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Abstract

This chapter provides an overview of cation exchange capacity (CEC) and its
importance as an indicator of soil fertility, particularly in the assessment of grassland
quality. The limitations of traditional methods are highlighted, and the need to explore
more agile approaches to grassland quality assessment is emphasized. The increasing
use of hyperspectral information (HSI) as an accurate tool for measuring soil properties,
which promotes more effective and sustainable rangeland management, is further
explored. This provides data on soil fertility and forage quality, enabling more accurate
decisions. The benefits and challenges of using HSI data to estimate CEC and its
potential to improve pasture and forage production will also be examined. HSI technol-
ogy allows information to be collected and analyzed from reflected light at different
wavelengths, providing a clear understanding of soil physical and chemical properties.
In addition, a case study illustrating the estimation of CIC using hyperspectral cameras
in the department of Antioquia, Colombia, is presented. The chapter emphasizes the
relevance of this topic in the rangeland context and concludes with a future outlook that
anticipates a change in the management and understanding of grazing systems.

Keywords: agriculture, fertility, soil, spectroscopy, supervised algorithms, remote
sensing

1. Introduction

The soil is a nonrenewable natural resource that provides essential ecosystem and
environmental services. It acts as a support system and nutrient provider for plant
growth, supporting food production, and supplying raw materials for a wide range of
human activities [1]. To assess the condition and sustainability of the soil, it is neces-
sary to consider its quality, taking into account the integration of chemical, physical,
and biological factors [2].
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The physical properties of soil are fundamental to understanding its ability to store
and release nutrients and to facilitate plant root development. These properties
include texture (sand, silt, and clay content), structure (aggregates), porosity (spaces
between particles), bulk density, and water holding capacity [3]. Soil respiration,
microbial biomass, nitrogen mineralization, and earthworm density are also consid-
ered to assess the biological aspects of the soil [4]. On the other hand, soil chemical
properties also influence nutrient availability and are essential for plant growth.
Among the most important are soil pH, which controls nutrient availability, CEC,
which indicates the soil’s ability to retain nutrients, and the concentration of primary,
secondary, and micronutrients [5].

In this context, soil quality serves as a tool to examine changes caused by soil
management practices, such as excessive fertilization, inadequate irrigation,
uncontrolled grazing, nutrient depletion through erosion, physical decomposition of
aggregates due to over-tillage, loss of organic matter, salinization, and alkalinization
[6]. Soil fertility management is one of the most critical decisions as nutrients often
limit plant growth and animal performance [5]. Nutrient balances in the grass are
crucial in defining fertilization needs when the nutrient balance is negative and in
reducing the purchase of off-farm inputs [7]. Therefore, the objective of this chapter
is to analyze CEC in grass production and to present a case study for its determination
using HSI technology.

2. CEC in grass production and the use of spectra in its estimation

2.1 CEC as an indicator of soil fertility

CEC is a soil property that describes its ability to provide nutrients in the soil
solution, making them available for plant uptake. It is a key indicator for assessing soil
fertility [8] as it determines the soil’s capacity to retain and supply cations essential for
healthy plant growth and development. CEC is defined as the sum of exchangeable
cations in the soil, including calcium (Ca2+), magnesium (Mg2+), potassium (K+),
sodium (Na+), hydrogen (H+), aluminum (Al3+), iron (Fe2+), manganese (Mn2+), zinc

(Zn2+), and copper (Cu2+), expressed in cmolþkg�1 or meq/100 g (milliequivalents
per 100 grams of soil) [9].

The term “cation exchange” refers to the process by which cations are exchanged
in the soil solution, and subsequently absorbed by plant roots. The presence of clay
minerals and organic matter (OM) in the soil enhances the amount of cations in the
soil solution due to their negative charge, which attracts positively charged ions
(cations) to their surfaces through electrostatic forces. As a result, the cations remain
within the root zone of the soil (Figure 1).

In soil, OM can exhibit CEC by weight that is 4–50 times higher than that of clay.
Unlike clay minerals, OM has a distinct negative charge source. This negative charge
results from the dissociation of organic acids within OM, resulting in a net negative
charge that is balanced by the presence of cations in the soil. This negative charge on
OM is referred to as pH-dependent CEC as the dissociation of organic acids is affected
by soil pH. Consequently, the actual soil CEC varies as a function of soil pH. For
example, a neutral soil with pH 7 containing the same amount and type of OM will
have a higher CEC than a soil with a lower pH, such as pH 5 [9]. On the other hand,
clay has a high capacity to attract and retain cations due to its chemical structure. The
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ratio of CEC to clay content in weight percent can vary significantly because clay
minerals exhibit different CECs due to variations in their structure and chemical
composition. The proportion of exchangeable cations also varies among different clay
minerals. For instance, montmorillonite clay has a higher CEC, heavily weathered
kaolinite clay has a lower CEC, and slightly higher CEC is found in the less weathered
illite clay [10]. In this context, the estimation of CEC in livestock production systems
becomes crucial as it identifies the soil’s ability to retain nutrients and provide a
favorable environment for pasture growth. By utilizing soil testing techniques, pro-
ducers can determine the CEC and take appropriate measures to enhance it. This
involves the proper application of amendments and fertilizers, adjusting soil pH, and
adopting grazing management practices that prevent soil compaction and promote
MO incorporation [11]. Improving the soil’s CEC ensures the adequate availability of
essential nutrients for pasture growth, leading to higher livestock productivity. More-
over, enhancing soil conditions contributes to the conservation of ecosystem structure
and health, promoting long-term sustainable management.

2.2 Methods used for the determination of CEC

To quantify CEC and evaluate soil fertility, various direct or conventional
methods, as well as indirect or addition methods, have been established. Direct
methods involve determining CEC as a single measure by saturating the soil exchange
sites with a solution of specific cations, allowing for unique and quantitative mea-
surements. These methods enable CEC determination at different soil pH levels using
unbuffered reagents such as KCl, NH4Cl, and organometallic cations, as well as in a
buffered medium to eliminate pH variation in measurements and express all results on
the same basis [12]. On the other hand, indirect methods use related parameters, such
as exchangeable bases and exchangeable acidity and employ equations to determine
CEC. This involves summing up cations and displacing exchangeable cations in the
soil using a saturating salt solution, such as ammonium acetate [13].

Currently, the standard reference method most commonly used by laboratories to
determine CIC is to saturate the exchange complex with ammonium acetate (1 N at

Figure 1.
Cation exchange in the root zone of a grass. Source: Own elaboration.
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pH 7) for both acidic and alkaline soils. This method uses an ammonium acetate
solution to displace the exchangeable cations present in the soil and measures the
concentration in the solution to determine the CEC. Another method is the calculation
with the sum of exchange bases (Ca+2, Mg+2, K+1, and Na+1). For this process, extrac-
tion of 30 to 60 ml of ammonium acetate and 50 ml of 96% ethyl alcohol is required,
and for quantification, 50 ml of 10% sodium chloride, 20 ml of formaldehyde, phe-
nolphthalein, and sodium hydroxide are used [14].

The determination of CEC in the laboratory, through direct and indirect methods,
presents certain limitations. The preparation of samples, chemical analysis, and inter-
pretation of results requires considerable time, qualified personnel, and specialized
equipment. However, a promising alternative for CEC determination is HSI reflec-
tance spectroscopy. This nondestructive technique enables a rapid and efficient anal-
ysis of soil, providing detailed information about its properties. By utilizing HSI
images, soil reflectance is captured across multiple spectral bands, allowing for the
detection of interactions among soil chemical elements. This novel approach has the
potential to overcome some of the limitations associated with traditional laboratory
methods, facilitating a more precise and detailed assessment of CEC in different soil
areas [15].

2.3 Spectroscopy, an alternative to assess soil fertility

The need for faster and more cost-effective analysis has led to the widespread use
of infrared spectroscopy. Spectroscopy uses the interaction of light with soil compo-
nents to provide valuable information about soil properties. The technique is based on
measuring the reflection, absorption, and emission of light at different wavelengths to
characterize the chemical composition and physical structure of the soil [16]. By
analyzing the amount of reflected, absorbed, and transmitted light in each spectral
band, detailed data on the different elements and compounds present in the soil can
be obtained. This allows a rapid and nondestructive assessment of the chemical and
mineralogical composition of the soil, including an estimate of the CEC. This approach
reduces the need for traditional laboratory analysis and provides faster results, which
can be particularly useful in situations where frequent monitoring of CEC is required
over large areas or in resource-limited conditions [17]. It is an emerging technology
that successfully predicts the physicochemical properties of soils [15], including CEC,
pH, clay content, carbon content, total nitrogen content, and other elements, by
correlating spectral data extracted from images with their chemical and physical
concentrations [18–20].

This technique is based on the fact that materials reflect electromagnetic energy in
the form of different patterns and wavelengths due to their chemical composition,
physical structure, and surface properties. HSI captures the radiation reflected from
objects in many very narrow spectral bands, creating large data cubes per pixel [21].
The data cubes contain the radiance received by the sensor in a particular band of the
spectrum, corresponding to the size of the pixel, which is the smallest visual unit that
appears in the image. Each pixel is defined by an integer number known as the digital
level (ND). In this sense, the information of an image can be represented as a three-
dimensional numerical matrix since it has spatial information on its X and Y axes,
corresponding to the geographical coordinates of the image, and spectral information
on the Z axis. Considering that HSI images contain a large amount of data, handling,
storage, and processing is challenging due to the high spectral variability and correla-
tion in the data. The analysis of large amounts of data involves the following phases:
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obtaining the data to be processed, transforming the data so that it can be used,
applying the data exploration technique, and evaluating the results obtained [22], as
shown in Figure 2.

Data transformations are applied to HSI data to reduce noise, improve quality, and
enable modeling. Some transformations used for noise removal are the Savitzky-Golay
(SG) filter, also known as the digital smoothing polynomial, which reduces the effect
of noise without causing much distortion in the spectrum, especially in the width and
height of the bands. It is also simple and efficient and involves only a linear convolu-
tion with a set of filter coefficients [24]. Another technique used is standard normal
variation (SNV) [25], which highlights important patterns and relationships between
different bands. On the other hand, the detrending technique (DT) corrects the trend
of the data [26].

Similarly, several data exploration techniques have been used to relate the spectra to
soil properties and have been used to relate the spectra to soil properties. Among the
most widely used are partial least squares regression (PLSR), which can handle large
and noisy data sets, and the support vector machine (SVM) method, which is charac-
terized by its ability to generate robust models with few training samples. Other
methods, such as artificial neural networks (ANN), are also used in HSI analysis. ANNs
consist of an input layer, one or more hidden neuron layers, and an output layer.
Decision trees and random forests (RF), which are built from rules, have bifurcations or
branches that depend on a condition based on linear regression. These algorithms have
been widely used in the scientific literature for the prediction of various soil character-
istics using spectral or multidimensional data [27]. Therefore, the aim of this paper is to
evaluate supervised learning algorithms in soil CIC estimation from HSI images.

3. Case study

3.1 Generalities

Livestock production is a rapidly growing sector in Colombia. At present, the
country’s cattle population is spread over 620.807 farms, with a total of 29.642.539

Figure 2.
Hyperspectral information from a hyperspectral image. Adapted from [23].
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animals, an increase of 1.2% compared to 2022 [28]. This economic activity covers 34
million hectares of land [29], divided into three production systems: dairy, beef, and
dual purpose, of which 70% is managed under extensive production systems, with an
average stocking density of 0.9 animals per hectare [30].

Livestock diets are based on pasture and forage, with occasional use of concen-
trates [29]. Although precise data on the range of forage species used in livestock
production are not available, it is widely recognized that kikuyu grass (Cenchrus
clandestinus (Hochst. ex Chiov.) Morrone) plays a crucial role as a forage base in
specialized dairy production in high tropical climates [31, 32]. Kikuyu grass is partic-
ularly dominant in these areas and provides a constant and abundant source of forage
for cattle [33]. In the case of cattle in the mid and low tropics, it has been observed
that the most commonly used forage species are star grass (Cynodon nlemfuensis),
various species of Brachiaria (such as B. decumbens, B. humidicola and B. brizantha)
and some native species [34].

Livestock productivity is closely linked to the ability of producers to manage their
pastures effectively. Proper management involves the accurate and timely application
of nutrients necessary for plant growth, which promotes early pasture recovery and
maintains sustainable forage production throughout the year [35]. In this sense, a
fundamental strategy is to ensure that the soil has the optimum physical and chemical
characteristics for adequate plant development. This ensures an environment condu-
cive to the growth of healthy and high-quality grasses.

In the search for faster and more cost-effective alternatives for estimating CEC and
assessing soil quality, infrared spectroscopy is emerging as a viable option. This tech-
nique provides rapid and nondestructive measurements of soil chemical and mineral-
ogical composition, including CEC estimation, by analyzing the reflection, absorption,
and transmission of light at different wavelengths. By using spectroscopy, producers
can obtain detailed information on nutrient availability and soil characteristics,
enabling them to make informed decisions on nutrient application and pasture man-
agement to maximize livestock productivity.

The study area for the estimation of CEC by infrared spectroscopy was located in
the department of Antioquia, Colombia, covering the nine subregions and 96 munic-
ipalities of the department, as shown in Figure 3. The information was obtained from
1997 soil samples collected between November 2020 and November 2022 in pastoral
and cocoa production systems. The altitudes of the sampled areas ranged from 0 to
2900 masl and were characterized by a high spatial and temporal variability.

3.2 Methodology

To determine CEC in soil, 1997 samples were analyzed according to the Colombian
technical standards NTC 5667:2017 for soil sampling in the field [36] and NTC
5805:2003 for sample preparation for chemical analysis [37]. Laboratory analysis of
CEC was carried out at the Colombian Agricultural Research Corporation
AGROSAVIA using the indirect method of sum of bases [38].

To record and extract HSI information, HSI images were taken by drying the soil
samples at 40°C for 48 hours in a forced-air oven and sieving them at 2 mm. The
images were taken using two cameras, the Baldur S-384 N or SWIR (short wave
infrared) and the Baldur V-1024 N or VNIR (visible and near infrared). The SWIR
camera had a spectral range of 951.61–2517.86 nm, 288 spectral bands, 384 spatial
pixels, and a 30 cm lens, while the VNIR camera had a spectral range of 485.14–
955.65 nm, 88 spectral bands, 1024 spatial pixels, and a 30 cm lens. Reflectance (R)
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values were then extracted from the SWIR and VNIR cameras in a region of interest
located in the center of the image to avoid pixel errors. Digital masking was applied to
pixels with R values greater than 0.2 and less than 0.9 to remove saturated and shaded
pixels. This process was performed iteratively using the SpectralPy [39], Spectral
[40], and NumPy [41] libraries of the Python 3.8.2 programming language [42].

The overlapping bands detected in the transition region between 950 and 960 nm
were removed using the Spectrolab library created by [43] in the R-Project program-
ming language [44]. Band 955 was removed so that the spectra recorded with the
VNIR camera ended at band 951, while the SWIR camera started at band 957. Finally,
the hyperspectral band database was obtained.

To build the models, the CEC variable was used in its original form and
transformed using the Box-Cox method with a value of λ ¼ �0:1547 and the square
root transformation. In addition, the reflectance values were converted to absorbance
(ABS) using (Eq. (1)).

ABS ¼ log 10

1

R
(1)

In addition, SG, SNV, and DT transformations were applied using the prospectr
library [45].

PLSR algorithms were applied to these combinations using 5, 10, 15, 20, 25, and 28
components. Each component was constructed by linearly combining the original
variables with the intention of maximizing the covariance between the predictor
variables and the response variable. SVM models with linear and polynomial kernels
were used, with model building costs of 500 and 100, respectively. The data set was
divided into training data (train) with 75% of the data and test data (test) with 25% of
the data.

Figure 3.
Location of soil samples collected in the 96 municipalities of the nine subregions of the department of Antioquia.
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To assess the performance and fit of the models, the coefficient of determination (R2)
was used for both the training and test data. In addition, the residual prediction variance

(RPD) was calculated. R2 is obtained by squaring the correlation between the predicted
and actual values (Eq. (2)) and provides a measure of how well the model fits the data.

R2 ¼ 1�
Pn

i¼1 yi � ŷi
� �2

Pn
i¼1 yi � y

� �2 (2)

where:
n : number of observations
yi : real values
ŷi : values predicted by the model y
ŷ : mean of the real values
Eq. (3) defines the ratio of performance to deviation (RPD), which is the ratio of

the standard deviation of the reference values (observations) to the standard devia-
tion of the differences between the observations and the model predictions. The RPD
is a measure used to assess the performance of a predictive model by comparing the
accuracy of the reference values with the variability of the model’s predictions [46].

RPD ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1
n�1

Pn
i¼1 yi � y

� �2
q

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1
n

Pn
i¼1 yi � ŷi

� �2
q (3)

3.3 Results and discussion

The CEC values the soils in the department of Antioquia show a wide variability,
ranging from a minimum of 0.21 to a maximum of 61.8 cmol (+)/kg. The mean CEC
obtained was 8:62� 3:33 cmol (+)/kg, with a coefficient of variation of 123.86 cmol
(+)/kg. The mode was 0.62 and the median was 33.3 cmol (+)/kg. These results
indicate significant variation in CEC across the department, with most samples having
low levels of CEC. These results are consistent with previous studies carried out in the
northern, northeastern, and Urabá regions of Antioquia [47, 48].

The CEC variable was transformed using the Box-Cox method, resulting in
transformed data with a minimum dimension of �1.76 and a maximum dimension of
3.04. The mean obtained after transformation was 1:09� 0:99 cmol (+)/kg, with a
mode of �0.49 and a median of 1.09 cmol (+)/kg. We also performed the transfor-
mation using the square root of CEC, which gave values ranging from a minimum of
0.45 to a maximum of 7.86. The resulting mean was 1:82� 1:41 cmol (+)/kg, with a
mode of 0.78 and a median of 1.09 cmol (+)/kg. The transformation successfully
reduced the scale of the data, as shown in Figure 4.

The spectral reflectance of the soil increased as the wavelength increased and
remained consistent across different soil samples. Figure illustrates the pattern of the
average curves from various samples, displaying several absorption valleys. A reflec-
tion peak was observed between 950 and 957 nm, caused by the overlapping noise
from VNIR and SWIR sensors, which aligns with the findings described by [49].

The spectral reflectance of the soil increased with wavelength in the visible, near-
infrared (NIR) and mid-infrared (MIR) regions, and this behavior was consistent
across the different soil samples. A prominent reflection peak was observed between
950 and 957 nm, attributed to the overlapping noise of the VNIR and SWIR sensors,
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which is consistent with the results described by [49]. In addition, the Figure 5
illustrates the average curve patterns of the analyzed samples, showing three absorp-
tion valleys in the NIR and MIR regions. These observations are consistent with those
reported by [50], suggesting that these valleys correspond to the hydroxyl and clay
absorption bands of the soils.

A total of 144 PLSR models and 97 SVM models were evaluated for CEC predic-
tion. The PLSR models showed promising results, achieving a RPDtrain greater than 2,
indicating their ability to explain data variability. However, the SVM models
outperformed the PLSR models, showing even better performance in explaining data

Figure 4.
Diagram of soil CEC distribution, square root, and Box-Cox.

Figure 5.
The spectral signature of the soil.
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variability, as evidenced by RPDtrain and RPDtest values greater than 3 and R2
train and

R2
test values greater than 0.70. On the other hand, the Kolmogorov-Smirnov (KS) test

to assess the goodness of fit test shows that the results obtained for the three best
models indicate that the probability distributions of the predicted and observed data
adequately fit Table 1. These results further support the robustness and quality of the
selected SVM models for CEC prediction.

The results obtained in this study are consistent with the findings of [51], who
evaluated the predictive ability of the MIR region for CIC (Cation Exchange Capac-
ity). In their research, promising results were obtained using PLSR models, with a

coefficient of determination (R2) of 0.92 and an RPD value of 3.5.
The results reported by [52] agree that SVM models outperformed PLSR models

for all soil properties evaluated, including clay, sand, pH, total organic carbon, and
permanganate oxidizable carbon, in both training and validation data. These results
confirm the relevance and potential of SVM models as a promising option for
predicting soil properties from spectral data. Furthermore, the results obtained are in
line with the previous study by [53], where they determined the CEC of 142 samples

using a spectral range from 350 to 2500 nm. They found a PLSR model with R2 ¼ 0:76

in the training data and R2 ¼ 0:72 in the test data.
On the other hand, it is observed that the models perform better when working

with the CEC variable transformed with sqrtCEC. As for the HSI data, high perfor-
mance is obtained with the SNV and DT transformations applied. These results are in
line with the results of a study carried out by [41], which showed that preprocessing
methods for hyperspectral data improve the accuracy of the evaluated models.

Figure 6 shows a scatter plot comparing the predicted and observed values of the
SVM model. The blue dots represent the observed values, while the red dots represent
the predicted values. It can be seen that the red dots follow a trend close to the
diagonal line, suggesting that the SVM model has effectively captured the variability
in the data. It is also important to note that applying the KS test (p-value) to the data
yielded values greater than 0.05, indicating that there is no significant difference
between the observed and predicted values.

4. Conclusions

In this book chapter, we present promising results in the prediction of the CEC
index as an indicator of soil fertility using HSI in the context of pasture production.

Alg. Variable Trans R
2
train R

2
test

RPDtrain RPDtest Test KS (p-value)

SVM
ffiffiffiffiffiffiffiffiffiffi

CEC
p

ABS-SNV 0.78 0.79 3.44 3.52 0.44

SVM
ffiffiffiffiffiffiffiffiffiffi

CEC
p

R-SNV 0.78 0.79 3.43 3.51 0.71

SVM
ffiffiffiffiffiffiffiffiffiffi

CEC
p

ABS-DT 0.78 0.77 3.40 3.44 0.46

Alg:, Algorithm used for modeling; Variable, conversion method used in the CIC; Trans, data transformation method;

train, training data; test, testing data; R2, coefficient of determination; RPD, ratio of performance to deviation;
TestKS p� valueð Þ, p-value of the Kolmogorov–Smirnov test; SVM, support vector machines; CEC, cationic interaction
capacity; ABS, absorbance; R, reflectance; SNV, standard normal variation; DT, detrending technique.

Table 1.
Results of the five best performing models for predicting cation exchange capacity in the soil.
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The application of HSI technology has shown significant potential for assessing opti-
mal soil conditions and improving management strategies in pasture and forage pro-
duction. However, it is essential to recognize and address the challenges associated
with the use of HSI data in the analysis of soil physicochemical parameters. HSI
techniques represent an interdisciplinary field that incorporates and adapts different
concepts, approaches, and algorithms. Several signals underline the growing impor-
tance of HSI technology in remote sensing. One such indicator is the continuous
increase in the number of HSI sensors, supported by the many applications that rely
on this technology. In addition, the increase in the number of scientific publications
also supports this growth. It is important to note that the methods used to analyze
remotely sensed HSI data are not always straightforward. Key challenges include the
processing of large amounts of information, high dimensionality, and the need for
specialized techniques to extract meaningful patterns and insights. In addition, rigor-
ous data pre-processing and calibration processes are essential to ensure the accuracy
and reliability of predictions. One of the most obvious barriers is the management of
large data archives, which is hampered by the lack of specialized hardware [27]. As the
field of HSI analysis continues to develop, it is imperative that researchers and practi-
tioners develop creative strategies to overcome these barriers and maximize the ben-
efits of HSI technology in soil fertility improvement and pasture production
management. Overcoming these challenges will unlock the true potential of HSI
technology and usher in a transformative era in soil-related agricultural research and
applications. By fully embracing HSI technology and actively addressing its chal-
lenges, there is an opportunity to unlock the full potential of hyperspectral data and
stimulate positive changes in soil fertility, rangeland productivity, and sustainable
agricultural practices.

Figure 6.
Observed and predicted values from the SVM model.
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