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This thesis presents a comprehensive examination of the field of credit card fraud detection, aiming to offer 

a thorough understanding of its evolution and nuances. Through a synthesis of various studies, 

methodologies, and technologies, this research strives to provide a holistic perspective on the subject, 

shedding light on both its strengths and limitations. 

In the realm of credit card fraud detection, a range of methods and combinations have been explored to 

enhance effectiveness. This research reviews several noteworthy approaches, including Genetic 

Algorithms (GA) coupled with Random Forest (GA-RF), Decision Trees (GA-DT), and Artificial Neural 

Networks (GA-ANN). Additionally, the study delves into outlier score definitions, considering different levels 

of granularity, and their integration into a supervised framework. Moreover, it discusses the utilization of 

Artificial Neural Networks (ANNs) in federated learning and the incorporation of Generative Adversarial 

Networks (GANs) with Modified Focal Loss and Random Forest as the base machine learning algorithm. 

These methods, either independently or in combination, represent some of the most recent developments 

in credit card fraud detection, showcasing their potential to address the evolving landscape of digital 

financial threats. 

The scope of this literature review encompasses a wide range of sources, including research articles, 

academic papers, and industry reports, spanning multiple disciplines such as computer science, data 

science, artificial intelligence, and cybersecurity. The review is organized to guide readers through the 

progression of credit card fraud detection, commencing with foundational concepts and advancing toward 

the most recent developments. 

In today's digital financial landscape, the need for robust defense mechanisms against credit card fraud is 

undeniable. By critically assessing the existing literature, recognizing emerging trends, and evaluating the 

effectiveness of various detection methods, this thesis aims to contribute to the knowledge pool within the 

credit card fraud detection domain. The insights gleaned from this comprehensive review will not only 

benefit researchers and practitioners but also serve as a roadmap for the enhancement of more adaptive 

and resilient fraud detection systems. 

As the ongoing battle between fraudsters and defenders in the financial realm continues to evolve, a deep 

understanding of the current landscape becomes an asset. This literature review aspires to equip readers 

with the insights needed to address the dynamic challenges associated with credit card fraud detection, 

fostering innovation and resilience in the pursuit of secure and trustworthy financial transactions. 

 

Keywords: Fraud Detection, Machine Learning, Deep Learning, Financial Sector, 

Resampling Techniques, Overfitting. 

The originality of this thesis has been checked using the Turnitin Originality Check service. 
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1. Introduction 

 

Credit card fraud presents a substantial challenge, impacting individuals, enterprises, and 

financial institutions on a global scale. As credit card usage continues to rise in both online and 

offline transactions, malevolent actors have become adept at identifying and exploiting 

weaknesses, leading to an uptick in fraudulent endeavors. In response to this issue, a range of 

approaches and strategies have been devised for the detection of credit card fraud. 

The primary objective of this thesis is to carry out an exhaustive examination of the field of credit 

card fraud detection, as detailed in the existing literature. This study endeavor seeks to closely 

examine and evaluate the diverse range of approaches, algorithms, and technological 

innovations deployed in the detection of fraudulent transactions involving credit cards. By 

conducting a thorough review of previous scholarly works, academic publications, and industry 

reports, this thesis intends to provide a well-rounded understanding of the current state of 

credit card fraud detection methods. 

In this thesis, I delve into the fundamental principles that underpin the domain of credit card 

fraud detection, and I examine various commonly employed data sources, such as transaction 

records, customer profiles, and historical data. My research entails the analysis of diverse fraud 

patterns and behaviors detectable through data examination, such as deviations in transaction 

amounts, temporal patterns, and geographic factors. 

Furthermore, the literature review in this work assesses both the advantages and disadvantages 

associated with traditional rule-based and statistical techniques. It also assesses emerging 

technologies, such as machine learning, artificial intelligence, and data mining, and assesses 

their effectiveness within the domain of credit card fraud detection. The study highlights their 

significance in practical, real-world applications. 

Moreover, this study will delve into the obstacles and constraints encountered within the 

domain of credit card fraud detection. These challenges encompass the escalating sophistication 

exhibited by fraudsters, the scarceness of annotated datasets, and the imperative for ongoing 

vigilance and adaptability in detection models. The paper will also delve into ethical concerns 

that arise with the utilization of personal data for fraud detection purposes and propose 

potential strategies to mitigate these ethical dilemmas. 

Ultimately, this thorough examination of existing literature provides a foundation for future 

research initiatives within the field of credit card fraud detection. It not only identifies 
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shortcomings in the current state of knowledge but also reveals opportunities for further 

advancement in enhancing the accuracy and efficiency of fraud detection systems through the 

refinement of algorithms, methodologies, and strategies. 

Through conducting an extensive examination of the existing literature, this thesis intends to 

offer valuable references to scholars, professionals, and decision-makers involved in the domain 

of credit card fraud detection. This endeavor seeks to enhance the existing reservoir of 

information by amalgamating and critically evaluating recent research and progress, ultimately 

fostering the creation of more proficient and resilient fraud detection systems. 

This document demonstrates the need for a comprehensive analysis of the existing literature to 

acquire a deep understanding of credit card fraud detection methods. The introduction provides 

a clear overview of the thesis's objectives, scope, and potential contributions, setting the stage 

for an in-depth examination of the topic. 

 

1.1. Background and Context 

 

The global economy relies heavily on the banking sector, which is a crucial conduit for providing 

financial services to individuals, businesses, and governments. As pivotal financial institutions, 

banks gather deposits from customers and utilize these funds to extend loans, credit, and 

assorted financial services. The intricate role played by banks in the economy encompasses the 

facilitation of financial transactions, fostering economic growth, and adeptly managing various 

risks. 

The banking sector is characterized by stringent regulations, overseen by governmental bodies 

and regulatory authorities tasked with establishing benchmarks for safety, soundness, consumer 

safeguarding, and the mitigation of financial malfeasance. Adherence to an array of regulations 

encompassing capital requisites, liquidity benchmarks, and transparency stipulations is an 

integral obligation for banks. 

The emergence of online banking, mobile banking, and fintech enterprises has witnessed 

substantial transformation within the banking landscape. This dynamic shift has induced 

heightened competition, spurred innovation, and introduced novel hazards and complexities. 

Banks are thus compelled to harmonize their operational ethos with nascent technologies and 

business paradigms while upholding their core functions pertaining to risk management, 

customer service, and financial mediation. 
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The banking sector plays a pivotal role in fostering economic expansion and development. By 

furnishing businesses and individuals with credit, banks empower them to invest in, expand, and 

engender employment opportunities. These institutions also play a crucial role in financing 

essential infrastructure projects such as transportation networks and power generation 

facilities, which serve to elevate economic productivity and bolster competitive prowess. 

However, the banking sector is not immune to such challenges. Banks grapple with the specter 

of credit losses, market volatility, and cyber vulnerability. Their mandate entails striking a 

judicious equilibrium between profit generation and the fulfillment of obligations towards 

clientele, investors, and society at large. Recent times have witnessed a call for augmented 

transparency, accountability, and ethical comportment within the realm of banking. 

Credit card fraud, classified as a form of financial wrongdoing, encompasses the illicit utilization 

of another individual's credit card details to execute deceitful transactions or acquire cash 

advances. Within the domain of the banking sector, this kind of fraud results in substantial 

monetary losses for both financial organizations and cardholders. 

To address this challenge, financial institutions such as banks and credit card companies utilize 

a range of strategies for detecting and preventing fraudulent activities. Chiefly, they employ 

advanced fraud detection algorithms and machine learning models that enable them to conduct 

immediate analyses of extensive transactional data. These models make use of a wide array of 

data elements, including the transaction histories of cardholders, their spending habits, 

geographic indicators, and various other variables, to identify potentially suspicious 

transactions. 

Concomitantly, banks harness the expertise of dedicated teams of fraudulent analysts who 

undertake manual scrutiny of transactions and investigate suspicious activities. This human 

intervention is complemented by a toolkit of techniques, spanning the scrutiny of transaction 

logs, liaison with merchants, and analysis of closed-circuit television footage, aimed at 

unearthing and forestalling fraudulent transactions. 

The banking sector's arsenal includes an array of security measures for averting credit card 

fraud. These measures span the spectrum from multifactor authentication to fortifying 

cardholder identity validation, encryption of sensitive data encompassing credit card numbers, 

and implementation of policies and procedures dedicated to fraud prevention. 

However, despite these concerted endeavors, credit card fraud remains an enduring 

predicament in the banking domain. Adversarial actors consistently innovate tactics and 
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technologies to circumvent detection, thus necessitating sustained bank vigilance. Indeed, the 

banking sector continues to channel investments into research and development, channeling 

efforts to enhance fraud detection algorithms and devising novel security measures to fortify 

defenses against credit card fraud. 

The consequences of banking sector fraud are pronounced, affecting both individuals and 

industry. For individuals, fraud begets financial losses, tarnished credit standing, and emotional 

distress. On a broader scale, fraud corrodes customer confidence, casts aspersions on individual 

banks, and begets financial losses through reimbursements and legal expenditures. 

In the crusade against fraud, the banking sector deploys an array of countermeasures 

encompassing fraud detection and prevention software, comprehensive employee training 

regimens, and strategic liaisons with law enforcement agencies. Notwithstanding these 

concerted efforts, fraud perseveres as an unwavering peril to the banking domain, demanding 

an incessant commitment to vigilance and innovation to outpace the machinery of malefactors. 

In the realm of credit card transactions, several key terms and concepts shape the landscape of 

payments, fraud prevention, and associated processes. Understanding these terms is essential 

for comprehending the intricate dynamics of credit card fraud detection and mitigation. 

 

1.1.1. Key Terms and Concepts 

 

The following are the main terms that are essential to understand what the thesis is about and 

what will be discussed in the following chapters. 

The payment process is a multi-step procedure that facilitates communication between financial 

institutions, processing networks, and point of sale (POS) systems, enabling businesses to accept 

digital payments. It begins when the customer selects a product or service and proceeds to the 

checkout. During this phase, the customer chooses a payment method and provides the 

necessary payment information. This payment information is then transmitted to a payment 

gateway, which verifies its accuracy for approval. 

Following this, the payment gateway proceeds to relay this data to the payment processor. The 

payment processor then dispatches the information to the customer's issuing bank via the 

appropriate card network, such as Visa or MasterCard. The issuing bank proceeds to perform 

validation checks on the payment particulars, evaluating the presence of adequate funds or 
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available credit to finalize the transaction. If all criteria are met, the issuing bank grants 

authorization for the transaction. The authorization status is relayed back through the same 

pathway (issuing bank to payment processor to payment gateway), and the customer is 

promptly informed of the success or failure of their payment. 

In the event of a successful payment, the customer receives an order confirmation. In the end, 

the monetary transfer takes place, transferring funds from the customer's bank account to the 

merchant's bank account. This procedure is commonly referred to as the settlement process 

[PayPal, 2023]. This settlement stage may take several days to finalize. 

It is important to note that there are two primary methods of payment: "card present," where 

physical cards are used for payment, and "card not present," where card details are utilized for 

payments, often over the phone or online. The term "card not present," in contrast, entails an 

elevated potential for fraudulent activities, as it does not require the physical presence of the 

card, making it more challenging for the seller to verify the identity of the purchaser.  

Merchants are the people selling goods and services to cardholders. Examples include e-

Commerce sites and physical stores. They are motivated to keep fraud low because it hurts their 

profitability. Not actively targeting them [PayPal, 2023]. 

Payment gateways/payment service providers (PSPs) are people selling payment-related 

services to merchants and/or acquiring banks. They provide access to front-end services such as 

checkouts and 3D Secure, access to payment methods (there are hundreds globally and plenty 

in Europe), ancillary services such as revenue optimization (retries, routing payments to 

different acquirers), and fraud detection [Ravelin, 2023].  

3D Secure is a security protocol used in the context of online credit card transactions to prevent 

credit card fraud. It was developed by Visa as "Verified by Visa" and Mastercard as "Mastercard 

SecureCode," and is also known by other names depending on the card issuer, such as "American 

Express SafeKey" or "JCB J/Secure." The main objective of the 3D Secure system is to enhance 

the security and authentication process for online card transactions. This is achieved by 

introducing an additional authentication step during the online checkout process. In this step, 

the cardholder is required to verify their identity by entering a distinctive password, an SMS 

code, or a temporary PIN [Burns, 2023].  

Nonetheless, the utilization of the 3D Secure protocol can occasionally result in increased 

instances of shopping cart abandonment. This is primarily due to an additional authentication 

step that can disrupt the checkout process, potentially dissuading customers from completing 
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their purchases. An enhanced iteration known as 3D Secure 2.0 has been introduced to tackle 

these challenges. This updated version adopts a more seamless approach to customer 

authentication, relying on a risk-based methodology. Furthermore, it extends its support beyond 

traditional browser-based payment methods to encompass a wide array of alternatives, such as 

wearables, in-app purchases, mobile payments, and digital wallets. An added benefit of this 

protocol is its commitment to enhancing risk evaluation by transmitting over 100 data points to 

issuing banks during the approval or rejection of transactions [EBANX, 2023]. 

Acquiring Banks (acquirer) serve the merchants, and they take on the risk that the merchant will 

remain solvent. If the merchant goes out of business, the acquiring bank is liable for the funds 

that the cardholders can ask for because they do not receive their goods/services. They 

performed this via a process known as chargeback. Therefore, acquiring banks are highly 

motivated to control their merchants’ fraud levels. However, they earn money from processing 

chargebacks, so they are also motivated not to stop it completely. There are approximately 400 

acquiring banks in Europe, and they are usually either a PSP/Acquirer or an Acquirer/Issuer 

combo. 

With the European-wide regulation called PSD2, there is a component called strong customer 

authentication (SCA) that significantly impacts acquirers. The short story is that if their aggregate 

fraud is > 0.13%, then they must trigger SCA (think of 3D Secure or the like) on transactions 

above €100 [Fine, 2023]. 

This kills conversions and drives away cardholders, which in turn makes it harder to retain 

merchants or win new businesses. The long story is well worth reading, which you can do here. 

Issuing Banks are the banks of cardholders who buy goods from merchants. As fraudsters target 

cardholders, most of the time and issuers are the ones who make the final decision to accept or 

decline a transaction. However, since they are often very large enterprises that run in an 

antiquated way, it is difficult to get access to them, and they take a long time to make decisions. 

They are likely to approach them via partnerships with payment experts, PSPs, and acquirers. 

 

1.1.2. Parties Affected by Payment Fraud 

 

Various parties susceptible to the impacts of payment fraud will be now examined. Initially, it is 

essential to address the effects on customers, the real cardholders. On average, customers 
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spend approximately two working days in the process of card cancellation and dealing with the 

aftermath [Ravelin Blog, 2023]. 

For the second group, namely the merchants or online sellers, fraud presents a significant 

financial burden. Merchants face the loss of their merchandise and the necessity to issue refunds 

in response to chargebacks. Furthermore, they are required to cover chargeback fees imposed 

by their payment providers. Notably, fraud ranks as the primary concern for 44% of finance 

professionals in this sector. The occurrence of false positives is particularly undesirable, as they 

obstruct legitimate customer transactions and fail to contribute to revenue growth. Additionally, 

the potential for reputational damage looms large [Finextra, 2019]. 

Finally, it is important to highlight the role of payment providers in Europe, who bear 

responsibility for addressing fraud issues within the framework of the Payment Services 

Directive (PSD2). If the aggregate fraud rate remains at or below 0.13%, payment providers have 

the flexibility to conduct risk assessments and bypass 3D Secure authentication for individual 

transactions [Fine, 2023]. 

It should be emphasized that people partake in deceptive actions for various reasons, 

encompassing factors like convenient opportunities, sociocultural pressures, and financial 

incentives [Fisher, 2015]. 

 

1.1.3. Types of Frauds 

 

Now various forms of fraudulent activities that individuals engaged in fraudulent activities 

perpetrate within the mentioned categories will be explored. 

 A research study conducted by Ghosh and Reilly, titled "Credit Card Fraud Detection with a 

Neural-Network” [Ghosh & Reilly, 1994] offers insights into payment fraud and underscores the 

application of neural networks in fraud detection. Most online payment fraud originates from 

identity theft, accounting for approximately 71% of cases. In these instances, criminals acquire 

card details, assume the victim's identity, and make online purchases. The fraudster receives the 

purchased items, while the genuine cardholder can initiate a chargeback process, often incurring 

associated fees. Nonetheless, individuals engaging in fraudulent activities can employ a range of 

strategies. These may include the use of personal information (email accounts, user profiles, 

names, addresses, IP addresses, and personal devices), to establish a facade that appears to be 

that of genuine customers, rather than relying exclusively on pilfered credit card data. 
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Another form of fraud, known as friendly fraud, occurs when legitimate customers claim non-

receipt of ordered goods, whether intentionally or due to a mistake, or reported damage upon 

delivery. Instead of seeking a refund directly from the seller, these customers opt to initiate a 

chargeback through their bank. It is worth noting that chargebacks are a frequent source of 

dispute within the e-commerce industry [Decorte, 2023]. 

In a recent research paper authored by R. Anderson and published in 2022 under the title 

"Challenges in Information Security from an Economic Standpoint" [Anderson, 2022], the 

concept of clean fraud is thoroughly examined. Clean fraud pertains to deceitful transactions 

that exhibit an outward appearance of legitimacy. This form of fraudulent activity has been 

causing mounting concerns for retailers, primarily due to its ability to bypass conventional 

security measures, such as the identification of previously blacklisted fraudulent accounts. Clean 

fraud entails the illicit utilization of pilfered credit card details to assume the identity of the 

legitimate cardholder. 

Affiliate fraud represents a form of deceptive activity wherein malicious individuals exploit 

traffic and registrations to deceive a merchant into believing they are garnering genuine 

consumer interest that is, in fact, non-existent. Numerous enterprises participate in or oversee 

affiliate marketing initiatives, which generate revenue by distributing links and content. 

Regrettably, affiliate fraud can take the guise of relatively straightforward actions, such as 

repeatedly refreshing a webpage or inundating users with spam emails and pop-up 

advertisements, thereby fabricating an illusion of substantial traffic [Dutta et al., 2010]. 

Triangulation fraud is a deceptive practice employed by cybercriminals who create counterfeit 

or imitation websites to lure unsuspecting buyers with enticing offers on inexpensive products. 

These fraudulent websites can sometimes surface in advertisements or be delivered to users via 

phishing attempts in emails, tricking them into visiting the site. This illicit scheme involves 

acquiring and subsequently utilizing credit card information that has been illicitly obtained, a 

practice commonly referred to as triangulation fraud. The term "triangulation" is derived from 

the three-step process it involves: enticing buyers, pilfering their personal details, and 

incorporating these details into a broader fraudulent operation. Furthermore, it is worth noting 

that established businesses can also suffer reputational damage due to such fraudulent activities 

[Cheliatsidou, 2021]. 

Overpayments, sometimes referred to as a payout scam, represent a form of stolen-card fraud. 

In this scheme, the perpetrator poses as someone in need of third-party services linked to a 

purchase. Subsequently, they propose paying the seller not only for the merchandise's price but 
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also an additional amount meant for the fictitious third party, often accompanied by a 

supplementary convenience fee (resembling a tip) to facilitate the arrangement. The essence of 

the deception lies in the non-existence of the promised third-party service, ultimately leading to 

the fraudster pocketing extra funds while leaving the seller entangled in a dispute [Stripe, 2023]. 

Alternative refunds involve a scheme where an individual with fraudulent intentions purposely 

overpays a transaction amount. Subsequently, they reach out to the company, asserting that 

they made an unintentional error in entering the payment. The fraudster then seeks a partial 

reimbursement to correct this alleged mistake but asserts that they have deactivated the 

associated card. Consequently, they request a refund to be processed through an alternative 

means, such as a check or wire transfer, outside the conventional card network channels. 

As an illustration, consider a scenario where an individual with malicious intent contributes $500 

to a charitable organization and subsequently reaches out to the organization, claiming that the 

intended donation was only $50. The person then requests a reimbursement of $450, employing 

an alternative payment method. Consequently, no funds are reimbursed to the initial credit 

card. If the genuine cardholder challenges the fraudulent transaction, the charity not only bears 

responsibility for the contested sum but also incurs a loss equivalent to the amount transferred 

through the alternate payment channel. 

Marketplace fraud refers to situations where sellers fail to fulfill their obligation of delivering 

purchased goods after customers have made payments. One common fraudulent practice 

involves testing the validity of a payment card, either single or multiple cards, on one website 

before utilizing them for illicit transactions on another platform. Acquiring card information 

through illicit means, such as purchasing it on the dark web, represents the swiftest and most 

accessible method for obtaining a substantial quantity of card details. Additional tactics utilized 

by fraudsters include creating counterfeit websites and intercepting payment pages. 

Surprisingly, a significant portion of consumers, less than 25%, possess an understanding of the 

techniques employed by fraudsters, and merely 20% are aware that it is the retailers who bear 

the financial burden of such fraudulent activities [Stripe, 2023]. 

 

1.1.4. How Fraudsters Operate Online 

 

In this chapter the methodology used by fraudsters to commit fraud will be introduced, and how 

they can be recognized [Ravelin, 2023]. 
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Scammers employ sophisticated privacy tools like Anti-Detect and Kameleo to evade detection 

through browser IDs. These software solutions empower them to generate numerous virtual 

machine instances within browser windows. While this tactic does enhance their anonymity, it 

is worth noting that manipulating their apparent location remains a key red flag for potentially 

fraudulent activity. Fraudsters have the capability to identify the registration location of pilfered 

card information and can manipulate it to appear as if they are situated in that specific location. 

Online phone numbers can be acquired using card information without requiring access to a 

physical phone. Consequently, individuals may reach out to the customer's mobile service 

provider to arrange call redirection to their designated number for the purpose of verifying 

purchases, if necessary. 

Rather than making conspicuous large orders that could expose their intentions, they adopt the 

guise of authentic customers by gradually building, modifying, and removing items from their 

shopping carts before ultimately placing a substantial order. 

To enhance their credibility and establish new accounts, they may incorporate additional 

customer data such as device IDs, driver's licenses, or blend this information with other 

customer particulars. This deceptive practice is frequently employed in cases of bank fraud. 

The obligation falls on the seller to cover chargeback expenses incurred with their chosen 

payment provider. These charges have the potential to reach up to $50. Moreover, card schemes 

impose restrictions on the volume of chargebacks an online seller can experience before facing 

more substantial penalties. To mitigate the likelihood of chargebacks, merchants find it 

beneficial to allocate resources toward enhancing fraud detection and prevention measures. 

Payment providers that include fraud detection as an integral component of their services not 

only enhance the security for online sellers but also decrease the potential fee exposure 

[Ravelin, 2023]. 

 

1.1.5. Three pillars of fraud protection 

 

The management of fraud protection relies on three primary guidelines outlined in this section. 

Payments meeting specific fraudulent criteria are subject to either blocking or further scrutiny, 

particularly in cases involving high-value orders that exhibit a higher likelihood of fraudulent 

activity. However, relying solely on rule-based approaches carries inherent risks, as there is a 

potential to unintentionally impede legitimate customer transactions. For instance, activating a 
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rule that blocks all transactions exceeding $500 would invariably affect numerous genuine 

customers. Nevertheless, rule-based methods can be employed with a 90% accuracy rate in 

situations where there is no requirement for ambiguity in decision-making, such as consistently 

flagging payments originating from exceedingly high-risk countries or regions. Combining rule-

based approaches with machine learning proves to be a beneficial strategy. 

Utilizing machine learning algorithms to categorize transactions into low, medium, or high risk 

levels is a common practice. These models can operate in real-time, leveraging historical data 

and concurrently incorporating new information. Furthermore, the synergy between machine 

learning models and graph networks is evident. For instance, one can instruct the machine 

learning model to identify and flag expansive networks for further scrutiny. It can also be 

programmed to block transactions originating from networks that exhibit rapid growth, thereby 

preventing potential fraudsters from exploiting multiple accounts for fraudulent purchases. In 

the research paper authored by G. Liu, J. Tang, Y. Tian, and J. Wang, titled "Graph Neural 

Network for Detecting Credit Card Fraud," the authors explore the utilization of Graph Neural 

Networks (GNNs) in addressing the issue of transaction fraud detection. They introduce a novel 

concept called the Transaction Graph (TG), which comprises weighted multiple graphs to 

comprehensively represent transaction data for enhanced fraud detection [Liu et al., 2021]. 

 

1.1.6. Identifying Potential Fraud 

 

The utilization of potentially false information, such as fabricated phone numbers or email 

addresses comprising random characters, can raise suspicion within fraud detection systems. 

Moreover, discrepancies in customer details during multiple transactions, like employing the 

same email address with a different name or variations in payment information (such as using 

the same card but altering the shipping address or using multiple cards linked to a common 

shipping address), can serve as potential red flags for fraudulent activities. 

Furthermore, specific patterns warrant vigilance, such as repeated transactions with the same 

card originating from an identical IP address or consistent use of the same customer’s name and 

email address. In instances where each failed attempt is associated with a distinct credit card, 

any successful payment should be treated as carrying significantly higher fraud risk. 

In addition, the presence of suspicious or scripted communication, with messages sent to 

multiple sellers containing common phrases, can serve as another indicator of potential fraud. 
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These messages can often be cross-referenced using search engines to identify if particular 

sentences or content have been widely reused. 

Lastly, unusually large orders, particularly those comprising numerous identical high-value items 

or expensive merchandise, should prompt heightened scrutiny, as they may suggest fraudulent 

intentions. These elements collectively contribute to a comprehensive approach to detect and 

prevent credit card fraud in online transactions. 

It is worth noting that such behavior can be assessed for consistency with typical customer 

actions [Diadiushkin et al., 2019]. Despite seemingly low prosecution rates, public concern about 

payment fraud is significant, as demonstrated by the "Consumer attitudes to payment fraud 

survey" conducted by the Ravelin company [ECB, 2022]. 

 

1.2. Importance of Machine Learning 

 

Machine learning holds a crucial position within the field of credit card fraud detection. With the 

increasing frequency of online financial transactions, the problem of credit card fraud has 

emerged as a significant worry for both individuals and businesses. Traditional rule-based 

systems designed for fraud detection often possess limitations when it comes to adapting to 

evolving patterns. Conversely, machine learning offers an efficacious solution by harnessing 

algorithms capable of learning from historical data to spot fraudulent activities in real-time. 

One of the pivotal advantages of machine learning in credit card fraud detection pertains to its 

capacity to analyze copious volumes of data swiftly and accurately. Machine learning algorithms 

can efficiently process extensive transaction data encompassing cardholder details, merchant 

information, transaction amounts, geographic locations, and timestamps. This thorough 

examination enables the identification of patterns and irregularities associated with fraudulent 

activities. With the continuous integration of new data, these algorithms can adapt and enhance 

their detection capabilities progressively. 

Another critical facet of machine learning in credit card fraud detection lies in its ability to 

uncover hitherto unseen or unfamiliar fraud patterns. Traditional rule-based systems lean 

heavily on pre-established rules and thresholds that may fail to encapsulate emerging fraud 

tactics. In contrast, machine learning algorithms possess the adeptness to pinpoint nuanced 

patterns and anomalies that may suggest fraudulent behavior, even if such behaviors haven't 

been explicitly defined within the rule set. The flexibility of machine learning models enables 
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them to proactively detect emerging forms of fraudulent behavior, outsmarting fraudsters in 

the process. 

Furthermore, machine learning contributes to the reduction of false positives, which entail 

legitimate transactions being erroneously flagged as fraudulent. By scrutinizing historical data 

and assimilating insights from past decisions, machine learning algorithms can fine-tune their 

detection models, thereby minimizing false positives while maintaining a high level of accuracy. 

This not only enhances the customer experience by reducing unwarranted transaction declines 

but also conserves valuable time and resources for businesses by allowing them to focus on 

authentic fraud cases. 

 

2. Traditional Approaches 

 

Old school/traditional fraud detection relies solely on rules to block fraudulent payments. But 

using them also results in a lot of false positives as you block genuine customers if, for example, 

you define a threshold for when to block [Ravelin Insights, 2023]. 

Furthermore, prices can change over time; therefore, threshold values need to be updated. 

Additionally, rules are most of the time dependent on yes/no answers and are therefore less 

flexible for adjustment or limit judgment on the risk scale. Using rules implies that the library 

must continue to expand as fraud evolves. Making the system slower and heavier maintenance. 

Therefore, they are inefficient and difficult to scale. 

Fraudsters also impersonate genuine customers, making them harder to detect [Ravelin Insights, 

2023]. 

 

2.1. Traditional Approach 

 

Before the advent of machine learning algorithms, the field of credit card fraud detection 

predominantly depended on rule-based systems, manual verification processes, and various 

authentication methods [Nguyen, 2020]. 

Rule-based systems have been used to identify potentially fraudulent transactions based on 

predefined rules. These rules could be as simple as flagging transactions above a certain amount 
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or as complex as identifying unusual transaction patterns. For example, if a card is used in two 

different countries within a short time frame, it is flagged as suspicious. These systems use a set 

of logic-based rules to categorize data into non-suspicious or suspicious activities. As an 

illustration, consider a scenario where a transaction surpasses a specific predefined limit, leading 

to its identification as a potential candidate for fraudulent activity. Another rule could be that if 

a series of transactions occur in quick succession, this could also be flagged as suspicious. 

Manual verification is another common method for detecting credit card fraud. This method 

involves human analysis and the verification of transactions. For instance, if a transaction seems 

out of the ordinary for a particular customer's typical spending habits, the credit card company 

might contact the customer directly to verify the transaction. Similarly, if a transaction is made 

in a location far from the customer's normal location, it might be flagged for manual verification. 

Authentication measures have also been implemented to prevent credit card fraud. These 

measures include requiring additional information during the transaction process, such as a PIN 

or zip code. Some systems have also used challenge questions to verify the identity of the 

cardholder. This method is based on the principle of multifactor authentication, which involves 

verifying the cardholder's identity using multiple pieces of evidence or factors. These factors can 

include something the user knows (such as a password), something the user has (such as a 

physical card), and something the user is (such as a fingerprint) [Nguyen, 2020]. 

These approaches have historically proven their effectiveness and continue to find relevance in 

contemporary settings, frequently alongside more recent machine learning techniques. 

Nevertheless, they do come with certain constraints, such as reliance on human intervention 

and the challenge of staying abreast of constantly evolving fraudulent schemes. Consequently, 

machine learning algorithms have gained prominence as crucial instruments in combating credit 

card fraud, primarily due to their capacity to autonomously acquire and adjust to emerging 

fraudulent patterns [Kulatilleke, 2022]. 

 

2.2. Limitations 

 

The older methods for credit card fraud detection listed above, although effective in many cases, 

also have several limitations listed below [Mohari et al., 2021]. 

The first limitation is rule-based systems that require constant updating to keep up with evolving 

fraud patterns. Because these rules are manually defined, they may not effectively adapt to new 
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types of fraud or subtle variations in fraud patterns (limited adaptability). These systems can 

generate a significant number of false positives, thereby leading to unnecessary verification 

procedures and potential customer dissatisfaction (false positives). Rule-based systems can 

become inefficient as the number of rules increases, as every transaction must be checked 

against each rule (inefficiency). 

The second limitation is manual verification methods that are labor-intensive and time-

consuming. Additionally, they depend on the availability and judgment of human operators, 

which can lead to inconsistencies. These methods can be seen as intrusive or inconvenient by 

customers, particularly if they are frequently contacted to verify transactions. 

The last limitations are authentication measures in the form of user experience and data 

security. User experience measures while effective in preventing unauthorized access, 

multifactor authentication can negatively impact the user experience by adding additional steps 

to the transaction process. Data security methods depend on secure storage and transmission 

of sensitive information, such as passwords and PINs. If this information is compromised, the 

effectiveness of the authentication measures is significantly reduced [Mohari et al., 2021]. 

In addition, all these methods struggle with the inherent imbalance in credit card fraud detection 

data, where legitimate transactions vastly outnumber fraudulent transactions. This can lead to 

models that are very accurate overall but perform poorly in detecting relatively rare instances 

of fraud [Sulaiman et al., 2022]. 

As a result of these limitations, there has been a significant shift toward the adoption of machine 

learning and artificial intelligence methodologies in the realm of credit card fraud detection. 

These approaches possess the ability to autonomously acquire knowledge and adjust to 

emerging fraud patterns, efficiently process substantial datasets, and effectively address the 

imbalances present in fraud detection datasets [Kropelnytsky & Vidjikant, 2023]. 

 

3. Machine Learning 

 

Machine Learning, often abbreviated as ML, constitutes a specialized domain within the realm 

of artificial intelligence (AI). Its primary objective lies in the development of computer programs 

adept at independently acquiring knowledge from data sources. This fundamental idea is 

grounded in the principle that systems have the ability to independently recognize patterns and 
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make decisions with limited human involvement. Machine Learning equips computers with the 

capacity to improve their performance by accumulating knowledge and experience over time 

[GeeksforGeeks, 2023]. 

Tom M. Mitchell formally defined Machine Learning as follows: "A computer program is 

considered to acquire knowledge from experience E concerning a particular category of tasks T, 

as gauged by performance measure P, if its performance in tasks within T, assessed by P, 

demonstrates improvement with the accumulation of experience E" [Wikipedia, 2023]. 

Machine learning algorithms possess the capacity to go beyond pre-defined algorithms and 

conduct contextualized inference, enabling them to analyze and interpret data while considering 

its contextual nuances and relationships. This capability empowers them to make more precise 

and context-aware predictions or decisions [MIT, 2021]. They achieve this by initially identifying 

patterns within data through algorithms and subsequently applying these patterns to 

forthcoming data. The process begins with the provision of top-notch data to the machines, 

followed by their training using a variety of machine learning models and diverse algorithms. 

The selection of algorithms depends on the unique features of the available data and the specific 

automation task at hand [GeeksforGeeks, 2023]. 

Machine Learning finds extensive application across various domains, encompassing 

recommendation systems, identification of malware threats, automation of business processes, 

filtering out spam, predictive maintenance scheduling, and the detection of fraudulent activities, 

to name a few [Nigam, 2023]. 

Furthermore, machine learning algorithms can be categorized into four main types 

[GeeksforGeeks, 2022]. 

One of these categories, known as Supervised learning, involves the analysis of labeled data, 

enabling the algorithm to understand how to correlate input data with specific output labels. 

This type of algorithm is frequently employed in tasks involving classification and prediction 

[Corbo, 2023]. 

Two distinct problem-solving applications are addressed through the utilization of supervised 

learning [IBM, 2023]: 

• Classification: In this context, supervised learning employs algorithms to accurately 

categorize test data into predefined classes or categories. It involves the recognition of 

specific entities within a dataset and the subsequent inference of appropriate labels or 

definitions for these entities. Notable classification algorithms encompass linear 
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classifiers, support vector machines (SVM), decision trees, k-nearest neighbors, and 

random forests. 

• Regression: Supervised learning plays a pivotal role in exploring the connections 

between dependent and independent variables, offering significant utility in generating 

predictions, such as forecasting the sales revenue of a specific business. Widely adopted 

regression techniques encompass linear, logistic, and polynomial regression algorithms 

[IBM, 2023]. 

Some commonly employed supervised learning algorithms, as discussed in a prior work [Alam, 

2021], include: 

• Linear classifiers rely on a linear predictor function, which involves the combination of 

a feature vector with a specific set of weights. Well-known instances of linear classifiers 

include Logistic Regression and the Naive Bayes classifier. 

• Support Vector Machines (SVM) have a dual role, as they are versatile tools suitable for 

both classification and regression assignments. Their primary aim involves determining 

the most effective line or decision boundary for segregating the dataset into distinct 

categories. 

• Decision tree algorithms ascertain straightforward decision rules from data features to 

make predictions about the value of a target variable. 

• K-nearest neighbors (k-NN) is a classification algorithm that assigns class membership 

to an object. This technique categorizes an object by considering the majority decision 

from its closest neighbors, leading to the assignment of the object to the class that is 

most frequently found among its k-nearest neighbors. 

• Neural networks, drawing loose inspiration from the human brain, comprise a set of 

algorithms designed for the purpose of identifying patterns. These algorithms analyze 

sensory information by means of machine perception, which involves assigning labels 

or grouping raw input data [Alam, 2021]. 

Unsupervised learning as a branch of machine learning involves the process of pattern 

recognition within unannotated datasets through techniques such as clustering and similarity 

identification. The fundamental goal of unsupervised learning revolves around the discovery of 

the intrinsic patterns within data, grouping data points according to their similarities, and 

ultimately expressing the dataset in a more compact and organized fashion [GeeksforGeeks, 

2022]. 

There are three primary categories of unsupervised learning algorithms [Wu et al., 2021]: 
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Clustering algorithms have an important role in the task of categorizing comparable instances 

according to their intrinsic characteristics. They find extensive applications in scenarios where 

the goal is to unveil the underlying structure of a dataset or swiftly detect unknown patterns 

within a vast dataset. The most popular clustering algorithms will be introduced below. 

• K-Means Clustering represents an iterative technique employed to divide a collection 

of n data sets into k separate and non-intersecting clusters. In this process, every 

individual data point gets assigned to the cluster that possesses the closest mean to it. 

• Hierarchical clustering is characterized by a sequence of gradual partitions. It begins by 

grouping all items into a single cluster and proceeds incrementally until each cluster 

consists of just one individual entity. 

• DBSCAN (Density-Based Spatial Clustering of Applications with Noise) is a density-

based clustering algorithm designed to identify clusters of varying shapes and sizes 

within extensive datasets. It excels at handling noisy data and outliers, making it a 

versatile tool for cluster discovery. 

Dimensionality Reduction Algorithms serve the purpose of decreasing the number of random 

variables in consideration by identifying a set of primary variables. These methods come into 

play when dealing with a high count of input variables or dimensions, which can potentially 

result in overfitting and an elevated computational burden. Most popular dimensionality 

reduction algorithms are listed up next. 

• Principal Component Analysis (PCA) is a method employed to accentuate variances and 

establish prominent patterns within a dataset. It proves especially valuable for 

simplifying exploration and visualization tasks. 

• Autoencoders belong to the realm of artificial neural networks, designed to acquire 

efficient representations of input data. They find utility in tasks such as feature 

extraction, the development of generative data models, dimensionality reduction, and 

even data compression. 

Association Rule Learning Algorithms play a crucial role in uncovering meaningful connections 

between variables within extensive databases. Their primary application lies in conducting 

market basket analyses. The most popular association rule-learning algorithms are as follows. 

• Apriori stands as a timeless algorithm employed in data mining to unearth association 

rules. It is tailored to function efficiently within databases containing numerous 

transactions, such as the products purchased by customers at a store. 
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• FP-Growth (Frequent Pattern Growth) is an algorithm for extracting frequent patterns 

in transaction data. Compared to Apriori, it has the advantage of not requiring explicit 

generation of candidate sets, which makes it faster in practice. 

These algorithms find wide-ranging utility across various domains, including medical imaging, 

anomaly detection, and recommendation systems. The selection of a specific algorithm hinges 

on the unique requirements of the task at hand [Wu et al., 2021]. 

In the realm of reinforcement learning, the algorithm engages in actions that yield the greatest 

rewards, making it a valuable tool frequently applied in scenarios involving AI systems designed 

for gaming and robotic navigation. Through a process of iterative trial and error, the 

reinforcement learning algorithm strives to optimize its performance and attain the highest 

possible reward [GeeksforGeeks, 2022]. 

Hierarchical clustering is characterized by a sequence of gradual partitions. It begins by grouping 

all items into a single cluster and proceeds incrementally until each cluster consists of just one 

individual entity. An illustrative use case for this approach can be found in the realm of anomaly 

detection [GeeksforGeeks, 2022]. 

Ensemble methods represent a class of meta-algorithms designed to enhance predictive 

modeling by integrating multiple machine learning techniques. These methods serve various 

purposes, such as reducing variance (bagging), mitigating bias (boosting), or enhancing 

prediction accuracy (stacking) [Alam, 2021]. 

Ensemble techniques can be categorized into two distinct groups: 

• Sequential Ensemble Methods: Within this specific class, the process of sequentially 

creating base learners is evident, as demonstrated by the utilization of algorithms such 

as AdaBoost. The underlying rationale behind sequential methods is to capitalize on the 

interdependence among base learners. By assigning higher weights to previously 

misclassified examples, sequential ensembles aim to improve overall predictive 

performance. 

• Parallel Ensemble Methods: Contrarily, parallel ensemble methods create base learners 

in parallel, as seen in Random Forest, for instance. These methods leverage the 

independence among base learners to significantly reduce errors by means of averaging. 

In general, most ensemble techniques utilize a single foundational learning algorithm to 

generate consistent base learners, thus maintaining consistency throughout the ensemble. 
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However, it is worth noting that there exist approaches that incorporate heterogeneous 

learners, involving different types of base learning algorithms [Alam, 2021]. 

One important consideration to bear in mind is choosing the right machine learning algorithm, 

which depends on various factors. These factors encompass the problem you intend to tackle, 

the attributes of your dataset, and the computational capabilities available to you. 

It is worth noting that various algorithms are tailored to specific task categories, and there is no 

universal approach that fits every scenario [Brownlee, 2020]. 

 

3.1. Models Used in Fraud Detection 

 

Fraud detection represents a crucial application of Machine Learning, employing various models 

to achieve its objectives. Some of the most used models for fraud detection are as follows. 

Decision trees stand out as a prominent supervised learning algorithm, primarily utilized in 

classification scenarios. This algorithm is adaptable to both categorical and continuous input-

output variables. The fundamental principle involves partitioning the dataset into two or more 

homogeneous subsets, guided by the most significant attributes or independent variables, with 

the aim of creating distinct groups [Databricks, 2019]. 

On the contrary, Random Forest stands out as a versatile machine learning method that can 

handle regression and classification tasks with ease. Moreover, it incorporates dimensional 

reduction methods, handles missing values, identifies outliers, and undertakes essential data 

exploration steps effectively. This strategy belongs to the domain of ensemble learning, wherein 

a group of less powerful models collaboratively work together to create a resilient model [Team, 

2023]. 

Logistic regression is a statistical method that employs a logistic function to model a binary 

outcome variable in its simplest form. In the domain of regression analysis, logistic regression, 

also known as logit regression, serves the purpose of estimating the parameters within a logistic 

model. It essentially constitutes a variant of binomial regression [Di Stefano, 2022]. 

Support Vector Machines (SVMs) have emerged as highly popular supervised learning 

techniques, particularly valuable for tackling classification and regression tasks. Although SVMs 

find their main utility in the realm of machine learning classification, they are designed to create 

an ideal line or decision boundary that effectively separates an n-dimensional space into 
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separate categories. This property enables the easy assignment of new data points to their 

respective classes in future scenarios [Pykes, 2021]. 

K-Nearest Neighbors (KNN) emerges as one of the simplest algorithms employed in Machine 

Learning for addressing both regression and classification problems. The core principle behind 

KNN algorithms lies in utilizing data to classify new data points, relying on measures of similarity, 

such as distance functions. Classification is achieved through a majority vote mechanism 

involving neighboring data points [Team, 2023]. 

Neural networks encompass a set of algorithms that draw inspiration from the organization of 

the human brain. Their fundamental objective revolves around the recognition of patterns. They 

analyze sensory information using machine perception, which involves tasks such as labeling or 

clustering raw input data [Skillfloor, 2023]. 

The selection of these models is contingent upon the distinct attributes of the data and the 

inherent complexities of the fraud detection issue. It is important to recognize that the 

effectiveness of these models may vary, sometimes requiring adjustments or enhancements to 

match the particular requirements of the given task [Team, 2023]. 

 

3.2. Advantages 

 

Machine learning methods offer several advantages over traditional rule-based systems, manual 

verification, and authentication measures for detecting credit card fraud. 

Machine learning models possess the ability to acquire knowledge from datasets and 

dynamically adjust to emerging fraud strategies without the need for manual rule modifications. 

This inherent adaptability endows them with remarkable flexibility, enabling them to effectively 

counter the ever-evolving tactics employed by fraudulent actors. These models can 

autonomously refine and fine-tune their algorithms by leveraging fresh data inputs, enabling 

them to discern intricate patterns and correlations within the data that might elude human 

investigators or rule-based systems [Opus Consulting, 2021]. 

These techniques exhibit a high level of effectiveness in handling extensive datasets, surpassing 

the scalability of rule-based systems and manual verification approaches. They possess the 

capability to swiftly process and scrutinize substantial volumes of transactional data, facilitating 

increased efficiency and faster identification of fraudulent activities [AltexSoft, 2020]. 
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These models excel in discerning intricate data patterns and relationships that might elude rule-

based systems. Their remarkable ability to pinpoint subtle anomalies and fraudulent activities 

with enhanced precision contributes to a reduction in both false positives and false negatives 

[AltexSoft, 2020]. 

Detecting credit card fraud frequently entails managing imbalanced data, wherein fraudulent 

occurrences are infrequent when contrasted with legitimate transactions. To address this 

imbalance and enhance the identification of fraudulent transactions, machine learning 

algorithms can be tailored. Methods such as under-sampling, over-sampling, and the utilization 

of the synthetic minority oversampling technique (SMOTE) can be applied to address data 

distribution imbalances, ultimately enhancing the model's performance [Satpathy, 2023]. 

Various machine learning approaches can be employed in the realm of credit card fraud 

detection, each possessing distinct advantages. For instance, Decision Trees and Random 

Forests exhibit proficiency in handling both categorical and numerical data types, rendering 

them capable of generating easily interpretable models. Neural Networks, on the other hand, 

excel at capturing intricate nonlinear relationships within the data. Support Vector Machines 

prove effective in managing high-dimensional datasets. This diversity in techniques facilitates 

the choice of the most appropriate model, aligning with the unique characteristics of the data 

and the specific problem under consideration [Varun Kumar K S et al., 2020]. 

Machine learning models possess the ability to incorporate feature selection methods with the 

objective of identifying the most relevant attributes in each dataset. This incorporation serves a 

dual role by both improving the model's effectiveness and alleviating its computational 

demands. Genetic Algorithms (GA) are commonly employed in the realm of credit card fraud 

detection for the purpose of feature selection [Ileberi et al., 2022]. 

These algorithms exhibit a unique capacity for detecting intricate patterns and anomalies, often 

beyond the scope of human analysts. Leveraging historical fraud patterns, they acquire 

knowledge and subsequently apply it to uncover potentially fraudulent activities in new 

transactions [Softjourn, 2022]. 

An alternative approach involves utilizing unsupervised machine learning algorithms to spot 

anomalies or outliers within the data. Given the rarity and distinct characteristics of fraudulent 

transactions in comparison to most typical transactions, they can be classified as anomalies. 

Consequently, machine learning proves exceptionally effective in the domain of fraud detection 

[Bajaj, 2021]. 
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3.3. Challenges 

 

Although machine learning methods offer significant advantages for credit card fraud detection, 

they also encounter their own set of challenges [Kulatilleke, 2022]. 

Effective model training in machine learning necessitates substantial volumes of data. However, 

obtaining these datasets can be difficult because of privacy and confidentiality concerns. 

Financial institutions are often reluctant to share transaction data due to regulatory and privacy 

concerns [Kulatilleke, 2022]. Some of the most used credit card fraud detection datasets include 

the following. 

Credit Card Fraud Detection Dataset is available on Kaggle and contains credit card transactions, 

with a mix of genuine and fraudulent transactions. It is a common dataset used for developing 

and testing fraud detection algorithms [Kaggle, 2018]. 

IEEE-CIS Fraud Detection Dataset was provided as part of a Kaggle competition organized by the 

Institute of Electrical and Electronics Engineers (IEEE). It includes various features related to 

credit card transactions, and the task is to predict whether a transaction is fraudulent [Kaggle, 

2019]. 

In addition to real datasets, there are synthetic datasets generated to simulate credit card 

transactions. These datasets can be useful for testing algorithms and models in controlled 

environments [Borgne, 2022]. 

These datasets provide a starting point for the development of credit card fraud detection 

models. However, it is crucial to understand that detecting credit card fraud is a continuous and 

evolving challenge. As such, there is a constant influx of new datasets being generated and 

utilized for research and development purposes. 

Therefore, exploring other sources, such as research papers, academic institutions, and industry 

collaborations, is recommended for access to the latest and most comprehensive datasets in 

this field. 

The dataset containing fraudulent transactions exhibits a substantial class imbalance, where the 

count of legitimate transactions far surpasses that of fraudulent ones. This imbalance poses a 

potential risk of introducing bias into predictive models, causing them to prioritize the majority 

class and consequently generating a significant number of false negatives. To address this issue, 

researchers employ a range of methods, including oversampling, undersampling, and the 
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generation of synthetic data. However, it is important to note that each of these techniques 

presents its own unique set of challenges [Kulatilleke, 2022]. 

Machine learning models, particularly intricate ones like neural networks, often pose challenges 

in terms of their interpretability. This inherent complexity can create difficulties in 

comprehending the rationale behind the identification of specific transactions as fraudulent. 

This issue can have repercussions in terms of regulatory adherence and effective customer 

communication [AltexSoft, 2020]. 

The efficiency of fraud detection systems hinges on their ability to promptly identify fraudulent 

transactions. Considering the potentially vast quantities of transaction data, reaching into the 

millions of transactions per day, it becomes imperative for classification times to be as low as 

tens of milliseconds. This demand aligns closely with the need for parallelization and scalability 

within fraud detection systems [De Jesus, 2019]. 

Fraudsters constantly changed their tactics to evade detection. This means that fraud detection 

models must be updated regularly to keep up with these evolving patterns. However, training 

and deploying new models is time-consuming [De Jesus, 2019]. 

Machine learning models may encounter the issue of overfitting, characterized by their 

proficient performance on training data but subpar performance on unfamiliar data. This 

predicament becomes especially pertinent in the context of fraud detection, given the evolving 

nature of fraud patterns over time. To address this challenge, strategies like cross-validation and 

regularization are employed to alleviate overfitting tendencies. However, it should be noted that 

implementing these techniques can introduce intricacies into the model training procedure 

[Xue, 2019]. 

Transactional data typically contain a plethora of categorical attributes, including customer 

identifiers, terminal references, and card types. Machine learning algorithms struggle to handle 

categorical features effectively, necessitating their conversion into numerical representations. 

Various techniques are commonly employed to achieve this transformation, such as feature 

aggregation, graph-based conversion, and the utilization of deep learning methodologies like 

feature embeddings [Lucas, 2020]. 

The last two challenges can be seen as part of the broader issue of class overlap. When dealing 

solely with raw transaction data, differentiating between genuine and fraudulent transactions 

becomes an extremely arduous task. This predicament is typically addressed through the 
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application of feature engineering methods, which enrich the raw payment data with contextual 

information [Lucas, 2020]. 

Conventional classification metrics, like the mean misclassification error or AUC ROC, are not 

well-suited for detection problems due to the presence of class imbalance and the intricate cost 

structure inherent to fraud detection. An effective fraud detection system must excel at 

identifying fraudulent transactions while minimizing false positives. Consequently, a multitude 

of metrics must often be considered to comprehensively evaluate the performance of fraud 

detection systems. Surprisingly, there remains no consensus within the field regarding the ideal 

set of performance measures to adopt [Lucas, 2020]. 

Despite encountering these obstacles, machine learning remains a promising strategy for 

detecting credit card fraud due to its capacity to acquire and adjust to intricate data patterns. A 

range of strategies are currently under investigation and being put into practice to surmount 

these challenges. These methods encompass the utilization of synthetic datasets for model 

training, the application of advanced deep learning techniques, and the creation of hybrid 

machine learning architectures. Additionally, tactics such as augmenting the minority class, 

diminishing the majority class, and employing cost-sensitive learning can aid in handling 

imbalanced data. Researchers are actively engaged in addressing these issues to enhance the 

efficacy and efficiency of machine learning-based systems designed for fraud detection 

[Kulatilleke, 2022]. 

 

4. Data Preprocessing Techniques 

 

Data preprocessing encompasses the tasks of refining, converting, and structuring unprocessed 

data into a suitable format for training machine learning models. Effective data preprocessing 

holds significant importance as it profoundly influences the model's performance and precision 

by determining the quality of input data. 

The precise preprocessing procedures needed are contingent upon both the nature of the data 

and the machine learning algorithm being employed. To illustrate, certain algorithms may 

exhibit sensitivity to the magnitude of input variables, whereas others might possess the 

capability to handle categorical variables without necessitating encoding [Maharana, 2022].  
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Data preprocessing is also known as Feature Engineering (this involves deriving new variables 

from available data. This could be as simple as creating interaction terms between variables, or 

as complex as applying domain-specific calculations). 

Data preprocessing involves multiple techniques as described below. 

 

4.1. Data Cleaning 

 

This process entails the recognition and rectification of inaccuracies within the data, 

encompassing actions like addressing missing information, eliminating redundant entries, and 

rectifying discrepancies. 

 

4.1.1. Handling missing values 

 

Preparing data for machine learning models involves a crucial process since the majority of 

algorithms are unable to process incomplete data directly. The absence of data can arise from a 

range of factors such as human errors, equipment malfunctions, or individuals choosing not to 

respond to specific questions. 

There are several solutions to deal with missing values whether to remove instances with 

missing data, fill in missing values with zeros or the mean, or use advanced imputation 

techniques [Emmanuel, 2021].  

Several methods for handling missing data will be introduced next. 

One approach to address missing data is deletion, which is a straightforward method involving 

the removal of instances or variables with missing values. Nevertheless, it is generally 

discouraged due to the potential loss of valuable information. 

Another strategy is imputation, which entails substituting missing data with estimated values. 

Common techniques for imputation include mean, median, and mode imputation, as well as 

regression imputation and K-nearest neighbor imputation. It is important to bear in mind that 

imputation can introduce bias and alter the underlying data distribution. 
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Prediction models can also be employed to handle missing values by utilizing machine learning 

algorithms. For instance, one can train a model like Linear Regression or Decision Tree on the 

available data and then utilize this model to predict the missing values [Ogunbiyi, 2022]. 

Furthermore, ensemble methods such as bagging and boosting can be employed to address 

missing data. This approach involves creating multiple models and amalgamating their 

predictions. However, additional research is necessary to explore the effectiveness of these 

methods further. 

Some algorithms such as Naive Bayes and certain tree-based models can handle missing values 

directly. They treat missing values as a unique category or use statistical methods to handle 

them [Brownlee, 2020b]. 

 

4.1.2. Outlier Detection 

 

Identifying anomalies is of paramount importance during the initial data preparation stage in 

the realm of machine learning. 

Outliers represent data points that deviate significantly from the overall dataset, and their 

presence is often attributable to inconsistent data entry, erroneous observations, or genuinely 

extreme data points. These exceptional data points have the potential to disrupt the data's 

distribution, which could impact the effectiveness of machine learning models. There are various 

methods available for the detection of these outliers [Boukerche, 2020]. 

One set of methods revolves around statistical approaches, which rely on the inherent statistical 

properties of the data. For example, data values that deviate beyond 1.5 times the interquartile 

range (IQR) from either the lower or upper quartile are commonly identified as outliers. 

Similarly, data points exceeding three standard deviations from the mean may also be 

considered outliers. While these methods are relatively straightforward to grasp and implement, 

they may not be optimal when dealing with multidimensional data. 

Another category of methods, known as distance-based techniques, identifies outliers based on 

their proximity to other data points. As an example, the Local Outlier Factor (LOF) algorithm 

assesses the deviation in local density for a specific data point when compared to its nearby data 

points. It detects instances that exhibit notably lower density when compared to their 

neighboring data points, indicating the possibility of them being outliers. 
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Clustering methods, on the other hand, aim to group similar data points into clusters and identify 

points that fall outside of these clusters as outliers. One example is the K-means algorithm, 

which labels data points not belonging to any cluster as outliers. 

Anomaly detection systems, such as the Isolation Forest algorithm, are specifically tailored for 

outlier detection. The Isolation Forest accomplishes this by isolating observations through a 

process of random feature selection and subsequent random selection of split values within the 

chosen feature's range. The underlying rationale is that isolating anomalies is relatively 

straightforward because only a minimal number of conditions are needed to separate these 

exceptional cases from the normative observations. 

 

4.2. Data Transformation 

 

This process encompasses modifications to the scale, nature, or arrangement of the dataset's 

variables or attributes. Instances of such adjustments involve the standardization or 

normalization of numerical variables, aimed at achieving uniform scales. This practice can 

enhance the effectiveness of algorithms sensitive to scale variations, like gradient descent-based 

techniques. Additionally, it involves the encoding of categorical variables. 

 

4.2.1. Feature Scaling 

 

Feature scaling plays a vital role in the data preprocessing phase, aiming to normalize the span 

of independent variables or data attributes. This method plays a pivotal role in ensuring that all 

attributes contribute equally to a model, preventing any single feature from exerting undue 

influence due to variations in their scales. It becomes imperative to employ feature scaling when 

working with datasets that encompass attributes exhibiting dissimilar scales, units of 

measurement, or orders of magnitude [Bhandari, 2023]. We will now introduce the most widely 

recognized feature scaling techniques. 

One prevalent approach is normalization, also referred to as Min-Max scaling. In this technique, 

values are adjusted and rescaled to fall within the range of 0 to 1. The transformation is achieved 

through the formula X' = (X - Xmin) / (Xmax - Xmin), where X signifies the original value, X' 
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represents the normalized value, and Xmax and Xmin denote the maximum and minimum values 

of the respective feature. 

Another scaling method is standardization, which alters features to have a mean of zero and a 

standard deviation of one. The standardization formula is expressed as X' = (X − µ) / σ, where X 

corresponds to the original value, X' stands for the standardized value, µ represents the mean 

of the feature values, and σ signifies the standard deviation of the feature value.  

 

4.2.2. Encoding Categorical Variables  

 

Categorical variables refer to variables with a limited and typically fixed set of potential values. 

These variables encompass characteristics such as color (e.g., red, blue, green), size (e.g., small, 

medium, large), and geographic designations (e.g., city, suburban, rural) [Brownlee, 2020c]. 

Various techniques exist for encoding categorical variables. 

One method is Label Encoding, which involves converting each distinct category into a numerical 

value. For instance, in the case of a color feature with categories red, green, and blue, they could 

be encoded as 0, 1, and 2, respectively. It is important to note that this approach can 

inadvertently imply an ordinal relationship between the numerical values, which may mislead 

the model. 

On the other hand, One-Hot Encoding transforms each category value into a new column and 

assigns binary values of 1 or 0. This creates a binary vector representation for each integer value, 

where all values are zero except for one marked as 1. Unlike Label Encoding, One-Hot Encoding 

does not assume any inherent order among categories, making it a suitable choice for non-

ordinal variables. 

Ordinal Encoding is best for categorical variables with natural rank ordering. Categories are 

assigned an integer based on their ordering values. For example, for a feature like size with 

categories small, medium, and large, we could encode these as 0, 1, and 2 respectively. 
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4.3. Feature Selection 

 

This process entails the determination of the most pertinent input parameters for the given task. 

In some cases, certain variables might prove superfluous or unrelated and can be omitted to 

decrease the data's dimensionality. This practice serves to diminish the quantity of input 

variables, leading to enhanced computational efficiency and the potential for improved model 

performance. Diverse approaches to feature selection are at one's disposal, encompassing filter-

based, wrapper-based, and embedded methods [Brownlee, 2020d]. 

 

4.3.1. Filter-based feature selection 

 

This approach employs statistical techniques to assess the connection between each input factor 

and the target variable. It gauges the correlation or interdependence among input factors and 

subsequently identifies the most pertinent features using these assessments. Filter-based 

techniques prove to be computationally efficient and can be highly successful in the process of 

feature selection. The specific statistical measure employed hinges on the data types associated 

with both the input and output variables. 

 

4.3.2. Wrapper-based feature selection 

 

This approach assesses various feature subsets through the process of training and assessing a 

machine learning model for each subset individually. It employs a search strategy, which could 

include techniques like sequential forward selection or best-first search, to identify the most 

effective subset of features that enhances model performance to its fullest potential. While 

wrapper-based methods may demand significant computational resources, they offer the 

advantage of yielding more informative and valuable insights. 

 

 

 



37 
 

4.3.3. Embedded feature selection 

 

This approach integrates feature selection seamlessly into the machine learning model training 

procedure. It identifies relevant features by assessing their significance or by examining the 

coefficients generated by the model. An illustration of such an integrated technique is the Least 

Absolute Shrinkage and Selection Operator (LASSO), which employs L1 regularization to 

promote sparsity among feature coefficients, thus achieving the effective selection of a subset 

of features. Embedded methodologies exhibit efficiency as they concurrently execute feature 

selection within the model training phase. 

 

4.4. Data Reduction 

 

4.4.1. Dimensionality Reduction 

 

Dimensionality reduction stands as a pivotal concept within the field of machine learning. It 

entails the process of decreasing the quantity of features or variables within a dataset, all the 

while preserving vital information and discernible patterns. This process serves several 

purposes, such as simplifying data, preventing overfitting, decreasing computational complexity, 

and enhancing the performance of machine learning models [Kumar, 2023]. 

The challenge commonly referred to as the "curse of dimensionality" emerges when handling 

data with a high number of dimensions, leading to significant difficulties and constraints. When 

the quantity of features expands, it results in data sparsity, causing a rapid exponential 

expansion in the volume of the data space. Consequently, the performance of machine learning 

models may suffer. Dimensionality reduction methods offer a solution to these issues by 

diminishing the feature count and streamlining data representations [Vadapalli, 2020]. 

A variety of dimensionality reduction techniques are at our disposal, each with its unique 

approach and underlying assumptions. Some commonly used techniques include the following 

[Brownlee, 2020e]. 

Principal Component Analysis (PCA) constitutes a linear technique that aims to reduce the 

dimensionality of data by projecting it onto a lower-dimensional space, with the primary 

objective of maximizing the preservation of data variance. It identifies the principal components, 
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representing the directions along which the data exhibits the most variation, to create a 

condensed data representation. 

Linear Discriminant Analysis (LDA) represents a supervised method for reducing dimensionality, 

with the primary goal of discovering a lower-dimensional subspace that effectively enhances the 

distinction between different data classes or categories. This technique finds frequent 

application in tasks related to classification. 

t-Distributed Stochastic Neighbor Embedding, often abbreviated as t-SNE, proves to be a 

valuable tool for the visualization of complex, high-dimensional data when it is necessary to 

project it into a lower-dimensional space. This approach preserves local data structure and 

interrelationships between data points, proving effective for tasks such as exploratory data 

analysis and clustering. 

 

4.4.2. Sampling 

 

Sampling methods have a crucial importance in the field of credit card fraud detection, especially 

when dealing with datasets that exhibit significant class imbalances. In such scenarios, where 

the number of legitimate transactions far outweighs that of fraudulent ones, these 

methodologies assume a critical role in mitigating the class imbalance issue and enhancing the 

effectiveness of fraud detection models. 

Credit card fraud detection inherently faces the challenge of dealing with a substantial class 

imbalance due to the infrequent occurrence of fraudulent transactions compared to legitimate 

ones. This skewed distribution can result in the development of biased models that exhibit 

subpar performance in fraud detection. Sampling techniques aim to redress this imbalance by 

harmonizing the distribution of both fraudulent and legitimate transactions in the dataset. 

When employing sampling methods in the context of fraud detection model evaluation, it 

becomes essential to evaluate its performance using a well-balanced dataset. Placing exclusive 

reliance on accuracy as the sole metric can lead to misinterpretation, especially when dealing 

with imbalanced class distributions. Instead, it is recommended to take into account a range of 

metrics, including precision, recall, F1-score, and the area under the ROC curve (AUC-ROC), in 

order to conduct a thorough assessment of the model's effectiveness. Employing these 

techniques allows for the adjustment of class distribution to achieve balance before initiating 

the training process for the fraud detection model. 
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Various sampling methods are commonly utilized in credit card fraud detection [Alamri & Ykhlef, 

2022]. 

The Random Undersampling technique involves the selection of a random subset from the 

majority class (representing legitimate transactions) to equalize its size with that of the minority 

class (comprising fraudulent transactions). This methodology effectively tackles the problem of 

class imbalance. Conversely, the Random Oversampling method replicates instances from the 

minority class to augment its size, achieving a balanced distribution. While this approach 

prevents information loss associated with undersampling, it may also introduce the risk of 

overfitting. 

The Synthetic Minority Over Sampling Technique, often referred to as SMOTE, stands out as a 

significant approach for creating synthetic samples within the minority class through 

interpolation between pre-existing instances. By mimicking authentic fraud patterns, SMOTE 

helps counteract the scarcity of fraudulent transactions, contributing to a more robust fraud 

detection model. 

 

4.5. Data Splitting 

 

Data splitting is a fundamental practice in machine learning, which involves partitioning a given 

dataset into three distinct subsets for various purposes: training, hyperparameter tuning, and 

model evaluation. This division is essential to ensure that the model undergoes different phases 

of assessment, preventing it from becoming overly specialized on the training data and enabling 

it to generalize effectively to new, unseen data [Gillis, 2022].  

The process of data splitting serves several crucial purposes, including accurately gauging the 

model's performance, facilitating the selection of the most suitable model, and confirming its 

ability to generalize effectively. Furthermore, it plays a vital role in mitigating the risk of 

overfitting, ensuring a realistic assessment of the model's capabilities. 

The allocation of data among these three sets: training, validation, and testing varies depending 

on the dataset size and the specific problem at hand. While there is no universally optimal split 

ratio, a commonly adopted distribution is 70% for training, 20% for validation, and 10% for 

testing. Nevertheless, this ratio can be adjusted to align with the data's availability and the 

requirements of the problem. 
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The training set, which comprises the majority of the data, plays a crucial role in the process of 

fine-tuning the model's parameters. During this phase, the model acquires insights into patterns 

and relationships within the data to make accurate predictions. 

The validation set, also known as the dev set or cross-validation set, plays a critical role in fine-

tuning the model's parameters and assessing its performance. This set is invaluable for selecting 

the most effective model and preventing overfitting. It is essential for hyperparameter tuning 

and model selection. 

The testing dataset plays a crucial role in assessing the model's overall performance, serving as 

the ultimate benchmark. It serves as an impartial yardstick for gauging the model's capacity to 

generalize to data it has never encountered before. To preserve the integrity of this assessment, 

it is essential to abstain from employing the testing dataset for any kind of model training or 

parameter tuning [Gillis, 2022].  

In Figure 1, we present a graphical representation of how data is usually split. 

 

 

Figure 1 Data splitting technique, [Kumar, 2021] 

 

4.6. Hyperparameter Tuning 

 

Hyperparameter tuning, alternatively referred to as hyperparameter optimization, involves the 

task of selecting the most suitable values for a machine learning algorithm's hyperparameters. 

These hyperparameters serve as the settings that govern the algorithm's learning process and 

its behavior. It is important to note that, unlike model parameters, which are acquired through 

data-driven learning, hyperparameters must be specified manually by the practitioner. 
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The primary objective of hyperparameter tuning lies in identifying the ideal combination of 

hyperparameter values that can yield the highest level of model performance and generalization 

capability. This undertaking is of paramount importance because different hyperparameter 

configurations can have a significant impact on how a machine learning algorithm performs and 

generalizes when applied to a specific dataset [Brownlee, 2020f]. 

Numerous methods and approaches are at one's disposal when it comes to hyperparameter 

tuning. 

 

4.6.1. Grid Search 

 

Grid search is a method that revolves around the creation of a matrix of hyperparameter values, 

wherein a methodical exploration is conducted to identify the most favorable configuration. This 

comprehensive process entails an exhaustive examination of all potential combinations, 

assessing the model's effectiveness either through cross-validation or an independent validation 

dataset. It is worth noting that grid search can pose significant computational demands, 

especially when confronted with an abundance of hyperparameters or a broad spectrum of 

feasible values [Brownlee, 2021]. 

 

4.6.2. Random Search 

 

Random search entails the process of sampling hyperparameter values in a random manner 

from predefined probability distributions. This allows for a more efficient exploration of the 

hyperparameter space than a grid search. Using random sampling, it is possible to cover a wide 

range of values and potentially discover better combinations [Brownlee, 2021]. 

 

4.6.3. Bayesian Optimization 

 

Bayesian optimization represents a sophisticated approach, employing probabilistic models to 

capture the interplay between hyperparameters and model performance. This methodology 

harnesses this insight to conduct a strategic exploration for the most suitable hyperparameter 
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settings. Bayesian optimization stands out as a valuable tool, especially when dealing with 

extensive and intricate search spaces, as it enhances the efficiency of the search procedure 

[David, 2020]. 

 

4.6.4. Genetic Algorithms 

 

Genetic algorithms draw their inspiration from the mechanisms of natural evolution and employ 

a population-centric strategy to explore and discover optimal hyperparameter configurations. 

This involves creating an initial population of hyperparameter sets, evaluating their 

performance, and then evolving the population through selection, crossover, and mutation 

operations. Genetic algorithms can be effective in finding good hyperparameter combinations, 

especially when there are interactions or dependencies between hyperparameters [David, 

2020]. 

 

4.6.5. Automated Hyperparameter Tuning 

 

Many machine learning frameworks and libraries provide built-in tools and algorithms for 

automated hyperparameter tuning. These tools often combine various techniques, such as grid 

search, random search, and Bayesian optimization, to automatically search for the best 

hyperparameter values. Examples include scikit-learn's GridSearchCV and RandomizedSearchCV 

classes, as well as libraries such as Optuna and Hyperopt [David, 2020]. 

It is crucial to emphasize that the process of hyperparameter tuning necessitates the utilization 

of either a distinct validation set or cross-validation. This approach is essential for obtaining an 

impartial assessment of the model's performance. Additionally, it is crucial to consider 

computational resources and time constraints when selecting a hyperparameter tuning strategy 

[Brownlee, 2021]. 
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4.7. Cross Validation  

 

Cross-validation stands as a pivotal method within the realm of machine learning, playing a 

crucial role in assessing a model's performance by making use of data that has not been seen 

before. In this method, the dataset is segmented into multiple partitions or folds. During this 

procedure, one of these folds is designated as the validation set, and the model is trained on the 

remaining folds. This cyclic process is reiterated multiple times, with each iteration using a 

different fold as the validation set. Ultimately, the outcomes from each validation iteration are 

averaged to yield a more reliable and consistent evaluation of the model's overall performance 

[GeeksforGeeks, 2023b]. 

The accompanying diagram (Figure 2) illustrates a cross-validation technique combined with the 

data split method. 

 

 

Figure 2 Train/Test Split and Cross Validation, [Bronshtein, 2023] 

 

It helps estimate the performance of a machine learning model by providing a more reliable 

measure of its generalization ability. It allows for the evaluation of different models and 

hyperparameter settings, aiding in the selection of the best model for deployment. 

Cross-validation plays a pivotal role in addressing the issue of overfitting, which occurs when a 

model becomes too tailored to the training data and performs poorly when exposed to new and 

unseen data. Through the process of evaluating the model on multiple validation sets, cross-

validation provides a more precise assessment of the model's ability to generalize its learnings 

beyond the training data. In essence, it measures the model's ability to perform capably on 

novel, unseen data instances. 
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Various cross-validation techniques can be employed, including k-fold cross-validation, leave-

one-out cross-validation, and stratified cross-validation. The choice of which technique to 

employ hinges upon factors such as the dataset's size and characteristics, as well as the demands 

of the modeling task. 

Figure 3 provides a visual depiction of the general concept of Cross-validation. 

 

 

Figure 3 Cross-validation, [Scikit-learn, 2023b] 

 

4.7.1. K-Fold Cross Validation 

 

In this method, the dataset gets divided into k sections or segments. The model undergoes 

training using k-1 sections, leaving one section for evaluation as the test set. This sequence is 

reiterated k times, with a unique partition designated as the validation set in each iteration. The 

outcomes from these repeated iterations are aggregated to gauge the model's performance. For 

a more comprehensive grasp of this cross-validation method, please refer to Figure 4, which 

provides a visual representation of this technique. 
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Figure 4 K-fold Cross-Validation, [Ranjan, 2021] 

 

4.7.2. Leave-One-Out Cross Validation (LOOCV) 

 

In this approach, the training of the model involves utilizing the entire dataset apart from one 

specific instance, which is reserved for testing purposes. This iterative procedure is applied to 

every individual instance within the dataset. The Leave-One-Out Cross-Validation (LOOCV) 

technique offers the advantage of leveraging all available data points for training; nevertheless, 

it may entail significant computational costs, particularly when dealing with extensive datasets. 

For a visual representation of the LOOCV methodology, please consult Figure 5. 

 

 

Figure 5 Leave-One-Out Cross-Validation, [Chaturvedi, 2023] 
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4.7.3. Stratified Cross Validation 

 

Stratified Cross Validation is a method employed to ensure that each fold maintains a balanced 

representation of target classes, with approximately equal proportions as the complete dataset. 

This strategy is commonly utilized in classification assignments, particularly when confronted 

with imbalanced datasets, wherein one category is less frequently represented in comparison 

to the others. The core concept behind Stratified Cross-Validation is to guarantee that each fold 

remains a faithful reflection of the entire dataset by preserving the class distribution. This 

practice aids in obtaining more accurate estimates of both bias and variance [Dekanovsky, 

2021]. 

 

4.7.4. Monte Carlo Cross Validation 

 

Monte Carlo Cross-Validation, sometimes known as Monte Carlo resampling, stands as a 

valuable method for evaluating the performance of machine learning models. It proves 

particularly beneficial in situations with constrained data availability, where the objective is to 

maximize its utility [Cerqueira, 2022].  

Unlike the traditional k-fold cross-validation method, where the data is divided into k distinct, 

non-overlapping folds for repeated model training and testing, Monte Carlo Cross-Validation 

involves random data partitioning into training and testing sets, performed multiple times. Each 

of these partitions is termed an iteration, and the model's performance is subsequently 

averaged across all iterations. 

One of the notable advantages of Monte Carlo Cross-Validation is its capacity to provide a more 

robust evaluation of the model's performance, especially in scenarios featuring limited data or 

imbalanced datasets. Nevertheless, It is important to note that this approach can impose higher 

computational demands due to its typically larger number of iterations [Hu, 2023]. 
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5. Performance Evaluation Metrics 

 

In the forthcoming chapter, we will illustrate why the mean misclassification error is an 

inadequate performance measure because of the challenging characteristics of the fraud 

detection task, marked by its cost sensitivity and skewed class distribution. To exemplify this 

point, consider a transaction dataset containing only 0.1% of fraudulent transactions. Even a 

basic dummy model that labels all transactions as legitimate achieved an impressive accuracy of 

0.99. This phenomenon is widely acknowledged within the realm of fraud detection, prompting 

the incorporation of alternative evaluation measures. These alternative performance metrics 

encompass indicators like recall, specificity, precision, the F1 score, AUC (Area Under the Curve) 

of the ROC (Receiver Operating Characteristics) curve (also referred to as AUROC - Area Under 

the Receiver Operating Characteristics), and Average Precision (AP) [Tharwat, 2020]. In the 

subsequent sections, we will undertake a comprehensive analysis of these metrics, elucidating 

their respective strengths and weaknesses. While these metrics play a crucial role in assessing 

the efficacy of fraud detection systems, it is important to note that there exists no unanimous 

consensus regarding the preferred evaluation metric. 

Metrics such as recall, specificity, precision, and F1 score, often referred to as threshold-based 

metrics, possess notable limitations owing to their reliance on a decision threshold. Determining 

this threshold in practical scenarios is challenging and heavily influenced by business-specific 

constraints. These metrics are frequently supplemented by AUC ROC and, more recently, 

Average Precision (AP). AUC ROC and AP aim to provide a holistic assessment of performance 

across all conceivable decision thresholds, earning them the designation of threshold-free 

metrics. Presently, the AUC ROC is the prevailing metric for appraising fraud detection accuracy 

[Pozzolo, 2015]. However, recent research has underscored its shortcomings in the context of 

highly imbalanced problems, such as fraud detection [Muschelli, 2019], advocating the use of 

the precision-recall curve and AP metric as preferable alternatives [Saito & Rehmsmeier, 2015]. 

 

5.1. Threshold-based metrics 

 

Threshold-based metrics are a group of performance measures that depend on the choice of a 

discrimination threshold in binary classification problems. The most common threshold-based 

metrics are Recall (Sensitivity), Specificity, Precision, and F1 Score [Kanika, 2021]. 
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5.1.1. Confusion Matrix 

 

A confusion matrix serves as a tool for summarizing the performance of a classification 

algorithm. It offers a detailed perspective on the classifier's accuracy, presenting both correct 

and incorrect predictions categorized by class. In essence, it not only sheds light on the 

classifier's mistakes but also elucidates the nature of these errors [Brownlee, 2016].  

A confusion matrix consists of four elements for binary classification problems [GeeksforGeeks, 

2023c]. 

• True Positives (TP): These correspond to instances where the model accurately identifies 

the positive class—i.e., when the actual class is positive, and the model predicts it as 

positive. 

 

• True Negatives (TN): These instances arise when the model correctly predicts the 

negative class—meaning the actual class is negative, and the model correctly predicts it 

as negative. 

• False Positives (FP) or Type I Error: These scenarios arise when the model erroneously 

predicts the positive class, specifically when the actual class is negative, but the model 

predicts it as positive. 

• False Negatives (FN) or Type II Error: These cases occur when the model incorrectly 

predicts the negative class, that is, when the actual class is positive, but the model 

predicts it as negative. 

The confusion matrix size is nXn for multiclass classification problems, where n is the number of 

classes [GeeksforGeeks, 2023c]. 

Using these four values, several performance metrics were calculated. 

Accuracy: (TP + TN) / (TP + TN + FP + FN) 

Precision: TP / (TP + FP) 

Recall (or Sensitivity): TP / (TP + FN) 

F1 Score: 2 * (Precision * Recall) / (Precision + Recall) 

Specificity: TN/(TN+FP) 
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The confusion matrix offers a more comprehensive view of the model's performance than 

accuracy alone, as it can reveal whether the model is biased towards a particular class or 

whether it is difficult to distinguish between classes [Brownlee, 2016]. 

For a better understanding of the process, consult Figure 6, where a confusion matrix is 

represented. 

 

Figure 6 Confusion Matrix, [nbshare, 2023] 

 

5.1.2. Mean Misclassification Error 

 

The mean misclassification error, commonly known as the misclassification rate, serves as a 

crucial metric in the field of machine learning. It plays a pivotal role in quantifying the frequency 

with which a model incorrectly categorizes instances. This metric is computed by dividing the 

number of erroneous predictions by the total count of predictions [Zach, 2022]. 

To express it mathematically: 

Misclassification Rate = Number of Incorrect Predictions / Total Number of Predictions 

The misclassification rate possesses a range spanning from 0 to 1. When it reaches 0, it signifies 

that the model has made no misclassifications, while a value of 1 indicates that all predictions 

are erroneous. Therefore, it is highly desirable to achieve a lower misclassification rate as it 

corresponds to a higher accuracy level. 
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In the context of a binary classification problem, you can calculate the misclassification rate 

using the confusion matrix as follows: 

Misclassification Rate = (False Positives + False Negatives) / (True Positives + True Negatives + 

False Positives + False Negatives) 

It is important to keep in mind that while the misclassification rate provides a broad measure of 

model performance, it does not distinguish between various types of errors, such as false 

positives and false negatives. Consequently, it may not be the most suitable metric for datasets 

with imbalances or applications where different types of errors have varying associated costs 

[Brownlee, 2020b]. 

 

5.1.3. Cost Matrix and Weighted Loss 

 

A cost matrix, alternatively referred to as a confusion matrix or error matrix, serves as a 

structured representation used for assessing the effectiveness of an algorithm, often one 

employed in supervised learning. In this matrix, each row corresponds to the instances assigned 

to a predicted class, while each column pertains to the instances belonging to an actual class 

[Jain, 2018]. 

In the context of binary classification, a cost matrix typically takes the form of a 2 × 2 table, 

providing a means to quantify the expenses or penalties associated with correctly identifying 

true positives, incorrectly labeling false positives, accurately identifying true negatives, and 

erroneously classifying false negatives [Brownlee, 2020b]. 
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Figure 7 Cost-Sensitive Cost-Matrix, [Bahnsen, 2016] 

 

To delve further into the concept introduced in Figure 7 concerning the cost-sensitive cost-

matrix, the abbreviations used are listed below. 

CTN: True Negatives - denoting instances that are negative and correctly classified as such. 

CFN: False Negatives – indicating instances that are positive but erroneously classified as 

negative. 

CFP: False Positives - representing instances that are negative but inaccurately categorized as 

positive. 

CTP: True Positives - signifying instances that are positive and accurately classified as positive. 

Weighted loss, conversely, refers to the practice of assigning distinct weights or costs to various 

types of classification errors. For instance, in a medical diagnostic scenario, the cost of a false 

negative (failing to detect a disease) might outweigh that of a false positive (diagnosing a healthy 

patient as having the disease). Consequently, a higher cost could be ascribed to false negatives 

compared to false positives. 

The overall cost of misclassification can be calculated as the sum of the costs associated with 

false negatives and false positives, each multiplied by their respective costs: 

Total Cost = C(0,1) * False Negatives + C(1,0) * False Positives 

The objective is to minimize the total cost in the context of cost-sensitive learning. 

In machine learning, cost-sensitive learning techniques are employed to address imbalanced 

classification challenges, where the costs associated with different types of misclassification 
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errors vary. The cost matrix is instrumental in defining these costs and adapting the learning 

algorithm accordingly [Brownlee, 2020b]. 

 

5.2. Threshold-free metrics 

 

These evaluation metrics analyze the classifier's effectiveness across a spectrum of thresholds, 

offering a more holistic assessment of the model's performance. Among the commonly used 

threshold-independent metrics are the Area Under the Receiver Operating Characteristic (AUC 

ROC) curve and the Average Precision (AP) [Leung, 2023]. 

 

5.2.1. Receiver Operating Characteristic (ROC) 

 

The Receiver Operating Characteristic (ROC) curve is a widely employed visual aid in the domains 

of machine learning and statistics for evaluating the effectiveness of binary classification models. 

To create this curve, one maps the True Positive Rate (TPR), synonymous with sensitivity or 

recall, against the False Positive Rate (FPR), recognized as 1-specificity, while modifying the 

threshold parameters [Google, 2022]. 

In the ROC curve representation: 

The Y-axis corresponds to the True Positive Rate (TPR), denoting the fraction of actual positive 

instances, such as individuals with a specific condition, correctly identified as positive by the 

model. 

The X-axis represents the False Positive Rate (FPR), indicating the proportion of true negative 

instances, like healthy individuals, mistakenly classified as positive by the model [Google, 2022]. 

The ROC curve illustrates a trade-off relationship between sensitivity (TPR) and specificity (1 - 

FPR). As the model's discrimination threshold decreases to classify more instances as positive, 

both the count of true positives and false positives increases, impacting TPR and FPR [Pozzolo, 

2015]. 

In a perfect scenario, an impeccable classifier would display an ROC curve that intersects the 

upper-left corner of the graph, indicating a sensitivity of 100% (meaning it has no false negatives) 

and a specificity of 100% (meaning it has no false positives). The Area under the ROC curve 
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(AUC), also referred to as the Area Under the Receiver Operating Characteristics (AUROC), 

quantifies the model's ability to differentiate between positive and negative classes. An AUC 

score of 1.0 represents flawless classification, while an AUC of 0.5 suggests a model that lacks 

classification capability, like random guessing [Glen, 2020]. 

To provide a clearer picture of the process, Figure 8 illustrates the AUC ROC curve concept and 

makes it clearer. 

 

 

Figure 8 AUC ROC Curve, [GeeksforGeeks, 2023b] 

 

5.2.2. Precision-Recall Curve 

 

The Precision-Recall Curve functions as a visual depiction illustrating how well a binary classifier 

system performs when its discrimination threshold is adjusted. This curve is constructed using 

two key parameters, namely Precision and Recall. 

Precision serves as an indicator of the relevance of results and is computed as the quotient of 

true positives (TP) and the sum of true positives and false positives (FP). It can be interpreted as 

the probability that a positive prediction made by the model is indeed correct [The scikit-yb 

developers, 2019]. 
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The concept of Recall, sometimes referred to as sensitivity or the true positive rate, assesses the 

classifier's comprehensiveness and its capacity to correctly detect all positive instances. This 

measurement is determined as the proportion of true positives to the total number of true 

positives and false negatives (FN). It provides insight into the likelihood of the model accurately 

recognizing a positive instance within the class [The scikit-yb developers, 2019]. 

The Precision-Recall curve provides a clear visual representation of the balance between 

Precision and Recall as threshold values change. When the area under this curve is substantial, 

it indicates a strong performance in both precision and recall. High precision corresponds to a 

minimal false positive rate, while high recall indicates a minimal false negative rate [Brownlee, 

2018]. 

Average precision (AP) serves as a concise metric, offering a consolidated evaluation by 

calculating the weighted average of precision values obtained at various thresholds. This 

calculation considers the rise in recall relative to the previous threshold as the weighting 

criterion. In essence, AP delivers a solitary numeric indicator that encapsulates the overall 

performance of the Precision-Recall curve [Scikit-learn, 2023]. 

To make the concept more tangible, Figure 9 illustrates the precision-recall curve. 

 

 

Figure 9 Precision-Recall Curve, [Steen, 2021] 
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6. Review of Existing Literature 

 

In this chapter, a thorough and in-depth exploration of the vast landscape of credit card fraud 

detection is presented, with a primary emphasis on the pivotal role played by machine learning 

techniques. This encompasses not only a comprehensive survey of the existing literature, but 

also a meticulous dissection of the multifaceted facets that constitute the realm of credit card 

fraud detection. 

One cannot begin to grasp the significance of machine learning in this context without 

acknowledging the profound challenges that beset the domain of credit card fraud detection. 

These challenges, as illuminated by our extensive literature review, are multifarious and often 

involve sophisticated and rapidly evolving tactics employed by fraudulent entities. Recognizing 

these intricacies is paramount as it underscores the urgency of employing advanced and 

adaptive methodologies to tackle the ever-shifting landscape of financial fraud. 

Amidst this intricate backdrop, this review elucidates the pivotal importance of harnessing 

machine learning algorithms as a potent tool to bolster the efficacy and precision of fraud 

detection mechanisms. This study provides a compelling rationale for integrating machine 

learning into credit card fraud detection systems. It emphasizes the ability of these algorithms 

to analyze vast datasets, discern intricate patterns, and adapt in real time, thereby staying one 

step ahead of fraudulent activities. Furthermore, exploration underscores how machine learning 

approaches are indispensable for addressing the inherent imbalance in fraudulent detection 

datasets, where legitimate transactions vastly outnumber fraudulent transactions. 

Delving deeper into this chapter, the focus moves towards a detailed exposition of Machine and 

Deep Learning credit card fraud detection algorithms. These algorithmic gems have emerged as 

the vanguard for contemporary fraud detection, boasting remarkable capabilities in identifying 

and mitigating fraudulent transactions. This chapter discusses the intricate architecture and 

function of these algorithms, elucidating their strengths and limitations in the context of credit 

card fraud detection. 
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6.1. Ileberi et al. - A machine learning based credit card fraud detection using 

the GA algorithm for feature selection 

 

Ileberi et al. (2022) conducted a study in which they utilized the Genetic Algorithm (GA) as a 

machine learning approach for feature selection in the realm of credit card fraud detection. The 

GA algorithm, drawing inspiration from natural selection and genetics, serves as a robust 

optimization method designed to identify and retain the most pertinent attributes within a 

dataset, while eliminating those that are unimportant or duplicative.  

Credit card fraud detection presents several challenges. First, traditional rule-based systems are 

limited in their ability to adapt and learn from new patterns emerging in fraudulent activities. 

Second, credit card transactions generate vast amounts of data every day, making it difficult for 

human analysts to manually review each transaction for potential fraud indicators. Therefore, 

an automated approach that can accurately detect fraudulent transactions is necessary. 

The importance of feature selection cannot be overstated when it comes to enhancing the 

effectiveness and efficiency of credit card fraud detection systems. By selecting relevant 

features while eliminating irrelevant ones from the dataset, we can reduce computational 

complexity and improve model performance. 

Prior investigations have delved into a range of machine learning methods aimed at detecting 

credit card fraud. These methods encompass supervised classification approaches like logistic 

regression, decision trees, support vector machines (SVM), neural networks, and ensemble 

strategies such as random forests. 

Although these methods have demonstrated potential in effectively identifying fraudulent 

transactions, they frequently encounter challenges such as elevated rates of false positives or 

computational inefficiency, primarily attributed to the extensive array of attributes found within 

credit card transaction datasets. In this investigation, we aim to address these limitations by 

integrating the Genetic Algorithm (GA) for feature selection specifically in the context of credit 

card fraud detection. 

The approach used for feature selection in credit card fraud detection utilizes a genetic 

algorithm (GA), which is a methodology that is guided by the principles of population-driven 

optimization and is inspired by the mechanisms of natural evolution. The process commences 

by establishing an initial population comprising potential solutions, each of which represents 

distinct feature subsets extracted from the dataset. These solutions undergo reproduction, 
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mutation, and crossover operations to generate new offspring populations that inherit favorable 

characteristics from their parents. 

Candidate solutions undergo assessment using appropriate evaluation metrics like accuracy, 

precision, recall, and the F1-score. Those solutions demonstrating superior performance are 

chosen as "parents" for the subsequent generation, while those exhibiting subpar performance 

are removed from consideration. This iterative procedure persists until convergence is achieved 

or a predefined termination condition is satisfied. 

In the study authored by Ileberi and colleagues, the primary focus revolves around the 

application of machine learning techniques in the realm of credit card fraud detection. 

Specifically, their approach integrates the Genetic Algorithm (GA) for the purpose of feature 

selection. Genetic algorithms, commonly referred to as GAs, represent a widely employed 

method within the field of machine learning for feature selection. The essence of GAs lies in 

their ability to simulate natural selection and evolutionary processes. This is accomplished by 

iteratively selecting and combining features based on their fitness, ultimately working towards 

enhancing the overall performance of the model. 

The significance of feature selection in the development of effective credit card fraud detection 

models cannot be overstated. It entails the crucial task of singling out the most pertinent 

attributes or features from the available dataset, attributes that play a substantial role in 

distinguishing fraudulent transactions from legitimate ones. 

In their research, the scholars undertook a comparative analysis, pitting their GA-based 

approach against several state-of-the-art methods such as Decision Tree (DT), Random Forest 

(RF), Logistic Regression (LR), Artificial Neural Network (ANN), and Naive Bayes (NB) for fraud 

detection. These experiments were conducted using an authentic credit card transaction dataset 

sourced from an undisclosed financial institution. The research utilized a dataset comprising 

credit card transactions carried out by European cardholders during a two-day period in 

September 2013. Notably, this dataset exhibited a significant class imbalance issue, with a mere 

0.172% of the transactions classified as fraudulent. To address this class imbalance challenge, 

the Synthetic Minority Oversampling Technique (SMOTE) was employed. 

Ileberi et al.'s paper aims to enhance existing fraud detection systems by improving their 

accuracy and reducing false positive rates. 

This study makes a significant contribution by incorporating a Genetic Algorithm as a tool for 

feature selection. Genetic Algorithms are heuristic search methods inspired by natural selection. 
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In this specific application, we employ the GA algorithm to identify the most pertinent and 

meaningful features within credit card transaction data. The importance of feature selection lies 

in its ability to decrease the dataset's dimensionality, potentially enhancing the efficacy of 

machine learning models and diminishing computational overhead. 

In the preprocessing phase, several techniques were employed to enhance data quality and 

mitigate potential sources of bias or noise that might impact model performance. This included 

the application of normalization and the removal of outliers. 

Furthermore, to bolster the reliability of the study's findings, cross-validation methodologies 

were seamlessly integrated. This approach involved the division of the dataset into multiple 

subsets, serving the dual purpose of training and testing. The overarching aim was to prevent 

overfitting issues while guaranteeing that each subset encompassed a balanced representation 

of both fraudulent and legitimate transactions. 

The assessment of model performance encompassed the utilization of a range of performance 

metrics, such as accuracy, precision-recall curves, F1-score, and the area under the receiver 

operating characteristic curve (AUC-ROC). These metrics in combination enabled a thorough 

evaluation of the performance of various models across diverse evaluation criteria. 

Furthermore, to gauge the effectiveness of the proposed approach, direct comparisons were 

drawn between the results obtained from the GA algorithm and those achieved by traditional 

machine learning algorithms. 

The experimental results showcased the outstanding performance of the GA-based models. For 

instance, GA-RF achieved an exceptional overall accuracy of 99.98%, while other classifiers, such 

as GA-DT, also demonstrated remarkable accuracy, reaching 99.92%. These results clearly 

surpassed the performance of existing methods. 

Notably, GA-DT exhibited an impressive AUC of 1, accompanied by a perfect accuracy of 100%. 

Similarly, the GA-ANN model achieved a high AUC of 0.94 and a flawless accuracy rate of 100%. 

These findings underscore the effectiveness of the GA algorithm in enhancing model 

performance, as evidenced by both accuracy and AUC metrics. 

The findings of this study are significant, as they demonstrate the potential of machine learning 

algorithms, specifically employing genetic algorithms for feature selection, in enhancing credit 

card fraud detection systems. By leveraging big data and machine learning techniques such as 

the GA algorithm, financial institutions can better protect their customers from fraudulent 

activities while minimizing false positives and preserving a seamless user experience. 
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However, it is important to note that this study has certain limitations. The experiments were 

conducted on a specific dataset with its own characteristics, which might limit generalizability 

to other datasets or scenarios. Additionally, further research is needed to explore additional 

evaluation metrics and compare against state-of-the-art techniques in credit card fraud 

detection. 

In conclusion, credit card fraud detection using machine learning algorithms is crucial in today's 

digital society. This study has shown that employing the GA algorithm for feature selection 

enhances model performance by selecting relevant features while discarding irrelevant ones. By 

accurately identifying fraudulent activities, financial institutions can protect their customers' 

assets and reduce monetary losses due to fraudulent transactions. Future research should focus 

on validating these findings on different datasets and exploring advanced evaluation metrics for 

more comprehensive analysis. 

 

6.2. Carcillo et al. - Combining unsupervised and supervised learning in credit 

card fraud detection 

 

Credit card fraud is a prevalent issue in the financial industry, posing substantial challenges for 

both individuals and organizations. The rapid advancement of technology has made it easier for 

criminals to engage in fraudulent activities, necessitating the development of robust fraud 

detection techniques. In their paper titled "Combining Unsupervised and Supervised Learning 

Approaches for Credit Card Fraud Detection," Carcillo, Le Borgne, Caelen, Kessaci, Oblé, and 

Bontempi (2021) propose a novel method that combines unsupervised and supervised learning 

algorithms to enhance credit card fraud detection accuracy. 

Unsupervised learning constitutes a subset of machine learning, focusing on the training of 

models using unlabeled datasets to reveal underlying patterns and deviations within the data. 

This methodology does not depend on pre-established categories or tags; instead, it endeavors 

to recognize atypical behaviors or transactions through statistical analysis. In the context of 

credit card fraud detection, unsupervised learning techniques prove valuable in identifying 

outliers or irregular patterns that might signal potential fraudulent actions. 

Several unsupervised learning algorithms are commonly employed in fraud detection tasks. One 

such algorithm is clustering, which groups similar data points together based on their 
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characteristics. Anomalies or outliers can then be identified as instances that do not belong to 

any cluster or fall into sparsely populated clusters. 

Another popular technique is outlier detection using density estimation methods such as Local 

Outlier Factor (LOF) or Isolation Forests (IF). These methods calculate the density of each data 

point compared to its neighbors and flag those with low densities as potential anomalous 

instances. 

Supervised learning entails training models using labeled data where each instance belongs to a 

specific class or category. In credit card fraud detection, this typically involves creating a 

classifier model trained on historical transaction records tagged as either genuine or fraudulent. 

Numerous supervised learning techniques have found application in the realm of fraud 

detection. Logistic regression, Support Vector Machines (SVM), and Random Forests are 

frequently utilized for their proficiency in managing imbalanced datasets and achieving precise 

instance classification. 

While there is potential in the application of unsupervised learning methods for the 

identification of credit card fraud, these approaches are confronted by various constraints and 

shortcomings. One significant challenge is the high number of false positives generated during 

anomaly detection. Anomalies detected by unsupervised algorithms may not always correspond 

to actual fraudulent transactions, leading to unnecessary investigations and inconvenience for 

customers. 

Additionally, unsupervised learning approaches struggle with adapting to evolving fraud 

patterns. As criminals continuously devise new tactics, these algorithms may fail to detect 

emerging fraudulent activities that do not match previously identified patterns. 

The authors begin by acknowledging the importance of credit card fraud detection, emphasizing 

the need for effective and adaptive methods in an evolving landscape of fraudulent activities. 

Traditional rule-based systems often fall short in capturing complex patterns of fraud, making 

machine learning an attractive alternative. 

Carcillo et al. (2021) proposed a novel approach that merges elements of unsupervised and 

supervised learning methodologies. This inventive strategy harnesses the advantages of both 

approaches to improve the precision and effectiveness of credit card fraud detection systems. 

The unsupervised component, notably Isolation Forest and Local Outlier Factor (LOF) algorithms, 

is responsible for identifying potentially fraudulent transactions, while the supervised 

component, utilizing Gradient Boosting Machines (GBM), further refines the predictions. 
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The incorporation of unsupervised learning techniques is a notable feature of this research. 

Isolation Forest and LOF are well-suited for anomaly detection in credit card transactions. 

Isolation Forest isolates anomalies efficiently by creating binary partitions in the data, while LOF 

measures the local density deviation of a data point compared to its neighbors. These algorithms 

excel in identifying outliers, which are often indicative of fraudulent transactions. 

The supervised learning component, employing GBM, refines the initial unsupervised results. 

GBM is a powerful ensemble learning technique known for its ability to handle imbalanced 

datasets and provide accurate predictions. By integrating supervised learning into the process, 

the authors aim to reduce false positives and enhance the overall detection accuracy. 

Their method utilizes an Autoencoder neural network for anomaly detection, which reconstructs 

input data while minimizing reconstruction error. Instances with high reconstruction errors are 

flagged as potential outliers or anomalies. These instances are subsequently passed on to a 

classifier trained on labeled data for classification into genuine or fraudulent transactions. 

To evaluate the effectiveness of their proposed method, Carcillo et al. conducted experiments 

using publicly available credit card transaction datasets from real-world scenarios. They 

compared the performance of their combined approach against traditional unsupervised and 

supervised methods. 

The authors utilized evaluation metrics such as precision, recall, F1 score, receiver operating 

characteristic (ROC) curve analysis, and area under the curve (AUC) values to assess the accuracy 

of their model predictions across different thresholds. 

Carcillo et al.'s experiments demonstrated that their combined approach outperformed both 

unsupervised and supervised methods individually, achieving higher precision, recall, and F1 

scores. The Autoencoder-based anomaly detection step effectively reduced false positives 

compared to standalone unsupervised algorithms. 

The authors observed that the combined approach was particularly effective in detecting 

previously unseen fraudulent patterns by leveraging the generalization capabilities of the 

supervised classifier model. This adaptability is crucial in mitigating emerging fraud threats. 

In comparison to existing methods for credit card fraud detection, Carcillo et al.'s approach 

offers several advantages. By combining unsupervised and supervised techniques, their method 

addresses the limitations faced by each individual method, resulting in improved accuracy, and 

reduced false positives. 
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Furthermore, their two-step process allows for a more focused investigation of potential 

anomalies flagged by the unsupervised algorithm, saving time and resources in manual review 

processes. 

In conclusion, Carcillo et al. (2021) make a significant contribution to the field of credit card fraud 

detection with their innovative hybrid approach. By seamlessly integrating unsupervised and 

supervised learning techniques, they show promise in enhancing the accuracy and efficiency of 

fraud detection systems. Their research highlights the significance of capitalizing on the 

strengths of various machine learning paradigms to tackle complex real-world problems 

effectively. Future research may explore further refinements and extensions of this hybrid 

methodology while continuing to adapt to the evolving landscape of credit card fraud. 

 

6.3. Ghosh et al. – Comparative analysis of applications of machine learning in 

credit card fraud detection 

 

The realm of financial security places significant emphasis on the identification and prevention 

of credit card fraud, constituting a pivotal domain for research and practical utilization. In light 

of ongoing technological advancements, credit card fraud detection has evolved into a more 

intricate field. This evolution has underscored the importance of devising and applying advanced 

methodologies for fraud detection. Notably, machine learning techniques have risen to 

prominence as valuable instruments for bolstering the precision and efficacy of detection 

systems. These techniques have demonstrated their effectiveness in scrutinizing substantial 

datasets and discerning discernible trends indicative of fraudulent activities. 

Prior research has demonstrated the importance of machine learning algorithms in addressing 

credit card fraud (Strelcenia & Prakoonwit, 2022). These algorithms leverage historical 

transaction data to train models that can detect anomalies or patterns indicative of fraudulent 

activity. By utilizing these algorithms, financial institutions can improve their ability to detect 

suspicious transactions accurately. 

Ghosh et al. (2023) open their paper by emphasizing the importance of credit card fraud 

detection, framing it as a critical challenge in the financial industry. They acknowledge the 

detrimental impact of fraudulent activities on both financial institutions and consumers, 

underlining the need for effective and adaptive detection methods. 
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The authors delve into the role of machine learning as a powerful approach to addressing credit 

card fraud. They recognize the limitations of rule-based systems and the potential of machine 

learning algorithms to capture intricate patterns of fraud. Ghosh et al. provide a valuable context 

by explaining why machine learning is well-suited for this task. 

A central focus of Ghosh et al.'s (2023) research is the comparative analysis of various machine 

learning algorithms and techniques in the context of credit card fraud detection. They 

systematically review and evaluate the performance of different methods, including supervised, 

unsupervised, and hybrid approaches. This comprehensive analysis sheds light on the strengths 

and weaknesses of each technique. 

In their research, Ghosh and colleagues introduced a novel approach aimed at enhancing the 

precision of credit card fraud detection while safeguarding data privacy. Their innovative 

strategy involves the utilization of a neural network (ANN) within the context of federated 

learning. This framework offers a viable resolution to the challenge of maintaining data 

confidentiality, particularly in sectors like banking and finance, where stringent regulations like 

the General Data Protection Regulation (GDPR) restrict the sharing of data on centralized 

servers. 

Ghosh et al. introduced a novel hybrid model that employs a two-tiered training process. 

Initially, real-time data is trained locally on edge devices. Subsequently, the resulting model is 

disseminated centrally to be utilized by various banks and research centers. This strategy 

significantly improves the precision of identifying fraudulent transactions while safeguarding the 

confidentiality of user data. 

The researchers employ various machine learning algorithms such as logistic regression, decision 

trees, random forests (RF), support vector machines (SVM), naive Bayes classifiers, k-nearest 

neighbors (k-NN), neural networks (ANN), gradient boosting machines (GBM), and XGBoost. 

These algorithms are trained on the dataset to develop models capable of identifying fraudulent 

transactions. 

Random Forest, as utilized in credit card fraud detection, has proven effective in predicting class 

of regression problems and performing well on limited datasets. However, its limitations 

become apparent in real-time scenarios where the algorithm's performance is slower, and it 

takes a longer time to make predictions. Furthermore, it lacks the capability of training large 

volumes of data effectively. 
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In contrast, the utilization of Artificial Neural Networks (ANNs) exhibits significant potential, 

primarily attributed to their capacity to handle extensive datasets and their decentralized 

memory architecture. ANNs have demonstrated effective performance when integrated with 

diverse functions and algorithms. 

The application of the Support Vector Machine (SVM) method involves the classification of 

consumer behavior into two categories: fraudulent or non-fraudulent transactions. SVM 

demonstrates high accuracy when applied to datasets with limited features. Nevertheless, its 

effectiveness diminishes in real-time scenarios, particularly when handling extensive datasets. 

They provide insights into how these techniques handle credit card transaction data and their 

respective strengths in mitigating false positives and negatives. 

The paper also explores the application of unsupervised learning techniques like clustering and 

anomaly detection in credit card fraud detection. The authors discuss the advantages of 

algorithms like k-means clustering and Isolation Forest in identifying irregularities within 

transaction data. 

Ghosh et al. (2023) recognize the potential of hybrid approaches that combine both supervised 

and unsupervised techniques to leverage the benefits of both paradigms. They investigate the 

performance of these hybrid models and their ability to enhance detection accuracy. 

To assess the efficacy of different machine learning methodologies, the researchers utilize a 

diverse set of performance measures, encompassing metrics like accuracy, precision, recall, F1-

score, and the area under the receiver operating characteristic curve (AUC-ROC). These 

evaluative tools facilitate a thorough examination of model performance and facilitate valuable 

comparisons. 

By comparing these metrics across multiple algorithms, Ghosh et al. can identify which 

techniques offer the highest level of fraud detection accuracy and efficiency. Their framework 

provides valuable knowledge into the strengths and weaknesses of various machine learning 

approaches for credit card fraud detection. 

The study conducted by Ghosh et al. offers noteworthy insights into the effectiveness of diverse 

machine learning algorithms when applied to the realm of credit card fraud detection. Their 

research outcomes reveal that specific algorithms consistently exhibit superior performance in 

metrics such as accuracy, precision, recall, and F1 score when compared to their counterparts. 
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For instance, neural networks demonstrate superior performance compared to other algorithms 

such as logistic regression or naive Bayes classifiers. This finding highlights the potential benefits 

of utilizing deep learning techniques when detecting fraudulent activities in credit card 

transactions. 

The results presented by Ghosh et al. provide valuable insights into applications of machine 

learning in credit card fraud detection (Ghosh et al., 2022). The superiority of neural networks 

suggests that more complex models with deeper layers can effectively capture intricate patterns 

indicative of fraudulent behavior. 

These findings align with previous research conducted in this area (Strelcenia & Prakoonwit, 

2022), emphasizing the importance of employing advanced machine learning techniques for 

accurate fraud detection. 

While Ghosh et al.'s study offers valuable contributions to understanding applications of 

machine learning in credit card fraud detection (Ghosh et al., 2022), some limitations and 

challenges should be acknowledged. The researchers may have encountered limitations in terms 

of the dataset used, potentially causing bias or incomplete representation of fraudulent 

transactions. Additionally, the chosen machine learning algorithms may not encompass all 

possible approaches, limiting the scope of their analysis. 

Based on the gaps identified by Ghosh et al.'s study (Ghosh et al., 2022), future research 

directions could focus on exploring more advanced deep learning architectures for credit card 

fraud detection. Additionally, incorporating ensemble methods that combine multiple machine 

learning algorithms could enhance overall model performance and further improve fraud 

detection accuracy. 

It is also recommended to address potential privacy concerns associated with utilizing personal 

transaction data for fraud detection purposes. Ensuring proper data anonymization techniques 

and complying with privacy regulations will be crucial in maintaining consumer trust while 

effectively detecting fraudulent activities. 

The research conducted by Ghosh et al. (2023) offers a valuable contribution to the field of credit 

card fraud detection. Their comparative analysis of machine learning applications provides 

insights into the strengths and weaknesses of different techniques, facilitating informed 

decisions for financial institutions and researchers. By highlighting the potential of various 

approaches and emphasizing the significance of machine learning in combating credit card 

fraud, this paper guides future efforts in enhancing detection systems. As the landscape of fraud 
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continues to evolve, ongoing research in this area remains crucial, and Ghosh et al.'s work 

provides a solid foundation for further exploration and refinement of machine learning-based 

fraud detection methodologies. 

In conclusion, credit card fraud detection is a pressing issue that necessitates effective solutions. 

Ghosh et al.'s comparative analysis of applications of machine learning in credit card fraud 

provides a comprehensive understanding of the effectiveness and limitations of different 

machine learning techniques. Their proposed hybrid solution, which combines the ANN method 

with a federated learning framework, shows promise in enhancing the accuracy of credit card 

fraud detection while ensuring data privacy. Their findings highlight the superiority of neural 

networks and emphasize the importance of employing advanced machine learning techniques 

to accurately detect fraudulent transactions. This research contributes to ongoing efforts aimed 

at improving credit card fraud prevention through innovative machine learning approaches. 

 

6.4. Mondal et al. - Handling Imbalanced Data for Credit Card Fraud Detection 

 

Identifying instances of credit card fraud stands as a vital responsibility within the contemporary 

digital landscape, characterized by the prevalence of online financial transactions. However, this 

task presents significant challenges due to the presence of imbalanced data. The problem of 

imbalanced data in fraud detection is a prevalent issue, as fraudulent transactions are typically 

much less frequent than genuine ones. Frequently, this disparity tends to result in a skewed 

focus of the predictive model on the more prevalent class (legitimate transactions), leading to 

inadequate detection of the less common class (fraudulent transactions). 

The study carried out by Mondal et al. (2021) addresses the challenge of fraud detection with a 

focus on managing imbalanced data. 

Imbalanced data is a common issue faced by researchers and practitioners when dealing with 

credit card fraud detection. The occurrence of imbalanced data can be attributed to several 

factors, such as the rarity of fraudulent activities compared to legitimate transactions and 

underreporting due to fear or inconvenience among victims. The implications of imbalanced 

data in credit card fraud detection are severe since traditional classification algorithms tend to 

favor the majority class, leading to inadequate identification and prediction of fraudulent 

transactions. 
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Several techniques have been proposed over the years to address the imbalance issue in credit 

card fraud detection. These techniques include oversampling, undersampling, and hybrid 

methods that combine both approaches. 

Oversampling involves replicating minority instances or generating synthetic ones using various 

algorithms like Synthetic Minority Over-sampling Technique (SMOTE). This technique helps 

balance out the distribution between minority and majority classes but may lead to overfitting 

or redundancy if not applied carefully. 

Undersampling, on the other hand, aims at reducing samples from the majority class by random 

selection or clustering methods like Tomek links or Edited Nearest Neighbor rule. While 

undersampling can effectively address imbalance issues, it runs the risk of losing important 

information present in majority class examples. 

Hybrid methods combine oversampling and undersampling techniques to create a balanced 

dataset. These methods aim to leverage the strengths of both approaches while minimizing their 

limitations. One example is the SMOTEENN algorithm, which first applies SMOTE to oversample 

the minority class and then utilizes ENN (Edited Nearest Neighbor) to remove noisy instances. 

These techniques can be specifically applied to credit card fraud detection by balancing the 

dataset before training machine learning models. This ensures that fraudulent transactions 

receive adequate representation during model training, leading to improved performance in 

detecting credit card fraud. 

When evaluating the performance of fraud detection models, several metrics are commonly 

used, including accuracy, precision, recall, and F1-score. Accuracy evaluates the general 

accuracy of a model's predictions, whereas precision assesses the fraction of accurately 

identified fraudulent transactions among all transactions predicted as fraudulent. Recall, 

alternatively referred to as sensitivity or true positive rate (TPR), gauges the model's ability to 

detect real fraudulent transactions within the entire set of actual fraudulent transactions within 

the dataset. The F1-score amalgamates precision and recall into a unified metric that achieves a 

balance between these two performance aspects. 

These evaluation metrics play a crucial role when dealing with imbalanced datasets since 

traditional accuracy measures may not provide an accurate picture due to skewed class 

distributions. Instead, focusing on specific metrics like recall or F1-score can give better insights 

into how well a model performs in identifying rare events such as credit card fraud. 
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Mondal et al.'s paper titled "Handling Imbalanced Data for Credit Card Fraud Detection" (2021) 

proposes an approach that tackles imbalanced data using modified focal loss within an XGBoost 

framework (Trisanto et al., 2021). The authors assert that the utilization of focal loss offers a 

solution to the challenges arising from class imbalance in machine learning. This method 

involves assigning greater importance, in terms of weight, to minority class samples that are 

misclassified during the training phase. The authors acknowledge the prevailing scenario in 

which a vast majority of transactions are legitimate, with a significantly smaller proportion being 

fraudulent. This imbalance presents a formidable obstacle for conventional machine learning 

algorithms, which typically exhibit a bias toward the majority class and encounter difficulties in 

identifying infrequent instances of fraud. 

The authors delve into the consequences of imbalanced data, emphasizing the potential for high 

false negative rates in fraud detection systems. False negatives are particularly problematic in 

this context, as they allow fraudulent activities to go undetected, leading to substantial financial 

losses. 

Mondal et al. (2021) review various techniques designed to address class imbalance, with a focus 

on resampling methods. They discuss oversampling of the minority class (fraudulent 

transactions) and undersampling of the majority class (legitimate transactions). The authors 

explore the benefits and drawbacks of these techniques in mitigating class imbalance. 

While the paper provides valuable insights into handling imbalanced data, it would be beneficial 

to see a comparison with other over-sampling techniques. Furthermore, the paper could also 

benefit from exploring the effect of varying the ratio of synthetic samples generated by SMOTE 

to further optimize the model performance. 

One notable component of their research involves investigating techniques for generating 

synthetic data, including the utilization of the Synthetic Minority Over-sampling Technique 

(SMOTE). The primary objective of these methods is to produce artificial instances of the 

underrepresented class in order to achieve dataset balance. The authors offer valuable insights 

into the impact of these approaches on enhancing model performance. 

Mondal et al. reported that utilizing both SMOTE and various machine learning algorithms led 

to a substantial enhancement in the effectiveness of fraud detection. Notably, the Random 

Forest algorithm exhibited superior performance across precision, recall, and F1-score metrics. 

This work contributes to the field by demonstrating a successful approach to handling 

imbalanced data in credit card fraud detection. By combining SMOTE with machine learning 
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algorithms, Mondal et al. have presented a model that can improve the detection of fraudulent 

transactions, thereby enhancing the security of credit card transactions. 

In their experimental setup, Mondal et al. used a publicly available credit card fraud dataset and 

compared the performance of their proposed approach with other techniques discussed earlier. 

They highlight the significance of various metrics such as precision, recall, F1-score, and the area 

under the receiver operating characteristic curve (AUC-ROC) for evaluating the efficacy of credit 

card fraud detection models. Their findings demonstrate that their methodology outperformed 

conventional XGBoost models that did not incorporate focal loss, showcasing superior 

performance in terms of recall, precision, and F1-score. 

While Mondal et al.'s approach shows promising results, it is important to consider its 

limitations. One potential drawback is that the modified focal loss technique may lead to longer 

training times due to higher computational requirements. Additionally, the effectiveness of this 

approach may vary depending on the specific characteristics of different datasets or types of 

fraud patterns. 

When comparing Mondal et al.'s approach with other relevant research papers addressing 

imbalanced data in credit card fraud detection (Trisanto et al., 2021), it becomes evident that 

there are multiple strategies available for handling imbalance issues in this domain. Each 

approach has its strengths and weaknesses, which need to be carefully considered based on the 

specific context and dataset characteristics. 

The central contribution of the paper lies in its exploration of methods to handle class imbalance 

in credit card fraud detection. By systematically reviewing and evaluating these techniques, 

Mondal et al. offer valuable guidance for practitioners and researchers in the field. Their work 

serves as a practical resource for improving the accuracy of fraud detection systems. 

Mondal et al.'s (2021) research provides a significant contribution to the field of credit card fraud 

detection by addressing the critical issue of imbalanced data. Their comprehensive review and 

evaluation of sampling techniques and synthetic data generation methods offer insights into the 

strategies available to improve detection accuracy in the face of class imbalance. As credit card 

fraud continues to evolve, handling imbalanced data remains a key challenge, and Mondal et 

al.'s work equips researchers and practitioners with valuable tools to address this challenge 

effectively. Their findings have implications for the development of more robust and accurate 

fraud detection systems, ultimately benefiting both financial institutions and consumers. 
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In conclusion, imbalanced data poses significant challenges in credit card fraud detection. 

Several strategies have emerged to tackle this problem, encompassing oversampling, 

undersampling, and combinations of both. The assessment of model performance on 

imbalanced datasets heavily relies on evaluation metrics like accuracy, precision, recall, and the 

F1-score. Mondal et al.'s paper provides a valuable contribution to the field of credit card fraud 

detection by addressing the significant issue of imbalanced data. The proposed model, which 

combines SMOTE utilizing modified focal loss within an XGBoost framework shows promise in 

handling imbalance data for credit card fraud detection but also has limitations that need further 

investigation. 
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7. Conclusions 

 

In conclusion, this thesis has undertaken a comprehensive exploration of the vast and dynamic 

field of credit card fraud detection through an extensive literature review. By delving into the 

key themes, methodologies, and technologies that have shaped the landscape of credit card 

fraud detection, this study has provided valuable insights into the evolution of this critical 

domain. 

This thesis began by establishing the significance of credit card fraud detection in the current 

digital age, emphasizing the increasing need for robust and adaptive detection systems. It then 

navigated through a rich body of literature, highlighting the evolution of fraud detection 

techniques from traditional rule-based systems to more advanced machine learning and 

artificial intelligence-based approaches. Throughout this journey, the thesis showcased the 

strengths and limitations of various methodologies, including GA-RF, GA-DT, GA-ANN, and the 

use of Generative Adversarial Networks (GANs) with Modified Focal Loss and Random Forest as 

the base machine learning algorithm. 

While these methods have shown promise in improving credit card fraud detection, they are not 

without limitations. For instance, GA-ANN, while offering a data-driven and adaptive approach, 

can be computationally expensive and require extensive parameter tuning. GANs with Modified 

Focal Loss and Random Forest integration, on the other hand, may face challenges in 

interpretability and require substantial computational resources. 

Additionally, the research identified the definition of various outlier scores with consideration 

of different levels of granularity and their integration into supervised approaches. These outlier 

scores have provided new perspectives on anomaly detection, yet their effectiveness in real-

world scenarios and scalability may require further investigation. 

Furthermore, exploring Artificial Neural Networks (ANNs) in the context of federated learning is 

a promising avenue for improving privacy in credit card fraud detection. However, it is important 

to address the challenges related to model aggregation, communication efficiency, and security 

in federated learning settings. 

This literature review also underscores the importance of collaboration between academia and 

industry to stay ahead in the cat-and-mouse game of fraud detection. It highlights the necessity 

of adapting to new fraud schemes and techniques, as fraudsters continually evolve their tactics. 



72 
 

In summary, this thesis offers a comprehensive overview of the credit card fraud detection 

landscape, from its historical roots to its current state and future prospects. It is hoped that this 

research will serve as a valuable resource for scholars, practitioners, and policymakers in the 

field of financial security, guiding them towards more effective and innovative approaches to 

combatting credit card fraud in an increasingly digital world. Because the ever-evolving nature 

of fraud presents new challenges and opportunities, this literature review lays the foundation 

for future research and advancements in the domain of credit card fraud detection, considering 

the latest developments and their associated limitations. 
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