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Abstract

This chapter examines the advances and perspectives of the applications of 
artificial intelligence (AI) in the classification of magnetic resonance (MR) images. 
It focuses on the development of AI-based automatic classification models that have 
achieved competitive results compared to the state-of-the-art. Accurate and efficient 
classification of MR images is essential for medical diagnosis but can be challenging 
due to the complexity and variability of the data. AI offers tools and techniques that 
can effectively address these challenges. The chapter first addresses the fundamentals 
of artificial intelligence applied to the classification of medical images, includ-
ing machine learning techniques and convolutional neural networks. Here, recent 
advances in the use of AI to classify MRI images in various clinical applications, such 
as brain tumor detection, are explored. Additionally, advantages and challenges 
associated with implementing AI models in clinical settings are discussed, such as the 
interpretability of results and integration with existing radiology systems. Prospects 
for AI in MR image classification are also highlighted, including the combination of 
multiple imaging modalities and the use of more advanced AI approaches such as 
reinforcement learning and model generation.

Keywords: artificial intelligence, deep learning, medical imaging, convolutional neural 
networks, computer-aided diagnosis, automatic classification models

1. Introduction

Medical imaging plays a pivotal role in the diagnosis and treatment of diseases, 
offering intricate visual insights into the human body [1]. Among the array of 
available imaging techniques, magnetic resonance imaging (MRI) has witnessed 
substantial growth in adoption due to its capacity for capturing high-resolution 
images that exhibit exceptional contrast between soft tissues [2]. The accessibility 
of magnetic resonance imaging has surged, thanks to advancements in technology 
and heightened recognition of its clinical value. These images, obtained from various 
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anatomical regions and under diverse protocols, furnish indispensable information 
about anatomical structures, functions, and potential abnormalities [3]. Nevertheless, 
the interpretation of these MR images presents formidable challenges. Manual 
analysis by radiologists can be labor-intensive, reliant on expertise, and vulnerable 
to interobserver variations. Furthermore, the burgeoning volume of images for each 
patient underscores the imperative for precise and efficient analysis to bolster clinical 
decision-making [4].

In this context, the application of artificial intelligence (AI) in the classification of 
magnetic resonance images has emerged as a promising solution [5]. AI holds the poten-
tial to process large volumes of images swiftly and accurately, thereby bolstering clini-
cians in the early detection, characterization, and ongoing monitoring of diseases [6]. 
Leveraging machine learning techniques and convolutional neural networks, the devel-
opment of automatic classification models for medical images has demonstrated their 
competitiveness in comparison to traditional methods [7]. These models excel in discern-
ing subtle patterns and features within MR images, thus facilitating precise diagnoses and 
prognoses for a myriad of conditions. Figure 1 illustrates the organization of this chapter.

In summation, given the current landscape of medical imaging with the expand-
ing availability of magnetic resonance images and the compelling need for precise 
and efficient analysis to underpin clinical decisions, the application of artificial 
intelligence in image classification is a field of research and development of profound 
significance [8]. By uniting the computational prowess of AI with the rich, intricate 
information offered by MR imaging, the potential exists to elevate the accuracy and 
efficiency of medical diagnosis, ushering in fresh possibilities for patient care.

2. Overview of MRI images

Magnetic Resonance Imaging (MRI) is a non-invasive medical imaging technique 
that plays a pivotal role in modern healthcare by providing detailed cross-sectional 
images of the body’s internal structures [9]. It operates on the principle of using 

Figure 1. 
Organization. We first review MRI images. Next, we introduce common AI models that have been applied to 
learn those MRI images. Then, we investigate MRI applications that employ AI models. Finally, we discuss the 
evaluation metrics that are proposed to evaluate how well these AI models are.
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strong magnetic fields and radio waves to interact with the hydrogen nuclei (protons) 
in the body. As these protons align and then return to their natural state within the 
magnetic field, they emit signals that are captured and processed to generate images. 
MRI offers various types of images, each with unique applications. T1-weighted 
images provide excellent anatomical detail, while T2-weighted images are adept at 
detecting abnormalities like edema and lesions [10]. Proton density (PD)-weighted 
images emphasize proton concentration, and Diffusion-weighted images (DWI) 
reveal water molecule movement. Functional MRI (fMRI) maps brain activity, mag-
netic resonance angiography (MRA) visualizes blood vessels, and magnetic resonance 
spectroscopy (MRS) assesses tissue chemistry [11]. These images find extensive use 
in clinical applications, from neuroimaging for brain and spinal conditions to muscu-
loskeletal assessments and cardiovascular evaluations. MRI’s advantages include the 
absence of ionizing radiation, superb soft tissue contrast, and multi-planar imaging 
capability [12]. However, it can be sensitive to motion artifacts, contraindicated for 
certain metal implants, and sometimes time-consuming for patients. Nonetheless, 
MRI remains an invaluable tool, offering detailed insights into the human body’s 
internal structures and functions, thus shaping modern healthcare practices [13]. 
Figure 2 illustrates a few examples using different MRI techniques from various 
human organs.

2.1 Anatomical MRI

One of the fundamental applications of magnetic resonance imaging (MRI) in the 
realm of medical diagnosis is the visualization of anatomical structures within the 
human body. Anatomical MRI, often referred to as structural MRI, is a cornerstone of 
clinical imaging. It provides detailed, high-resolution images of various body parts, 
offering essential insights into the morphology and integrity of tissues and organs [15].

Figure 2. 
Illustration of common MRI images. (a) T1-weighted MRI; left: Liver; right: Brain [neonate], (b) T2-weighted 
MRI; left: Prostate; middle: Brain [neonate]; right: Liver, (c) functional MRI, (d) diffusion tensor imaging, and 
(e) MR angiography [14].



New Advances in Magnetic Resonance Imaging

4

Anatomical MRI sequences, such as T1-weighted and T2-weighted images, play 
a crucial role in depicting different tissues based on their inherent physical proper-
ties. T1-weighted images offer excellent contrast between fat and water-rich tissues, 
making them ideal for visualizing anatomical boundaries and structures. In contrast, 
T2-weighted images highlight variations in water content, effectively revealing 
abnormalities such as edema, inflammation, or lesions [16].

These MRI sequences are instrumental in diagnosing a wide range of medical con-
ditions. In neuroimaging, they aid in detecting brain abnormalities, such as tumors, 
vascular malformations, or degenerative diseases like multiple sclerosis. In musculo-
skeletal imaging, anatomical MRI helps identify soft tissue injuries, joint disorders, 
and assess the integrity of ligaments and tendons. Additionally, in abdominal imag-
ing, it facilitates the evaluation of organs like the liver, kidneys, and gastrointestinal 
tract, allowing the detection of tumors, cysts, or structural anomalies.

2.2 Diffusion MRI

Diffusion Magnetic Resonance Imaging (dMRI or diffusion MRI) is a specialized 
MRI technique that offers a unique window into the microscopic structures and tissue 
properties within the human body. Unlike traditional anatomical MRI, diffusion 
MRI focuses on the movement of water molecules within tissues, providing critical 
information about cellular structures and tissue microarchitecture [17].

At its core, diffusion MRI capitalizes on the inherent Brownian motion of water 
molecules. In biological tissues, water molecules are not stationary; instead, they 
exhibit random motion influenced by obstacles such as cell membranes, fibers, and 
other cellular structures. This random motion, known as diffusion, can be measured, 
and quantified using diffusion MRI [18].

One of the primary measures derived from diffusion MRI is the apparent diffu-
sion coefficient (ADC), which characterizes the rate and direction of water molecule 
diffusion within tissues [19]. High ADC values typically indicate free and unrestricted 
diffusion, often seen in areas with fluid or cystic structures. Conversely, low ADC 
values suggest restricted diffusion, often associated with dense cellular structures or 
pathologies that hinder water molecule movement.

Diffusion MRI is particularly valuable in neuroimaging, where it enables the map-
ping of white matter tracts in the brain. By tracking the diffusion of water molecules 
along nerve fibers, this technique offers insights into brain connectivity and can 
identify abnormalities such as white matter lesions, which are common in conditions 
like multiple sclerosis [20].

2.3 Functional MRI

Functional magnetic resonance imaging (fMRI) is a groundbreaking applica-
tion of MRI technology that provides real-time insights into the functioning of the 
human brain. Unlike traditional MRI, which primarily captures structural informa-
tion, fMRI focuses on the brain’s dynamic activity by measuring changes in blood 
flow and oxygenation levels [21]. At the heart of fMRI lies the concept of neurovas-
cular coupling. When a specific region of the brain becomes active, it requires an 
increased supply of oxygen and glucose. To meet this demand, blood vessels in the 
activated area dilate and blood flow surges, leading to an increase in oxygenated 
hemoglobin levels. This change in blood oxygenation can be detected and visual-
ized by fMRI [22].
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Functional MRI is a non-invasive tool that has revolutionized our understand-
ing of brain function and has numerous applications in both clinical and research 
settings. It enables researchers and clinicians to observe how different brain regions 
respond to specific tasks, stimuli, or cognitive processes [23]. One of the most preva-
lent applications of fMRI is functional localization. This technique helps identify 
critical brain areas responsible for specific functions, such as language processing, 
motor control, and memory formation. For instance, by instructing a subject to 
perform language-related tasks during an fMRI scan, researchers can pinpoint the 
brain regions associated with speech and language functions [24].

In the realm of cognitive neuroscience, fMRI is instrumental in studying complex 
cognitive processes like decision-making, emotion regulation, and working memory. By 
examining patterns of brain activation, researchers gain insights into the neural under-
pinnings of these cognitive functions, paving the way for breakthroughs in fields like 
psychology and psychiatry [25]. The clinical applications of fMRI are equally profound. 
It is extensively used in presurgical planning, particularly in cases where brain lesions or 
tumors are present. fMRI helps surgeons map out functional brain areas, ensuring that 
critical regions are preserved during surgery to minimize postoperative deficits [26].

2.4 Magnetic resonance angiography (MRA)

Magnetic Resonance Angiography (MRA) is a specialized branch of MRI that 
focuses on imaging blood vessels, providing detailed visualizations of the vascular 
system without the need for invasive procedures or contrast agents commonly used 
in traditional angiography [27]. MRA has evolved as a valuable diagnostic tool in 
vascular medicine, offering high-resolution images of arteries and veins throughout 
the body. One of the key advantages of MRA is its non-invasive nature. Unlike conven-
tional angiography, which requires the insertion of catheters and injection of contrast 
agents, MRA relies solely on the principles of magnetic resonance [28]. Patients under-
going MRA experience no exposure to ionizing radiation or contrast-related risks, 
making it a safer option, especially for individuals with underlying health conditions.

MRA techniques vary depending on the vascular region of interest, each opti-
mized to provide optimal imaging for specific anatomical areas. Some common MRA 
techniques include [29]:

• Time-of-flight (TOF) MRA [30]: This technique relies on the flow-related 
enhancement of blood vessels. By utilizing differences in the flow speed of 
blood, TOF MRA generates high-contrast images of arteries. It is often used for 
imaging larger vessels, such as the carotid or cerebral arteries.

• Phase-contrast MRA [31]: Phase-contrast MRA measures the velocity of blood 
flow in vessels. By quantifying the phase shifts of moving protons in blood, it 
produces images that not only visualize vessel anatomy but also provide infor-
mation about blood flow velocity and direction. This is particularly useful in 
assessing blood flow dynamics in conditions like stenosis or aneurysms.

• Contrast-enhanced MRA (CE-MRA): In some cases, the use of contrast agents is 
necessary to enhance the visibility of blood vessels, especially in smaller ves-
sels or when assessing venous structures. CE-MRA involves the injection of a 
gadolinium-based contrast agent, which shortens the relaxation time of nearby 
protons, leading to improved vessel visualization.
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• Magnetic resonance venography (MRV) [32]: MRV is a specific application of MRA 
tailored to visualize veins. It is commonly used to assess deep vein thrombosis 
(DVT) in the extremities or to evaluate the venous system in the brain.

The clinical applications of MRA are extensive. It is routinely employed for the 
diagnosis and evaluation of vascular conditions, including [33]:

• Atherosclerosis: MRA can identify narrowing or blockages in arteries caused by 
atherosclerotic plaques, aiding in the diagnosis of conditions like coronary artery 
disease and peripheral artery disease.

• Cerebrovascular disease: MRA of the brain helps in detecting aneurysms, arte-
riovenous malformations (AVMs), and other vascular abnormalities that may 
contribute to strokes or other neurological disorders.

• Renal artery stenosis: MRA is a valuable tool for assessing the renal arteries, aiding 
in the diagnosis of conditions such as renal artery stenosis, which can lead to 
hypertension and kidney dysfunction.

• Peripheral vascular disease: MRA is used to evaluate blood flow in the extremities, 
assisting in the diagnosis and treatment planning for conditions like deep vein 
thrombosis (DVT) and peripheral artery disease (PAD).

The integration of artificial intelligence (AI) into MRA analysis holds significant 
promise. AI algorithms can assist in automating the detection and quantification 
of vascular abnormalities, improving the efficiency and accuracy of diagnoses. 
Furthermore, AI-driven predictive models can provide insights into the risk of vascu-
lar events and guide personalized treatment strategies [34].

3. Brief introduction of AI models

Artificial Intelligence (AI) has emerged as a transformative force in the field of 
medical imaging, revolutionizing the way we interpret and utilize various imaging 
modalities, including Magnetic Resonance Imaging (MRI) [35]. AI models, often 
powered by deep learning techniques, have demonstrated remarkable capabilities in 
extracting meaningful information from medical images, thereby aiding in disease 
diagnosis, treatment planning, and prognosis assessment.

At the heart of AI’s impact on medical imaging are neural networks, specifically 
Convolutional Neural Networks (CNNs) [36]. CNNs have proven highly effective in 
learning complex patterns and features from images, making them well-suited for 
tasks such as image classification, segmentation, and object detection. These models 
mimic the hierarchical organization of neurons in the human brain, enabling them 
to recognize intricate details within medical images [37]. Two prominent AI models 
frequently employed in medical imaging are:

• Convolutional neural networks (CNNs) [38]: CNNs have become the work-
horse of deep learning in medical imaging. They consist of multiple layers of 
convolutional and pooling operations that systematically extract hierarchical 
features from images. CNNs excel in tasks like image classification, where they 
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can distinguish between normal and abnormal findings within medical images. 
Variants of CNNs, such as VGG16, ResNet50, and Inception, have been adapted 
and fine-tuned for specific medical imaging applications.

• Recurrent neural networks (RNNs) [39]: While CNNs dominate image-related 
tasks, RNNs are specialized for sequential data, making them invaluable for 
tasks that involve temporal information. In medical imaging, RNNs are particu-
larly useful for processing time-series data, such as functional MRI (fMRI) or 
dynamic contrast-enhanced MRI (DCE-MRI). They can track changes in image 
sequences over time, aiding in the assessment of conditions like epilepsy or 
tumor response to treatment.

AI models in medical imaging go beyond image classification. They are instru-
mental in tasks like image segmentation, where they identify and outline specific 
structures or regions of interest within an image. For instance, in MRI, AI can be used 
to segment tumors, blood vessels, or organs, enabling precise measurements and 
volumetric assessments [40]. Furthermore, AI models facilitate image registration, 
aligning images from different modalities or time points, which is crucial for moni-
toring disease progression or treatment response. They also contribute to generative 
models, like Generative Adversarial Networks (GANs), which create synthetic 
medical images for training and augmenting datasets, a particularly useful capability 
in situations where data is limited [41].

In the realm of AI models for MRI image analysis, a rich tapestry of architectures 
has emerged, each tailored to specific tasks and challenges. The U-Net architecture, 
with its intricate encoding and decoding pathways, stands as a stalwart for semantic 
segmentation tasks, particularly in medical image segmentation [42]. Its ability to 
capture fine-grained features and preserve spatial information has made it indispens-
able in delineating anatomical structures. On the other hand, the Multiple Layer 
Perceptron (MLP) showcases its prowess in handling structured data extracted from 
MRI images [43]. MLPs are versatile, leveraging dense layers to process information 
and make predictions, making them suitable for various classification and regres-
sion tasks. Meanwhile, Graph Neural Networks (GNNs) have gained traction in MRI 
analysis by modeling complex relationships within medical data [44]. GNNs excel in 
tasks requiring the understanding of intricate connections, such as mapping neural 
pathways or identifying brain regions with functional significance. The adaptability 
of these architectures further underscores the dynamism of AI models in MRI image 
analysis, catering to the diverse needs of medical professionals and researchers.

As we delve deeper into this chapter, we will explore the various applications of AI 
models in the realm of MRI, shedding light on how these models are advancing our 
ability to extract meaningful insights from medical images. We will discuss their role 
in image analysis, disease detection, and prognosis assessment, emphasizing their 
potential to enhance clinical decision-making and patient care. Additionally, we will 
delve into the latest advancements and future perspectives in AI-driven MRI analysis, 
highlighting the ongoing research and development in this rapidly evolving field.

4. Deep learning techniques

Deep learning techniques have catalyzed a transformative shift in medical image 
analysis, propelling the field to new heights in accuracy and efficiency [45]. In the 
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context of Magnetic Resonance Imaging (MRI), these techniques have proven par-
ticularly invaluable, enabling the extraction of intricate information from complex 
images [46]. This section explores the key deep learning techniques employed in MRI 
analysis, shedding light on their applications and advantages.

4.1 Convolutional neural networks (CNNs)

• Image classification: CNNs are the cornerstone of medical image analysis, includ-
ing MRI. They excel in classifying images into distinct categories, such as normal 
and abnormal findings or specific disease types. For instance, in brain MRI, 
CNNs can distinguish between healthy and tumor-affected regions.

• Segmentation: CNNs are employed for precise image segmentation, outlining 
regions of interest within MRI scans. This is crucial for identifying tumors, blood 
vessels, or anatomical structures. Semantic segmentation, which assigns each 
pixel in an image to a specific class, is particularly useful in MRI.

4.2 Recurrent neural networks (RNNs)

• Time-series analysis: MRI sequences, like functional MRI (fMRI) or diffusion 
MRI, capture changes over time. RNNs are adept at processing such sequences, 
enabling the assessment of dynamic processes in the body. For example, fMRI 
data analysis using RNNs can reveal brain activity patterns related to specific 
tasks or conditions.

• Longitudinal studies: RNNs are indispensable in tracking disease progression 
or treatment response over multiple MRI scans taken at different time  
points. They help identify subtle changes that may not be apparent in i 
ndividual scans.

4.3 Generative adversarial networks (GANs)

• Data augmentation: GANs are used to generate synthetic MRI images that closely 
mimic real data. This aids in data augmentation, increasing the diversity of the 
training dataset. In MRI, where obtaining labeled data can be challenging, GANs 
prove invaluable for training robust models.

• Super-resolution: GANs are leveraged to enhance MRI image resolution. This is 
particularly useful in obtaining high-quality images from low-resolution acquisi-
tions, improving the overall diagnostic value.

4.4 Transfer learning

• Pretrained models: Transfer learning involves using pretrained deep learning 
models on large datasets, such as ImageNet, and fine-tuning them for specific 
MRI analysis tasks [47]. This approach saves computational resources and 
training time while benefiting from the generalization power of pretrained 
models.
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4.5 Autoencoders

• Feature extraction: Autoencoders are utilized for unsupervised feature learn-
ing [48]. They compress MRI images into lower-dimensional representations, 
capturing salient features. These learned features can then be used for various 
tasks, including classification and segmentation.

4.6 Attention mechanisms

• Region of Interest (ROI) Attention: Attention mechanisms enable models to focus on 
specific regions within an MRI scan [49]. This is particularly useful in cases where 
only a small part of the image contains diagnostically relevant information. Attention 
mechanisms help improve model accuracy by emphasizing the important areas.

4.7 3D CNNs

• Volumetric analysis: For 3D MRI data, such as volumetric MRI or MRI video 
sequences, 3D CNNs are employed [50]. These models consider the spatial rela-
tionships between image slices, providing a more comprehensive understanding 
of the 3D structure of anatomical or pathological regions.

4.8 Ensemble models

• Improved accuracy: Ensemble models combine predictions from multiple deep 
learning models, boosting overall accuracy and reducing model variability [51]. 
In MRI analysis, they are employed to enhance diagnostic reliability and mini-
mize false positives.

4.9 Explainable AI (XAI) techniques

• Interpretability: As AI models in MRI analysis become more sophisticated, the 
need for interpretability grows [52]. XAI techniques, including Grad-CAM and 
LIME, are applied to elucidate model decisions and provide insights into the 
features that influence diagnoses.

Deep learning techniques are not only transforming MRI analysis but also pushing 
the boundaries of what is possible in medical imaging. Their ability to handle complex 
data, adapt to various modalities, and continuously improve through data-driven 
learning positions them at the forefront of medical research and clinical applica-
tions. In the subsequent sections, we will delve into the specific applications of these 
techniques in MRI analysis, illustrating their impact on disease detection, prognosis 
assessment, and treatment planning.

5. AI role in realignment, normalization and registration stages in MRI

The realignment stage in MRI is essential to ensure that the images obtained are 
of the highest quality possible, especially in clinical applications where patients may 
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move during image acquisition [53]. Here, artificial intelligence has proven to be 
an invaluable tool in enabling accurate and efficient automation of this process. AI 
techniques at this stage include:

1. Landmark tracking: AI algorithms can identify anatomical landmarks on MRI im-
ages, such as prominent bone structures or tissue features. These landmarks are 
used to track the patient’s movements during image acquisition.

2. Deformation correction: AI can detect and correct deformations in images caused 
by patient movement or even magnetic distortions. These corrections are essen-
tial to ensure accuracy in applications such as surgical navigation or longitudinal 
disease assessment.

3. Real-time image reconstruction: In situations where real-time motion correction is 
required, AI can be used to reconstruct images in real-time as they are acquired, 
correcting any motion instantly.

The use of artificial intelligence in motion realignment and correction not only 
improves the quality of MRI images, but also reduces the need for repeat studies due 
to inadvertent patient movements, saving time and resources. Intensity and contrast 
normalization is crucial to ensure that MRI images are comparable between patients 
and scanning sessions [54]. Here, artificial intelligence plays an essential role by 
adjusting image characteristics to facilitate accurate and objective analysis. AI tech-
niques at this stage include:

1. Normalization standards: AI algorithms can apply normalization standards to 
ensure that intensity and contrast in images are consistent across MRI studies. 
This is especially important when comparing images from different patients or in 
longitudinal follow-up of the same patient.

2. Artifact suppression: AI can identify and suppress artifacts from MRI images, 
such as those caused by respiratory or metal movements. This significantly im-
proves image quality and diagnostic accuracy.

3. Improved homogeneity: AI algorithms can adjust the homogeneity of intensity in 
images, making it easier to identify subtle structures and pathologies.

Intensity and contrast normalization using artificial intelligence ensures that 
images are consistent and suitable for clinical interpretation and application of analy-
sis algorithms. Image co-registration in MRI involves aligning multiple sets of images 
acquired in different sequences or modalities for better comparison and analysis [55]. 
Artificial intelligence has proven to be highly effective in automating this process. AI 
techniques at this stage include:

1. Landmark matching: AI algorithms can automatically identify anatomical land-
marks in different image sets and use them to perform co-registration.

2. Spatial transformations: AI can calculate spatial transformations that optimally 
align images, even when warps or distortions exist.
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3. Multimodal data fusion: When multiple MRI modalities are used, artificial intel-
ligence can fuse data from different sequences or modalities to provide a more 
complete and accurate view of anatomy and pathologies.

Image co-registration and data fusion with the help of artificial intelligence are 
critical for more accurate interpretation and better-informed clinical decision-mak-
ing in applications involving multiple sets of MRI images.

6. AI applications in MRI

Artificial Intelligence (AI) has revolutionized the field of MRI, offering a plethora 
of applications that enhance image acquisition, analysis, and clinical decision-
making. The fusion of AI and MRI has ushered in a new era of medical imaging, with 
a wide range of applications that benefit patients and healthcare providers alike [56]. 
Table 1 provides a concise overview of how AI enhances various aspects of MRI, from 
image quality to disease diagnosis and treatment planning.

Application Description

Image enhancement Noise reduction: AI reduces noise and artifacts in MRI images.

Super-Resolution: AI enhances image resolution for finer anatomical details.

Image reconstruction Accelerated Imaging: AI-based reconstruction enables faster MRI scans.

Sparse Sampling: AI reconstructs high-quality images from sparsely sampled data.

Disease detection and 

diagnosis

Tumor detection: AI identifies and characterizes tumors in MRI scans.

Neurological Disorders: AI aids in diagnosing conditions like Alzheimer’s using brain 

MRI.

Cardiovascular diseases: AI assists in detecting heart diseases via cardiac MRI.

Lesion segmentation AI accurately segments lesions (e.g., tumors) in MRI scans, aiding in treatment 

planning.

Functional MRI 

(fMRI) analysis

AI maps brain regions activated during tasks or conditions, facilitating cognitive 

research.

Diffusion MRI 

(dMRI) analysis

AI reconstructs white matter tracts in the brain, valuable for neurosurgical planning.

Quantitative imaging AI quantifies tissue properties (T1, T2, diffusion) for disease characterization.

AI analyzes tissue perfusion in MRI, important for diagnosing conditions like stroke.

Automated reporting AI generates automated radiology reports by extracting findings from MRI scans.

Treatment planning AI assists in radiotherapy planning by delineating target volumes on MRI.

Monitoring disease 

progression

AI tracks disease progression by analyzing changes in MRI scans over time.

Predictive modeling AI predicts disease outcomes and treatment responses based on MRI data.

Quality control AI performs quality checks on MRI scans, flagging artifacts and anomalies.

Population studies AI analyzes large MRI datasets for trends, risk factors, and early disease indicators.

Customization and 

personalization

AI tailors MRI protocols to individual patients for optimized imaging.

Table 1. 
Applications of AI in magnetic resonance imaging.
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7. AI evaluations in MRI

The evaluation of AI models in the context of MRI images is crucial to assess their 
performance, accuracy, and clinical utility. One of the fundamental tools for this 
evaluation is the confusion matrix [57]. The confusion matrix is a table that allows us 
to visualize the performance of a classification model, particularly in binary clas-
sification scenarios, where we are concerned with distinguishing between two classes: 
positive (disease presence) and negative (disease absence).

7.1 Confusion matrix

The confusion matrix is organized in Table 2 as follows [58]:
In this confusion matrix:

• True positives (TP): Cases where the AI correctly predicted the presence of a 
condition.

• True negatives (TN): Cases where the AI correctly predicted the absence of a 
condition.

• False positives (FP): Cases where the AI incorrectly predicted the presence of a 
condition when it wasn’t there.

• False negatives (FN): Cases where the AI incorrectly predicted the absence of a 
condition when it was present.

7.2 Key metrics derived from the confusion matrix

Several key metrics can be calculated based on the values in the confusion 
matrix [59]:

• Accuracy: This metric measures the overall correctness of predictions and is 
calculated as (TP + TN)/(TP + TN + FP + FN). It provides a high-level view of 
the model’s performance but may not be sufficient when dealing with imbal-
anced datasets.

• Precision (positive predictive value): Precision quantifies the proportion of true 
positive predictions relative to all positive predictions and is calculated as TP/
(TP + FP). It is valuable when minimizing false positives is critical.

• Recall (sensitivity or true positive rate): Recall assesses the model’s ability to 
correctly identify all positive instances and is calculated as TP/(TP + FN). It is 
crucial when minimizing false negatives is a priority.

Predicted negative (non-disease) Predicted positive (disease)

Actual negative True negative (TN) False positive (FP)

Actual positive False negative (FN) True positive (TP)

Table 2. 
Confusion matrix for AI model evaluation in MRI images.
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• F1 score: The F1 score is the harmonic mean of precision and recall and is cal-
culated as 2 * (Precision * Recall)/(Precision + Recall). It provides a balanced 
evaluation of a model’s performance, especially when dealing with imbalanced 
datasets.

• Specificity (true negative rate): Specificity measures the model’s ability to correctly 
identify all negative instances and is calculated as TN/(TN + FP). It is particu-
larly relevant when the cost of false positives is high.

• False positive rate (FPR): FPR quantifies the proportion of false positives relative 
to all actual negatives and is calculated as FP/(TN + FP). It is complementary to 
specificity.

A well-interpreted confusion matrix can provide insights into the strengths and 
weaknesses of an AI model applied to MRI images. It helps in understanding where 
the model excels (e.g., high TP and TN) and where it needs improvement (e.g., high 
FP or FN). Depending on the specific medical application, the choice of evaluation 
metric may vary. For instance, in cancer detection, high sensitivity (recall) is often 
prioritized to minimize false negatives, ensuring early disease detection. In contrast, 
for certain rare conditions, high specificity may be crucial to avoid unnecessary 
interventions [60].

In addition to traditional evaluation metrics like accuracy, precision, recall, and F1 
score, assessing the performance of AI models in MRI image analysis often involves 
considering other factors such as stability [61]. Stability examines how slight pertur-
bations in the input affect the explanation provided by the model. The stability metric 
is calculated by dividing the number of stable explanations (those that remain con-
sistent when the input is perturbed) by the total number of explanations generated 
by the model. A higher stability metric signifies that the AI model’s explanations are 
robust and unaffected by minor variations in the input data. This metric is particu-
larly relevant in medical imaging, where consistency and reliability of model inter-
pretations are paramount. While metrics like stability focus on the model’s response to 
perturbations in the input data, it’s important to note that there are various evaluation 
metrics that do not rely on the confusion matrix but provide valuable insights into the 
model’s performance and behavior [62].

8. Limitations of algorithms in magnetic resonance applications

8.1 Data size and sample requirements

The size of data sets in magnetic resonance imaging (MRI) applications is a critical 
factor that can influence the effectiveness of machine learning algorithms. Large 
and diversified data sets are often needed to train high-precision models. However, 
in practice, it can be difficult to obtain large data sets, which can limit the ability 
of models to generalize and make accurate diagnoses [63]. In MRI applications, the 
availability of large data sets may be limited due to various reasons, such as patient 
privacy or costly and time-consuming data collection. To address these restrictions, 
data augmentation techniques are used. These strategies involve generating new 
training samples from existing samples, by applying controlled transformations. 
Some common forms of data augmentation in MRI include Rotation and Mirroring, 
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Panning and Zooming, Elastic Distortions, and Noise Aggregation [64]. Transfer 
learning is another powerful strategy to overcome sample size restrictions in MRI 
applications. This technique involves leveraging machine learning models pretrained 
on larger, generic data sets (e.g., models trained on large-scale medical images or even 
non-medical images) and tailoring them for specific MRI tasks.

8.2 Label quality and annotation challenges

The quality of labels in MRI data sets is essential for training accurate machine 
learning models. Without accurate and consistent labels, algorithms can produce 
incorrect or biased results. Data annotation in MRI applications presents several 
unique challenges due to the detailed and medical nature of the images [65]. Some 
of these challenges include Expert Requirements, Ambiguity and Variability, 
Multimodal Data, and Privacy and Security. To address these challenges and improve 
label quality in MRI applications, several strategies can be employed:

• Formation of scorers

• Consistency and expert agreements

• Cross validation

• Computer aided annotation (CAA) tools

• Quality audit

• Establish a feedback flow

• Active learning

By implementing these strategies, the quality of labels in MRI data sets can be 
improved, which in turn contributes to training more accurate and reliable machine 
learning models for medical applications. Furthermore, documentation and monitor-
ing of annotation processes are essential to ensure traceability and data quality.

8.3 Training time and computational resources

The time required to train machine learning models in MRI applications can be 
significant, especially when complex models are used. This can affect the efficiency 
of clinical implementation and the ability to respond in critical situations. Training 
time for AI models in MRI applications can be significant and can vary depending on 
the complexity of the task and the size of the data set. Some factors that contribute 
to training time include model architecture, data set size, computational resources, 
hyperparameters and regularization [66]. Computational resources are critical to 
accelerate training time and enable efficient deployment of AI models in MRI applica-
tions. Some key considerations include graphics processing units (GPU) or tensor 
processing units (TPU), compute clusters, cloud services, code optimization and 
transfer learning [67].

Training time and computational resources are critical considerations in AI appli-
cations in MRI. Choosing efficient model architectures, optimizing hyperparameters, 
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and accessing high-performance resources are key strategies to reduce training times 
and improve efficiency in deploying AI models in medical MRI applications.

9. Conclusions

In this chapter, we embarked on a journey through the dynamic intersection of 
magnetic resonance imaging (MRI) and artificial intelligence (AI). We began by delv-
ing into the diverse world of MRI imaging, exploring its various modalities, including 
anatomical MRI, diffusion MRI, functional MRI (fMRI), and magnetic resonance 
angiography (MRA). Each modality provided a unique window into the human body, 
offering invaluable insights for diagnosis and treatment. As we ventured further, 
we unraveled the power of AI models in revolutionizing MRI image analysis. Deep 
Learning techniques took center stage, with convolutional neural networks (CNNs) 
emerging as formidable tools for feature extraction and classification. We explored 
their versatility across datasets, showcasing their ability to accurately detect a spec-
trum of medical pathologies.

Applications of AI in MRI proved boundless, from detecting brain tumors in 
Anatomical MRI to mapping brain activity in fMRI, and even pinpointing vascular 
anomalies in MRA. Each application underscored the potential to enhance clinical 
decision-making, optimize resource utilization, and ultimately improve patient out-
comes. The evaluation of AI models extended beyond traditional metrics, introducing 
stability as a crucial factor. We emphasized the importance of robust, consistent 
model interpretations, especially in the context of medical imaging, where precision 
is paramount.

In conclusion, the amalgamation of MRI imaging and AI has ushered in a new era 
of medical diagnostics and patient care. These transformative technologies are poised 
to reshape the healthcare landscape, offering more accurate, efficient, and reliable 
tools for medical professionals. With ongoing research, collaboration, and refine-
ment, the future holds the promise of even greater advancements, ultimately benefit-
ing individuals worldwide.

This chapter serves as an overview to the potential of AI in MRI imaging, offering 
a glimpse into a future where cutting-edge technology and medical expertise converge 
to improve lives and redefine healthcare standards.

Acknowledgements

We would like to thank the University of Guanajuato and the support of 
CONAHCyT (scholarship No. 893699).

Conflict of interest

The authors declare no conflict of interest.



New Advances in Magnetic Resonance Imaging

16

Author details

Aron Hernandez-Trinidad1*, Blanca Olivia Murillo-Ortiz2, Rafael Guzman-Cabrera3 
and Teodoro Cordova-Fraga1

1 Science and Engineering Division, University of Guanajuato Leon Campus, 
Leon, GTO, Mexico

2 Epidemiology Research Unit IMSS No. 1 High Specialty Medicine Unit, Leon, GTO, 
Mexico

3 Engineering Division, University of Guanajuato Irapuato-Salamanca Campus, 
Salamanca, GTO, Mexico

*Address all correspondence to: aron.hernandez@ugto.mx

© 2023 The Author(s). Licensee IntechOpen. This chapter is distributed under the terms of 
the Creative Commons Attribution License (http://creativecommons.org/licenses/by/3.0), 
which permits unrestricted use, distribution, and reproduction in any medium, provided 
the original work is properly cited. 



Applications of Artificial Intelligence in the Classification of Magnetic Resonance Images…
DOI: http://dx.doi.org/10.5772/intechopen.113826

17

References

[1] Hill DL et al. Medical image 
registration. Physics in Medicine & 
Biology. 2001;46(3):R1

[2] Kasban H, El-Bendary MAM, 
Salama DH. A comparative study 
of medical imaging techniques. 
International Journal of Information 
Science and Intelligent System. 
2015;4(2):37-58

[3] Lundervold AS, Lundervold A. An 
overview of deep learning in medical 
imaging focusing on MRI. Zeitschrift für 
Medizinische Physik. 2019;29(2):102-127

[4] Enzmann DR. Radiology’s value 
chain. Radiology. 2012;263(1):243-252

[5] Mazurowski MA et al. Deep learning 
in radiology: An overview of the concepts 
and a survey of the state of the art with 
focus on MRI. Journal of Magnetic 
Resonance Imaging. 2019;49(4):939-954

[6] Gore JC. Artificial intelligence in 
medical imaging. In: Magnetic Resonance 
Imaging. Elsevier; 2020. pp. A1-A4

[7] Chattopadhyay A, Maitra M. MRI-
based brain tumour image detection 
using CNN based deep learning 
method. Neuroscience Informatics. 
2022;2(4):100060

[8] Adegun AA, Viriri S, Ogundokun RO. 
Deep learning approach for medical image 
analysis. Computational Intelligence and 
Neuroscience. 2021;2021:1-9

[9] Liang Z-P, Lauterbur PC. Principles of 
Magnetic Resonance Imaging. WA: SPIE 
Optical Engineering Press Belllingham; 
2000

[10] Kuperman V. Magnetic Resonance 
Imaging: Physical Principles and 
Applications. Elsevier; 2000

[11] Landini L et al. Advanced Image 
Processing in Magnetic Resonance 
Imaging. CRC Press; 2018

[12] Katti G, Ara SA, Shireen A. Magnetic 
resonance imaging (MRI)–a review. 
International Journal of Dental Clinics. 
2011;3(1):65-70

[13] Pham TT et al. Magnetic resonance 
imaging (MRI) guided proton therapy: 
A review of the clinical challenges, 
potential benefits and pathway to 
implementation. Radiotherapy and 
Oncology. 2022;170:37-47

[14] Shamshad F et al. Transformers in 
medical imaging: A survey. Medical 
Image Analysis. 2023;88:1361-8415

[15] Lenroot RK, Giedd JN. Brain 
development in children and 
adolescents: Insights from anatomical 
magnetic resonance imaging. 
Neuroscience & Biobehavioral Reviews. 
2006;30(6):718-729

[16] Durston S et al. Anatomical MRI of 
the developing human brain: What have 
we learned? Journal of the American 
Academy of Child & Adolescent 
Psychiatry. 2001;40(9):1012-1020

[17] Jones DK. Diffusion MRI. Oxford 
University Press; 2010

[18] Le Bihan D et al. Artifacts and 
pitfalls in diffusion MRI. Journal of 
Magnetic Resonance Imaging: An Official 
Journal of the International Society 
for Magnetic Resonance in Medicine. 
2006;24(3):478-488

[19] Sener RN. Diffusion MRI: Apparent 
diffusion coefficient (ADC) values in 
the normal brain and a classification of 
brain disorders based on ADC values. 



New Advances in Magnetic Resonance Imaging

18

Computerized Medical Imaging and 
Graphics. 2001;25(4):299-326

[20] Rovaris M et al. Diffusion MRI 
in multiple sclerosis. Neurology. 
2005;65(10):1526-1532

[21] Moonen CTW, Bandettini PA. 
Functional MRI. Vol. 3. Springer; 1999

[22] Van Zijl PCM et al. Quantitative 
assessment of blood flow, blood volume 
and blood oxygenation effects in 
functional magnetic resonance imaging. 
Nature Medicine. 1998;4(2):159-167

[23] DeYoe EA et al. Functional magnetic 
resonance imaging (FMRI) of the human 
brain. Journal of Neuroscience Methods. 
1994;54(2):171-187

[24] Manan HA, Franz EA, Yahya N. 
Utilization of functional MRI language 
paradigms for pre-operative mapping: 
A systematic review. Neuroradiology. 
2020;62:353-367

[25] Szaflarski JP et al. Comprehensive 
presurgical functional MRI language 
evaluation in adult patients with 
epilepsy. Epilepsy & Behavior. 
2008;12(1):74-83

[26] Park KY et al. Mapping language 
function with task-based vs. resting-
state functional MRI. PLoS One. 
2020;15(7):e0236423

[27] Dumoulin CL, Hart HR Jr. Magnetic 
resonance angiography. Radiology. 
1986;161(3):717-720

[28] Hartung MP, Grist TM, 
François CJ. Magnetic resonance 
angiography: Current status and future 
directions. Journal of Cardiovascular 
Magnetic Resonance. 2011;13(1):1-11

[29] Potchen EJ. Magnetic Resonance 
Angiography: Techniques, Indications 

and Practical Applications. Springer; 
2006

[30] Laub GA. Time-of-flight method of 
MR angiography. Magnetic Resonance 
Imaging Clinics of North America. 
1995;3(3):391-398

[31] Dumoulin CL. Phase contrast MR 
angiography techniques. Magnetic 
Resonance Imaging Clinics of North 
America. 1995;3(3):399-411

[32] Carpenter JP et al. Magnetic 
resonance venography for the detection 
of deep venous thrombosis: Comparison 
with contrast venography and duplex 
Doppler ultrasonography. Journal of 
Vascular Surgery. 1993;18(5):734-741

[33] Carr JC, Carroll TJ. Magnetic 
Resonance Angiography: Principles 
and Applications. Springer Science & 
Business Media; 2011

[34] Yasaka K et al. Impact of deep 
learning reconstruction on intracranial 
1.5 T magnetic resonance angiography. 
Japanese journal of. Radiology. 
2022;40(5):476-483

[35] Huang S-C et al. Developing medical 
imaging AI for emerging infectious 
diseases. Nature Communications. 
2022;13(1):7060

[36] Li Z et al. A survey of convolutional 
neural networks: Analysis, applications, 
and prospects. IEEE Transactions on 
Neural Networks and Learning Systems. 
2021;33:2162-237X

[37] Wu J. Introduction to convolutional 
neural networks. National Key Lab for 
Novel Software Technology. Nanjing 
University. China. 2017;5(23):495

[38] Albawi S, Mohammed TA, Al-Zawi S. 
Understanding of a Convolutional Neural 
Network. IEEE; 2017



Applications of Artificial Intelligence in the Classification of Magnetic Resonance Images…
DOI: http://dx.doi.org/10.5772/intechopen.113826

19

[39] Medsker LR, Jain LC. Recurrent 
neural networks. Design and 
Applications. 2001;5(64-67):2

[40] Pereira S et al. Brain tumor 
segmentation using convolutional 
neural networks in MRI images. IEEE 
Transactions on Medical Imaging. 
2016;35(5):1240-1251

[41] Creswell A et al. Generative 
adversarial networks: An overview. 
IEEE Signal Processing Magazine. 
2018;35(1):53-65

[42] Yin X-X et al. U-net-based medical 
image segmentation. Journal of 
Healthcare Engineering. 2022;2022:1-16

[43] Singh J, Banerjee R. A Study on Single 
and Multi-Layer Perceptron Neural 
Network. IEEE; 2019

[44] Wu Z et al. A comprehensive 
survey on graph neural networks. IEEE 
Transactions on Neural Networks and 
Learning Systems. 2020;32(1):4-24

[45] LeCun Y, Bengio Y, Hinton G. 
 Deep learning. Nature. 2015;521(7553): 
436-444

[46] Liu J et al. Applications of deep 
learning to MRI images: A survey. 
Big Data Mining and Analytics. 
2018;1(1):1-18

[47] Weiss K, Khoshgoftaar TM, Wang D. 
A survey of transfer learning. Journal of 
Big Data. 2016;3(1):1-40

[48] Tschannen M, Bachem OF, Lučić M. 
Recent advances in autoencoder-based 
representation learning. In: Bayesian 
Deep Learning Workshop, NeurIPS. 
2018. 47658

[49] Niu Z, Zhong G, Yu H. A review 
on the attention mechanism of 
deep learning. Neurocomputing. 
2021;452:48-62

[50] Klaiber M et al. A Systematic 
Literature Review on Transfer Learning 
for 3d-CNNs. IEEE; 2021

[51] Sagi O, Rokach L. Ensemble learning: 
A survey. Wiley Interdisciplinary 
Reviews: Data Mining and Knowledge 
Discovery. 2018;8(4):e1249

[52] Gunning D et al. XAI—Explainable 
artificial intelligence. Science Robotics. 
2019;4(37):eaay7120

[53] Mathiak K, Posse S. Evaluation of 
motion and realignment for functional 
magnetic resonance imaging in real 
time. Magnetic Resonance in Medicine: 
An Official Journal of the International 
Society for Magnetic Resonance in 
Medicine. 2001;45(1):167-171

[54] Shah M et al. Evaluating intensity 
normalization on MRIs of human brain 
with multiple sclerosis. Medical Image 
Analysis. 2011;15(2):267-282

[55] Stefano A et al. Robustness of 
pet radiomics features: Impact of 
co-registration with mri. Applied 
Sciences. 2021;11(21):10170

[56] Turkbey B, Haider MA. Deep 
learning-based artificial intelligence 
applications in prostate MRI: Brief 
summary. The British Journal of 
Radiology. 2022;95(1131):20210563

[57] Visa S et al. Confusion matrix-
based feature selection. Maics. 
2011;710(1):120-127

[58] Krstinić D et al. Multi-label classifier 
performance evaluation with confusion 
matrix. Computer Science & Information 
Technology. 2020;1:1-14

[59] Hossin M, Sulaiman MN. A 
review on evaluation metrics for data 
classification evaluations. International 
Journal of Data Mining & Knowledge 
Management Process. 2015;5(2):1



New Advances in Magnetic Resonance Imaging

20

[60] Dalianis H, Dalianis H. Evaluation 
metrics and evaluation. In: Clinical Text 
Mining: Secondary Use of Electronic 
Patient Records. 2018. pp. 45-53

[61] Prabhu AM, Choksi TS. Data-driven 
methods to predict the stability metrics 
of catalytic nanoparticles. Current 
Opinion in Chemical Engineering. 
2022;36:100797

[62] Farahani FV et al. Explainable AI: A 
review of applications to neuroimaging 
data. Frontiers in Neuroscience. 
2022;16:906290

[63] McCradden MD et al. Ethical 
limitations of algorithmic fairness 
solutions in health care machine 
learning. The Lancet Digital Health. 
2020;2(5):e221-e223

[64] Chlap P et al. A review of medical 
image data augmentation techniques 
for deep learning applications. Journal 
of Medical Imaging and Radiation 
Oncology. 2021;65(5):545-563

[65] Monarch RM. Human-in-the-Loop 
Machine Learning: Active Learning and 
Annotation for Human-Centered AI. 
Simon and Schuster; 2021

[66] Grolinger K, Capretz MAM, 
Seewald L. Energy Consumption 
Prediction with Big Data: Balancing 
Prediction Accuracy and Computational 
Resources. IEEE; 2016

[67] Chen C et al. Deep learning on 
computational-resource-limited 
platforms: A survey. Mobile Information 
Systems. 2020;2020:1-19


