR TAKING PART IN THE STUDY END EARLY? 
You can leave this research study at any time and it will not be held against you. There is no 

penalty for deciding to leave the study now, or in the future. 

If you want to leave the study at any time, contact the study team. We will arrange for the study 

devices to be returned. If you don’t want your data to be used in the study, tell the study team. 

They will permanently delete any data that has been collected from you as a part of the study. 

The individuals conducting the study may need to withdraw you from the study. This may occur 
if you are not able to follow the directions they give you, if they find that your being in the study 
is more risk than benefit to you, or if the agency funding the study decides to stop the study 
early for a variety of scientific reasons. 
 
WHAT IF YOU HAVE QUESTIONS, SUGGESTIONS, CONCERNS, OR COMPLAINTS? 
 
Before you decide whether to accept this invitation to take part in the study, please ask any 
questions that might come to mind now. If you have questions, concerns, complaints, or think 
that you’ve been hurt by the research, call us as soon as possible. You can call Santosh 
Kumar at telephone number 901-678-2487. You can also call the study coordinator, Shahin 
Samiei, at 901-678-3369 with any questions about this study. 
 
This research has been reviewed and approved by an Institutional Review Board (“IRB”). The 
role of the IRB is to protect the rights and welfare of people who take part in research studies. 
You may contact the IRB at 901-678-2705 or irb@memphis.edu if you have any questions 
about your rights as a volunteer in this research. Some reasons you might want to contact the 
IRB are if: 

• Your questions, concerns, or complaints are not being answered by the research team. 

• You cannot reach the research team. 

• You want to talk to someone who is not on the research team. 

• You want to get more information or provide input about this research study. 

• You have any questions about your rights as a research participant. 

WHAT IF NEW INFORMATION IS LEARNED DURING THE STUDY THAT MIGHT AFFECT 
YOUR DECISION TO PARTICIPATE?  

If the researcher learns of new information in regards to this study, and it might change your 
willingness to stay in this study, the information will be provided to you.  You may be asked to 
sign a new informed consent form if the information is provided to you after you have joined 
the study. 
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WHAT ELSE DO YOU NEED TO KNOW? 

This study is supported by a grant from the National Institutes of Health (Grant 
#R01DE025244). This study is designed to research how using data from mobile sensors can 
be used to inform and improve health outcomes. This study is a part of collaborative research 
between the University of Memphis, the University of California Los Angeles, and the Ohio 
State University. 
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Your signature documents your permission to take part in this research. By signing this 
consent form, you agree that we can share your coded research data with other researchers 
who are working on this study. You also agree that we can share your de-identified research 
data with any other researchers.  
 
 
_________________________________________   ____________ 
Signature of person agreeing to take part in the study          Date 
  
_________________________________________ 
Printed name of person agreeing to take part in the study 
  
_________________________________________   ____________ 
Name of [authorized] person obtaining informed consent          Date 
  

If you agree, we will also make a dataset that only has sensor data from the devices (the 
phone, the wrist sensors, and the toothbrush) that cannot identify you as an individual. This 
dataset will have no identifiable information and no codes that could link back to you. This 
dataset can help the wider mobile health (mHealth) community to learn how mobile sensor 
data can improve health. We would post this dataset on a publicly accessible website for 
anyone to download. This is completely optional. You can agree to take part in the study but 
not include your data in this open data project. By signing next to “Yes,” you agree that we can 
keep and share the de-identified sensor signals that we collect from you on a publicly 
accessible website. 

 

Will you allow us to share the sensor data we collect for this study on a publicly accessible 
website? 

◻ YES     ________________________      

Signature of Participant      

 

◻ NO      _________________________     

Signature of Participant   
 
 
_________________________________________   ____________ 
Name of [authorized] person obtaining informed consent          Date 



Over, please → 

 

 

 

 

 

 

ROBAS Equipment and Experience Study Exit Questionnaire 

 

Thank you very much for your participation in this study! Please think about your 

experience with the mobile phone, smart toothbrush, and the wearable sensors over 

the last seven days and please indicate to what extent you agree or disagree with the 

following statements. Please circle one answer for each statement below. 

 

  Office use 

 
Data entry date & initials._____________ 

Verification date & initial._____________ 

Date: ______________________ 

Subject ID: ________________ 



Experience with Study Smartphone 
1. The phone interfered with my daily activities. 

a) Strongly agree 

b) Agree 

c) Disagree 

d) Strongly disagree  

 

2. The phone interfered with my social interactions.  

a) Strongly agree 

b) Agree 

c) Disagree 

d) Strongly disagree  

 

3. I felt self-conscious using the phone in public. 

a) Strongly agree 

b) Agree 

c) Disagree 

d) Strongly disagree  

 

4. I felt self-conscious taking videos with the phone. 

a) Strongly agree 

b) Agree 

c) Disagree 

d) Strongly disagree 

 

5. Overall, the phone was easy to use. 

a) Strongly agree 

b) Agree 

c) Disagree 

d) Strongly disagree 

 

6. Overall, the phone was a nuisance. 

a) Strongly agree 

b) Agree 

c) Disagree 

d) Strongly disagree 

 

7. Overall, the phone was enjoyable to use. 

a) Strongly agree 

b) Agree 

c) Disagree 

d) Strongly disagree 

 

 



Over, please → 

Experience with Smart Toothbrush 
8. Using the smart toothbrush interfered with my daily activities. 

a) Strongly agree 

b) Agree 

c) Disagree 

d) Strongly disagree 

 

9. I felt self-conscious using the smart toothbrush. 

a) Strongly agree 

b) Agree 

c) Disagree 

d) Strongly disagree 

 

10. The smart toothbrush caused physical discomfort. 

a) Strongly agree 

b) Agree 

c) Disagree 

d) Strongly disagree 

 

11. Overall, the smart toothbrush was easy to use. 

a) Strongly agree 

b) Agree 

c) Disagree 

d) Strongly disagree 

 

12. Overall, the smart toothbrush was a nuisance. 

a) Strongly agree 

b) Agree 

c) Disagree 

d) Strongly disagree 

 

13. Overall, the smart toothbrush was enjoyable to use. 

a) Strongly agree 

b) Agree 

c) Disagree 

d) Strongly disagree  

 

14. I felt more engaged in the study knowing that I could keep the smart toothbrush for my participation 

in the study. 

a) Strongly agree 

b) Agree 

c) Disagree 

d) Strongly disagree 

 



 

Experience with Wrist Band Usage 
15. The wrist band interfered with my daily activities. 

a) Strongly agree 

b) Agree 

c) Disagree 

d) Strongly disagree 

 

16. The wrist band interfered with my social interactions. 

a) Strongly agree 

b) Agree 

c) Disagree 

d) Strongly disagree 

 

17. I felt self-conscious using the wrist band in public. 

a) Strongly agree 

b) Agree 

c) Disagree 

d) Strongly disagree 

 

18. The wrist band caused physical discomfort. 

a) Strongly agree 

b) Agree 

c) Disagree 

d) Strongly disagree 

 

19. Overall, the wrist band was easy to use. 

a) Strongly agree 

b) Agree 

c) Disagree 

d) Strongly disagree 

 

20. Overall, the wrist band was a nuisance. 

a) Strongly agree 

b) Agree 

c) Disagree 

d) Strongly disagree 

 

21. Overall, the wrist band was enjoyable to use. 

a) Strongly agree 

b) Agree 

c) Disagree 

d) Strongly disagree 
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