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Chapter

Blow-up Solutions to Nonlinear
Schrodinger Equation with a
Potential

Masaru Hamano and Masahiro Ikeda

Abstract

This is a sequel to the paper “Characterization of the ground state to the
intercritical NLS with a linear potential by the virial functional” by the same authors.
We continue to study the Cauchy problem for a nonlinear Schrédinger equation with
a potential. In the previous chapter, we investigated some minimization problems and
showed global existence of solutions to the equation with initial data, whose action is
less than the value of minimization problems and positive virial functional. In partic-
ular, we saw that such solutions are bounded. In this chapter, we deal with solutions to
the equation with initial data, whose virial functional is negative contrary to the
previous paper and show that such solutions are unbounded.

Keywords: nonlinear Schrédinger equation, linear potential, standing wave, blow-up,
grow-up, global existence

1. Introduction

In this chapter, we consider the Cauchy problem of the following nonlinear
Schrédinger equation with a linear potential:

i0u + Ayu = —[ul’ 'u, (t,x) eR x R, (1)
whered>1,1<p<2* —1,

o  ifde{1,2},
2% =

2 (2)
ﬁ ifd > 3,

and Ay:=A -V = Zﬁzl % — V. In particular, we consider the Cauchy problem of
J

Eq. (1) with initial condition

u(0,-) = uo € H'(R?). (3)
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Eq. (1) with V € L*(R?) is a model proposed to describe the local dynamics at a
nucleation site (see [1]).

Eq. (1) is locally well-posed in the energy space H ! (Rd ) under some assumptions,
where Eq. (1) is called local well-posedness in H' (R?) if Eq. (1) satisfies all of the
following conditions:

« There is uniqueness in H' (R?) for a solution to Eq. (1).

e For each ug e H* (Rd), there exists a solution to Eq. (1) with Eq. (3) defined on a

maximal existence interval (Tin, Tmax), Where Thax = Tmax(¢0) € (0, o] and
Tmin - Tmin(uo) € [_°°> O)

* There is the blow-up alternative. That is, if Thyax < oo (resp. T'min > — o), then we
have

t%l%n ||u(t)||H; = oo(l‘esp.tll%fnlinllu(t)HHi = oo). (4)

max

* The solution depends on continuously on the initial condition. That is, if g, —
uo in H (Rd ) , then for any closed interval I C (Tmin, T'max), there exists no € N
such that for any # >n,, the solution u, to Eq. (1) with u,(0,x) = ug,(x) is
defined on C;(I; H*(R?)) and satisfies u, — u in C,(I; H'(R?)) asn — oo, where u
is the solution to Eq. (1) with #(0,x) = uo(x).

To state a local well-posedness result, we define the space

Ko(R?) :={f €L™ (R?) : suppf is compact.} ", 5)
where
W llxc == SupJ %dy. (6)
xeRWR! [X — |
We note that
L (RY) A L3 (RY) — LY (RY) — KO (RY) = {f : |[f llc <o} (7)

for some &> 0, where the space L7 (R?) denotes the usual Lorentz space.
Theorem 1 (Local well-posedness, [2-4]) Letd >1and 1<p <2* — 1. If V satisfies
one of the following, then Eq. (1) is locally well-posed in H* (R?).

« VeL'(RY) + L= (R?Y) forn>1ifd =1and n> ¢ifd >2,
 IV_|lx <4z and V € L}(R?) N Ko (R?), where V_ := min{V (x), 0}.

Moreover, the solution # to Eq. (1) conserves its mass and energy with respect to
time ¢, where they are defined as
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(Mass)  Mu()) = lu(0)l1%,
a o ®

(Energy)  Evlu(t)]= 3 lu(®)lI3,: +1J V@l — ——llu@)I,.
. :

H 2 p+1
We turn to time behaviors of the solution to Eq. (1). A solution to Eq. (1) has

various kinds of time behaviors by the choice of initial data. For example, we can
consider the following time behaviors.

* (Scattering) We say that the solution u to Eq. (1) scatters in positive time (resp.
negative time) if Tr,x = oo (resp. Tmin = —oo) and there exists y, € H . (]Rd)
(resp. w_ € H' (Rd)) such that

t——+4o0

lim |ju(t) — eitAVy/+||H; =0 (resp.tgrpwllu(t) - eim"yLHH}c = O), 9)

where ¢"2vf is a solution to the corresponding linear equation with Eq. (1)
iou(t,x) + Avu(t,x) =0, u(0,x)=f(x). (10)
We say that u scatters when u scatters in positive and negative time.
* (Blow-up) We say that the solution « to Eq. (1) blows up in positive time (resp.
negative time) if Tpax < oo (resp. Tmin > — 00). We say that # blows up when u

blows up in positive and negative time.

* (Grow-up) We say that the solution  to Eq. (1) grows up in positive time (resp.

negative time) if T,x = oo (resp. T'min = —o0) and
lim supl||u(t)||;n = oo, (resp. lim sup||lu(t)||x = oo). (11)
t—o0 x [——o0 x

We say that # grows up when « grows up in positive and negative time.

* (Standing wave) We say that the solution « to Eq. (1) is a standing wave if u =
¢'Q,, v for some w €R, where Q,, y; satisfies the elliptic equation

~0Quy + AvQuy = Q" Q- (12)
In particular, Q,, y is ground state to Eq. (12) if
QuveE{peAny : Suv(®) <Suv(w)foranyy € A,y }=:G,,v, (13)
where S, v(f) = §M[f] + Ev[f] (and)
Anvi={weH (R)\{0} : S, ,(y) = 0}. (14)

We know the following results (Theorems 2 and 3) for time behaviors of the
solutions to Eq. (1). For related results, we also list [5-38].
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Theorem 2 (Hong, [3]) Letd = p = 3, ug € H' (R3), and Q; o € G1,0. Suppose that V

satisfies V € L2 (R*)nKo(R*), V>0, x- VVel (R?), and x - VV < 0. We also assume
that

Mluo]Ev[uo] <M[Q10]Eo[Quo] andlluollyzliwolly <11Quolli21Quolly (1)

Then, the solution # to Eq. (1) with Eq. (3) scatters.
Theorem 3 (Hamano-lkeda, [4]) Letd = 3,2 <p <5, ug €H'(R?), and Q; 4 € Gr,0.

Suppose that V satisfies V>0andx - VV e L? (R?). We also assume that

Mluo] = Evyuo) <M[Qy0] = Eo[Qy0], (16)

where s, := %l — lﬁ'

1. (Scattering)

If Ve L}(R?) nKo (R?), x - VV <0, and

1—s¢ 1—sc¢

ol Nleoll e < Quoll,5 1Quollys (17)

then (Tmin, Tmax) = R, that is, exists globally in time. Moreover, if o and V
are radially symmetric, then u scatters.

2. (Blow-up or grow-up)

If “V e L}(R?) N Ko (R?) or V € L?(R?) for some 2 <6 <o0,” 2V +x - VV >0,
and

1-s¢ 1-sc

lutoll 3 oll 2 > 11Qu0ll5 1Qu 0l (18)
then u blows up or grows up. Furthermore, if one of the following holds:
* “ug and V are radially symmetric,” x - VV' >0, and Ve L® (R3) ,
o xuo € L*(R?),

then u blows up.
Remark 1 Mizutani [39] proved that for any y € H', there exists ¢, € H'(R?) such
that

itAy

tim [y — ¢l =0 (19)

under the assumptions V € L? (R?) and V > 0, where the double-sign corresponds.
Combining this limit and scattering part in Theorem 3 (or Theorem 2), we can see that
the nonlinear solution u to Eq. (1) approaches to a free solution ¢"*¢, ast — +oo for
some ¢, € H' (]R3).
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We realize that there is no potential, which satisfies scattering and blow-up or
grow-up parts in Theorem 1 at the same time. Indeed, if V satisfies x - VV <0 and

2V +x-VV>0,thenV & L (R3). Then, we consider a minimization problem

oy = inf{S,v(f) : f € H (RY)\{0}, Ky(f) =0} (20)

to get a potential V, which deduces scattering and blow-up or grow-up at the same
time. It proved in [40] that the condition Eq. (16) can be rewritten as the following by
using 7, v.

Proposition1Letd >3,1+ % <p<2* —1,f €H" (]R”l), and Q; ¢ € G1,0. Assume that
V satisfies (A2) with |a| <1 and (A6) below. Then, the following two conditions are
equivalent.

1—sc

LM[fT= Ev[f] <M Q4] 1%EO [Q10)>

2.There exists @ > 0 such that S,, v (f) <7,,v.

Using n,,v, we expect that if S,, v(#o) <n,,v and Ky (#¢) > 0, then the solution u
scatters and if S, v (#0) <74,v and Ky (#o) < 0, then the solution # blows up or grows
up, where Ky is called virial functional and is defined as

Ko(f) =2 o (¢“f (7))
di|,_o (21)
v —1)d

=20~ | e YV P - L

It is well known that Ky (u(¢)) denotes variance of the solution and if xu € L? (Rd)
then

Ky(@(®) = 5 -5 lxu@)ll% (22)

for each t € (T'min, T'max)- We also consider a minimization problem 7,, v, which
restricts 7,y to radial functions, that is,

Fovi= inf{S,v(f) : f € HL (R)\{0}, Ky(f) =0} (23)
and expect for radial initial data ¢ and radial potential V that if S,, v (#¢) <7,,v and

Ky (ug) > 0, then the solution u scatters and if S,, v (#o) <7,,v and Ky (uo) <0, then the
solution # blows up. For more general minimization problems

nt = inf S,y (f) f €HRD\(0}, KE(f) = 0}, oo
vl = inf{S,v(f) :f € Hiy (RY)\[0}, Kihy(f) = 0}
with

a>0, p>0, 2a—dp>0, (25)
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the authors showed in [40, 41] the following results (Theorems 4 and 5) Eq. (27),
where the functional K% v 1s given as

d
Kot () == Sov(e”f(e™)). (26)
A=0

Here, we realize n,,y = fl)zv, Yo,V = Va) v»> and Ky = Kff)zv

To state the results, we give the assumptions of the potential V: Let a € (NU{0})*.
Al VeLi(R?) n Ko (R?)

A2. x°9°V € L1 (R?) 4 L°(R?) for some 4 <6 < oo

A3.x%0°V e L5(R?) + L= (RY)

A4, x%0*V el (Rd) +L° (Rd) for some %’ <n<o6<oo

A5. x%0°V el (]Rd) + L% (]Rd) for some % <n<oo
A6.V>0,x-VV<0,2V+x-VV2>0

A7.V>0,x-VV <0, w>wg for
1 .
W = —Eess inf | _pi(QV +x-VV). (27)

We note that the third inequality implies 2V + x - VV 4 20 >0 a.e. x € R%.
Theorem 4 Letd >3 and 1+ 3 <p<2* — 1.

* (Non-radial case) Let V satisfy (A2) with |a| <1 and (A6). Then, for each (a, p)
with Eq. (25) and w > 0, nz)ﬁv = n®” holds. Moreover, if x - VV <0, then n” V is

w,0
never attained.

* (Radial case) Let V satisfy (A3) with |a] <1and (A7). Let V be radially
symmetric. Then, VZ}/;), is attained for each (a, ) with Eq. (25). Moreover, if V

satisfies (A3) with |a| <2 and 3x - VV +xV2Vx! <0, then M*” o vVrad = Yo,Vrad
holds, where V2V denotes the Hessian matrix of V,

M e = {9 € HLa(B) 1 Suv () = sl Kih(9) = 0},
ga) V,rad *= {¢ € Aw V,rad - Sw V((,b) <Sa) V( ) for any v E Aw,V,rad}, (28)
A V,rad® —{l//eHrad( )\{O} SwV T O}

The inequality nzﬂv < VZ)’;, holds by their definitions and the attainability of ”Z)’i/
and V deduces the following corollary.
Corollary 1 Under the all assumptions of (Non-radial case) in Theorem 4, we have
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Y, Y,
nZ)/V < VZ),/V. (29)

Remark 2 In the case of V = 0, it is well known that n%/) and /) are attained by
Q4.0 € Gu0. That is, n) =% = S,,0(Q,,0) holds.

w,0
Then, we investigate global existence of a solution to time-dependent Eq. (1).

Theorem 5 (Global well-posedness in H') Letd >3 and 1+ 4 <p<2* — 1.

 (Non-radial case) Let uo € H* (]R”l) and Q,, ¢ € G, 0. Suppose that V satisfies “(A1)
or (A4) with |a| = 0,” (A2) with |a| = 1, and (A6). We also assume that there
exist (a, ) satisfying Eq. (25) and o > 0 such that

Sw’V(uo) < Sw,o (Qw,O) <: nZ’ﬁ,) s I(Z)”ﬁv(u(ﬂ >0. (30)

Then, the solution  to Eq. (1) with Eq. (3) exists globally in time. In
particular, it follows that

supllu(t)llH; < oo, (31)

teR

e (Radial case) Let ug € HL(R?) and Q,, € G, raa- Suppose that V is radially
symmetric and satisfies “(A1) or (A5) with |a| = 0,” (A3) with |a| = 1,2, (A7),
and 3x - VV +xV2Vx” <0. If there exist (a, #) with Eq. (25) and @ > 0 satisfying
® > wq such that

Sunv(10) <Suv(Quy) (=750)s Kol (wo)20, (32)
then the solution # to Eq. (1) with Eq. (3) exists globally in time.

1.1 Main theorem

In the previous paper, the authors handled the solution « to Eq. (1) with initial data
uo satistying S, v(4o) <m,,v and Ky (uo) > 0, where m,, v denotes n,, v or 7, v. We
note that m,, v is mZ)/?, with (a, ) = (d,2) and m:ﬁ, is independent of (a, #). In this
chapter, we are interested in the solutions to Eq. (1) with initial data satisfying
Sw,v (o) <mg, v and Ky (uo) < 0. Our main theorem is the following:

Theorem 6 Letd >3 and 1+ 5 <p <1+ %.

o (Non-radial case) Let uo € H* (]Rd) and Q,, ¢ € Gu,0. Suppose that V satisfy “(A1)
or (A4) with |a| = 0,” (A2) with |a| = 1, and (A6). We also assume that there
exists w > 0 such that

So,v(%0) <Sw,0(Quo) (=10v), Kv(ug)<O. (33)

Then, the solution # to Eq. (1) with Eq. (3) blows up or grows up. Moreover, u
blows up under the additional assumption xuo € L*(R?).
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e (Radial case) Letug € HL (R”l) and Q,, v € G, v,rad- Suppose that V is radially
symmetric and satisfies “(A1) or (A5) with |a| = 0,” (A3) with |a| = 1,2, (A7),
and 3x - VV 4+ xV2Vx” < 0. We also assume that there exists w > 0 satisfying
w > wq such that

Sm,V(”O) < Sm,V (Q(,),V) (: Vm,V); I(V(M()) <0. (34)

Then, the solution « to Eq. (1) with Eq. (3) blows up.

Remark 3 Let V be a potential in Theorem 6. Combining Theorems 5 and 6, we
complete bounded and unbounded dichotomy of
{uo eH! (Rd) : S, v (10) <Sp.0 (Qw,O)} and global existence and blow-up dichotomy of
{uo €H Ld (Rd) 2 Su,v(#0) <Sev (Qa},V) } by using sign of the virial functional of initial
data.

Remark 4 The following potential satisfies all of conditions in Theorem 6:

_ r{log(1+x])}’

=T

. (1>0,0<0<u<2,u>0). (35)

Theorem 6 with the potential Eq. (35) having 8 = 0 was considered in the previous
paper [19] by the authors. As the other example, we put

V()= 10y (7>0,0<u<2), (36)

1
2

where (-) is called the Japanese bracket and is defined as (1 + H2>

1.2 Organization of the paper

The organization of the rest of this chapter is as follows. In Section 2, we collect
some notations and tools used throughout this chapter. In Section 3, we prove non-
radial case in Theorem 6 by using an argument in [13]. In Section 4, we show radial
case in Theorem 6 by using an argument in [33].

2. Preliminaries

In this section, we define some notations and collect some tools, which are used
throughout this chapter.

2.1 Notation and definition

For 1<p <oo, ¥ = L”(R?) denotes the usual Lebesgue space. For a Banach

space X, we use LI(I; X) to denote the Banach space of functionsf : I x R? — C whose
norm is

W s s x) == NIF @)l x M za gy < oo (37)
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We extend our notation as follows: If a time interval is not specified, then the
t-norm is evaluated over (—oo, 00). To indicate a restriction to a time subinterval

I C (—o0, ), we will write as L1(I). H’ (Rd) and H’ (R"l) are the usual Sobolev spaces,
whose norms ||f |z := [|(1 — A)fll,2 and [[f [l = ||(—A)¥f |, respectively. We also
define the Sobolev spaces Hy, (R?) and H, (R?) with the potential V via norms

”f”H’v =|(1— AV)%flle and IIfIIHsV 1= ||(—AV)%f||Lz respectively.

2.2 Some tools

Proposition 2 Let p >1. For f € Hrad (Rd), we have

p+1
”_f”Lerl R<|x| d 1(1,; 1) ”,f”LZ R<|x\ ”f” 2 R<‘ | (38)

for any R > 0, where the implicit constant C is independent of R and f.
To state the next proposition, we define two functions:

Xr _R2x<|;|>, (39)
where X : [0, 00) — [0, 00) (forms)
2 (0<r<1),
X(r):=q smooth (1<r<3), (40)
0 (3<r)
and satisfies X" (r) <2.
Ve(x) =y('%') (4)
where ' : [0, o) — [0, 00) (forms)
(o (osrsd)
Y=Y oot G srgl), (42)
1 (1<r)

and satisfies 0 <)'(r) <3
Proposition 3 (Localized virial identity, [3]) Let w be X'r or Yk defined as Egs. (39)
and (41) respectively. For the solution « to Eq. (1), we define

Ly (£) = JRdw(xNu(t,x) 2. (43)

Then, we have
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Ly () = 2ImJ X Vi uw'dx,
Rt x|
Ly(t) = J Filx - Vuldx + 4J W \Vudx — J FolulP*dx (44)
R? Rr? x| R4
2 w/ 2
—| Fslul"dx =2 —(x-VV)[u|"dx.
R? Rre |X|
where
" / / \
Fi(w, |x|) =4 __/WA , Fa(w, |x|) = 2 -1) w//—i—uw' ’
2 3
el x| p+1 x| 45
Fy(w, ) mw® + 24 =D yp , @=D@=3) v @d-1B8=4d) .
’ x| e WE

3. Non-radial case of main theorem

In this section, we prove (Non-radial case) for Theorem 6. First, we recall
rewriting of #,, v, which is given in [40].

Lemma1lLletd>3,1+ g <p<l+ ﬁ, and Q,, ¢ € Go,0. Assume that V satisfies
(A2) with |a] <1 and (A6). Then,

S0,0(Quo) = oy = inf{T,v(f) : f € H (R*)\{0}, Kv(f)<0} (46)

holds, where the functional T, v is defined as

Tov(f)=Suv(f) — %KV (F). (47)

Next, we give uniform estimate of the virial functional Ky.
Lemma 2 Under the all assumptions of (Non-radial) in Theorem 6, there exists
6> 0 such that

sup  Ky(u(t))< —6<0. (48)

te (Tmin, Tmax)
Proof: Let 5§:=4{S,,v(Q,,v) — Sw,v(#0)} > 0. Applying Lemma 1, we have

S0 (Quy) S Tow(w(®) = Sulao) — 3 Ku(ul?))

1 1
=So,v(Quyv) — 15 - ZKv(u(t)),

(49)

which implies the desired result.

The blow-up result with xuq € L? (]Rd) of (Non-radial case) in Theorem 1.1 follows
immediately from Lemma 2.

Proof of blow-up part in (Non-radial case) for Theorem 6: We assume that the
solution u exists globally in time for contradiction. When xu € L (Rd) , we have
Eq. (22). Combining Eq. (22) and Lemma 2, there exists § > 0 such that

10
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2
o llocu(2)|I7. = 4Ky (u(t)) < — 45<0 (50)

for any ¢ € R. Therefore, we obtain |lxu() ||i2 <0 if [¢t] is sufficiently large.
However, this is contradiction.

We consider Lemmas 3 and 4 to prove blow-up or grow-up part in (Non-radial
case) for Theorem 6.

Lemma 3 Letd>3and 1+ % <p <1+ 4. We assume that u € C([0,0); H') be a
solution to Eq. (1) satisfying Co = sup, ¢ o .., [l14(¢)|l ;3 <oo. Then, it follows that

[l )”LZ \x\>R) or(1) +1 (51)

for anyn>0,R>0,andt e {O, W} , where 0g(1) goes to zero as R — oo and is
Lx

independent of z.
Proof: We consider Iy, given in Eq. (43). Using Proposition 3,

t

I(t) =1(0) + J I'(s)ds <I(0) + Jt \I'(s)| ds

0

6Collull, 2 (52)
<I(0)+ 21Vl sup Iele)lz el T(0) + -2
te€[0,) x
for any t € [0, o). By the definition of Vg, we have

10) = || Vaw)luole) P < ol ) = 0001 (53)

and hence, we obtain
106) 22 sy <(E) 0R(1) + 1. (54)

Lemma 4 Letd>3and 1+ % <p<1+ 4. Letu € C([0, 00); H' (Rd)) be a solution
to Eq. (1). Then, for g € (p + 1,2 ), there exist constants C = C(q, |luo|l;2, Co) > 0 and
0, > 0 such that the estimate

L (6) 4Ky ((t)) + @Il + (55)

holds for any R> 0 and ¢ € [0, o), where 6, : = ) ¢ <0 p+1> Cy is given in

(p+1)g-2)
Lemma 3, and Iy, is defined as Eq. (43).
Proof: Using Proposition 3, we have

I () = 4Ky(u(t)) + R1+ R+ R3 + Ra, (56)

where R, = Ry (t) (k = 1,2,3,4) are defined as

- A oM R (N g,
Rl'_4JRd{|x|2X (R) el (R)}|x Vul’dx
R / |x| 2
—|—4J { X ( ) —2} Vu(t,x)| dx,
AT \R |Vu(t, x)|

(57)

11
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Ry= 221 > _1)Rx/<';'> }|u(t,x)|f’“dx, (58)

|
St ) £y

X

W

|
/—’H
— f—"«
s
v /_\
E
i

(59)
Lo 1>(33_ DR <M> ju(t, ) dx,
x| R
L R / |x| 2
Ry:=2 2——X' = | p(x- VV)|u(t,x)| dx. (60)
R<|x| x| R
We set
1 || R x|
Q= eRd;—x“(—>——x’(—>go : 61
{x 2 \R) TR o
By the inequality A’ (%)) < 24, we have
1/ 1 . 2
R1§4JQC{X (2) — 2} 1vute, ) Pax <o, (62)

where Q° denotes a complement of Q.
Next, we estimate R,. Applying Holder’s inequality and Sobolev’s embedding, we
have

1
Ra < Cll I .. oy < Clu@ Nl 5120 -
+1 1— 9 1) 1)
<@ @G <Clu@nBi, .
Next, we estimate R3.
C , C
R?’ < }? ”u(t>”L2(R§|xD < ? (64)

Finally, R4 is estimated as R4 <0 by A" (&) < 2 and x - VV <0, which completes
the proof of the lemma.

Proof of blow-up or grow-up part in (Non-radial case) for Theorem 6. We
assume that

Tmax =o0 and sup ||u(t)||H1 < oo (65)

€10, )

for contradiction. By Lemmas 2, 3, and 4, there exists 5> 0 such that

C (p+1)0
4, (6) < = 46+ Cllu(s) 1 g oy + 25 < =45+ Cr 7 +og(1) (66)

for any n>0,R>0, ands e [O We take 1 = 5, > 0 sufficiently small

nR
> 6Colluoll2 | *
such as

12
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([H—l)ﬂq
Cny? <26. (67)
and set
R
T = T(R)=aoR:= — 10" (68)

6Colluoll 2

Applying Eq. (67), integrating Eq. (66) over s € [0,t], and integrating over
t€[0, T], we have

e (T) <12, (0) + Iy (O)T + 3 (~25 + 0g(1))T? -
= I, (0) + Iy, (0)aoR + % (=25 + og(1))ajR%.
Here, we can see
Ix,(0) = o0g(1)R* and I (0) = og(1)R. (70)
Indeed, we get
L22(0) <Rloll 2,y < vy + R b0lliz (<) = OR(DRY, (71)
and

I'y,(0) <4V Rlluo g ol 2y < vy + eRIo llp Mol 2 <y = 0R(DR. (72)

Combining Egs. (69) and (70), we get
I, (T) < (0r(1) — o) R%. (73)

We take R > 0 such as og(1) — daj < 0. However, this contradicts Iy, (T) > 0.

4, Radial case of main theorem

In this section, we prove (Radial case) for Theorem 6. First, we introduce another
characterization of r,,y.

Lemma5Letd>3,1+5 <p<1+7%,and Q, v € G, v, rad- Assume that V is radially
symmetric and satisfies (A3) with |a| <2, (A7), and 3x - VV + xV?VxT <0. Then,

S0,v(Quv) = oy = inf{U,v(f) : f € Hpq(RY)\{0}, Kv(f)<0} (74)
holds, where the functional U, v is defined as

o) =Saf) = o35 Ko ). 75)

Proof: The lemma follows from proof of Lemma 1 (see [40], Lemma 4.3) com-
bined 2w + 2V +x - VV > 0.

13
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Proof of (Radial case) for Theorem 6. Assume that the solution « to Eq. (1) exists
globally in time for contradiction. We consider I v, again and recall

I, (t) = 4Ky (u(t)) + R+ R + R3 + Ra, (76)
where Ry, (1 <k <4) are defined as Egs. (57) ~ (60). We use same estimates with

proof of blow-up or grow-up for R1, R3, and R4. Applying Proposition 2 and the
Young’s inequality, we have

C b .
Ry < I@||M(t)||Lz(RS‘x|)||u(t)||H1(

R<|x|)
C 2(5pj3) ,
< gl y” +2{d(p — 1) — 4}ellull 77)
R 57 &7
C 2p+3)
=
= 2d-1p-1) 4 ”u”sz + 4d(p - 1>£U(v,V(u>
R 5v &»

for each positive £ > 0, which is chosen later. Collecting these estimates, we have

I, (2)

C C
< 4Kv(u) + 4d(p — 1)€U(,),V(u) + a0 4 +—=
R 5 &7 R
C C
= 4d(p — 1){Sw,v(u) — Uw,v(u)} -+ 4d<p — 1)€Uw,v(u) + EErE = + )
R v &7 R (78)
C C
<4d(p —1)(1 - 8)Su,v(Q,v) +4dp — 1) (e = VUoy®) + oo + =
R 57 &7
C C
< 4d(p — 1)(8 — 5)Sw,v (Qw,V) + RCETE RS + I?’
R 57 &

where the second inequality is used S, v () < (1 — 6)S,,v(Q,, ) for some 5€(0,1)
and the third inequality is used S,, v (Qw,V) <U,,v (see Lemma 5). Taking € € (0, 9)
and sufficiently large R > 0, there exists 7> 0 such that Iy (t) < — <0 for eacht €R.

However, this inequality implies that if |¢| is sufficiently large, then . This is contra-
diction and hence, we complete the proof.

5. Conclusions

In this chapter, our main result is Theorem 6. Combining the main result and a
previous result (Theorem 5), we can classify time behavior of solutions to Eq. (1) with
initial data below the ground state in the sense of their action S,, v by using sign of the
virial functional for the initial data. More precisely, for the solution «(z) with

Sw,v(to) <Sw0 (Q{u,O) , if Kv (o) > 0 then u is bounded in H' (Rd) and if Ky (u0) <0
then u is unbounded in H' (]Rd). In addition, for the radial solution #(¢) with
Sw,v(to) <Sw,v (Qw,V) , if Ky (ug) >0, then u exists globally in time and if Ky (¢#) <0
then u blows up.

14
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