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Chapter

Extracellular Vesicles in Kidney 
Disease
Chunyan Lv

Abstract

The kidney is the mainly apparatus in the human body, with a complex  
organizational structure and diverse pathological changes closely related to other 
organs. Extracellular vesicles are vesicles with diameters ranging from tens of 
nanometers to several micrometers, originating from multiple intracellular vesicles 
or local cell membranes. They carry various information from the source cells 
and operate between various cells in the kidney and extrarenal organs, conveying 
substances between cells. They play a large part in signal transmission within the 
kidney and between the kidney and other organs. Detecting changes in extracel-
lular vesicles and their cargo can monitor both renal neoplastic and nonneoplastic 
diseases. Extracellular vesicles derived from various stem cells, loaded with bioactive 
substances, can be applied to some extent to treat kidney diseases. Bioengineering 
drugs using extracellular vesicles as carriers are also playing an increasingly big role 
in treating kidney diseases. Research on extracellular vesicles has achieved certain 
results and has some preclinical applications, but there is still a process for large-scale 
and widespread application.

Keywords: kidney disease, extracellular vesicles, cell-to-cell communication, 
biomarker, therapeutic potential

1. Introduction

Extracellular vesicles (EVs) are a heterogeneous population of bilayered lipid 
vesicles [1–3] regarded as a vital interactive courier between cells and secreted by 
most types of cells. EVs can be differentiated into three main categories according 
to their origin and size: exosomes, local microdomains assembled in endocytic 
membranes with the size of 30–100 nm; microvesicles, released from the plasma 
membrane with a size of 100 nm-1 μm; apoptotic bodies, released by cells undergo-
ing apoptosis with a size of 1 μm–5 μm [4, 5]. The giant tumor-derived vesicles 
(oncosomes) and mitochondrial-originating vesicles (mitovesicles) are also consid-
ered as EVs [6, 7].

Despite the heterogeneous and diverse nature of EVs, they are released by normal 
cells and move in endless cycles in humor, with a major role in numerous physiological 
and pathological conditions. EVs are abundant in body fluids and are easy to separate 
and enrich, with complicated cargo reflecting the physiological and pathological con-
dition of the source cells. EVs can be efficient transport through the cell membrane 
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of target cells, thus enabling communication between cells and modulating the gene 
expression and function of target cells [8, 9].

The kidney is one of the important organs to remain steady in the internal milieu. 
EVs feature in renal physiology and are widely involved in the occurrence and pro-
gression of various kidney diseases. It can be used for the diagnosis of kidney diseases 
and be instrumental in the treatment of renal diseases [10, 11].

2. Role of extracellular vesicles in cell-cell communication in kidney

As the characteristics mentioned above, EVs act major affection in nephron inter-
cellular communication [12]. Proteomics results show that the exosomes in nephron 
mainly come from glomerular podocyte and tubular cells located in the proximal 
tubules, the thick segments of ascending medullary branches, the distal tubules, and 
collecting ducts. Some studies have confirmed that EVs transmit information in the 
nephron between the glomerulus and renal tubules. The upper tubule cells can release 
EVs, which are internalized by the cells in the lower segment of the tubule, transmit-
ting activated cell molecules. The earliest research found that EVs could be expelled 
and internalized by murine renal collecting duct cells in cultivation and transfer the 
functional aquaporin 2 [13]. Further research has found that the EVs from proximal 
renal tubules can be absorbed by the distal tubules and collecting ducts [14]. A study 
on podocyte RNA labeling found that this RNA was subsequently detected in renal 
tubular cells, thus confirming the material transfer between glomerulus and renal 
tubular cells [15].

Not only that, the maintenance of electrolyte and acid-base equipoise is one of 
the crux functions of the kidney, which is fulfilled by tubular transport. A variety of 
proteins and transporters rich in urinary exosomes come from cells in the nephron, 
for example, Na+-Cl symporter (distal tubule), aquaporin (AQP)-2 protein (con-
centrated pipe), Na+-K+-2Cl symporter (thick ascending limb), AQP-1 (proximal 
tubule), podoglycocalyx protein (podocyte). The urinary extracellular vesicles (uEVs) 
produced at the top membrane of kidney tubular cells, cargo water, electrolyte, and 
acid-base transporters. When the proximal tubular cell line is affected by inflamma-
tion, they excrete more EVs from apical and basal membrane, both of which have dif-
ferent molecular and functional characteristics [16]. It has proved that miRNAs acted 
as a major role in EV-mediated intercellular communication. Jella et al. recorded by 
unipath patch clamp that the probability of ENaC opening Xenopus cells and isolated 
splitopen tubules could be reduced by proximal EVs, and this could be weakened by 
EVs transfected with glyceraldehyde-3-phosphate dehydrogenase (GAPDH) inhibi-
tors [17]. Another research confirmed that ENaC activity could be regulated by EVs 
through purinergic signaling [18].

The distant tissues can release EVs into circulation and mediate inter-organ cross-
talk. EVs released from the placenta of preeclampsia can carry anti-angiogenic factors 
and lead to maternal glomerular endothelial dysfunction and proteinuria [19]. EVs 
released from autoimmune diseases, such as antiphospholipid syndrome, thrombotic 
microangiopathy, systemic lupus erythematosus, and ANCA-vasculitis, can promote 
coagulation, thrombosis, and immune-mediated renal pathology [20].

Increasing evidence shows that circulating cells (monocytes, neutrophils, and 
red blood cells) and platelets attacked by toxins release the EVs, and the latter are 
the major elements of pathogenesis in hemolytic uremia syndrome [21]. The abil-
ity of EVs derived from mesenchymal stem cells (MSC) to alleviate myocardial 
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injury in experimental metabolic renovascular hypertension is partly mediated by 
IL-10-containing EVs [22]. The bioactive cargo of EVs in kidney transplantation 
(KT) includes implant antigens, cytokines, growth factors, costimulation/inhibitory 
molecules, and functional microRNAs (miRNAs) that may regulate gene expression 
in receptor cells, which act as the immune modulators and play a crucial role in main-
taining complex crosstalk between graft tissue and innate/adaptive immune system. 
EVs are of great importance in allogeneic recognition, ischemia–reperfusion injury 
(IRI), autoimmunity, and allogeneic immunity and are expected to become biomark-
ers and therapeutic tools for KT [23].

The kidneys can also release EVs, affecting the function of other tissues and 
organs. A study on the proteomics of EVs in murine hearts found that some proteins 
come from other organs, including the kidneys [24]. Cardiovascular dysfunction 
is caused by a high level of circulating endothelial cell-derived particles in chronic 
kidney disease (CKD).

These particles may mediate inflammation, vascular wall damage, and remodeling 
and act as an incremental risk of Vascular calcification (VC) [25–30]. VC is a patho-
logical manifestation with high mortality, mainly manifested as abnormal calcium 
deposition in the vascular wall. During the process of VC, vascular smooth muscle 
cells (VSMCs) suffer osteogenic transformation and secrete EVs with various sources 
and compositions. The secreted EVs may obtain calcium-promoting properties, thus 
acting as the nucleation focus of hydroxyapatite crystallization and calcium trans-
mission [31]. The serum calpain particles (CPPs) and EVs in uremia are meaningful 
participants in the extensive calcification mechanism of CKD, and cGRP (a protein 
rich in Gla) plays an inhibitory role in preventing calcification at the system and tissue 
levels [32].

Figure 1. 
Extracellular vesicles as delivery vans in cell-cell communication between renal cells and extrarenal organs (cells).
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The deterioration of renal damage during liver or heart disease may be caused by EVs, 
while the advancement of hepatorenal or cardiorenal syndrome may involve EVs [33, 34]. 
Nonvalvular atrial fibrillation is associated with kidney disease because the increase in 
thromboembolism is mediated by a higher level of EVs from prethrombotic endothelial 
platelets rather than by thrombotic status and other markers of cell activation, even in 
anticoagulant patients [35]. In patients with hypertension, the presence of EVs indicat-
ing podocyte injury and peritubular capillary injury is detected [36]. The endothelial 
cells derived EVs released from peritubular capillaries were checked in the primary and 
renovascular hypertension patients’ urine, with the density of EVs directly associated 
with clinical parameters and the scarcity of capillaries, but was inversely proportional to 
renal perfusion [37]. Therefore, the change of urinary EVs in hypertensive patients can be 
regarded as an early marker of renal injury caused by peritubular capillary injury, and it 
will change with the improvement of renal function after drug treatment in patients with 
primary and renovascular hypertension (Figure 1).

3. Extracellular vesicles as biomarkers of renal diseases

EVs are a type of disc-shape vesicles with single concave, secreted by active cell 
and enveloped by phospholipid bilayers [38], with sizes ranging from nanometers to 
micrometers [39–42]. EVs grow out from the straight sprout of small vesicles wrapped 
in membranes or through blend on the superficial multivesicular bodies, engage in 
the intercellular commutation of materials and message, with cargo proteins, lipids, 
and nucleic acids (microRNA, messenger RNA, circ RNA, and lncRNA, etc.) [43–47]. 
With the pivotal roles in an exchange between renal cells and target cells, EVs are 
expected to serve as new molecular markers for the detection of kidney diseases, 
carrying specific molecular substances in source renal cells with the lipid structure 
to protect the contents from being degraded [48, 49]. At present, the study of EVs, 
especially exosomes, has been involved in the field of liquid biopsy [50, 51].

3.1 Extracellular vesicles as liquid biopsy markers for renal cell carcinoma

Renal cell carcinoma (RCC) is a kind of malignant tumor in the urinary system 
originating from the renal tubular epithelium, accounting for about 3% of adult 
malignant tumors, ranking second in the urinary system. The partial or total 
nephrectomy are the current therapeutic strategy, following or not following with 
immune-checkpoint-inhibitors-based targeted therapies to which patients are often 
drug-resistant. It lacks specific symptoms at the early stage [52]. Diagnosis mostly 
relys on ultrasound and other examinations. At the initial diagnosis, about 17% of 
RCCs have distant metastasis, with a 5-year survival rate close to 12% [53]. Therefore, 
early diagnosis and prediction of metastasis risk are crucial to the treatment and prog-
nosis of patients. Data has shown that EVs are the proficiency biomarkers for tumor 
liquid biopsy due to their specific content, species conservation, stability, and high 
abundance under different sources and physiological and pathological conditions [54].

3.1.1 EVs as biomarkers for the diagnosis and staging of RCC

Some researchers conducted multi-omics analysis on tumor-related proteins and 
mRNA in EVs from different RCC cell lines, identified multiple candidate molecular 
markers, and confirmed that EVs could not only distinguish between RCC and benign 
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lesions, but also assisted in determining the subtypes of RCC, with great potential 
for clinical transformation [55]. Research has found that compared to the control 
HK-2 cell line, the expression level of miR-150 in EVs from the 786-O RCC cell line 
was upregulated by 5.2 times, while miR-205 was downregulated by 10,000 times, 
indicating that miR-205 and miR-150 in EVs were new prospective biomarkers for the 
diagnosis of RCC [56].

However, in vitro cell models cannot fully and in real-time reflect tumor condi-
tions, and it is still essential to screen and validate in clinical specimens. There 
are reports that compared to healthy control, the expression of miR-149-3p and 
miR-424-3p in plasma EVs of RCC patients are upregulated, while miR-92a-1-5p 
is obviously downregulated, which is helpful for the diagnosis of RCC [57]. Zhang 
et al. observed that the levels of miR-210 and miR-1233 in serum EVs were markedly 
upregulated in patients with clear cell renal cell carcinoma (ccRCC) than those in the 
control group, and their expression were dramatically reduced after tumor resection, 
they has worthwhile value for RCC diagnosis and surgical effect monitoring [58]. 
Additionally, the expression of miR-210 is also related to their clinical prognosis 
in serum EVs of RCC patients, and the diagnostic performance for early patients is 
better than that of serum miR-155 [59]. Similarly, serum EVs miR-4525 can serve as a 
potential diagnostic marker for advanced RCC patients [60]. EVs from other sources 
of bodily fluids, besides blood also have the diagnostic potential for RCC. Urinary 
exo-miR-30c-5p may regulate the expression of a protein related to the progression of 
ccRCC (heat shock 70 kDa protein 5) and is regarded as a latent diagnostic biomarker 
for early ccRCC [61]. Some researchers have found that a combination detection of 
urine EVs miR-126-3p and miR-449a or miR-34b-5p can prominently differentiate 
between ccRCC and healthy individuals [62].

Recently, although most research on EVs as molecular markers of RCC has focused 
on miRNAs, it is also important to recognize that other specific molecules (proteins, 
mRNA, DNA, etc.) in EVs can also be used for auxiliary diagnosis of RCC [63]. Palma 
et al. found the obvious diverse in urinary exosomal shuttle RNA (esRNA) type 
of ccRCC patients compared to healthy population and non-ccRCC, and observed 
that this specific pattern increased to reach the normal level one month after partial 
or radical nephrectomy. They identified that the urinary esRNA levels of CEBPA, 
GSTA1, and PCBD1 were downregulated in patients than the healthy subjects, then 
suggested the RNA content in urinary EVs could be the prospective diagnostic appli-
cations for the ccRCC [64]. Some scholars describe CA9, CD147, and CD70 in EVs as 
tumor markers that are specific to ccRCC [65].

Some scholars characterized CA9, CD147, and CD70 as tumor-specific markers on 
EVs in CCRCC [65]. Vergori observed that CA9 in circulating large EVs plays a part in 
the diagnosis and prognosis of ccRCC [66]. Researchers regarded Polymerase I and 
transcript release factor (PTRF)/CAVIN1 in urinary exosomes as prospective bio-
markers of ccRCC [67]. Li et al. believed that exosomal circRNAs may be the potential 
cancer diagnosis marker [68]. The above studies have confirmed that EVs and their 
contents are expected to become diagnostic and staging markers for RCC.

3.1.2 EVs as markers for RCC metastasis monitoring

The messages in EVs actively loading by cancer cells can support tumor spread; the 
double layer of EV protects the peculiarity. Thus EVs play a major role in metastasis by 
improving the content’s half-life and stability, and then EVs act as markers for metas-
tasis monitoring. Many scholars have confirmed this by animal and cell experiments.
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EVs released from RCC cell line (786-O) can transfer long-chain noncoding RNA 
(LncRNA)_human lung adenocarcinoma of the metastasis related transcription factor 1 
(MALAT1) to adjacent nonmetastatic RCC cells and enhance their growth, invasion, and 
metastasis abilities [69]. Meanwhile, CD103+ EVs separated from cancer stem cell (CSC) 
of ccRCC patients targeted regulate the protein level of phosphatase and tensin homolog 
deleted on chromosome ten (PTEN), which is tightly relevant to cell migration, by trans-
porting miR-19b-3p to ccRCC cells; Cancer stem cell EVs also can be guided by CD103 to 
target cancer cells and organs, making ccRCC have higher lung metastasis capacity [70].

In addition, the expression of miR-1293 decreased, and the expression of miR-
301a-3p increased in plasma EVs of RCC patients with metastasis, which are regarded 
as presumable biomarkers for the metastasis of RCC [71]. The downregulated miR-
483-5p was observed in ccRCC, and Wang et al. believed that it contributed to cell 
proliferation, metastasis, and inflammation [72]. Evs-derived proteins also can be the 
marker of RCC metastasis monitoring. Some investigators observed that the serum 
EVs of prostate-specific membrane antigen (PMSA) levels in metastatic patients of 
RCC were sharply increased compared with nonmetastatic patients by establishing a 
sandwich ELISA method, and also believed that PMSA can reflect the angiogenesis of 
the primary tumor and metastasis, then monitoring the metastatic RCC in real time 
[73]. Furthermore, the surface or content of EVs can provide targeted recognition 
sites for tumor metastasis, providing a theoretical basis for developing the predicting 
RCC metastasis markers and targeted therapy strategies.

3.1.3 EVs as biomarkers for drug resistance and prognosis in RCC

The prognosis of RCC patients is closely related to tumor staging, grading, metasta-
sis, and patient sensitivity to therapeutic drugs. It is deemed that partial nephrectomy 
is the preferred treatment strategy because some researchers observed a better ending 
and better postoperation renal function in the advanced stage RCC patients treated by 
partial nephrectomy than those that undergo radical nephrectomy [74]. The survival 
rate of early RCC is 90%, while that of locally advanced or metastatic cases is only 
13%. Therefore, early diagnosis and treatment of RCC is extremely prominence for 
improving the 5-year survival rate of this disease. Liquid biopsy techniques provided 
for early RCC detection may bring about a superior outcome. EVs detection can guide 
clinical rationalization, individualization, and precision of medication by assessing the 
sensitivity of patients to drugs. Ras-related protein Rab-27B is one of the chief proteins 
involved in the secretion of EVs. Previous studies have confirmed that the high expres-
sion of this protein is related to the poor prognosis of hepatocellular carcinoma, ovarian 
cancer, and colorectal cancer. Tsuruda et al. identified that Rab-27B was significantly 
overexpressed in sunitinib-resistant renal cell carcinoma cell lines [75]. Dias et al. found 
that compared with patients with nonmetastatic in situ ccRCC, patients with metastatic 
disease had higher levels of matrix metalloproteinase inhibitor of metalloproteinase-1 
(TIMP-1) mRNA in plasma EVs and lower overall survival rate. This means TIMP-1 
mRNA derived from EVs is a potential prognostic marker for ccRCC [76].

Additionally, researchers also found that after 1 day of cryoablation treatment, 
the miR-17-5p, miR-126-3p, and miR-21-3p in mouse serum-derived EVs rapidly 
decreased, reflecting the number of active tumors, which can be used to evalu-
ate tumor clearance efficacy and dynamically monitor tumor burden [77]. Du 
et al. applied Cox regression analysis and Kaplan Meier analysis to confirm the 
significant overall survival (OS) association of three EVs source miRNAs (miR-let-
7i-5p, miR-615-3p, and miR-26a-1-3p. Then, these miRNAs in plasma exosomes 
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were used as prognostic markers for metastatic kidney cancer [78]. Nakanori et al. 
found that intracellular miR-224 increases in ccRCC and is obviously relevant to 
cancer metastasis and invasion. Then, they explored the relevance between the 
level of exo-miR-224 and the prognosis of 108 ccRCC patients, and they observed 
that progression-free survival and overall survival are shorter in the group with 
high exo-miR-224 expression level. Thus, they deemed that extracellular miR-224 
in ccRCC patient’s exosomes is a prospective prognostic marker [79]. Sunitinib is 
a novel multi-targeted oral drug for treating tumors and is also used for treating 
advanced renal cell carcinoma. The drug resistance is the main challenge of current 
treatment. Sun et al. detected lncRNA Activated in RCC with sunitinib resistance 
(lncARSR), a lncRNA related to the clinically poor response to sunitinib. LncARSR 
may improve the level of AXL and c-MET in RCC cells by competitively binding to 
miR-34/miR-449 and recovery the drug resistance of sunitinib. In addition, this 
lncRNA also transmits its drug resistance mechanism to sensitive cells through 
exosomes. Therefore, it is suggested that lncARSR may predict sunitinib resistance 
and a potential therapeutic target (Table 1) [80].

Marker Expression 

disorder

Origin Application References

miR-150 Upregulated RCC cell line 

(786-O)

Diagnosis [56]

miR-205 Downregulated

miR-92a-1-5p Downregulated Plasma Diagnosis [57]

miR-149-3p & 

miR-424-3p

Upregulated

miR-210 & miR-1233 Upregulated Serum Diagnosis [58]

miR-4525 Upregulated Serum Diagnosis [59]

combination of miR-

34b-5p or miR-449a & 

miR-126-3p

Urine and cell line 

mode

Diagnosis [61]

GSTA1, CEBPA, and 

PCBD1

Downregulated Urine Diagnosis [63]

CD147, CA9, and CD70 Upregulated Cell lines and 

tissue samples

Diagnosis [64]

CA9 Increased Plasma Diagnosis and 

prognosis

[65]

PTRF/CAVIN1 Increased Urine Diagnosis [66]

MALAT1 Cell line Metastasis 

monitoring

[68]

CD103 Cancer stem cell Metastasis 

Monitoring

[69]

miR-1293 Increased Plasma Metastasis 

monitoring

[70]

miR-301a-3p Decreased

miR-483-5p Downregulated Plasma and 

tissues

Metastasis 

monitoring

[71]

hsa-miR-301a-3p Increased Plasma Metastasis 

monitoring

[72]

hsa-miR-1293 Decreased
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3.2 Extracellular vesicles as diagnostic markers for renal tubulointerstitial injury

Some biomolecules carried in urine EVs are closely related to the degree of renal 
tubulointerstitial inflammation and fibrosis; the detection of these markers in EVs 
can reflect the degree of renal inflammatory fibrosis progression. After genetic 
screening of EVs in urine of chronic kidney disease (CKD) patients, it was found 
that miR-29c and CD2AP mRNA were positively correlated with the degree of renal 
fibrosis and renal function, which may have meaningful diagnostic value for the pro-
gression of renal fibrosis [81, 82]. Based on previous findings that EVs CCL2 mRNA 
released by renal tubular epithelial cells (TECs) can directly transfer to macrophages 
and promote tubulointerstitial inflammation, some researchers found that the expres-
sion of CCL2 mRNA in urine EVs of IgA nephropathy (IgAN) patients is related to 
the level of eGFR and can predict the progress of renal function, which may become a 
new marker for IgAN prognosis monitoring [83]. Hypertension is a noteworthy cause 
of CKD, and the loss of peritubular capillaries (PTC) is one of the characteristics of 
hypertension; the level of endothelial microparticles (EMP) in the loop can report 
the endothelial injury systematically. Urinary EMPs levels were examined as possible 
markers of PTC and decreased fibrotic density. Ptc-emps were peculiar proteins that 
were identified as plasmalemmal vesicle-associated protein (PL-VAP) positive urinary 
exosomes, which were showed in PTC and Vas deferens endothelium but not in glom-
eruli and arteries and are supposed to be a novel biomarker of intrarenal capillary loss 
[84]. In obstructive kidney disease, uEVs may help assess the risk of developing renal 
dysfunction, and some studies have observed that the profibrotic factor TGF-β1 level 
in uEVs is related to glomerular filtration rate [85]. It was the upregulated of the uri-
nary exosomal miR-181a (200-fold) in CKD patients [86] and the downregulated of 
the exosomal level of secreting transglutaminase-2 (a fibrosis-activating enzyme) in 
UUO mice [87]. CKD patients have a decrease in miR-200b of urinary exosomes, with 

Marker Expression 

disorder

Origin Application References

PMSA Increased Serum Metastasis 

monitoring

[73]

RAB27B Increased Cell lines Drug 

resistance

[75]

TIMP-1 mRNA Increased Plasma Prognosis [76]

miR-126-3p Decreased Serum Prognosis [77]

miR-17-5p Decreased

miR-21-3p Decreased

miR-let-7i-5p Increased Plasma Prognosis [78]

miR-26a-1-3p Increased

miR-615-3p Increased

miR-224 Increased Blood and cell 

lines

Prognosis [79]

lncARSR Increased Cell line, plasma, 

and tissue

Drug 

resistance

[80]

Table 1. 
A list of candidate dysregulated EV contents as molecular markers for RCC.
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the greatest reduction in urinary exosomes originating from cells outside the proximal 
renal tubules [88]. The upregulation of the urinary exosomal ceruloplasmin in CKD 
patients and animals with passive Heyman nephritis was observed [89]. Moreover, 
osteoprotegerin, an inflammatory marker, was shown to be increased in the uEVs of 
patients with CKD [90].

The kidney is a major organ that regulates the body’s water and salt metabolism. 
Ions and aquaporin are distributed in different segments of TECs. During the injury 
of TECs, these ions and water transporters in urine EVs also changed correspond-
ingly. For example, the decrease of aquaporin (AQP) expression in urine EVs 
was observed in the rat model of Acute kidney injury (AKI) induced by cisplatin 
and ischemia/reperfusion, suggesting its potential impact on the change of renal 
concentration function [91]. The level of EVs Na + transporters in urine may also 
indicate certain pathological conditions in the kidneys. The activation of renin 
angiotensin aldosterone system (RAAS) after sodium-restricted diet acute aldo-
sterone infusion in patients with hypertension increases the content of epithelial 
sodium channel (ENaC) in urine EVs by nearly 20 times, suggesting that it may be a 
novel means to monitor RAAS activation [92]. Moreover, the significant reduction 
of furosemide-sensitive sodium potassium chloride cotransporter (NKCC2) and 
sodium chloride cotransporter (NCC) in urine EVs has been used to distinguish dif-
ferent phenotypes of hereditary desalinization renal tubular disease [93, 94]. These 
studies suggest that changes in ion and water transport proteins in urine EVs may 
reflect renal tubular damage.

3.3 Extracellular vesicles as diagnostic markers for glomerular injury

EVs derived from glomeruli are continuously released into urine under physiologi-
cal conditions, so changes in urine EVs can reflect the degree of glomerular disease, 
including podocyte damage. In early studies, Wilms Tumor Protein 1 (WT1) has 
been identified as a key regulator of podocyte expression, and the WT1 target gene is 
crucial to maintain the glomerular filtration barrier [95]. WT1 in uEVs was confirmed 
to be detectable before obvious glomerular sclerosis and urinary EVs WT1 appeared 
prior to proteinuria and glomerular histological damage in focal segmental glo-
merulosclerosis (FSGS) animal models [96]; moreover, urinary exosomal WT-1 was 
significantly decreased in patients in remission for either FSGS or steroid-sensitive 
nephrotic syndrome (SSNS) or following steroid treatment of patients with SSNS 
[97]. Compared with patients with minimal change nephropathy (MCN), the WT1 
mRNA expression was increased significantly in urine EVs of patients with diabetes 
nephropathy (DN) and was associated with decreased eGFR; thus the high expression 
of WT1 mRNA in urine EVs distinguishes patients with DN from patients with MCN 
[98]. In addition, hyperglycemia can stimulate the release of WT1 from podocyte to 
urine EVs, so the detection of WT1 in urine EVs can indicate early damage of podo-
cyte in diabetes patients. WT-1 may be a biomarker for early diagnosis of podocyte 
injury, as suggested by these data. Recently, it has been found that the expression of 
the upper pitt-specific transcription factor ELF3 protein in urine EVs is in patients 
with DN, but not in patients with MCN. Urine EVs ELF3 can predict the decline of 
eGFR in patients with DN in the next few years [99]. It is a practical diagnostic tool 
that uEVs is applied to distinguish early IgA nephropathy (IgAN) and thin basement 
membrane nephropathy with microscopic hematuria in children and adults. Moon 
et al. discovered four various biomarkers that have different expressions in the uEV 
of these patients and the high levels of aminopeptidase N and vasoactive precursors 
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in the thin basement membrane nephropathy group, while α-1-Elevated levels of 
antitrypsin and ceruloplasmin were higher in the IgAN group [100].

3.4 Extracellular vesicles as diagnostic markers for other kidney disease

The biological processes involved in cytoskeleton-regulating and Ca(2+)-binding 
proteins are closely related to the pathogenic state of renal tubular epithelial cells 
in autosomal dominant polycystic kidney disease (ADPKD). Some study found by 
iTRAQ-based quantitative proteomics that this differential expression of proteins 
in urine EV of ADPKD demonstrates the possibility of using urine EV to monitor 
patient status [101, 102]. Fabry disease, also known as Anderson-Fabry disease, is 
the most common lysosome accumulation disease [103]. It is an X-linked congenital 
defect in the pathway of glycosphingolipid metabolism, which causes the accumula-
tion of globotriaosylceramide (Gb3) in a variety of lysosome, leading to a series of 
clinical manifestations. Fabry nephropathy is kidney impairment, mainly manifested 
as hypertension, hematuria, mild proteinuria and fatty urine, and various renal tubu-
lar dysfunction, such as concentration and dilution function [104]. Some scholars 
observed the increased expression of miR-29a-3p and miR-200a-3p in uEVs of Fabry 
nephropathy patients may reveal an attempt by this organism to inhibit the progres-
sion of renal lesions leading to end-stage renal disease (ESRD).

Pathema Liquid biopsy 

marker

Level related to 

healthy

Type of 

regeneration 

or lesion

Detection way

Autosomal 

dominant polycystic 

kidney disease 

(ADPKD)

S100-A9, S100-A8, 

annexin A1, and 

annexin A2

increased urinary EVs iTRAQ-based 

quantitative proteomics 

[101, 102]

Fabry nephropathy miR-200a-3p, 

miR-29a-3p

increased Urine EVs qPCR [105]

Acute kidney injury AQP1 Decreased Tubular cell 

injury

Western blot [107]

ATF3 Increased qRT-PCR [96]

Fetuin A Increased LC-MS/MS, MALDI-

TOF, western blot [108]

miR-130a and 

miR-145

Increased Glomerular qRT-PCR [109]

miR-155 and 

miR-424

Decreased mesangial 

damage

ELF3 increased Podocyte 

damage

Western blotting [99]

WT1 Increased Podocyte 

damage

Western blot [110]

AEBP1 mRNA increased Not known Bioinformatics analysis 

[111]

hsa-miR-503 and 

hsa-miR-451a

increased uEVs next-generation small 

RNA sequencing & 

qRT-PCR [112]
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Meanwhile, the expression of miR-30b-5p increased within 10 years in uEVs of 
patients without renal dysfunction, which may play a defensive part in podocyte 
trauma and may play a vital role in Fabry nephropathy [105].

In summary, the “liquid biopsy” based on EVs currently shows good application 
prospects in the diagnosis of kidney disease. In future research, it is necessary to 
further explore the standardization of urine sample separation, storage, and process-
ing [106], strengthen the large-scale cohort study of the diagnostic, prognostic and 
predictive value of EVs biomarkers in different kidney diseases, and promote the 
technical research on the traceability of urine EVs kidney cells (Table 2).

Pathema Liquid biopsy 

marker

Level related to 

healthy

Type of 

regeneration 

or lesion

Detection way

Hypertensive 

kidney injury

PL-VAP increased Urine flow cytometry [84]

Focal segmental 

glomerulosclerosis

WT1 Increased Podocyte 

damage

Western blot [97]

Chronic kidney 

disease

CCL2 mRNA Increased tubular 

epithelial cells

qRT-PCR [83]

CD2AP mRNA Decreased Podocyte 

damage

qRT-PCR [82]

miR-29 Decreased Fibrosis qRT-PCR [81]

miR-200b Increased

secreting 

transglutaminase-2

Increased UUO Proteomic [87]

ceruloplasmin increased Urine ELISA [89]

miR-181a-5p and 

miR-451

Increased Not known qRT-PCR [86, 113]

IgA nephropathy miR-378, miR-215-5p Increased Not known qRT-PCR [114]

miR-205-5p, 

miR-29c

Decreased

α-1-antitrypsin & 

ceruloplasmin

increased Urine semi-quantitative 

immunoblot analysis 

[100]

Kidney 

transplantation

NGAL Increased Tubular cell 

injury

Western blot [115]

CD133 Decreased Tubular cell 

regeneration

FACS, western blot 

[116]

Medullary Sponge 

Kidney Disease

Ficolin 1, Mannan-

binding lectin 

serine protease 2, 

and Complement 

component 

4-binding protein β

increased Urine EVs ELISA [117]

Lupus nephritis miR-146a, miR-150, 

miR-21

Increased Fibrosis qRT-PCR [118]

Table 2. 
Deregulated EVs and their contents as the molecular marker of nonneoplastic kidney disease.
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4. Extracellular vesicles in the therapeutic role

Renal pathophysiology is a multivariate procedure concerned with different 
kidney structures. Acute kidney injury (AKI) is a group of clinical syndromes, the 
manifestations include oliguria, anuria, edema, loss of appetite, etc., with the char-
acter of tubular necrosis and glomerular hyperfiltration. The maladaptive repair after 
AKI can easily lead to chronic kidney disease, also known as CKD. CKD is a growing 
and irretrievable damage of kidney function, the athological manifestation being 
fibrosis that could lead to ESRD. Currently, kidney disease therapies based on EVs can 
be divided into two categories: firstly, certain specific cells, such as stem cell-derived 
EVs, can be directly applied as therapeutic drugs due to their carrying bioactive 
molecules; Secondly, EVs can serve as delivery carriers for various types of drugs for 
the treatment of kidney diseases [119, 120].

4.1 Application of stem cell-derived EVs in the treatment of kidney disease

Timmers et al. first confirmed that the conditioned medium of human mesenchy-
mal stem cells had a protective effect on myocardium in 2007, they also confirmed 
that the main active substances involved this were at 100–220 nm by size analysis 
[121]. The team further isolated and identified the substance in 2010, identifying it 
as exosomes. Since then, more and more studies have confirmed that the EVs derived 
from mesenchymal stem cell (MSC-EVs) play a major part in tissue damage repair 
and immune regulation, and have developed their therapeutic potential in the matter 
of regenerative medicine. In recent years, stem cell-derived EVs have been studied in 
different animal kidney disease models in vivo, including AKI, diabetes nephropathy, 
hypertensive nephropathy, unilateral ureteral obstruction, and subtotal nephrectomy.

4.1.1 Acute kidney injury (AKI)

AKI is a general clinical condition, and there is no clear and effective treatment 
method. In recent years, stem cell EVs have been proven to play therapeutic roles in 
AKI, including anti-apoptotic, anti-inflammatory, and antioxidant stress. BRUNO 
et al. proved that in the glycerol-induced AKI mouse model, the bone marrow 
mesenchymal stem cells derived EVs accelerate the repair of damaged renal tubular 
cells, promote renal tubular cell proliferation, and protect cells from apoptosis [122]. 
Extracellular vesicles derived from bone marrow mesenchymal stem cells were also 
verified in the toxic AKI model induced by cisplatin and gentamicin [123, 124], which 
can improve renal function, reduce histological damage, and alleviate renal fibrosis. 
The bone marrow mesenchymal stem cells derived EVs have also achieved the same 
effect in renal ischemia–reperfusion (I/R) injury models [125, 126].

There are many mechanisms by which stem cell-derived EVs can improve AKI. 
Studies have found that the bone marrow mesenchymal stem cells derived EVs may 
carry specific mRNAs to activate the proliferation process of surviving renal tubular 
cells after injury, so that the impaired cells can re-enter the cell cycle.

Recently, CAO and his team sequenced human umbilical cord mesenchymal 
stem cells derived EVs and found that they are rich in miR-125b-5p and can inhibit 
G2/M cell cycle arrest and apoptosis of TECs by targeting p53, thereby promoting 
renal tubular repair and improving ischemic AKI [127]. Li et al. found that human 
urine-derived stem cells EVs can defend renal function of ischemia–reperfusion 
rats by carrying miR-146a-5p, which can target the 3′-untranslated coding region of 
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IL-1 receptor-associated kinase (IRAK), thereby inhibiting NF-κ activation of the 
B signaling pathway and infiltration of inflammatory cells [128]. Lately, someone 
conducted EVs derived from human bone marrow combined with pulse-focused 
ultrasound therapy on a cisplatin-induced mouse model and found that the decreased 
expression of NLRP3 inflammasome and its downstream pro-inflammatory cyto-
kine IL-1βand IL-18 decreased promoted renal repair after AKI [129]. These studies 
suggest that MSC-EVs exert the therapeutic effect of AKI through anti-inflammatory 
effects. The study also found that MSC-EVs can also inhibit mitochondrial damage in 
the IRI model through various pathways, thereby alleviating AKI. MSC-EVs derived 
from human placenta activate the Keap1-Nrf2 signaling pathway, stimulate mitochon-
drial antioxidant defense mechanisms to maintain the stability of TEC mitochondrial 
structure and regulate mitochondrial function, participate in TEC damage repair, and 
promote renal function recovery [130]. In addition, there are reports that MSCs-EVs 
can reduce mitochondrial damage and inflammation caused by AKI through the mito-
chondrial transcription factor A (TFAM) pathway [131]. EVs originating in umbilical 
stalk blood mesenchymal stem cells promote dedifferentiation and proliferation 
of renal tubular cells; extracellular vesicles derived from umbilical cord Wharton 
glue mesenchymal stem cells stimulate cell proliferation, reduce inflammation, and 
apoptosis through mitochondrial protection. 3D cultured placental mesenchymal 
stem cells derived EVs more effectively inhibit cell apoptosis, inflammation and 
improve renal function [132–134]; Human urinary mesenchymal stem cells derived 
EVa accelerate renal recovery, stimulate renal tubular cell proliferation, reduce the 
expression of inflammatory and injury markers, restore endogenous Klotho loss, and 
thus protect renal function [135, 136].

4.1.2 Chronic kidney disease (CKD)

It is a significant pathological manifestation in CKD progression of persistent 
kidney tubulointerstitial fibration. Scholars have found that hBMSC-EVs can inhibit 
TGF through their rich miR-294/miR-133-β1 mediates epithelial-mesenchymal 
transformation in CKD rats, thereby alleviating renal interstitial fibrosis (RIF) [137]. 
Moreover, particles derived from renal-derived MSCs can improve peritubular capil-
lary sparsity in the kidney and delay the progression of renal injury by inhibiting 
tubulointerstitial fibrosis in mice UUO [138]. EVs produced by bone marrow mes-
enchymal stem cells derived EVs alleviate UUO renal fibrosis, partially by inhibiting 
the RhoA/ROCK pathway [139]. In a mouse CKD model induced by chronic cyclo-
sporin, bone marrow derived EVs can improve the kidney function in the inflamma-
tory microenvironment [140]. Extracellular vesicles rich in miR-196b-5p mediate 
crosstalk between proximal tubular epithelial cells and fibroblasts, which may be 
related to the STAT3/SOCO2 signaling pathway and mediate aldosterone-induced 
renal fibrosis with diabetes [141]. However, miR-221 in the EVs derived from podo-
cyte reversed DN by inhibiting Wnt/β-Catenin signaling mediated proximal tubular 
cell damage [142]. EVs from human liver stem cell through miR29b reduce renal 
fibrosis by disturbing the β-Catenin pathway [143]. In a recent study, researchers 
synthesized a biological scaffold, which integrates MSC-EVs, extracellular matrix, 
poly (lactic acid Glycolic acid) copolymer, poly (Deoxyribonucleotide), etc. This 
biological scaffold achieved renal tissue remodeling in a partial nephrectomy mouse 
model by promoting cell proliferation, angiogenesis, and inhibiting fibrosis and 
inflammation [144]. Eirin et al. found that intrarenal injection of adipose-derived 
mesenchymal stem cells EVs improved pigs with metabolic syndrome and renal 
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artery stenosis disease by ameliorating renal inflammation and fibrosis. Further 
research confirmed that these renal protective effects were mediated by the carrier 
of anti-inflammatory cytokine IL-10 carried by MSC-EVs [145]. The secretion of 
EVs from mesenchymal stem cells stimulated by melatonin inhibits fibrosis in renal 
tissue by regulating cell apoptosis and proliferation of fibrosis related cells [146]. 
Stem cell-derived EVs also improve CKD related lesions. CHOI et al. found that renal 
mesenchymal stem cells expressing erythropoietin EVs improve renal anemia in mice 
with chronic kidney disease [147].

4.1.3 Diabetic nephropathy (DKD)

Diabetes nephropathy (DKD) is one of the elemental etiology of terminal-stage 
kidney disease [148]. For a long time, there is no specific drug for DKD, and the 
current treatment is limited to blood glucose control, blocking of renin-angiotensin-
aldosterone system, and changes in lifestyle [149]. MSC-EVs can protect cells from 
high glucose-induced damage by promoting regeneration through anti-apoptosis, 
anti-fibrosis, and autophagy. Jin et al. confirmed that miR-486 carried by EVs 
derived from fat MSCs can be transferred to podocyte, which leads to increased 
autophagy flux and decreased apoptosis by inhibiting the Smad1/mTOR signal path-
way of podocyte in DKD mice [150], thereby improving podocyte injury in DKD 
mice. In addition, MSC-exos can reduce the overexpression of TGF-βto improve 
tubulointerstitial fibrosis in DN mice and regulate the expression of ICAM-1 for 
inhibiting inflammatory cell infiltration, thereby reducing diabetes kidney damage 
[151]. Xiang et al. found that umbilical cord mesenchymal stem cells derived EVs can 
reduce inflammatory factors (IL-6, TNF-α) in renal tubular cell expression, reduce 
inflammatory cell infiltration, interstitial fibrosis, and other pathological changes of 
diabetes nephropathy in renal tissue [152]. Mesenchymal stem cells derived EVs can 
regulate autophagy through the mTOR pathway, upregulate autophagy proteins such 
as LC3 and Beclin-1, and observe an increase in autophagic vesicles under electron 
microscopy, and the treatment of the MSC-derived EVs decreased the urine protein 
and serum creatinine in diabetes nephropathy mice. Renal biopsy showed that the 
renal pathological changes of diabetes nephropathy such as mesangium expansion 
and fibrosis were alleviated [153]. Jin et al. observed that the adipose stem cells 
derived exosomes could reverse the damage of renal function caused by high glucose 
environment and further found that miR-486 is a critical determiner in the reverse 
process, which can reduce the expression of Smad1, increase cell autophagy, and 
reduce podocyte apoptosis [150].

Recently, researchers injected two doses of MSC-EVs into patients with CKD 
phase III and IV in a single center, stochastic, placebo-contrast phase II/III clinical 
trial, and the results showed that the renal inflammation and function were effec-
tively improved in the treatment group, providing worthwhile clinical evidence for 
the employ of MSC-EVs in the therapy of CKD. Unfortunately, this study did not 
investigate its mechanism and related renal pathological types [154]. Obviously, it has 
extremely clinical significance to further strengthening research.

4.2  Application of EVs based drug targeted delivery in the treatment of kidney 
disease

In 2010, Sun et al. wrapped curcumin with anti-inflammatory and antioxidant 
effects in EVs for the first time to treat sepsis in mice and achieved good therapeutic 
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effects [155]. Since then, targeted drug development based on EV carriers has contin-
ued to heat up. Existing research suggests that EVs can successfully load various types 
of drugs such as nucleic acid drugs, protein drugs, and small molecule drugs for the 
treatment of kidney disease.

4.2.1 EVs as nucleic acid drug carriers

Various types of nucleic acids are the main ingredients of EVs; therefore, it 
has aroused widespread interest in using EVs as delivery carriers for nucleic acid 
drugs. Previous studies have shown that EVs can load and transport nucleic acids 
such as mRNA, miRNA, and small interfering RNA (siRNA) for disease treatment 
[156]. Among them, siRNA therapy has shown great potential in the treatment of 
human diseases. However, due to its instability and missing target effect, the clinical 
application of RNA interference technology has been limited. Recently, TANG et al. 
successfully developed a siRNA delivery system based on red blood cell-derived EVs, 
which utilizes renal injury molecule-1 targeted peptide A Kim-1-binding peptide 
(LTH) to modify red blood cell-derived extracellular vesicles (REVs) and success-
fully deliver siP65 and siSNAI1 to the injured renal tubules, effectively improving 
renal tubulointerstitial inflammation and fibrosis induced by ischemia-reperfusion 
and UUO, and blocking the chronic progression of AKI [157]. Meanwhile, they also 
applied muscle-targeted peptide-modified EVs with loaded miR-26a, significantly 
improving Sarcopenia in 5/6 nephrectomized CKD mice [158]. Combining EVs with 
a kidney-targeting peptide, Rabies Virus Glycoprotein (RVG), and loading miR-29a 
into it, can not only alleviate the myopenia in mice with UUO but also improve renal 
fibrosis through EVs-mediated communication between skeletal muscle and renal 
organs [159]. Therefore, the targeted therapy of nucleic acid drugs based on EVs can 
not only delay the progression of kidney disease but also improve its complications. 
A different strategy was applied and studies have shown that EVs from engineered 
MSCs overexpressing miR-let7c can shift miRNA to renal cells and inhibit RIF [160]. 
In addition, BM-MSC-derived EVs overexpressing miR-34a embellished by lentivi-
rus inhibited TGF-β1 begotten epithelial-mesenchymal transition (EMT) in human 
renal tubular cells [161].

4.2.2 EVs as protein drug carriers

Protein deficiency and dysfunction are important causes of many diseases. 
Therefore, it is one of the methods for treating diseases by increasing the cor-
responding protein levels. However, protein drugs themselves have drawbacks, 
such as high molecular weight and poor stability, which limit their clinical appli-
cation. The loading performance and modifiability of EVs have brought dawn 
to this field. Recently, Researchers constructed a cytokine IL-10 delivery system 
(IL-10 + EVs) using macrophage-derived EVs as a vector. The loading of EVs not 
only improved the stability of IL-10 but also demonstrated a unique ability to 
target kidney damage. Further mechanism research has found that IL-10 + EVs can 
promote mitochondrial autophagy in TECs by suppression the sensitization of the 
mTOR signaling pathway, significantly improving renal injury and chronic lesions 
induced by ischemia-reperfusion [162]. Kim et al. utilized a novel photogenetic 
engineering technique to load NF-κ inhibition protein srIκB into EVs, effectively 
improving the inflammatory response and cell apoptosis in the kidney after 
ischemia [163].
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4.2.3 EVs as small molecule drug carriers

Research has found that the encapsulation and delivery of EVs can improve the 
targeting, cell uptake efficiency of small molecule drugs, also improve drug stability, 
and reduce toxic side effects [119, 164]. MSCs-EVs have been considered as another 
prospective acellular therapy for AKI. A Supermolecule hydrogel containing Arg-Gly-
Asp (RGD) peptide has been manufactured to enhance the efficiency in the therapy 
of AKI. Data shows that RGD-EV hydrogel has a good rescue influence on renal 
function at the early stage of AKI, by dwindling tubular damage and facilitating cell 
proliferation through the combination of RGD and integrin [165]. Recently, research-
ers constructed M2 macrophage-derived EVs loaded with dexamethasone (DEX) and 
found that it not only targets damaged kidneys but also has effective anti-inflamma-
tory and anti-fibrotic effects. Moreover, it significantly alleviates the adverse effects 
of DEX on blood glucose and the hypothalamic-pituitary renal gland axis in mice 
impact [166]. In the AKI model, EVs derived from MSCs ameliorative to over-express 
the octamer binding transcriptional factor 4 (OCT4) showed decreased expression 
of Snail, a trigger factor for epithelial-mesenchymal transition (EMT). Therefore, the 
administration of EV-ameliorated MSCs has achieved better renal tissue recovery, 
cell proliferation improvement, cell death elimination, and the initial fibrosis process 
block [132].

All in all, EVs have become a worthwhile carrier for the next generation of targeted 
drug delivery and have received widespread attention in recent years based on the 
advantages of good biocompatibility, low immunogenicity, and modifiability of EVs 
Cell therapy. Of course, there are still issues that need to be addressed: producing EVs 
that are repeatable, large-scale, high-throughput, and meeting the clinical applica-
tion level; suitable parental cells selecting, culture systems such as cell factories, 
bioreactors, and hollowing fiber tubes establishing to achieve large-scale expansion 
production [167]; standardized EVs separation technology suitable for large-scale 
production building, a high-throughput detection platform developing, the quality of 
the EVs production process control and quality monitoring at the single particle level 
achieving, thereby further achieving standardized quality control and improving 
drug loading efficiency.

5. Conclusion

In the past 20 years, research on EVs has made rapid progress. More and more 
preclinical studies have shown that biomarkers and related treatment technologies 
based on EVs have great prospects in detecting and treating kidney disease, laying the 
foundation for their clinical application. Further strengthening the basic and clini-
cal research on the role of EVs in making a diagnosis and giving treatment of kidney 
diseases, developing standardized, clinical-level EVs separation, purification, and 
quality control, and strengthening clinical queue research will offer technical support 
for the clinical transformation and application of electric vehicles.
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