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Abstract 

In this report， we incorporate equations for a respective estimation of causally different types of def!ection 

for r. c. beams and one.way slabs into our system for the def!ection calculation of two.way f!oor structures， so 

that， after the system has been suitably modified， it may be of extended and generalized use for examining 

such structures 

This permits us to express chronic (or longtime) def!ection as the total effect of a variety of agents 

Then， we examine whether and how the actually observed chronic transition of slab behaviors is consistent 

overall with their follow.up predictions established by our procedure. and we test its utility by resorting to 

some available previous test examples of slab models under sustained service loading. We note that our system 

can be maintained in practice. 

Predictive Calculation for Deflections of Reinforced Concrete Floor Slab Systems 

Part 1 : Procedure 

1. Introduction 

Almost a quarter of a century has passed since the earliest domestic cases of deflection damage 

and excessive cracking to reinforced concrete floor slabs was first noticed in Hokkaid05. Initially 

the cause of similar types of structural deterioration was attributed to the presumed likelihood of 

defective material and inappropriate regional construction practice. Later on， however， being main. 

6 ly made in Britain and West Germany， material scientific researchesU into related types of floor 

7 
slab deflection and detailed analyses' based on field measurements of the conditions of relevant 

manifold examples revealed that such deflection combined with cracking is in fact both common 

and of worldwide incidence and refers to the most frequent structural maintenance problem an 

information which led us to have known many other cases in point all over this country. 

There has been a dearth of empirical means to explore the causes of impaired structural ser. 

viceability other than finding them out by analyzing observed sets of data of a number of collected， 
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relevantly damaged instances， as was the case with [8 J， or by quasi-permanent loading tests of 

full-scale slab models， while all the time satisfying the designated set of ambient atomospheric con-

ditions ; the latter means being too idealistic in general to be economically maintained. 

In recent years， however， significant progress has been made in experimentally c1arifying some 

of the elemental factors that comprise the subject matter of predictive calculation such as effects of 

the bond守slipof edge reinforcement on predictions of deflection16，17 and what is called stratified 

values25 of intensity of the loads imposed at construction work. Also， rational treatment in static 

calculations of major detrimental phenomena of cracking， creep and drying shrinkage have become 

somehow possible by use of findings through the pertinent long postwar research activities fun-

damentally engaged in Europe. Such achievements have s巴rvedfor solid prospects to be opened for 

elucidating both material and static phases of the structure. 

In other countries， notably Euramerican， major studies on the time dependencies of the deforma 

9 tion of r. c. horizontal members have started largely in 1960s" and provided resu1ts which are 

embodied by the ACI， CEB or other typical building codes in their pertinent c1auses 

Primarily referring to beams or one-way slabs such building code methods for predictive estima 

tion of slab deflections must practically depend on beam approximations as is the case typically 

with ACI's equivalent frame method and accordingly remain too coarse approaches whereby to go 

into two会wayanisotropic behaviors of the floor slab structure especially relevant to its introduced 

damaged cases above where the reinforcement around supports is known to cause a significant 

amount of bond-slip the code methods are unaccountable for. 

Actually， longtime deflections predicted by use of them is accepted in most cases to be less than 

half the corresponding direct measurements 

In this report those standarized or acknowledgedly representative formulations for cracking， 

creep and other causally different effects on the longtime deflection， derived for the one-way sys-

tem are incorporated in the authors' calculation system for two-way structures， through its accom 

panying generalization and modification. 

Then， thus far available longtime t巴stresults and measured deflection increases with time on 

model floor slabs are compared with their follow-up solutions afforded by the introduced proce 

dure， in an effort to examine whether thεlatter resu1ts can be reasonably consistent with the 

former 

2. Method of Analysis 

The predictive calculation of the terminative or final deflection of r. c. floor systems may be per 
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formed as for its causally different portions when being pursuant to the flow-diagram in Fig. 1 . 

2. 1 Consideration of Supporting Frames 

In the following. the description of the proposed analytical method is， in expectation of its 

widest possible application， to be so generalized as not just to cover cases of ordinary floor slabs 

but of constructions with slab or subpanel zones of unform increased thickness 

Hence hereafter to be analyzed is a floor slab with or without beams， which is orthogonally an 

isotropic due to its differing modes of cracking in the two orthogonal directions 

In effect， a finite difference approach coupled with the slope-deflection fundamentals wi1l now be 

derived on a whole system of structure with both beam and slab elements. In the present work 

first subdividing its short and long spans， measured at beam centroidal axes， into equal meshes 

and then selecting as unknowns deflections at the interior mesh points (inner points)， those at the 

above axes， and the angles of torsion about them， a set of equilibrium equations wil1 be set up in 

difference form. 

1) Orthogonally Anisotropic Slab Equations 

Given the slab stiffness in respective short and long directions by Ox and Oy， with OX/Oy = k4， 

0/0=μand Poisson's ratioν= 0 for simplicity， the governing differential equation for an ortho 

gonally anisotropic rectangular slab is expressed as Eq目(1)and bending moments M文， My， torsional 

moment Mxy as well as reactions Vx， Vy are respectively defined by Eqs. (2) through (6)10 

4 a4w ， ̂ . ~ a4w ，a4w p 
k' :; + 2 k"ーごすてす十←:::-x-一一一一ニ O

axτδ吋"a.ッ~ ， ayτμD  

Mx= μk4D(δ2wlδx2) 

My=一μ'D(δ2wlδIl)

Mxv= μ!k2D(δ2ωI a;τay) 

に=-1検 D(k2a3wl ax3+ 2 a3wlδxal) 2~" 2 

L3=一μ'D(δ3ω/δIl+2 k2 a3wlδx2ay) 

(1) 

(2) 

(3) 

(4) 

(5) 

(6) 

where w ニ deflection，pニ intensityof load of uniform distribution， 0 stiffness of a standard 

slab or Et3/12 ( 1 -112)， t = thickness of the standard slab， E =巴lasticmodulus of concrete and ν 

ニ Poisson's ratio of concrete. 

Further assuming a width of difference subdivision or， briefly， a mesh width for each of the 

orthogonal directions asムxandムy，with ratio Y =ムylムx，and any mesh point as a reference 

point of compatibility of surrounding contiguous subpanels A， B， C and 0 leads to such a resultant 

reaction SXy at their common corner (point) as is expressed as follows by using reactions in both 

directions and concentrated reaction， F xy = 2・Mxy
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Fig. 3 Resultant Reaction at a Corner Point of a Slab Panel 

When this edge has no beam but is the boundary of two subpanels with different slab stiffness 

es the following equations of continuity for an above.mentioned slab with subpanel thickenings are 

11 to be used 

C"-1 ，， ';-1 ， 2C" 
!，]-n c +了間，j+n-c. 子王了Wi，jT~了間.)-n

目 )
 
-
旬

E
A(
 

c' -1 " C"' -1 ， 2 c' 
，-m，} .;τ了Wi+m，j-c. .;' +了Wi，jT~τ了間一隅J (12) 

where C" and C"' are ratios of adjacent to considered panel stiffness， e， g， in deflection equations for 

imaginary points of subpanel A : with 

C" =sDxIADx and ';'=sDyIADy 

2) Equilibrium of Vertical Forces 

In cases with a beam along a common edge of preceding subpanels the equation of equibrium at 

their common corner point of vertical forces becomes 

(Q01-Q03)+(Q02-Qω)+(A SXy+s SXY+CSxY+DSxy)=P。 (13) 

where QQl-Q04 = shearing forces at the ends of beam members， A-D Sxy = reaction resultants at 

corner points of the subpanels， P 0 = concentrated load acting at point 0， 

A member-end shearing force in the beam in the x-direction is obtained by expanding the governing 

differential pair of equations for a beam 

d3包 Qx d4w qx 
v一一瓦'五す Eζ A

削
匂
'
E
A
 

in finite difference form， so that 

EI. 
Qx=一一一止す (-Wi.i-?+2Wi.i-l-2Wi.i+l+Wi.i+?) 2t.x3 ¥-Wi，j-2T C.Wi，jー 1-C. Wi，j+1TWi，j+zJ (15) 

EI. 
E京(Wi，j-2-4 Wi，jー 1十 6Wi，j-4Wi，j+l+Wi，j+2)-qx= 0 (16) 
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and by doing such sums as (15)一(16)Xムx/2

and (15)+(16) Xムx/2 as follows 

mE1x 
QO]， Q03=王子一(W'i，j-m一一 3Wi，j十 3w丸山，-Wi，j+Z"，)+mqxムx/2 日の

where QOl and Q03 are respectively used when m = 1 and m =一 1; 

q" = self-weight of a beam in the x-direction and Ix = second sectional moment of the beam 

3) Eq凶ぬriumEquations for Moments 

With the signs of moments in each building element acting at beam-column connection 0 in the 

y-direction assumed as shown in Fig. 2 (4)， the following equilibrium holds 

一(AMy+sMv一CMY-DMy)ムx/2+(M04-M02)十(rMoy+rrM，句)+(T01+T03)ニ o (18) 

where A-D My = bending moments in each above subpanel in the y-direction， M02， 04 = bending 

moments at ends of a beam in the y一direction，r.uMoy = bending moments respectively at 

upper-column bottom and lower column-top and T01.03 = torsional moments in a beam in the 

x-direction， 

ト DMV=A_DDy(-Wi+削 ，j+2 Wi.j-W'i-m.j)/ムi
M02， M04 = Ely( -Wi +問。j+2 Wi.j-W'i 間 j)/ムy2

!Moy= 4 E dZsYi./ ]Lz 

uMoy= 4 Err1zsYi./ uLz 

T01， T同=GJx(8yi.j-8yi.j+刑)/ムx
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where cases of-m = 1 and m =-1 r巴spectivelyrefer to A，oMy， M02 and T01 as well as Il， cMy， M03 

and T03; !， ulzx = second sectional moments repectively of upper and lower columns G = elastic 

13 
modulus in shear and 1x = coefficient of torsional resistance of a b巴am""in the x-direction 

2. 2 Consideration of Fiexural Cracking of Concrete 

The present deflection analysis of a floor slab together with its supporting frames consists of 

implementing for a difference system of equations formulated above their symultaneous solution that 

is to be iterated until its convergence after an initial elastic result， by employing sectional stiffnesses 

over again whenever they may take further reduced values due to considered effect of cracking， as 

will be explained in detail ; i.e. leading to the initial deflection，ム i，of a slab and a beam， with the 

considered effect of their cracking. 

1) Redt悶 dSlab St旧民ss

For a whole span， in either orthogonal direction， of any slab strip with a difference mesh width， 

henceforth called mesh-width strip， the bending moment distribution along this is checked if both of 

its positive and negative maximal values， Ma 's， exceed a cracking value， Mcr' and in an affirmative case 
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using respective moments of inertia for cracked and uncracked sections. Ig and Iep an effective moment 

14 of inertia Ie for a mesh-width strip is calculated by Branson's ensuing equation 

H42)い[1-(釘lん (24) 

where for a rectangular section with double reinforcement 

Icr=b(cd)3j 3 + TJAs(d-cd)2十(マー 1)A's(cd -d，)2 位。

with b = difference mesh width. c = ratio of depth of neutal axis of a section to its height. d = 

distance of centroid of tensile reinforcement from compression face. d' = distance of centroid of 

compressive reinforcement from that face. r; = modular ratio. As = area of tensile reinforcement 

and A' s = that of compressive reinforcement ; provided that ratios of tensile and compressive steel 

area P(=As/bd) and P' (=A's/bd) are respectively used to obtain c. i. e.. 

c=y2示云子三戸d'Id)干~2(ρ+ 2 p')2 -r; ( P十 2P') (26) 

As s昭gestedin [l4J chiefly respecting 0配 waystructure effect附 momentsof inertia 1λfor a 

positive and two negative moments regions of it are each weighted by multiplying each Ie by a ratio of 

the moment area of the corresponding region to the sum of the pertinent three areas and are 

subsequently averaged as usual. resulting for all the mesh-width strip average moments of inertia 

And further. some and the others of these respectively for mesh-width strips in the middle strip and 

those in the column strip are separately averaged again to provide avg1e's. where both latter wider 

strips can be those each occupying a half of the whole area of a slab panel as customarily defined. e. g. 

in (12J， but at this time a simil 

more reflect actual propensities of cracking 

Finally. reduced slab stiffnesses in both orthogonal directions. for either such a middle or column 

strip are obtained as 

De=Dg(avg1eIIg) (2力

naturally differing in value after the first sequence of iteration and so requiring a solution as an 

orthogonally anisotropic strucure 

2) Reduced Beam Stiffness in Bending and Torsion 

The average effective moment of inertia for a beam moment can be obtained in the same manner as 

in the case of a slab strip of the mesh width. using the average of moment areas at beam ends and 

center. after being weighted proportional to each area目

Only in its positive bending region the structure needs to be considered to be integral with that part 

of the slab panel called cooperative width which is in the current case taken from the corresponding 

equation in [15J for a T -beam. Then for its cracked section 
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Iげ =B(cd)3/3十 Ms(d-cd)2 (28) 

where B = flange width of a T -beam with the ratio of depth of neutral axis c being obtained by Eq. 

(26) putting S = As'べ

On the other hand， far less work having been available on the torsional stiffness of a T -beam 

affected by cracking of the concerned type its value is expediently assumed to decrease proportional 

to the corresponding reduction in flexural stiffness. 

2. 3 Consideration of Bond-Slip of Reinforcement Anchorage 

Both groups of Higashi-Komori and Takahashi-Koyanagi have made short and long-t巴rmloading 

tests on one-way slab strips and cantilever structures in order to account for sustained deformational 

action of r. c. f100r slabs and as a result pointed out that in addition to its being comparable in 

magnitude to the effects of cracking， creep and drying shrinkage on such deflectional behaviors that of 

the bond-slip of the portion of anchorage of the reinforcing steel was found to be far larger than an 

16，17 amount which had generally been regarded as being of an ignorable order 

ln this work deflections so caused are to be analyzed in the following process. Denoting the stress in 

the reinforcement at the support of a slab by as， the length of its portion of anchorage Ld is given by 

Ld=Asσj Tb<P (29) 

where Tb = average bond stress in the above part of reinforcem巴ntand <p = perimetric length of 

reinforcement. 

Assuming the distribution of the bond stress is triangular with 久and0 as its values respectively at 

the root and tip of anchorage， the elongation of the steel， i. e.， the amount of its bond-slip for a length of 

anchorage Ld becomes 

u=Ld aj 2 Es 。。
What is caused thereby， the angle of of rotation θof the middle plane of a slab about the axis of its 

support may be calculated by the following equation， assuming the neutral axis for cracked section 

decided by Eq. (26) as the above axis 

θ u As侭2
一一
( 1 -c)d 2 ( 1-c)dEs Tb併

。1)

The additional deflection due to the bond-slip at the support，ムs，may be calculated as a solution for 

the structure with rotations 8's that are thus worked out at each mesh point along its edges forced 

back again at the same position. 

2. 4 Consideration of Creep and Shrinkage of Concrete 

For r. c. f100r slabs their longtime deflections caused by creep and shrinkage of concrete may be 

14 calculated as follows by making a generalized application of Branson's method 
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In his original equation the deflection due to creep is expressed in terms of the initial deflectionム1

alone that includes the effect of flexural cracking. But the effect of bond.slip， being one of the 

signficant factors controlling depth and width of cracks， concernεd mainly with early stages of 

structural deflection is current1y added to the preceding t. i. Thus the deflection due to creep may be 

expressed as 

ムcp=Kr1)lムi+ムs)

with Kr=0.85/( 1十50P')

(32) 

(33) 

where ot = creep coefficient of concrete at age t， p' = ratio of compressive steel at midspan of a 

flexural member or A's/(bd) for a slab and average of A' g/(Bd) and As' /(bd) for a T -beam ; and b = 

member width or， unit width for a slab and web width for a beam 

Lastly， the shrinkage deflection is estimated by the following 14 

ムsh-αsAShestLx2/h (34) 

together with 

Ash=3.25( P-ργ/3( 1 -P' /ρ)1/2 (35) 

where est = shrinkage strain of concrete at age t，α= coefficient of shrinkage deflection 
18 

dependent on conditions of edge restraint e. g. .09， .065， .063， .125 and .5 respectively for 

exterior and interior span of a continuous structure， both-end built-in beam， simple beam and 

ca凶 lever，戸 =multiplyingfactor due to aspect ratios. as later explai町 d，Lx = short span length for 

slabs measured center-to-center of supports， h = overall thickness of members，ρ=tension steel ratio 

for the central section， or Ag/(bd) for slabs and average180f As/(bd) and As/(Bd) for beams. 

In the above， multiplying factor s may be approximated to be 

s=l十(yムsh/xムsh一1)/( 1 + ).，4) (36) 

by using shrinkage deflections xムshand yムshrespectively for one-way structures spanning in the 

respective x-and y-directions and being otherwise the same as the considered encastered slab. 

For floor slabs of practicably normal size s is at most 1.2 or so even if such is the case at an aspect 

ratio as large as 1.5 or so. 

In connection with the above calculations the treatment of time守dependentaction of concrete is 

19 • ，. 20 resorted to Rusch-Jungwirth's method，"' the CEBωvalue"V is adopted as basic shrinkage strain and 

the effect of concrete slump on the creep coefficient is considered by use of the corresponding 

ACI's modifying equation21 that is accountable for plastic or high-slump concretes 

Consequently the above portions of a total longtime deflection are added to give that as 

ムtニムi+ムs+ムcp十ムsh

for loading period t =∞ 
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3. Inf6rred Tenableness of the Procedure from Test Results 

The reasoning whether the proposed system of procedure is soundly accountable for the longtime 

structural performance now considered will be made through a few or more trials of comparison 

between accessible test results and their present analytical equivalents 

Beforehand. necessary for it to be implemented some partly discretional assumption and incidental 

technique are to be introduced 

3. 1 Effects of Width Difference between Middle and Column Strips 

What partly. features the present approach is that a floor slab may be analyzed as a structure 

having subpanel strips with different effective stiffness. in practice as one with drop panels and/or 

slab bands so that the effect of its overall crack distribution may be taken into account as much in 

detai1. In the same respect a comparison is attempted in Table 1 among analytical values of midpanel 

intial deflection for an all会edge.encasteredapartment floor slab. 3.6 by 7.05 m of panel size. in case of 

different panel divisions. An ordinary division for Case 2 is throughout adopted while deflections 

tend to increase with multiplying subpanels. 

Table 1 Effect of Different Allocation of Widths of Beam-and Column-Strips on 
Short-Term Deflection of Slabs， With Their Cracking Considered 

sectiona1 assumptions def1ection m"、 re1ative figure 

sl ab thickness top stee1 CASE 1 CASE 2 CASE 3 

covenng 

仁]ET 陪ミ CASE.2 CASE.3 
CASE.I CASE.1 

mm mm 

110 20 1.¥ 1 1.18 1.22 1.06 1.10 
110 5~ 1.¥6 1.24 1.28 1.07 1.10 
95 39 2.¥4 2.39 2.52 1.12 1.18 
80 24 4・40 4.87 5.08 1.11 1.¥5 

3. 2 Converging Process of Effective Slab Stiffness 

The propos巴danalytical means when initial slab deflections affected by cracking is thereby to be 

calculated may not always provide any final convergent results. Caused by large differences possible 

between average effective stiffness values in the two orthogonal directions. mainly at the earliest 

iteratio.n stages， oscilations between successive intermediate reduced stiffness values can be 

prec1uded by using an average of the above two sets of values for any further sequence of iteration， 

assuring after only several of its cycles sufficient convergence. 

3. 3 Examples of Pursuing Time -Dependent Deflection Change on Test Floor Slabs 
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Typical Converging Process for Effective Moments of Inertia of Slabs in 
Deflection Analysis [from Calculation Example in Case 1 of Preceding Sec. 
tion). 

Examples to be discussed comprise a one· way slab model22 under two concentrated loads, two 

square slabs23 different in edge restraint, and a rectangular model24 respectively tested under 

long·term loading by Takahashi - Koyanagi, Yamamoto et al. and Building Constructors' Society (B. C. 

S.), in order to investigate longtime structural movements, the preceding last case being related to 

prediction of the time for formwork removal and the rest conducted only for the proper purpose. 

In Table 2 are shown geometric shape and dimensions, material properties and loading conditions 

for each model. 

1) One-Way Floor Slab 

Fig. 5 shows the relevant record of readings of laboratory temperature and relative humidity; both 

taken about 450 days after the start of loading. The analysis resulted in a mid panel deflection for the 

model by using an average temperature of 7 ·C on a concrete of eight weeks of effective age, a creep 

coefficient and a shrinkage strain both in their extreme cases of 40 and 80 percent of average relative 

humidity. 

In Fig. 6 measurements of deflection are compared with the present calculations as their 

correspondents, where longtime test results are located nearly midway between the above referential 

extremities of deflections. 

Analyses in the ensuing examples Will use constant values for humidity as averages for the whole 

test period. 

2) Square Slabs 

The introduced slab models with different boundary conditions consist of an all·edge·encastered 
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Table 2 A Brief Summary of Previous Long-Term Loading Test Results 

for One-and Two-Way Floor Slab Models 

ITEMS 
ONE-WAY SLA8 TWO-WA Y SLABS 

REF 【 22) 【 23) ( 24 ) 

DATE OF CONC. PLAC 1 NG JAN. 21， 1973 ー JUL. 9. 1982 

SLAB DIMEN sEAM-CENT. TO-CENT. SPANS 4.800 x 4.800 4.600 x 5.800 
SIONS EFFECTIVE SPANS 3.0・0(0.500)*1 ‘.500 x 4.500 4.300 x 5.500 

THICKNESS 120 120 130 

EトFECTIVE Db~PTH OF TOP STEEL 90 95 100 

SLAB STEEL BEAM STRIP EDGE TOP 3 - 010 010・200 010・150
AREA BOTTOM 1 - 010 010・400 010・300

CENT TOP ー
BOtrOM 

3 - 010 010・200 010・1日 (300)判
COL. STH 1 P EDGE TOr ー 010・400 010・300

sOTTOM 010・400 010・300
BEAM & COL COL. GROSS SECT 400 x 400 400 x 400 
SECTIONS BEAM GROSS SECT， 

300-XD ‘510 9 3004-XD60凶0 BEAM STEEL AREA 

CONCRETE COMPR. STRENGTH ¥41 伺.♂'". 25("'7 22J"'11. 251*1 
TENSILE STRENGTH ¥40¥ 8.7 • 25.4 22.3 
AVERG. BOND STRESS 14..1 6.8 • 13.8 
ELA$TIC MODULUS 
POISSON' S RATIO 140000 196000 222000 • 225000 

MODULAR RA TIO 0.2 0.2 0.2 

SLUMP 10 10 10 
BAS 1 C CREEP COEF 10.7 18.0 18.0 
BASIC SHRINKAGE STRAIN 

3.，j1'2 . 1・7相 2.6 2.8 

52.0 .26.0 40.0 43.0 

AGE AT START FOR CONSTRUCTIO~-WORK LOAD 2 14 
OF LOADING FOR LONG-TERM SUSTAINED LOAD 56 2・ 28 

1 MPOSED LOADS AS CONSTRUCT TON-WORK LOAD 
288 4h/d  343 2切/01AS LONG-TERM SUSTAINED LOAD 628 旬~ 14 11 

ENV IROMENTAL AVERG. TEMPERATURE f向.20 20 
620 5*s CONDITIONS AVERG. RELATIVE HUMIDITY 40 • 80 70 

~OTES 取 1: SLAB WIDTH n: PARENT!lESES 

* 2: FOR 40 % RELATIVE HtJMIDITY /. 

本 3: FOR 80 % RELATIVE HUMIDITY *10 
本 4: TOTAL 1 MPOSED LOAD 16Xld 
ホ 5: 8 WEEKS AFTER CONC. PLAC JNG 

I 1 

日
本 6 VALじE AT AGE OF 2 DAYS 

1司4本 7: VALUE AT AGE OF 28 DAYS Model A * B APRAERA ENOTHF EDS II SZTEF D IBUTION STEEL 

日事 9: AVERG. FROM METEOROLOG. ANNUAL P =31... kg 

事 10: NUMBER OF DIFFERENCE SUBDJV 
事 11: VALUE AT AGE OF 14 DAYS 

開odel B 

Loading Period ( Days ) 

'00 200 300 400 
100...... ・ ・・・ . .曹 司 ・.---...・--L..一一ー-.1' 司 TJ 

8.0 ト I~I 、、~

Relative Percent 60ト 10...1"'1' ・l...ノ
Humidity (%) 40ト I ~ー守

20ト
Oj ~____ l. 

ろイ ya% U9 %7 l}(a )イ37イ。%
Fig. 5 Laboratory Atomosphere during Long-Term Test of One-Way Floor 

Slab from Ref. (22) 
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one (model A) Loading Period ( Days ) 

and the other of 500 1000 1500 2000 2500 3000 

inter・ior bay-

type (model B) 

that had been 

supposed to 

cause-deflec 

tions without 

Z 
0 
・p・....， 
u 
由 20
戸

句・
副
Eコ

torsional rota- 30 

tion of its edge 

beams 

At Start of Loading 

Calcula~ions(R.H. 80%) 

• Final 
Deflection 

Fig.6 Progress of Mid，Janel Deflections for One-Way Slab 
from Ref. (22) 

15.8 

23.5 

The adopted way of loading amounts to initially imposing a uniformly distributed construction 

work load， two days after concrete placing， and its subsequent shifting to a long-term sustained 

loading at the age of a fortnight. 

Though this report uses as an average bond stress the result of substituting the concrete srength at 

the start of loading into the corresponding Japanese R. C. Code equation for “steel bars for longtime 

loads or their equivalents..15， two alternative values of bond strength， one the same ]apanese Code 

value and the other twice that are tried in the analysis， thus implying the possibility of 

correspondingly large variance of bond property at very early ages at the start of loading 

The results are set against their observed counterparts in Fig. 7 . 

3) Rectangular Floor Slab 

The test had been arranged and conducted as follows. Immediately after two weeks of concrete age 

or the removal then of forms and shuttering the model had been imposed on by a line load about 1.1 

times its self-weight until a fortnight later， when the load had further been adjusted to a longtime 

sustained load， comprising a third of the design live load for office rooms plus weight of finishing 

materials other than the self-weight， amounting to 117 kg per sq. m.， to have been kept applied until 35 

weeks of concrete age. The assumed initial part of the observed deflection not being originally 

included in it， is deduced here as 0.5 mm from a pertinent load-deflection curve for lower load levels， 

then being added to the measurements. 

The result is compared with the pres巴ntcalculation in Fig. 8 . 

3. 4 Comparison between Analytical and Test Results 

In the above cases of comparison analytical results in general show some amounts of differences 

from the comparable test measurements at earlier ages of concrete but fairly good agreements after 
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23.8 ・Final Deflection 
1) Case of Test Model A. 

Loading Period ( Days ) 
100 200 300 400 500 600 

22.1 

Deflection 27.7 

2) Case of Test Model B. 

Fig. 7 Progress of Midpanel Deflections for Two-Way Slab 
from Ref. (23) 

Age ( Weeks ) 

o 
o 

5 10 30 35 25 20 15 

6.3 
6.4 

KOYANAGI 's FEM 501. Q 7.6 

Final Deflection畠・9.5

Fig. 8 Progress of Midpanel Deflections for Two-Way Slab 
from Ref. (24) 
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200 days of concrete age betwecn both results. 

As a matter of computation the partial contradiction is referable to analytical priority given to the 

prediction of final def!ections over their correspondents at an earlier stage. for which purpose 

relatively low values were assumed for properties of tensile and bond strengths of concrete. in 

anticipation of its deterioration with time. though factual strength data concerned are not available in 

the cited test reports 

4固 Conclusion

The procedure used here hasbeen shown to have sufficient utility in general. as a resu1t of its 

specific substantiation using some examples， giving a practically consistent approximation of 

long-term def!ection progress. A related advantage of the method lies in its enabling representation of 

the causes of chronic slab def!ection as the total effect of various agents. 

By the nature of things the present analysis must inevitably allow for ill known parametric 

variables inc1uding material properties. 

The possibilities of practical application of the present modified approach will be discussed and 

explored， inc1uding the potential extent of utility compared with that of such building code methods as 

we initially referred to， in a subsequent part of this report 
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