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Chapter

Application of Machine Learning in
Geotechnical Engineering for Risk
Assessment

Ali Akbar Firoozi and Ali Asghar Firoozi

Abstract

Within the domain of geotechnical engineering, risk assessment is pivotal, acting as
the linchpin for the safety, durability, and resilience of infrastructure projects. While
traditional methodologies are robust, they frequently require extensive manual efforts
and can prove laborious. With the onset of the digital era, machine learning (ML)
introduces a paradigm shift in geotechnical risk assessment. This chapter delves into the
confluence of ML and geotechnical engineering, spotlighting its enhanced predictive
capabilities regarding soil behaviors, landslides, and structural resilience. Harnessing
modern datasets and rich case studies, we offer an exhaustive examination that high-
lights the transformative role of ML in reshaping geotechnical risk assessment practices.
Throughout our exploration of evolution, challenges, and future horizons, this chapter
emphasizes the significance of ML in advancing and transforming geotechnical practices.

Keywords: geotechnical engineering, advanced machine learning applications,
comprehensive risk assessment, soil behavior prediction, structural stability, landslide
detection, digital revolution in geotechnics, future of risk assessment

1. Introduction

In the vast and evolving landscape of civil engineering, geotechnical engineering
holds a pivotal position. For centuries, civilizations have relied on the knowledge and
expertise of geotechnical engineers to lay foundations, construct edifices, and shape
the built environment. At its core, geotechnical engineering is about understanding
the Earth’s materials and leveraging that understanding to ensure safety and sustain-
ability in construction endeavors. Yet, with the rapid pace of modernization, urban
expansion, and increasing demands on infrastructure, traditional methods of geo-
technical assessment have shown signs of strain. The complexities and uncertainties
involved in analyzing soil mechanics, earth structures, and foundational behaviors
have grown multi-fold. Against this backdrop, the rise of computational technologies
and, more recently, the advent of ML, offers a beacon of transformation. Machine
learning, characterized by its data-driven approach, pattern recognition, and predic-
tive prowess, intersects with geotechnical engineering’s pressing need for more
nuanced, efficient, and robust risk assessment tools. The promise lies not just in
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automating what was traditionally manual but in uncovering insights previously
unseen, in predicting failures before they manifest, and in optimizing designs for
resilience and longevity. This chapter delves deep into this convergence, exploring the
potential, challenges, and future horizons of integrating ML into geotechnical engi-
neering for risk assessment.

1.1 Background

Geotechnical engineering stands as a testament to humankind’s quest to master the
Earth’s materials and harness their properties for infrastructural projects. Tracing its
roots back to the dawn of civilization, when the first foundations were laid, the disci-
pline today has expanded beyond its foundational tenets, particularly with the rise of
urban centers, intricate transport systems, and monumental architectural marvels [1].

Historically, the emphasis within geotechnical engineering was significantly on
empirical and observational methods. Techniques involved comprehensive field
investigations, laboratory testing of soil samples, and the use of deterministic models
to assess the behavior of earth materials [2]. However, as the urban sprawl began
demanding more from the land, the discipline faced increasing challenges, many of
which lay beyond the scope of conventional methodologies.

Enter the age of computational advancements. The latter part of the twentieth
century witnessed the integration of computational methods into geotechnical engi-
neering, offering more sophisticated ways to analyze and predict earth material
behaviors. Yet, with the emergence of the twenty-first century and the computational
deluge it brought; it became evident that traditional computational tools were merely
a steppingstone to what lay ahead: the union of ML with geotechnical engineering.

Machine learning, a subset of artificial intelligence, has demonstrated remarkable
success in various sectors, from finance to healthcare, largely attributed to its prowess
in pattern recognition and predictive analysis [3]. For geotechnical engineering, with
its complex datasets and myriad variables, the integration of ML can be nothing short
of revolutionary.

1.2 Purpose of the study

Navigating this transformative era, our chapter seeks to illuminate the potential of
ML in geotechnical engineering, especially within the domain of risk assessment. The
union of the computational capabilities of ML with the foundational principles of
geotechnical engineering is an avenue yet to be fully explored. We aim to probe this
integration, discerning its potential in amplifying risk assessment capabilities, and
setting the stage for a new era of predictive geotechnical analysis.

This journey will take us through the very fabric of ML, weaving it with geotech-
nical datasets, case studies, and real-world applications. From forecasting soil behav-
iors that traditionally took weeks of lab testing, to real-time monitoring of
infrastructural health, and predicting vulnerabilities in massive earth-retaining struc-
tures, the applications are as vast as they are groundbreaking.

2. Traditional methods in geotechnical risk assessment

Before the ascent of computational methods and ML, geotechnical engineering
primarily relied on traditional methodologies that had been honed over decades of
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practice. These methodologies, deeply rooted in empirical, observational, and deter-
ministic approaches, served as the bedrock for assessing and mitigating risks associ-
ated with earth materials and their interactions with man-made structures. They
provided a structured framework, allowing engineers to grapple with the inherently
variable and complex nature of the subsurface. Through a blend of field investiga-
tions, laboratory tests, and deterministic models, these traditional methods strived to
forecast the behavior of soils, rocks, and foundations, shaping the landscape of infra-
structure projects around the world. While they have played an instrumental role in
the successes of countless projects, the dynamic demands of modern construction and
urbanization highlight their constraints and the burgeoning need for more advanced,
adaptable tools. This section delves into the essence, intricacies, and challenges of
these traditional methodologies, laying the groundwork for understanding the prom-
ise that ML brings to the realm of geotechnical risk assessment.

2.1 Overview of traditional risk assessment

Risk assessment in geotechnical engineering is rooted in a combination of obser-
vational and empirical methods. Over the years, practitioners have leaned heavily on
field investigations, laboratory testing, and the application of deterministic models to
understand and predict the behavior of soils, rocks, and other related materials. The
crux of these methods lies in assessing how earth materials will respond under differ-
ent loading and environmental conditions, thereby informing the safety and feasibil-
ity of various construction projects.

Historically, these methods have had to balance between being rigorous and prag-
matic. Due to the inherent variability of soil and rock properties across different sites,
geotechnical engineers have often been tasked with making decisions based on limited
data, relying on their expertise and the accumulated knowledge of the field [4].

2.2 Field investigations

The foundation of any geotechnical project is comprehensive field investigation.
By gathering firsthand information about the site’s subsurface conditions, engineers
can make informed decisions about design and construction. Common field tests
include:

* Boring and sampling: This involves retrieving soil or rock samples from various
depths using different boring equipment. These samples are then tested in
laboratories to determine their properties.

e In-situ tests: Tests like the Standard Penetration Test (SPT) and Cone Penetration
Test (CPT) are used to assess soil characteristics directly at the site.

2.3 Laboratory testing

Once samples are collected from the field, they undergo a series of laboratory tests
to evaluate their mechanical and physical properties. These tests can include:

* Shear strength tests: These tests, like the Direct Shear Test and Triaxial Shear Test,
assess the soil’s resistance to shearing stresses.
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* Consolidation tests: Used to determine the compressibility and consolidation
properties of soils, aiding in predicting settlement of structures.

2.4 Deterministic models

Geotechnical engineers have traditionally relied on deterministic models to predict
the behavior of soils and rocks under specific conditions. These models, rooted in the
fundamentals of soil mechanics and rock mechanics, offer mathematical formulations
to estimate behaviors such as bearing capacity, slope stability, and soil settlement. A
classic example that exemplifies these deterministic models is Terzaghi’s Bearing
Capacity equation, expressed in Eq. (1). This equation is widely used in foundation
design to determine the maximum load a soil can support without failure. The
parameters in the equation include the effective cohesion of the soil, unit weight,
depth, and effective width of the foundation, along with bearing capacity factors that
are intrinsically tied to the soil’s internal friction angle.

g, = ¢N, +yDsN, + 0.5/B'N, (1)

where: ¢, = ultimate bearing capacity of the soil; ¢’ = effective cohesion of the soil;
y = unit weight of the soil; Dy = depth of foundation; B’ = effective width of the
foundation; N, N, N, = bearing capacity factors, which are functions of the internal
friction angle (¢') of the soil.

While these traditional methods have been instrumental in advancing the field,
they are not devoid of limitations. The next section will delve into some of these
constraints, setting the stage for understanding the need for ML in enhancing geo-
technical risk assessment.

3. Constraints and limitations of traditional geotechnical risk assessment

The traditional methodologies underpinning geotechnical risk assessment, while
historically effective, are not without limitations, especially when considering the
intricate, unpredictable nature of soil and rock behavior. Let us delve into these
constraints in greater detail.

3.1 Inherent variability of soil and rock

Unlike manufactured materials whose properties can be standardized, soils and
rocs present a high degree of variability. Even within a few meters, the geological
history, depositional environment, and subsequent processes can significantly alter
the mechanical and physical properties of these materials. Traditional methods often
use average values or best estimates, which might overlook crucial local variations [5].
This variability means that even with meticulous sampling, unexpected behaviors can
emerge, posing challenges in prediction and risk management.

* Spatial variability: The spatial distribution of soil and rock properties can vary
considerably. Conventional assessment often involves interpolating data between
sampling points, but this assumes uniformity between these points, which might
not be accurate. Figure 1 offers a visual insight into the varied layers and
inconsistencies in soil composition across a small region. Different colors
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Figure 1.
A graphical vepresentation showcasing the variability of soil layers over a particular region.

represent different soil types, and the uneven layers underline the non-uniform
nature of soil stratigraphy.

» Temporal variability: Over time, the properties of soils and rocks can change due
to factors like weathering, groundwater fluctuations, and biological activities.
Traditional methods may not account for these dynamic changes over the
lifespan of a structure [6].

3.2 Limitations of deterministic approaches

Geotechnical problems often have numerous variables that interact in intricate
ways. Deterministic models, which rely on fixed inputs, can sometimes provide an
overly simplistic view. The real-world complexities might not fit neatly into these
models, making them less accurate in certain situations [7].

* Non-linearity in responses: Many geotechnical problems, such as soil consolidation
or slope stability, show non-linear behaviors. Simplifying these into linear models
might not capture the true response accurately. Eq. (2) represents the non-linear
behavior of soils, especially when subjected to increasing loads. This equation
could take the form of a stress-strain curve, commonly used in geotechnical
engineering to describe soil behavior under applied stresses.

c=Ex¢€ 2)
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o is the applied stress; E: is the modulus of elasticity, representing the soil’s
inherent resistance to deformation; ¢: is the strain (deformation per unit length); »: is
a factor that determines the non-linearity of the stress-strain behavior. For a perfectly
elastic material, » = 1.

* Uncertainty handling: Traditional deterministic methods lack efficient
mechanisms to handle and quantify uncertainties. Ignoring these uncertainties
might lead to either overly conservative designs or underestimated risks [8].

3.3 Time-consuming laboratory and field tests

While field investigations and lab tests are indispensable, they are often lengthy
and resource-intensive. The prolonged duration for results can sometimes hamper the
pace of construction projects, especially in environments where rapid decision-
making is crucial [9].

* Cost implications: Multiple tests, especially when considering depth variability or
large sites, can be financially taxing. The extensive equipment, manpower, and
subsequent analysis further add to the expenses. Table 1 provides an overview of
standard geotechnical tests and their respective costs. This table could list tests
like the Standard Penetration Test (SPT), Triaxial Compression Test, and Direct
Shear Test, among others, with associated costs and time durations.

* Scalability challenges: For large-scale projects, conducting exhaustive field tests
across the entire site might be impractical. Hence, a balance must be struck
between coverage and practicality, often leading to potential data gaps.

3.4 Dependence on expert judgment

Much of traditional geotechnical assessment leans heavily on the judgment of
experienced engineers. While this expertise is invaluable, it introduces an element of
subjectivity, with different experts possibly interpreting data in varied ways [10].

* Variability in recommendations: Different experts might arrive at different
conclusions given the same data set, leading to variability in design
recommendations and potential risks.

* Over-reliance on past experiences: While past experiences provide a rich knowledge
base, over-reliance on them might deter the exploration of novel, potentially
more efficient solutions.

Name Purpose Average duration = Approximate cost
Standard Penetration Test (SPT)  Determine soil strength 3 hours $200
Triaxial Compression Test Assess soil deformation 6 hours $400
Direct Shear Test Measure shear strength 4 hours $300

Table 1.

Overview of standard geotechnical tests.
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3.5 Difficulty in real-time monitoring and prediction

While traditional methods excel in pre-construction assessments, real-time moni-
toring during and post-construction can be challenging. Continuous monitoring
setups, if established, often demand significant resources, and they might not be adept
at predicting unforeseen failures swiftly [11].

3.6 Empirical nature of traditional models

A significant portion of traditional geotechnical engineering models is empirically
derived. These models, developed from observed behavior in specific conditions,
might not universally apply across varied geographies or under different circum-
stances [12]. While they offer a starting point, relying solely on empirical models
might lead to potential inaccuracies.

* Regional limitations: Many empirical models were derived from studies in specific
regions, reflecting the local geology and environmental conditions. Applying these
models to regions with different geological histories or climates might introduce
errors. For instance, a model developed in the temperate climates of Europe might
not necessarily apply seamlessly to the tropical terrains of Southeast Asia.

* Aging of empirical data: As our understanding of geotechnical behavior advances
and as technological tools become more sophisticated, older empirical models
might become outdated. These models, while still valuable, might not capture the
nuances that newer research and technology have unveiled.

3.7 Challenges in large-scale integration

Geotechnical risk assessment often needs to be integrated with other domains,
such as structural engineering, hydrology, and environmental science. Traditional
methods, often siloed, can sometimes face challenges in this multi-disciplinary inte-
gration [13]. Addressing a problem from a purely geotechnical standpoint might
overlook interactions and feedback loops from other domains, leading to potential
miscalculations.

* Data compatibility issues: When interfacing with other domains, data
compatibility becomes a challenge. Different fields might use varying metrics,
scales, or data formats. Manually harmonizing this data is not only time-
consuming but also prone to errors.

 Complexity in multi-disciplinary communication: Effective risk assessment in large
projects requires seamless communication between different teams. Traditional
methods, with their unique terminologies and approaches, might pose barriers in
multi-disciplinary communication, leading to potential misunderstandings or
oversights.

3.8 Environmental and ethical considerations

With increasing emphasis on sustainable and ethical engineering practices, tradi-
tional geotechnical methods face scrutiny. Some methods might involve intrusive site
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investigations, which can disturb local ecosystems or even local communities. There’s
an increasing need for methods that are not only technically sound but also environ-
mentally friendly and socially responsible [14].

* Sustainability concerns: Traditional risk assessment might not always factor in
long-term environmental implications. For example, certain foundation
techniques might alter local groundwater flow, leading to unintended
environmental consequences in the future.

* Ethical implications: Intrusive site investigations or large-scale excavations might
disrupt local communities, either by displacing them or by affecting their local
environment. Traditional methods need to evolve to ensure that geotechnical
work respects both the physical and socio-cultural landscapes.

4. Machine learning: a paradigm shift in geotechnical risk assessment

In the last two decades, the realms of data analytics and computational power have
grown exponentially, transcending across a myriad of disciplines. One such benefi-
ciary is the field of geotechnical engineering, which has always grappled with the
uncertainties inherent to its subject matter: the earths subsurface. The incorporation
of ML techniques is seen as not just an enhancement, but a potential game-changer in
deciphering the cryptic terrains and soils below our feet [15].

Table 2 offers a side-by-side comparison of traditional geotechnical risk assess-
ment methods with their ML counterparts. By analyzing their primary features, ben-
efits, and limitations, the table provides a holistic view of how the two approaches fare
in various facets of risk evaluation. Notably, ML techniques often present advantages
in data processing speeds and predictive accuracy. However, they require vast
datasets for optimal functionality. In contrast, traditional methods, while more time-
intensive, are backed by tried-and-tested theories and methodologies.

ML technique  Application in geotechnical Advantages Limitations
engineering
Supervised Soil classification, foundation =~ Direct mapping of input- Requires labeled data
learning prediction output relationships
Unsupervised Anomaly detection, soil Data exploration without Might miss human-
learning clustering predefined labels defined patterns
Reinforcement  Real-time site adjustments, Dynamic decision making in Needs simulation or
learning equipment optimization uncertain environments trial environment
deep learning Complex soil behavior Can model intricate patterns Requires large
(neural nets) modeling, image recognition and relationships datasets, can be
opaque
Transfer Quick model adaptation for Uses knowledge from Might not always
learning new sites previous models/tasks transfer effectively
Federated Distributed data training while Data privacy and localized =~ Might be slower than
learning maintaining privacy training centralized training
Table 2.

Overview of ML techniques in geotechnical engineering.
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4.1 An overview of ML in geotechnical context

Machine Learning, an integral branch of artificial intelligence, thrives on the
premise of using data to teach machines how to make decisions, predictions, or
classifications without being explicitly programmed for the task. Traditional
geotechnical analyses, though rooted in robust scientific principles, often
struggled with the vast variability and unpredictability of subsurface conditions.
Every construction site, every hillside, every patch of land has its unique
geological history and composition. It’s in these scenarios that ML excels—Dby sifting
through voluminous datasets, discerning patterns, and predicting geological behavior
with a finesse that often surpasses human analysis. These datasets can encompass
historical geotechnical reports, real-time monitoring data from sensors, satellite
imagery, and even anecdotal evidence from prior construction mishaps or
successes [16].

4.2 Advantages over conventional techniques

The very essence of geotechnical engineering revolves around grappling with
uncertainties. The Earth, in its eons of existence, has developed intricate layers, fault
lines, water tables, and myriad other geological phenomena. Traditional methods,
while insightful, often come with constraints tied to their empirical nature and the
inherent unpredictability of the subsurface. This is where ML, with its data-driven
approach, can offer a fresh perspective.

* Precision in predictions: One of the foremost benefits is the refined accuracy ML
models bring to the table. Unlike deterministic models, which are limited by
predefined parameters, ML models evolved. As they are exposed to more data,
their predictive accuracy regarding soil behaviors, landslide susceptibility, or
even seismic activities, improves. This dynamic learning curve is indispensable in
scenarios like underground tunneling or skyscraper construction, where risks are
high, and margins for error are minimal [17].

* Efficiency through automation: Traditional geotechnical risk assessments are often
labor-intensive. From collecting soil samples to conducting laboratory tests, the
process can be prolonged. ML models, once adequately trained, can automate a
plethora of these tasks. For instance, with sensors providing real-time data from a
construction site, ML algorithms can instantly analyze the data and flag potential
anomalies or risks.

* Adaptability to new data: The dynamic nature of ML models ensures that they are
not static. As fresh data streams in—be it from a new geological survey, updated
satellite imagery, or recent seismic activity—these models can be retrained,

ensuring that risk assessments are always based on the most current and relevant
data [18].

» Comprehensive data integration: The versatility of ML is evident in its ability to
process and integrate a plethora of data types. Whether it’s the chemical
composition of a soil sample, infrared imagery from a satellite, or historical data
on past landslides in a region, ML algorithms can factor in all these diverse
datasets to produce a holistic risk assessment [19].
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4.3 Pioneering machine learning techniques in geotechnics

The adaptability of ML techniques means that multiple algorithms and methods

find applicability in geotechnical scenarios. Let us delve into some of the most prom-
inent ones.

* Neural networks: At the forefront of pattern recognition, neural networks draw

inspiration from human brain structures. In a geotechnical context, they have
been instrumental in analyzing intricate soil data, deciphering patterns that
might be imperceptible through traditional analysis. For instance, predicting how
a particular soil type might respond to dynamic loads, like those from an
earthquake, becomes more nuanced with neural networks [20].

* Decision trees and random forests: While decision trees simplify complex

geotechnical decisions by breaking them down into a tree-like model of choices,
random forests—ensembles of multiple decision trees—enhance this process’s
accuracy. For instance, determining the optimal foundation type for a structure
in a flood-prone area becomes a more data-driven decision with these algorithms.

* Support vector machines (SVM): SVMs shine in classification problems. In

geotechnics, this could translate to categorizing soils based on their bearing
capacities or liquefaction potential. Such classifications can be pivotal in decisions
related to foundational depths and types [21].

* Regression analysis: This technique is particularly valuable when we need to

predict a continuous outcome variable based on one or more predictor variables.
For instance, using regression analysis, one might predict the rate of soil
settlement over time for a particular structure, given certain soil properties and
loading conditions.

4.4 Applications of ML in geotechnical risk assessment

Machine learning’s true prowess lies in its adaptability and its capability to distill

complex patterns from vast datasets. Given the intricate nature of geotechnical engi-
neering, several applications have emerged over the years, revolutionizing traditional
risk assessment methods.

10

* Landslide susceptibility mapping: Landslides can be catastrophic, causing

significant property damage and loss of life. Predicting their occurrence, based on
various factors like soil composition, rainfall data, slope gradient, and human
activities, becomes pivotal. ML algorithms, especially neural networks and
decision trees, have been employed to analyze these multifaceted datasets,
culminating in more accurate landslide susceptibility maps. These maps assist
urban planners, especially in hilly terrains, to make informed decisions about
infrastructure development and hazard mitigation [22].

* Foundation behavior prediction: The foundation is the cornerstone of any

infrastructure. Predicting its behavior, especially in variable soil types,
becomes imperative. Regression models and Support Vector Machines have
found applications here. By analyzing historical data about foundation
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settlements, tilts, and failures, ML models can predict potential foundation
behaviors in given geological conditions. This predictive capability is invaluable
in both urban skyscrapers and remote infrastructures like wind turbine
foundations [23].

* Soil classification and characterization: The classification of soil has always been
central to geotechnical studies. Traditional methods, while effective, can be time-
consuming. ML, particularly clustering algorithms, has transformed this process.
By analyzing various soil properties like grain size, plasticity, and moisture
content, ML algorithms can classify soils into various categories, aiding in better
design and risk assessment [24].

o Seismic activity and earthquake prediction: While the exact prediction of
earthquakes remains elusive, significant strides have been made in understanding
seismic patterns using ML. Deep learning, a subset of ML, has been instrumental
in analyzing seismographs, detecting minor tremors (often imperceptible to
human senses), and mapping potential seismic zones. These insights are crucial,
especially in earthquake-prone regions, guiding infrastructure development and
disaster preparedness [25].

4.5 Challenges in integrating machine learning in geotechnical risk assessment

While the potential of ML in geotechnics is undeniable, it’s essential to recognize
the inherent challenges in merging these two domains.

* Data quality and quantity: ML thrives on data. The accuracy and relevance of ML
predictions are directly contingent upon the quality and volume of the data fed to
the algorithms. In geotechnical scenarios, acquiring vast datasets that are also
accurate can be challenging. Field data is often sparse, and laboratory tests can be
inconsistent. Ensuring data reliability becomes paramount [26].

o Interpretability of models: ML models, especially complex ones like neural
networks, can sometimes act as ‘black boxes.” While they might provide accurate
predictions, understanding the rationale behind these predictions can be
challenging. In critical applications like infrastructure development, stakeholders
often require transparent decision-making processes [27].

* Over-reliance and overfitting: An over-reliance on ML models without considering
the intrinsic uncertainties of geotechnical processes can lead to skewed risk
assessments. Similarly, overfitting—a scenario where the ML model is too
tailored to the training data—can result in models that perform poorly in real-
world scenarios [28].

4.6 Integration of machine learning into current geotechnical practices

Modern geotechnical practices have greatly benefited from the integration of
computational tools and methodologies. ML, with its immense capabilities, serves
as a natural fit for addressing many complex problems inherent in geotechnical
engineering.

11
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* Pre-processing and data cleansing: Before any ML model can be trained, the data

needs to be prepared, cleansed, and possibly augmented. For geotechnical data,
this might involve normalization (scaling all features to a similar range), handling
missing values, and even potentially combining multiple datasets. Many
geotechnical firms now employ data scientists dedicated to this role,
underscoring its significance [29].

» Automated data collection and integration: With advancements in sensor

technology and IoT (Internet of Things), it’s now feasible to collect real-time data
from construction sites, drilling rigs, and even deep underground. ML algorithms
can integrate this data, offering immediate insights and potentially identifying
risks or anomalies in real-time. This proactive approach significantly reduces
reaction times in case of unforeseen issues [30].

* Decision support systems: For geotechnical engineers, making informed

decisions is paramount. By integrating ML models into decision support systems,
engineers can simulate various scenarios, forecast potential problems, and

make decisions backed by data-driven insights. These systems not only aid in
the design phase but also during construction and post-construction

monitoring [31].

* Real-time monitoring and predictive maintenance: Post-construction, many

structures (bridges, tunnels, dams) require consistent monitoring. ML algorithms
can analyze the myriad of data points from sensors, detect minute shifts or
changes, and predict potential failure points. This shift from reactive to
predictive maintenance can save both resources and lives. For instance, if a dam’s
integrity is at risk, early prediction can lead to timely evacuations and necessary
repairs, mitigating potential disasters [32].

4.7 Future directions in geotechnical risk assessment with machine learning

As with any burgeoning technology, the horizon for ML in geotechnical engineer-

ing is vast and largely unexplored. The coming years will undoubtedly witness trans-
formative innovations and methodologies.

12

* Federated learning for data privacy: Given the sensitive nature of many

infrastructural projects, data privacy is paramount. Federated learning, a form of
ML where the model is trained across multiple devices or servers without data
centralization, can be a game-changer. This ensures that data never leaves its
original location, thus maintaining confidentiality [33].

* Quantum computing and advanced simulations: Quantum computing promises

unparalleled computational power. In geotechnical engineering, this can lead to
simulations of unprecedented accuracy. Combined with ML models, we might
soon be looking at almost perfect predictions, especially in complex scenarios like
earthquake simulations or underwater tunneling [34].

* Integration with augmented reality (AR) and virtual veality (VR): For on-site

engineers and decision-makers, visual data often supersedes numerical data.
Integrating ML predictions with AR or VR can provide real-time visual insights.
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For instance, using AR glasses, an engineer might see potential soil shifts or weak
foundation points overlaid on the actual construction site, aiding immediate
decision-making [35].

5. Case studies: machine learning in action

A detailed exploration of specific projects can provide invaluable insights into the
practical implications and benefits of integrating ML into geotechnical engineering.
This section will delve into real-world applications, emphasizing both successes and
challenges faced in the integration process.

5.1 Landslide prediction in the Himalayan region

The Himalayan region is known for its challenging terrains and frequent land-
slides, particularly during the monsoon season. In a recent project, geotechnical engi-
neers collaborated with data scientists to develop a ML model that would predict
potential landslide zones based on various factors such as rainfall, soil moisture,
vegetation cover, and slope gradient.

The data was sourced from various remote sensing instruments and ground obser-
vations. A combination of supervised and unsupervised learning was employed. The
model was trained on past landslide events, with features being the various environ-
mental and geotechnical factors. The outcome was a risk score indicating the likeli-
hood of a landslide occurring in a particular area.

The success of the model was evident when it managed to predict several high-risk
zones that were previously not identified using traditional methods. Moreover, the
model’s real-time data processing capability allowed authorities to take timely evacu-
ation measures, saving numerous lives [36].

5.2 Foundation analysis in urban settings

Urban construction often poses unique challenges, especially when considering the
foundation. Given the variable nature of soil and underground utilities in such set-
tings, a ML model was developed to predict the best foundation type (shallow, deep,
or pile foundation) for various sites across New York City.

Using a dataset comprising soil samples, underground utility maps, and previous
construction projects, the model was trained using supervised learning. The model’s
recommendations often aligned with geotechnical engineers’ judgments, but more
importantly, it could identify sites where traditional evaluations were potentially
erroneous, thus preventing costly construction errors and delays [37].

5.3 Earthquake damage prediction in Japan

Japan, given its position on the Pacific “Ring of Fire,” faces consistent earthquake
threats. Accurate prediction of infrastructural damage during earthquakes can save
both lives and resources. A project initiated by the University of Tokyo focused on
leveraging ML for this very purpose.

They used a dataset encompassing decades of seismic activity, construction details,
and post-earthquake damages. Deep learning networks were trained to analyze pat-
terns and predict which structures would likely suffer severe damage during future
earthquakes. The model could effectively forecast the probable structural damages
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during simulations of past major earthquakes, providing valuable insights for urban
planning and disaster management. With real-time data from seismic sensors, the
model also suggests evacuation measures in vulnerable zones, further enhancing its
practicality [38].

5.4 Soil liquefaction analysis in New Zealand

Post the 2011 Christchurch earthquake, there was a dire need to understand and
predict soil liquefaction better—a phenomenon where soil loses its strength and stiff-
ness due to an applied stress such as an earthquake, causing it to behave like a liquid.
To tackle this, geotechnical engineers teamed up with data scientists in a project
funded by the New Zealand government.

The team gathered extensive data on soil types, moisture content, and historical
earthquake impacts across various regions in New Zealand. Utilizing a combination of
supervised and unsupervised learning, they developed a model that could predict
regions susceptible to liquefaction. The results were groundbreaking, enabling city
planners to devise strategies to mitigate potential damages and protect key infrastruc-
tures from future seismic events [39].

5.5 Tunnel construction monitoring in the Swiss Alps

Tunnel construction in mountainous regions is an arduous task, with a plethora of
challenges ranging from unpredictable soil behavior to the risk of water ingress.
During the construction of a new railway tunnel in the Swiss Alps, ML models were
employed to optimize the process.

Data from sensors embedded in the drilling machines and the tunnel walls, com-
bined with geological surveys, fed into an ML model. This model continuously ana-
lyzed the data, predicting areas of potential water ingress or unstable soil layers. The
predictions allowed engineers to adjust their drilling strategy in real-time, preventing
potential cave-ins and ensuring the safety of the workers [40].

5.6 Detection of sinkholes in Florida

Florida is renowned for its limestone terrain, which is susceptible to the formation
of sinkholes. These phenomena pose significant risks to infrastructure and residents.
The Florida Geological Survey and the University of Florida collaborated on a project
to harness ML in the early detection of sinkholes.

They amassed data involving underground water levels, seismic activity, and prior
sinkhole occurrences. Using supervised learning, they built a model to predict poten-
tial sinkhole formations based on anomalies in the data. With an accuracy rate of over
90%, this tool became instrumental for urban planners and property developers in
avoiding areas at risk and planning remedial measures for existing structures [41].

5.7 Slope stability in the Andean region

The Andean region, with its steep terrains and frequent rainfall, is prone to land-
slides and slope failures. The local government, in conjunction with geotechnical
consultants, integrated ML to assess and predict slope stability.

A neural network model was trained using data on rainfall patterns, soil types,
slope gradients, and vegetation cover. By continually assessing these parameters, the
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model offered real-time evaluations of slope stability, suggesting when and where
interventions might be needed. This proactive approach has drastically reduced land-
slide incidences in critical infrastructure zones [42].

5.8 Groundwater contamination prediction in industrial regions

Groundwater contamination in industrial zones is a growing concern worldwide.
In a pioneering effort in Germany, researchers developed a ML model to predict areas
at risk of contamination based on industrial activities, soil permeability, and under-
ground water flows.

This model utilized a combination of unsupervised learning for anomaly detection
and supervised learning for predictive analytics. It highlighted zones at high risk and
recommended changes in industrial activities or enhanced containment measures.
This predictive tool has since become a standard reference for environmental clear-
ance of new industrial projects in the region [43].

5.9 Reinforcement learning in automated drilling

Automated drilling systems have gained prominence in large-scale geotechnical
projects. An ongoing research at Stanford University focuses on integrating reinforce-
ment learning into automated drilling systems. The objective is to allow the system to
learn from its environment in real-time and make decisions that optimize drilling
efficiency while ensuring safety. Initial results indicate a potential reduction in project
timeframes by up to 15% and a significant decrease in equipment wear and tear [44].

6. Challenges and future directions in integrating ML into geotechnical
risk assessment

The merger of ML with geotechnical risk assessment is akin to the confluence of
two powerful rivers; while the combined force can carve new paths and offer unpar-
alleled advantages, it also brings forth a set of challenges that are unique to their
union. With the promises of enhanced predictive power and efficient analysis, ML
methods beckon a future of transformative geotechnical practices. However, the path
is not devoid of obstacles. Navigating issues related to data quality, model transpar-
ency, scalability, and practical implementation demands collaborative efforts from
both ML practitioners and geotechnical engineers. This section delves deep into these
challenges, attempting not just to highlight them but also to offer a perspective on
potential solutions and the road ahead.

6.1 The challenge of data collection and pre-processing

In the realm of ML, the axiom “Garbage in, garbage out” stands unequivocally
true. For any ML model to be effective, especially in the meticulous domain of
geotechnical engineering, the data fed into the system needs to be both relevant and
precise. Historically, geotechnical data has been scattered, inconsistent, and some-
times incomplete. The reasons span from diverse measurement techniques to regional
variations in data recording and even economic constraints that limit extensive data
collection.
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Collecting robust, comprehensive, and standardized data is a monumental task,
especially for regions where geotechnical studies have been historically underfunded
or overlooked. Moreover, once data is collected, the pre-processing stage can be
equally daunting. Raw data often comes with noise, outliers, or missing values.
Cleaning this data, normalizing it, and making it suitable for ML models demands
significant effort and expertise. The transformation of raw geotechnical data into a
format that is machine-readable and conducive to accurate predictions remains a
significant hurdle [45].

6.2 Model interpretability and trust

Another formidable challenge is the black-box nature of many advanced ML
models. Geotechnical engineers, by the very nature of their work, are inclined to trust
models and systems that provide a clear cause-and-effect relationship. When a ML
model, such as a deep neural network, produces a prediction or a risk assessment, the
path to that conclusion is not always transparent. The opacity of these models can lead
to hesitation in their adoption, especially in high-stake scenarios were understanding
the ‘why’ behind a prediction can be as crucial as the prediction itself.

This challenge is not insurmountable. Recent advances in the field of explainable
Al (XAI) aim to make ML models more interpretable. By offering insights into the
decision-making process of the model, these tools are striving to bridge the trust gap.
However, integrating XAI into geotechnical risk assessments is still a work in pro-
gress, and widespread trust in ML outcomes remains a goal for the future [46].

6.3 Scalability and real-time processing

While ML models excel in handling vast datasets and intricate computations,
scalability in real-time environments remains a challenge. Geotechnical risk assess-
ments often demand instantaneous decisions, especially in scenarios like live moni-
toring of landslides or the structural integrity of infrastructures in earthquake-prone
areas. The larger and more complex the ML model, the greater computational power it
requires, which can sometimes be a bottleneck in delivering real-time insights.

Furthermore, with the ongoing collection of data, models need to be periodically
retrained or fine-tuned. Ensuring this happens seamlessly without disrupting real-
time assessments is a challenge that engineers and data scientists grapple with [47].

6.4 Integration with existing systems

Most geotechnical firms and institutions have existing systems in place for risk
assessment. These systems, built over years or even decades, are deeply embedded
into their operational workflows. The integration of ML models into these legacy
systems is no trivial task. It demands not just technical adaptations but also a
cultural shift. Training personnel, adapting to new decision-making paradigms, and
ensuring that the integration does not disrupt ongoing operations are all significant
challenges [48].

6.5 Ethical considerations and accountability

With the advent of ML in risk assessment, ethical dilemmas surface. Who bears the
responsibility if an ML model’s prediction goes awry leading to infrastructural damage
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Challenge Implication Potential solutions
Data collection and pre- Inconsistent and incomplete Standardization, enhanced funding,
processing datasets and advanced sensors

Model interpretability and Reluctance to adopt opaque models Integration of Explainable AI (XAI)

trust tools
Scalability and real-time Delays in decision-making in Optimized algorithms and distributed
processing critical situations computing

Integration with existing ~ Disruptions in current workflows  Training programs and phased

systems integration
Ethical considerations and  Dilemmas over responsibility in Clear legal frameworks and guidelines
accountability case of model failures

Table 3.

Summary of challenges in integrating ML into geotechnical visk assessment.

or, worse, loss of life? The automation of decisions, especially in critical areas like
geotechnical risk, brings forth questions of accountability. Establishing clear guide-
lines, standards, and legal frameworks for the deployment and outcomes of ML
models in geotechnical engineering is an imperative challenge that professionals and
policymakers need to address collectively [49].

Table 3 succinctly encapsulates the primary challenges encountered when incor-
porating ML into geotechnical risk assessment. By outlining the implications of each
challenge, it offers a clear view of the hurdle’s professionals face in this interdisciplin-
ary endeavor. Moreover, the ‘Potential Solutions’ column highlights proactive steps
and strategies that can address, if not completely overcome, these challenges. This
table is essential as it not only underscores the problems but also emphasizes that
solutions, although demanding, are within reach.

7. Potential of advanced ML techniques in geotechnical risk assessment

The amalgamation of ML techniques with geotechnical risk assessment is not just
about addressing challenges; it’s also a doorway to new possibilities that were previ-
ously unattainable. Advanced ML techniques, including deep learning, reinforcement
learning, and transfer learning, open up avenues that can revolutionize how geotech-
nical risks are predicted, analyzed, and mitigated. This section delves into these
advanced techniques, exploring their potential applications and the transformative
impacts they can bring to the field of geotechnical engineering.

7.1 Deep learning and soil behavior analysis

Deep learning, a subset of ML, employs neural networks with many layers (deep
neural networks) to analyze various types of data. In the context of geotechnical
engineering, deep learning can be instrumental in understanding complex soil behav-
iors that have traditionally been difficult to model. For instance, the non-linear
behavior of certain soils under varied loading conditions can be efficiently
modeled using deep learning techniques, providing insights that are closer to
real-world scenarios [50].
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7.2 Reinforcement learning for optimal infrastructure placement

Reinforcement learning (RL) is a type of ML where an agent learns by
interacting with its environment and receiving feedback in the form of rewards or
penalties. When applied to geotechnical risk assessment, RL can be used to
determine the optimal placement of infrastructure elements, like pillars or retaining
walls, in challenging terrains. The RL agent can simulate numerous placements,
learn from the results, and eventually propose a design that minimizes risk while
optimizing utility [51].

7.3 Transfer learning and global risk prediction models

Transfer learning is the practice of applying knowledge gained from one task to a
different, yet related, task. In geotechnical terms, this means that an ML model
trained on data from one geographic region might be adapted to make predictions in
another region, given some fine-tuning. This approach can be particularly beneficial
in areas where data is scarce, allowing engineers to leverage global datasets for local
risk predictions [52].

7.4 Generative adversarial networks (GANs) for simulating soil profiles

GANsS, in their unique design, have revolutionized data synthesis. In geotechnical
engineering, the challenge has always been the unpredictable nature of soil profiles
over vast stretches. Traditional methods might provide limited insights based on point
sampling, but GANs open up an avenue where synthetic yet scientifically accurate soil
profiles can be generated.

Take the instance of a construction company planning to build a long tunnel.

The soil profile, composition, and characteristics might vary drastically over

small distances. Instead of extensive and expensive physical samplings, GANs, trained
on a diverse range of soil datasets, can simulate potential profiles. These profiles
would then guide engineers to anticipate challenges and optimize construction
methods accordingly. Zhang et al. [53] study highlighted a 30% reduction in unex-
pected geotechnical challenges during tunnel constructions using GAN-generated soil
profiles.

7.5 Time series forecasting for predicting landslide movements

Historically, predicting the exact moment or scale of landslides was analogous to
predicting earthquakes, fraught with uncertainties. However, time series forecasting,
especially when applied to data-rich environments, has altered this landscape. By
continually monitoring soil movements, moisture levels, and other critical parame-
ters, and then feeding this data into time series models, accurate predictions about
potential landslide activities can be made.

In the Himalayan region, known for its treacherous landslides, a study by
Al-Najjar et al. [54] implemented time series forecasting models in 10 critical
regions. The results were startling. Early warnings were issued in seven regions,
allowing authorities ample time to evacuate or secure areas, thus averting potential
disasters.
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7.6 Ensemble learning for enhanced prediction accuracy

The complexity of geotechnical parameters makes it an ideal candidate for ensem-
ble learning. No single model can predict with absolute certainty, given the myriad
variables. But when multiple models, each with its strength, are combined, the pre-
diction accuracy elevates significantly.

Consider the challenge of predicting the stability of a retaining wall. Factors like
soil type, moisture, load, previous movements, etc., play a role. While a deep learning
model might excel in understanding soil behavior, a reinforcement learning model
could provide insights into optimal load adjustments. Ensemble learning brings these
models together, offering a comprehensive prediction. Krechowicz and Krechowicz
[55] showcased that ensemble models, on average, improved prediction accuracies by
18% over singular models in complex geotechnical scenarios.

Table 4 offers a comparative overview of the three advanced ML techniques
discussed in this section, highlighting their primary use cases in geotechnical engi-
neering. Additionally, the table provides insights into the percentage increase in
prediction accuracy where applicable and references notable studies associated with
each technique. Such a table provides readers with a succinct summary, allowing for
quick cross-referencing and comprehension.

In summary advanced ML techniques, from GANs to ensemble learning, offer trans-
formative approaches to age-old geotechnical challenges. These techniques not only
enhance predictive accuracy but also provide tools to simulate, analyze, and optimize in
ways previously deemed unattainable. As the integration of these methods with geotech-
nical engineering deepens, we are on the precipice of a new era, one where risks are better
understood, anticipated, and mitigated, safeguarding infrastructure and lives alike.

8. Practical integration of ML in geotechnical risk assessment

As the possibilities of ML in geotechnical engineering come to the forefront, it’s
vital to understand the practical steps for integrating these powerful tools. While the
theoretical potentials are promising, actual integration requires a systematic approach
to ensure optimal results.

8.1 Data collection and preprocessing in geotechnical engineering

Before applying any ML model, the quality and quantity of data are paramount. In
geotechnical engineering, collecting the right data can be a daunting task due to the

Technique Primary use case Prediction accuracy Notable study
increase (%)

Generative Simulating soil profiles 30% (in tunnel Zhang et al. [53]
adversarial networks constructions)
Time series Predicting landslide Not quantified Al-Najjar et al. [54]
forecasting movements
Ensemble learning Comprehensive geotechnical ~ 18% Krechowicz and
risk predictions Krechowicz [55]
Table 4.

Comparative analysis of advanced ML techniques in geotechnical engineering.
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inherent variability of natural conditions. Nonetheless, advanced sensors, remote
sensing technologies, and geotechnical investigations have enabled the collection of
vast datasets. It’s crucial to preprocess this data, removing outliers, handling missing
values, and ensuring that the dataset is representative of the diverse conditions a
project might encounter [56].

» Advanced sensing technologies: Recent developments in sensor technologies,
including piezometers, inclinometers, and extensometers, have facilitated real-
time data collection, capturing minute changes in soil mechanics and
groundwater pressures [57].

* Remote sensing and GIS integration: The combination of satellite imagery,
LIDAR, and Geographic Information Systems (GIS) allows for the large-scale
assessment of geotechnical properties across vast terrains. This amalgamation
aids in identifying potential risk zones even before detailed on-site investigations
begin [58].

* Data cleaning and preprocessing: Once collected, data undergoes rigorous
preprocessing. This involves normalizing scales, handling missing or inconsistent
data, and using techniques like Principal Component Analysis (PCA) to reduce
dimensionality, ensuring efficient training of ML models [59].

8.2 Model selection and training

Choosing the right model for the task is essential. While advanced techniques
like GANSs or ensemble learning offer excellent results in specific scenarios,
simpler models might suffice for others. Training the selected model using
geotechnical datasets ensures that it becomes attuned to the nuances of the field.
Regular model validation and iterative training are essential to maintain its accuracy
and relevance [60].

* Criteria for model selection: Factors like the nature of the data (continuous,
categorical), the objective (classification, regression), and the availability of
labeled data (supervised vs. unsupervised learning) dictate model selection [61].

* Regularization techniques: Overfitting is a significant concern in geotechnical
applications due to the natural variability in data. Techniques such as Ridge,
Lasso, and Elastic Net regularization are employed to counteract this, making
models more generalizable [62].

* Model validation: Techniques such as k-fold cross-validation are used to assess
model performance on different subsets of data, ensuring its robustness [63].

8.3 Post-model analysis and interpretation

After training, it’s not just about obtaining results; it’s about interpreting them.
ML models, especially the more complex ones, can sometimes act as “black boxes.”
However, tools like SHAP (SHapley Additive exPlanations) values or LIME (Local
Interpretable Model-agnostic Explanations) can help decipher these model outputs.
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They enable geotechnical engineers to understand the decision-making process of the
algorithm, ensuring that the insights are not just accurate but also actionable [64].

* Importance of explainable AI (XAI): While traditional ML models have been
criticized for their opacity, the emerging field of XAI seeks to bridge this gap.
Techniques within XAl aim to provide clarity on how decisions are made within
an algorithm, ensuring that professionals can trust and act on these insights [65].

* Real-time monitoring and updates: Post-deployment, it’s imperative that models
continue to learn from new data. With the advent of IoT devices in geotechnical

sites, continuous feedback loops can be established, allowing for real-time model
updates [66].

In summary, the integration of ML in geotechnical risk assessment is a
multidimensional task, spanning from meticulous data collection to real-time model
adaptation. The roadmap, while complex, promises an evolution in risk assessment,
ushering in an era of increased safety, efficiency, and innovation in geotechnical
engineering.

9. Conclusions and future prospects

The interfusion of ML techniques with geotechnical engineering has charted a new
trajectory in the domain of risk assessment. The myriad of applications, ranging from
predicting soil failures and landslides to assessing structural stability, underscores the
immense potential of this integration.

* Revisiting traditional methods: Traditional geotechnical risk assessment
approaches, while robust and well-tested, are being redefined in the light of ML.
These traditional methods often were labor-intensive, time-consuming, and
occasionally fell short in terms of predictive accuracy. ML, with its ability to
process vast datasets, offers a more dynamic, precise, and expedited risk
assessment, making it a formidable tool in the geotechnical realm.

* Challenges in integration: Despite the promises, integrating ML into geotechnical
engineering is not without challenges. Issues related to data privacy, the accuracy
of predictions in varying geological conditions, and the need for continuous
model training highlight some of the existing limitations. It is imperative for
researchers and professionals to address these challenges head-on, ensuring that
ML-driven solutions remain effective and reliable.

* Future directions: The future seems radiant for the convergence of ML and
geotechnical engineering. With the emergence of more advanced algorithms and
increased computational capacities, the applications are only expected to expand.
We foresee a shift towards real-time monitoring and predictions, wherein sensors
placed at strategic locations would relay information instantaneously to ML
models, offering almost immediate risk assessments.

* Emphasis on collaboration: One of the key takeaways from our exploration is the
pressing need for collaboration. Data scientists, ML experts, geotechnical
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engineers, and urban planners must join forces, pooling their expertise to harness
the full potential of ML in geotechnical risk assessment.

* Evolving educational curricula: As the dynamics of the industry change, so should
the educational paradigms. There’s a rising demand for professionals who are
adept in both geotechnical principles and ML algorithms. Universities and
institutions must revisit their curricula, ensuring they produce professionals
ready for this interdisciplinary challenge.

In essence, the realm of geotechnical risk assessment is on the cusp of a transfor-
mative phase, powered by the dynamism of ML. While challenges exist, the collabo-
rative efforts of professionals across domains and the incessant advancement in
technology promise a future where geotechnical risk assessments are more accurate,
swift, and actionable.
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