
Selection of our books indexed in the Book Citation Index 

in Web of Science™ Core Collection (BKCI)

Interested in publishing with us? 
Contact book.department@intechopen.com

Numbers displayed above are based on latest data collected. 

For more information visit www.intechopen.com

Open access books available

Countries delivered to Contributors from top 500 universities

International  authors and editors

Our authors are among the

most cited scientists

Downloads

We are IntechOpen,
the world’s leading publisher of

Open Access books
Built by scientists, for scientists

12.2%

180,000 195M

TOP 1%154

6,700



Chapter

Controlling a Fleet of Autonomous
LHD Vehicles in Mining Operation
Alexander Ferrein, Gjorgji Nikolovski, Nicolas Limpert,

Michael Reke, Stefan Schiffer and Ingrid Scholl

Abstract

In this chapter, we report on our activities to create and maintain a fleet of
autonomous load haul dump (LHD) vehicles for mining operations. The ever increas-
ing demand for sustainable solutions and economic pressure causes innovation in the
mining industry just like in any other branch. In this chapter, we present our approach
to create a fleet of autonomous special purpose vehicles and to control these vehicles
in mining operations. After an initial exploration of the site we deploy the fleet. Every
vehicle is running an instance of our ROS 2-based architecture. The fleet is then
controlled with a dedicated planning module. We also use continuous environment
monitoring to implement a life-long mapping approach. In our experiments, we show
that a combination of synthetic, augmented and real training data improves our
classifier based on the deep learning network Yolo v5 to detect our vehicles, persons
and navigation beacons. The classifier was successfully installed on the NVidia AGX-
Drive platform, so that the abovementioned objects can be recognised during the
dumper drive. The 3D poses of the detected beacons are assigned to lanelets and
transferred to an existing map.

Keywords: autonomous vehicles, fleet control, planning, mining, computer vision,
machine learning

1. Introduction

Along the lines of digitalisation and transforming industries towards Industry 4.0,
also the mining industry as being a rather conservative industry is moving into this
direction. For instance, in [1] the authors envision Mining 4.0 as a future concept of
mining operations. The labour of a future mine worker will be smarter, more collab-
orative, more connected including augmented/virtual reality (AR/VR) technologies.
In that sense, technology will also transform this sector into the Industry 4.0 direction.
This has also an impact on the degree of automation deployed in future mines. In [2],
mining is connected with key technologies such as intelligent systems, machine learn-
ing, and AR/VR. Additionally, there is a trend of the European raw materials industry
towards changing from open pit mining to underground mining to reduce the envi-
ronmental footprint of the mine. Digitalisation and automation are key technologies
for further transforming mining operations into a decarbonised and more sustainable
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operations (see, e.g. [3–5]). This leads to hybrid mines, where parts of the mine are
still open pit and parts are underground mines. This poses, in particular, additional
challenges for the automation process. Whilst in the open pit part of the mine,
methods from autonomous driving using GPS etc. can be deployed, in the under-
ground part, methods from mobile robotics need to be used in an ever-changing
environment with the need to continuously monitor and track the changes in the
robots’ maps.

Under certain limitations such as loaders following a prerecorded path, automated
LHD vehicles are already commercially available [6]. However, the problem of fully
automated guided load-haul dumpers remains a challenging problem. This results in a
large body of related works that focus on the core problems like navigating and
localising LHD vehicles. Some recent works are, for instance, [7], [8], or [9]. The
former proposes topological navigation for underground haulage vehicles. The basic
idea is that in underground mines with many tunnels, a highly precise localisation
pose in the tunnel is not of importance, the LHD vehicle could localise at crossings or
other important waypoints of a topological map. In our work, we also follow the idea
of using topological maps, specifically in the Lanelet2 format [10], which is a common
map format in autonomous driving.

In [8], a robust localisation system integrating cameras, LiDARs, and odometry
information for underground LHD vehicles is proposed. The system is tested on mining
datasets and shows good accuracy with mean errors below 1 meter. The methods
deployed in this work are very similar to our approach. An interesting addition to
common sensor cues is proposed in [9], where IMU data are used to record ground
ripples as an additional localisation information. For measuring similarities and dissimi-
larities in the recorded data in order to recognise ground patterns, the dynamic time
warping algorithm is deployed. The basic idea behind this approach is not to rely on visual
landmarks such as visual tags to keep the extra infrastructure required in the mine as little
as possible. On the other hand, extending the infrastructure in mines such as installing
Wi-Fi at least in parts of the mine is no longer out of question. Some approaches make use
of vehicle-to-vehicle (V2V) communication for establishing communication networks in
underground mines [11]. The purpose of this work is to localise other vehicles under-
ground deploying V2V communication. But localising other vehicles underground is not
the only interest for mining operations as tracking mine workers underground is manda-
tory in many countries. Seguel et al. [12] overviews relevant positioning technologies to
track mine workers underground. Finally, fleet control is one of the tasks that needs to be
solved for automated haulage and artificial intelligence (AI) approaches are being
deployed. Bnouachir et al. [13] overviews some approaches to intelligent fleet manage-
ment in mining operations, whilst [14] proposes a real-time scheduling algorithm based
on flow-achieving scheduling trees to overcome shortcoming of off-the-shelf software
which often is based on myopic heuristics. In our case of fleet management, we make use
of a planning approach which is based on hierarchical task networks [15].

Many related works concentrate on particular open problems in automating min-
ing operations focusing mainly on localisation and navigation challenges or fleet-level
planning focusing either on underground or open pit mines. Hybrid mines, which
combine underground and open pit mine operations, pose a particular challenge for
autonomous vehicles.

In this chapter, we report on the current state of affairs in our endeavour to
automate hauling operations in hybrid mines. This work is based in part on our
previous works [16–22]. In particular, we report on (1) the hardware setup of our fleet
of robot vehicles including the LHD vehicles and a tracked exploration robot, (2) the
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overall ROS 2-based system architecture, (3) a model-based predictive control
approach for controlling the articulated LHD vehicles, (4) an HTN-based approach to
the tour planning of the fleet of vehicles.

The rest of this chapter is organised as follows. We present the hardware and
sensor setup of the articulated LHD vehicles as well as of our exploration vehicle in
Section 2 before we show the overall ROS 2-based software architecture (Section 3).
Section 4 addresses the low-level navigation approach for controlling the articulated
LHD vehicles. In Section 5, we outline the fleet and mission control system. Then,
Section 6 reports on our approach to classifying drive ways in the mine and to
mapping the changing mining environment. In Section 7, we show some experimental
results. Then we conclude.

2. Hardware setup

In our mining automation projects, we are using two different platforms. One
platform has been deployed for exploring and mapping the mine environment (Sec-
tion 2.1), the other one is smaller-scale articulated dumping vehicle from Wacker
Neuson that we turned into autonomous vehicle (Section 2.2).

2.1 Exploration vehicle

As mining environments are constantly changing, also the maps required for
autonomous LHD vehicles need to be updated constantly. In our previous work
[19, 23], we developed an exploration vehicle for mapping underground mines with
dense 3D point clouds. As we can only give a brief overview of this work here, we
refer to our previous work for further details.

The exploration vehicle is shown in Figure 1a and b. It is a skid-steered tracked
robot based on a platform similar to a mini excavator but using a suspended under-
carriage. It is equipped with a number of different sensors used for navigation,
localisation, and mapping. The robot reaches speeds of up to 3 m s�1 and is controlled
via the ROS [24] Movebase. For navigation, collision avoidance, and terrain classifi-
cation, two Velodyne VLP-16 Puck LiDARS are mounted at the front. For mapping,
we equipped the exploration vehicle with a custom-built rotating sensor platform
shown in Figure 1c and d. It allows to acquire a (nearly) complete sphere around the
vehicle. A Velodyne VLP-16 PUCK LiDAR with 16 scan lines, a vertical opening angle
of 30°, and a horizontal range of 360° is mounted with a 14° inclination to the vertical
axis. For short-range measurements, we additionally equipped the device with a 2D
Hokuyo UTM-30LX-EW range scanner mounted in a 90° angle to the rotation plane.
For teleoperation during mapping missions, an Allied Vision GT6600C high-
resolution camera with a wide-angle lens is mounted at the front of the robot. As a
safety feature, we mounted a FLIR A315 thermal camera at the front of the robot in
order to be able to detect persons even when not sufficient light is available. Addi-
tionally, an IMU for providing the orientation of the platform with respect to the
ground is mounted on the vehicle.

For registering the 3D point clouds from the scanning device, we deploy the
Iterative Closest Point (ICP) method [25] based on the Point Cloud Library imple-
mentation [26]. To minimise the errors of pairwise registration of many point clouds,
all point clouds are registered globally making use of the GraphSLAM [27] algorithm
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after Lu and Milios [28]. It creates a graph of the connections between all point clouds
with overlaps and minimises the alignment errors of all connections simultaneously.
Finally, for an internal representation of the 3D map, Octomap [29] is used. This
offers the advantage of being able to query the information in various resolutions and
to map the distinctions that are important for navigation between free, occupied, and
unknown cells.

We present an example map from an underground mine in Krölpa, Germany, in
Section 7.

2.2 LHD vehicles

The base vehicle we use is an articulated haul-dumper from Wacker Neuson
(Model 1501).1 Our fleet consists of three of those vehicles. Figure 2 shows an exem-
plary prototype. This chapter is based on a paper that has been previously published.
We refer to [18] for further details.

The dumper is an off-the-shelf model that can handle loads of up to 1500 kg. The
control of the brakes and the angle of the articulated joint of the vehicle is realised by a
hydraulic system, which depends on the hydraulic pressure generated by a diesel
engine. In order to automate the vehicle, we installed electric linear actuators with our

Figure 1.
Exploration robot developed for mapping underground mining sites (from [23]).

1

https://www.wackerneuson.de/produkte/dumper/raddumper/raddumper-1501/
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project partner Fritz Rensmann GmbH& Co. KG to control the brake and the throttle.
Additionally, we attached a rotational servo motor to the steering axis and replaced
the manual valves by electromagnetic valves to control the skip. We also installed hall
sensors on each wheel to obtain information on the vehicle’s state.

The control system comprises the different components shown in Figure 3. These
parts are presented in the following. The software architecture of the vehicle will be
discussed in the next section. As can be seen in the figure, each dumper can be
controlled via our high-level control stack, where the tasks for the individual
vehicles are generated by the overall mission planner for the whole mine to fulfil
the daily production goals. The high-level control system is described in Section 5.
Additionally, each vehicle can be controlled via remote control. In particular, this
comes in handy when the vehicle needs to be steered onto a low loader trailer for
transport.

Real-time Controller. The low-level real-time controller runs on a programmable
logic controller by Beckhoff. To communicate with the motors and the PLC, we make
use of a CAN interface. The PLC serves as a message filter, that prevents unsafe
commands to be propagated to the motors, and as a kill-switch manager for control-
ling a number of kill-switches, which are installed on the vehicle including a radio kill-
switch. The PLC runs a PID controller regulating the angle of the articulated joint and
the engine speed by properly actuating the motor moving the steering axis and the
motor opening and closing the throttle valve. For more detail, we refer to [30].

Compute Nodes. As described below (Section 4), we implemented a GPU-based
model-predictive path-follower, a high-level control system, and various computer
vision algorithms. All the software modules run on two dedicated compute devices.

Figure 2.
Picture of one of the articulated haul-dumpers at the test site.
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We make use of a Zotac ZBOX Magnus One including an NVIDIA GPU to run
the path-follower, the high-level control, and semantic and life-long mapping algo-
rithms. In addition, the computer vision tasks are deployed on an NVIDIA Drive AGX
Xavier. All high-bandwidth sensors such as the cameras are interfaced to the AGX
unit, which directly processes the data. Both compute devices run Linux as its operat-
ing system.

Sensors. In the open pit part of the hybrid mine, GPS localisation is possible. For
this task, we deployed an OxTS RT3000v3 dGPS on one vehicle and equipped the
two remaining vehicles with two OxTS xNav650 from Oxford Technical Solutions.
The RT3000 shares its correction data via the xNAV650 devices. Each dGPS
contains an IMU. Especially, in the underground part of the hybrid mine, where no
GPS is available, we scanned the environment and made use of two VLP-16 Lidars
and six cameras for localising and navigation. A mesh network spanning over
multiple local stations in the testing area is used for vehicle interaction within the
fleet and vehicle interaction with loading and unloading stations (V2X in Figure 4).
Local access points are available on each of the vehicles that are connected to the
mesh. For identification of the vehicles and direct addressing, we make use of ROS2
namespacing.

Figure 3.
System architecture of haul-dumper control system (From: [18]).
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3. Software architecture

In [21], we proposed a ROS 2-based architecture for self-driving cars. For
our LHD vehicle, we adopted the architecture to fit the needs of the vehicle.
Figure shows an overview of our architecture. The architecture also allows for
using some common ROS packages such as Navigation2 [31] and robot_loca-
lisation [32]. In the following, we give an overview of the different parts of the
architecture.

Centralised Mission Management Block. At the top-most level in the hierarchy of
decision-making and control of the fleet is the high-level control block (leftmost
block in Figure 4). In the LHD context, it means that a certain tonnage that should be
hauled is defined and the high-level system is to find a plan for all the vehicles in the
fleet to reach the tonnage. We deploy a SHOP3 [33] planning system for high-level
planning. An additional fleet manager distributes the plans and dispatches the
actions to the vehicles. Whilst the vehicles execute these actions, they continuously
update their current positions and these of their locked resources. The world model
gets information of the actual status of all agents and the hauled tonnage. If needed, in
case of bigger differences to the original plan, a re-planning for the whole fleet is
initiated.

Vehicle Unspecific Block. The vehicle unspecific section of the architecture
consists of mid-tier functionalities, that are similar to three-tier robotics
architectures with modules for localisation or path planning. A global route is planned
via a free-space planner like smac or map-based planner using a Lanelet2 HD map.
The vehicle follows this path utilising a path-following module, including a
feedback loop [34, 35]. As path-following algorithm, we use a model-predictive con-
troller (MPC) which uses a GPU-based grid-search on a set of predicted trajectories
achievable by the vehicle’s kinematic model. We introduce the details of the MPC in
Section 4.

Vehicle Specific Block. The vehicle specific block (rightmost block in Figure 4)
mostly consists of drivers and vehicle communication modules such as drivers for
cameras, IMUs, GPS units, LiDARs, or the wheel encoders. For object detection, we
have implemented an object detection with cameras using YOLOv5 to aid in the
semantic and life-long mapping that is being presented in Section 6. We also
implemented a modular way of integrating state-of-the-art deep neural networks for
3D object detection in point clouds. The detailed presentation of the latter is part of

Figure 4.
Diagram of the software architecture (From: [18]).
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previous work presented in [36]. Our presented architecture is implemented using
ROS 2 and deployed to each vehicle of the fleet. The underlying DDS network of ROS
2 is also used for the communication with the centralised high-level control system.

Next, we address the model-predictive controller used on the vehicle, before we
discuss the high-level control software in Section 5.

4. Model-predictive control

In this section, we show the low-level control system based on a model-predictive
control approach. We first introduce the kinematic model of the dumper, before
we discuss the software implementation. Further details of the approach can be
found in [17].

The kinematic model that has been used to model the haul-dumper in the MPC is
described in [37] and shown in Figure 5a. This model has been chosen, as it models a
centre-articulated platform and steering is done by changing the angle of the active
joint. This model fits our haul-dumper well. The model is continuous and therefore
the equations need to be discretised for our use case. The equations in the discrete
form are as follows:

xtþ1 ¼ xt þ Δt
∗ vcosψð Þ

ytþ1 ¼ yt þ Δt
∗ vsinψð Þ

ψ tþ1 ¼ ψ t þ Δt
∗

sinϕ

l2 þ l1 cosϕ
vþ

l2
l2 þ l1 cosϕ

ω

� �

The constant l1 describes the length of the front part, l2 the rear part of the
vehicle, x and y are the current position values within the Cartesian coordinate
system, and v the current velocity of the vehicle. The current steering angle is ϕ, ω
denotes the angular velocity of the joint, and ψ is the heading of the front part
within the Cartesian coordinate system as shown in Figure 5a. Δt represents the time
interval between two control steps within the prediction process. These equations are
used to predict the travel of the vehicle given the different inputs for each iteration of
the optimisation.

Figure 5.
Dumper kinematics and model-predictive control approach (From: [17]).
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Figure 5b shows the MPC control cycle. Based on the actual pose and the articu-
lated haul-dumper model (Figure 5a), a predicted path is calculated for a set of
steering angle sequences. Subsequently, for each predicted path, the costs are esti-
mated by three weights:

1. the lateral error, which weighs the difference in the vehicle’s heading on the
predicted path in contrast to the target trajectory;

2.the orientation error, which weighs the difference in the vehicle’s lateral position
on the predicted path in contrast to the target trajectory;

3. the joint angle change, which weighs the needed change of the joint angle from
step to step.

Finally, in a grid-search optimisation, the output is determined as the first
steering angle from the sequence of the steering angles for which the lowest cost was
estimated.

The control result of this approach is very good, however, the calculation costs are
very high. We therefore chose a GPU-based implementation of the controller based on
our experiences described in [38]. The advantage of this approach is that the predicted
paths and their individual costs can be calculated for all steering angle sequences in
parallel in one step of the GPU. This leads to an improved control result at efficient
calculation costs as we showed in [38].

The algorithm of the controller is shown in Algorithm 1, where the separation of
GPU and CPU calculations is shown. To get an optimal trajectory resolution, multiple
iterations are executed. The whole algorithm is calculated at a period of 20 ms. To
adapt the original algorithm from [38] to the here-used long-haul-dumpers, we only
had to change the kinematic model of vehicle and had to re-calibrate the control
parameters (cf also to [17] for details).
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5. High-level fleet planning

For larger-scale mining scenarios, several vehicles need to work together in a fleet.
Such a fleet then needs to be coordinated for the work to be organised and distributed
amongst the different vehicles in an optimised fashion. To realise the high-level
fleet coordination system, we implemented a planning server embedding of
SHOP 3 [33]. SHOP 3 is a domain-independent planning system based on ordered
task decomposition. Ordered task decomposition is a modified version of
hierarchical task network (HTN) planning [39] in which the planning order
respects the actual order of execution of each task [33]. The interaction between
the embedding sever and our vehicles is done by first communicating or loading a
world model into the planner. Afterwards, a query for a day plan can be sent to the
planner as a string, which the planner then processes. The query is a problem state-
ment describing the resource allocation, available agents, and goals. As a result, the
planner produces a string containing the day plan for all vehicles. This plan can then
be distributed to the fleet. Each agent can then parse the plan and start executing the
assigned actions.

As an example, Figure 6 visualises a resource assignment. The blue circles in
the figure represent resource sources. Above each source, we show the type of
resource which can be loaded from that source and its quantity (rounded corners
rectangles). The resource quantities of ores are modelled as infinite. The waste
resource is constrained to 500 tons. The white circle represents a stockpiling point,
which would be used to store resources if direct hauling to the unloading points would
lead to congestion. In black, we colour the waste dumping points which can be used to
unload waste from sources S1 and S2. The circles in yellow are fuel stations, that
agents need to drive to fill their fuel tanks. Each agent in the problem statement is
defined with a fuel state which is being used up when the agents transport resources.
The arrows in the visualisation show possible direct load/unload relations. For exam-
ple, the arrow from S1&2 to G13 means that the agent loads from S1 or S2 and unloads
at the goal G13.

Figure 6.
Schematic of one of the problem statements evaluated in our research.
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Another problem statement we defined for the evaluation of the high-level control
is less complex with only 5 sources with infinite resources and 2 goals. The meaning of
sources and goals is the same as for Figure 6. The evaluation presented as an aggre-
gation of key performance indicators in Table 1 in Section 7 shows the results when
different criteria are imposed on a plan. A plan can be made to take into consideration
waiting times of the vehicles in a fleet, the time a vehicle needs to fulfil a load-unload
cycle accumulated for a whole fleet, or idle time of the fleet as a whole. For compar-
ison, we show the results for a plan that is created by generating plans randomly and
selecting the first valid plan for a problem. This is the fourth strategy as presented in
the evaluation. The plan that takes into consideration the waiting time of the agents is
strategy 1. Strategy 2 takes the accumulated cycle time for all agents into account and
tries to minimise it. The last strategy, strategy 3, minimises the time the vehicles in the
fleet spend idling.

Module KPIs

Model

Predictive

Control

Mean lateral error in curves Mean lateral error on straight section

0.9 (m) 0.1 (m)

System

Delays

Mean steering delay Mean engine RPM delay

200 (ms) 100 (ms)

Mission

Planning

(SHOP3)

Idle-time (min) of fleet after 8 h in simulation

Scenario

Name

Number of

vehicles

simulated

Strategy 1 Strategy 2 Strategy 3 Strategy 4

Simulation

Scenario 1

75 25,782 26,096 26,046 25,938

Simulation

Scenario 2

40 2093 5343 3512 3084

Overall hauled resources (t)

Scenario

Name

Number of

vehicles

simulated

Strategy 1 Strategy 2 Strategy 3 Strategy 4

Simulation

Scenario 1

75 18,550 18,550 18,550 18,550

Simulation

Scenario 2

40 13,865 12,685 13,080 10,305

Object

Detection

Model mAP@0.5

Person

mAP@0.5

Wheel-dumper

mAP@0.5

Car

mAP@0.5

Beacon

Detection Frequency

[hz]

PointPillar

(3D)a
0.34 0.4 0.4 — 20

YOLOv5m

(2D)

0.994 0.978 — 0.966 30

aThe results exclude performance for beacons, because the LiDAR sensor did not measure many points on the target
beacons. Detection of beacons was, therefore, unreliable with the given hardware.

Table 1.
Table on the quantified key performance indices for some of our modules we have researched by now (From: [18]).
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In our scenario, SHOP 3 instructs the navigation system to execute an action called
DRIVE_TO. The action’s main argument is an ID to a lanelet [10] in a map representing
the routing graph. Lanelet is an HD map format which is an extension of OSM. With
its integrated extensions for routing, it can support the execution of many tasks in
navigation. Obstructions in the global map are represented within the routing graph
and can be derived from an occupancy grid, which is implemented in the costmap
ROS package. Given the goal, the action server runs a behaviour-tree [40] which
computes the centre line of a route calculated by the lanelet_planner. This centre
line is referenced to a world-fixed frame (i.e. the entrance of the mine) which is in
turn passed on to our MPC to follow the path. Regular actuation commands are
calculated by the MPC by calling its respective action server from within the
behaviour-tree at a certain frequency.

6. Life-long mapping

With life-long mapping, we refer to the concept of mapping the environment and
ensuring that changes in the environment can be detected and processed into a map
update. To achieve this, we identified two approaches. First, one can use representa-
tions of a traffic network as maps and use static delimiting objects in the environment
as markers that one can infer a change in the environment. Secondly, one can use
shape representations of the environment (such as a point cloud) to extract a traffic
network representation of the environment from the shape. To accommodate for
changes in the environment, one can simply repeat the process of generating the
traffic network from the environment.

For the first approach, three major components are needed: the object
detection and classification of static and dynamic objects, the localisation of
static object in a unified coordinate frame, and the integration of the information
from the 2 previous components into an HD map. In the following, we explain this in
more detail:

Object Detection. The artificial intelligence framework known as YOLOv5 was
used for object recognition. The focus was on the recognition of humans,
navigation aids such as beacons marking the way, and different types of vehicles
commonly used in mining. To facilitate the recognition of previously unknown
objects using this YOLOv5 mechanism, a three-part training methodology was
devised:

Firstly, a solution using synthetic data was developed to automate the annotation
process for training deep learning networks. By creating a realistic 3D mining world
with Unreal Engine and capturing annotated images from virtual cameras on
dumpers, see Figure 7, these synthetic datasets serve as cost-effective training data for
the YOLOv5 network, addressing the challenges of manual annotation for new objects
and environments.

As second stage, synthetically generated data for neural network training often
lacks impurities found in real-world images, such as noise or blur. To address this, we
developed an image augmentation tool. This tool introduces variations into the train-
ing images by adding noise, modifying lighting, saturation, image resolution, and
horizontal alignment. By incorporating these variations, the synthetic training data
becomes more realistic and better aligns with real-world conditions. Thirdly, the
training data is supplemented by data from real journeys which are manually anno-
tated and augmented.
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The classifier, trained with a blend of synthetic and real images over 299 epochs,
attains 0.9835 mAP@0.5 and 0.9836 mAP@0.95 with YOLOv5m and effectively
detects partially obscured objects. After converting from PyTorch to ONNX, then to
TensorRT, it is deployed on Nvidia AGX Drive, with an inference time near 35
milliseconds.

Lane detection. Beacons serve as static boundary markers for navigable roads. We
calculate the 3D position of these beacons by projecting the midpoint of the lower
boundary box onto a ground plane, considering the camera’s extrinsic parameters
relative to the vehicle centre point. Finally, we derive the global UTM coordinates
from the estimated vehicle-relative positions.

Boundary Matching and Map Correction. In order to correlate the positions of the
beacons with a lane boundary, a filtration procedure is implemented. A binning filter
reduces measurement noise by averaging close positions. A logical constraint filter
ensures feasible interpolation of the lane boundary. Positions are then re-indexed
based on their medial distance from the lane boundary segments. The updated lane
boundary state is shown in Figures 8 and 9.

LiDAR Map To HD Map. Our approach for generating an HD map from a
LiDAR map involves segmenting the navigable ground segment from the point
cloud, calculating the concave hull, creating a Voronoi graph [41], finding the
longest chain of vertices in the graph, smoothing the vertices, and converting
the trajectory into a lane. The process includes steps such as elevation map
creation, filtering of sample points based on a simple morphological filter from [42],

Figure 7.
Virtual reality world with 3D models created with unreal engine 5 to get annotated training data from simulated
driving.
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calculating a spanning polygon, applying Delaunay triangulation, and
constructing a lane with a consistent width. Figures 10 and 11 show a visualisation
of each step.

Figure 8.
State of the lane boundary throughout the four stages of the lane boundary adjustment process.

Figure 9.
Visualisation of the update process and its result.
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7. Real-world experiments

In this section, we show some experimental results of our work.
3D Mapping. Regarding underground mapping with the exploration vehicle

described in Section 2.1, we showmaps from the MAXIT underground anhydrite mine
in Krölpa, Germany in Figure 12. The map was recorded by exploration vehicle in a
stop-and-scan fashion taking a full spherical 3D scan every 10 m. The recording of the
map took place in a teleoperated manner, the point cloud data and the odometry data
were stored in a rosbag file and were processed offline following the procedure
described in detail in [19, 20]. Figure 12a shows a 2D occupancy grid of the mapped
part of the mine. Figure 12b visualises the point clouds themselves and Figure 12c a
3D Octomap from the point clouds. Whilst the results show that precise 3D maps of
the underground mining environment can be produced with the exploration vehicle,
one has to admit, on the downside, that the process is not fully automated and human
expertise is required to avoid errors in registering the different point clouds into a
consistent map. The overall map size of the map is about 800 m.

Vehicle Automation. The haul-dumper’s hardware setup has proved reliable
throughout our project, with hundreds of testing hours and no system-wide failures.
The most frequent issue involves power supply to the vehicle’s components. The
installed PLC and sluggish system caused by the hydraulic mechanism lead to an
average latency of 200 ms from command issuance to actuators. There is also latency

Figure 10.
Processed point cloud map after each step of the conversion from point cloud map to HD map.

Figure 11.
Visualisation of the integration scenario, which was presented at a demonstration day.
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in emergency stops, taking 1.5 seconds to fully halt after triggering the switch. The
path-following feature shows a mean lateral deviation of 0.1 m on straight sections
and 0.9 m on curves.

Fleet-level Planning. Fleet-level planning was tested through coarse simulations that
mimic mining processes and through integration in the lower modules of the archi-
tecture. Two simulation scenarios were created with different levels of complexity:
one with simple targets and resources, the other emulating a hybrid mine with multi-
ple resource types. In each scenario, four strategies were analysed, each examining a
different heuristic: Minimising the idle time of all vehicles in the fleet, minimising the
average duration of loading and unloading the dump truck, minimising the idle time
of the dump truck without moving loads, and maximising the haulage mass from
randomly generated plans. Idle time and total haulage mass were observed in an 8-h
simulation. The results are shown in Table 1.

Long-term Mapping. We carried out a functional test on live map correction by
manually altering the map and monitoring the global route planner and vehicle

Figure 12.
Parts of the MAXIT anhydride mine in Krölpa, Germany.
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response. This often involved tweaking the lane sections leading to the loading station,
as demonstrated in the integration scenario Figure 11.

Integration Scenario. In an integration test, we utilised loading and unloading sta-
tions to handle pick-up and unload payloads. The unloading heap has two access
points, whereas the loading station has only one. There are two bidirectional lanes to
the unloading sites and a single bidirectional lane to the loading site.

The daily transport schedule of fleet management includes repeated loading and
unloading operations for the vehicle fleet, with only one vehicle having access to the
loading point. The high-level controller coordinates resource access to avoid
conflicts. Resource blocking is implemented by the operations scheduling system.
The first vehicle to reach the fork in the middle of the traffic network whilst the
loading resource is free secures the lock and blocks the lane to the resource.
Following vehicles must wait for fleet management to release the resource. This
mechanism proved robust in an 8-h operation and successfully implemented the
daily schedule.

8. Conclusion

In this chapter, we present our results from automating load-haul-dump (LHD)
operations in hybrid mines. Hybrid mining operations are mines where mining in part
is done in an open pit fashion, and parts are underground. As for the autonomous
vehicles deployed in such a mine, it means that the vehicles cannot simply rely on GPS
data for localising themselves over ground, but also need classical approaches to
mapping the environment. We reported on our exploration vehicle that is equipped
with a rotating LiDAR scanner to produce detailed 3D point clouds which then are
integrated into Octree maps that the LHD vehicles could use for localising themselves
in the mine.

The haul-dumpers that we deploy are modified off-the-shelf articulated dumpers
which were turned into autonomous vehicle. The vehicles are equipped with GPS,
LiDAR, and camera sensors. The software architecture is based on ROS2 and was also
deployed in similar projects related to autonomous driving including a modified
version of a model-predictive control (MPC) algorithm. It had to be adapted to the
articulated kinematics of the dumper. Further, to control a fleet of LHD vehicles
(three in our case), we made use of the HTN-based planner SHOP3, which generates a
global mission plan for the vehicles based on the required haulage capacities. Each
vehicle is following this global plan for generating their local missions. As another
important contribution, we introduced Lanelet2-based maps for navigating the LHD
vehicles, including dedicated drive ways and right of way rules. Lanelet maps are
commonly used for self-driving cars and not so much in robotics applications. Using
this approach facilitates the coordination of a fleet of vehicles to a great extend.
Finally, we showed our approach to object and drive-way detection including the
automatic generation of the aforementioned Lanelet drive ways.

The presented approach has been tested in real-world scenarios underground and
in open pit mines under controlled conditions. We showed how mapping successfully
took place with our exploration vehicle in the Krölpa mine in Germany. The fleet of
dumpers was tested in an open gravel pit in Buir, Germany. We could show that the
low-level control such as MPC works well also on the dumpers with their articulated
kinematics and how the fleet of dumpers could be coordinated on a mission level.
Whilst the tests and experimental results show that the overall approach is working,
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next steps would be to deploy this work in real mining operations under the realistic
hard mining environment conditions with limited communication means.
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