
IEEE SENSORS JOURNAL, VOL. XX, NO. XX, XXXX 2023 1

Demystifying Usability of Open Source
Computational Offloading Simulators:

Performance Evaluation Campaign
Daria Alekseeva, Student Member, IEEE , Aleksandr Ometov, Senior Member, IEEE ,

Elena Simona Lohan, Senior Member, IEEE

Edge

Cloud

Mobile devices and
sensors

Abstract— Along with analysis and practical implementation, simulations play a key role in

wireless networks and computational offloading research for several reasons. First, the simu-

lations provide the ability to easily obtain the data for a complex system’s model evaluation.

Secondly, simulated data provides a controlled environment for experimentation, allowing

models and algorithms to be tested for robustness and identifying potential limitations before

deploying them in real-world applications. Choosing the most appropriate tool for simulation

might be challenging and depends on several factors, such as the main purpose, complexity of

data, researcher skills, community support, and available budget. As of the time of the present

analysis, several system-level open-source tools for modeling computational offloading also

cover the systems’ communications side, such as CloudSim, CloudSim Plus, IoTSim-Edge,

EdgeCloudSim, iFogSim2, PureEdgeSim, and YAFS. This work presents an evaluation of those

based on the unique features and performance results of intensive workload- and delay-tolerant

scenarios: XR with an extremely high data rate and workload; remote monitoring with a low

data rate with moderate delays and workload requirements; and data streaming as a general

human traffic with a relatively high bit rate but moderate workload. The work concludes that

CloudSim provides a reliable environment for virtualization on the host resources, while YAFS
shows minimal hardware usage, while IoTSim-Edge, PureEdgeSim, and EdgeCloudSim have

fewer implemented features.

Index Terms— Modeling, Cloud Computing, Edge Computing, Fog Computing, Simulation

I. INTRODUCTION

The rapid growth of network services have forced the creation
of new methods to offload the computations and data. The
architecture of the Internet of Things (IoT)-driven scenarios,
e.g., Smart Home, Health Monitoring, etc., consists of the
entities to sink and process data [1], [2]. The idea to utilize the
resources of remote computers improved info-communication
technologies, allowing one to store and process large amounts
of data without wasting own machine’s resources.

Historically, Mobile Cloud Computing (MCC) implies the
computational offloading from mobile devices to Cloud servers
via the communication link [3]. This paradigm allows to use
an enormous computing and storage capacity. Even though
Datacenters high performance, they also consume a lot of
power, which can cause global problems. The distance to the
nearest Datacenter greatly impacts the latency. As of February
2023, there are only 24 Data Centers in Finland, where 18

The work of the First author is supported by the Doctoral training
network in ELectronics, Telecommunications and Automation (DELTA),
Pekka Ahonen Fund, and doctoral grant of the Information Technology
and Communications Science Faculty at Tampere University.

All authors are with the Faculty of Information Technology and Com-
munication Sciences, Tampere University, Korkeakoulunkatu 6, Tam-
pere, Finland, FI-33720 (e-mail: name.surname@tuni.fi).

D. Alekseeva is the corresponding author: daria.alekseeva@tuni.fi.

are located in the capital region [4]. The connection time
from northern Finland to the nearest Cloud server might be
counted by several seconds. In contrast, some delay-sensitive
applications would require orders of magnitude less [5].

Shifting the offloading to the Edge of the network aims to
assist in resolving the latency issue. An edge is a server near
the gateways that can process data with lower communication
latency than in the cloud because of its proximity to the user.
Like Edge, Fog computing is another paradigm that process
big tasks not far from the user with minimum delay [6].
Nowadays, there are more than six emerging paradigms for
optimal processing data in remote servers, such as Mobile
Edge, Cloud Computing, Fog computing, etc., that have their
own advantages according to the particular use case and its
requirements [7]. The growing attention to the computing
paradigms correlates with the growing number of emerging
toolkits for computing paradigms simulations, since actual
implementations of testbeds appears to be close to impossible.
There is a wide range of tools for validating, generating,
transmitting and offloading data, as shown in Figure 1. The
left pillar represents the nature of the environment, the central
part of figure shows the tool’s name, while the right part
represents the research topics for which the tool was used. In
2022, Matlab became the most popular tool among researchers

This article has been accepted for publication in IEEE Sensors Journal. This is the author's version which has not been fully edited and 
content may change prior to final publication. Citation information: DOI 10.1109/JSEN.2023.3310669

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/



2 IEEE SENSORS JOURNAL, VOL. XX, NO. XX, XXXX 2023

Apache Hadoop
Arduino

C/C++based

CML-WSN

CPLEX

Cellular communication

Cloud computing

CloudSim

CloudSimPlus

Computingplatform
Cooja

DeepLearning Toolbox

Edge computing

EdgeCloudSim

Experimental setup

Fog computing

Fog-basedquantumcomputing

FogBus

Image transmission

IntegratedDevelopmentEnvironment (IDE)

Intelligent TransportationSystem(ITS)

Internetof Things(IoT)

Internetof Vehicles(IoV)

Java-based

Keras

LoRa
MAENA

MATLAB

MOSEL-2

MachineLearning(ML)

MachineLearning(ML) framework

Mininet

Mobile adhocnetwork(MANET)

Mobile cloudcomputing(MCC)

Modulation recognition

Multi-access edgecomputing

Non-orthogonalmultipleaccess(NOMA)

OAI platform

OMNET++

OMNeT++
OPNET

PyTorch

Python-based

RaspberryPi

Reconfigurableintelligentsurface(RIS)

Resourceallocation

SUMO

SaVi
SatelliteToolKit (STK)

Satellite-Based ComputingNetworks

Security
Sensors testbed

SimuLTE

Simulator

SmartCity

Software-definednetwork(SDN)

Taskoffloading

TensorFlow

UnmannedAerial Vehicle (UAV)

VR headset

VehicularadhocNetworks(VANET)

Veins

Virtualreality(VR)

Weka 3.8

WirelessMeshNetworks(WMN)

Wireless SensorNetworks(WSN)

Wireless communication

Wolfram

iFogSim

ns-2, ns-3

prototypeplatform

Environment Tool ResearchTopic

Fig. 1: The most used environments in the telecommunication, computer science, and engineering area as of 2023.

applying it from wireless connections and IoT to offload
scenarios due to its mathematical nature and significant base of
toolboxes. Python-based Integrated Development Environment
(IDE) gained the most popularity for modeling over the years
because of its implementation simplicity and high availability
of resources. Network Simulator 3 is a widely used network
simulator that is keeping popularity over the years. Recently
developed tools are gaining popularity in various research
fields, e.g., satellite networks and connected vehicles.

The practical reason for simulations is the allowance to test
the robustness of new models and algorithms without using
real-world data, which might be challenging to obtain, and to
identify potential issues and limitations before deploying them
in real-world applications. Choosing the right tool for data
simulation depends on several factors. The first and principal
is the purpose of the simulation and what kind of data you
need to obtain. Tools might have unique features suitable for
specific scenarios only. Another factor is the user’s skills and
his/her preferences in the programming language, Operating
System (OS) or Graphical User Interface (GUI). Last but not
least is the amount of dedicated budget for purchasing a tool.

The main contribution of this work is the evaluation of the
existing open-source simulators used for modeling Cloud, Fog,
and Edge computing scenarios from the systems’ communi-
cations side based on implemented and unique features and
their performance. We analyzed the simulators used in the
computational offloading, Mobile Edge Computing (MEC),
and MCC. The work includes the evaluation of the follow-
ing tools: CloudSim, CloudSim Plus, IoTSim-Edge, Edge-
CloudSim, iFogSim2, PureEdgeSim, and YAFS.

Notably, not all tools illustrated in the Figure 1 under
computing/offloading research topics were included in the
comparison. MATLAB is a matrix programming language
suited for analytic model validation by conducting extensive
simulations. It has applicability in any engineering research
and does not specialize in computing simulations, therefore
it was not included in this overview. OMNeT++ Discrete
Event Simulator (OMNeT++) and Network Simulator 3 (ns-3)
are also widely used network simulators among researchers.
ns-3 is not suitable for IoT simulation at the edge level
since it does not support the scheduling and application
composition features, while OMNeT++ does not support edge
communication protocols. Therefore they were not included
either. GreenCloud is a packet-level simulation tool, which can
measure the energy consumption of Datacenter components.
This simulator only focuses on the calculation of energy
consumption to ensure energy-aware placement [8].

The rest of the paper is organized as follows. Section II
contains the introduction to the computing paradigms, the
review of related works, the list of criteria, and the simulators’
descriptions. Section III presents their performance compari-
son. The paper ends with a discussion and recommendations.

II. FEATURES EVALUATION

This section introduces the Fog—Edge—Cloud computing
paradigms based on [7], and delves deeper into the literature
review of works that compare tools. Then, it presents the
developed set of metrics and the simulator’s description.

This article has been accepted for publication in IEEE Sensors Journal. This is the author's version which has not been fully edited and 
content may change prior to final publication. Citation information: DOI 10.1109/JSEN.2023.3310669

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/



ALEKSEEVA et al.: DEMYSTIFYING USABILITY OF OPEN SOURCE COMPUTATIONAL OFFLOADING SIMULATORS: PERFORMANCE EVALUATION CAMPAIGN3

A. Background on Computational Continuum

In 2011, the National Institute of Standards and Technol-
ogy, USA (NIST), published an official paper providing a
comprehensive definition of Cloud computing. According to
NIST, Cloud computing is characterized as ”a model for
enabling ubiquitous, convenient, on-demand network access
to a shared pool of configurable computing resources (e.g.,
networks, servers, storage, applications, and services) that can
be rapidly provisioned and released with minimal management
effort or service provider interaction” [9]. Cloud Computing
is a powerful data center comprising several interconnected
nodes through high-speed channels. The Cloud architecture
consists of two hierarchical levels: the end-user and the data
center (user-Cloud). A stable connection to the Internet is a
key requirement for Cloud service providers. Their primary
goal is to allocate the appropriate node to complete the user’s
task computation while ensuring data security.

The Cloud architecture’s physical layer includes servers, net-
work equipment, and storage devices. The lowest layer of the
Cloud consists of physical infrastructure drivers and cloud
drivers, facilitating communication with hardware and other
external clouds. The core of the Cloud OS encompasses a
virtual machine manager, network manager, storage manager,
and other relevant components [10]. The top layer of the OS
features various management tools, such as administrator tools,
service managers, schedulers, and cloud interfaces. Clients
connect to the server through this Cloud interface.

The initial computing paradigm aimed to forward data to the
Cloud for analysis. Additionally, Cloud computing has en-
abled Big Data analysis, accessibility from multiple platforms,
and fast computational speed due to its high computational
power. However, the proliferation of wearables, sensors, and
IoT devices has posed more stringent requirements in terms
of mobility support, geo-distribution, location-awareness, and
latency. Consequently, new paradigms like Edge and Fog com-
puting have emerged, aiming to reduce the distance between
end devices and the central server.

Fog Computing is a distributed computing infrastructure that
brings computational capabilities closer to the user while
retaining Cloud-like features. This approach allows for data
storage and processing with lower latency, better location-
awareness, and higher Quality of Service (QoS) for real-time
applications [11]. On the other hand, Edge Computing locates
the data center at the actual network edge providing computing
offloading, data storage, and data processing services [12].
These paradigms share similarities but disagree regarding
processing location and types of used hardware [13]. Fog and
Edge computing aims to bring data processing nodes closer
to the user, but the key difference lies in the role of the first
node in network. Edge devices are positioned as the first node,
while Fog nodes’ proximity depends on the availability of
servers. The hardware in Edge computing may include lower-
end devices, whereas Fog computing relies solely on server-
based hardware. Edge computing provides computation on the
end network servers, while Fog computing processes data at
the local-area network level.

In summary, Cloud Computing was precisely defined by NIST
in 2011 as a model for ubiquitous access to configurable
computing resources. Since then, computing paradigms have
evolved, leading to the emergence of Fog and Edge computing.
These new paradigms focus on reducing latency and proximity
between users and servers, see Figure 2, presenting new op-
portunities and challenges for Information and Communication
Technologies (ICT), especially in the medical domain [7].

B. Related works

A comparative evaluation of simulators is necessary to demon-
strate the superiority of a particular tool in a specific scenario
becoming a subject of many works.

Aljabry et al. introduced a brief survey on on network simula-
tors for Vehicular ad hoc Network (VANET) [14]. The authors
reviewed many popular simulators but provided no simulation
results or performance evaluation. Kang et al. presented a
comprehensive survey on network simulators for Airborne ad
hoc Network (AANET) or Flying ad hoc Network (FANET)
and Underwater Sensor Network (UWSN) [15]. Patel et al.
presented a comparative study on network simulators [16].
The conclusion showed that OMNeT++ and Network Sim-
ulator 2 (ns-2) were the most appropriate network simulators
for large-scale network simulators. The promising tool ns-3
was gaining popularity as an easy-to-use tool for simulating
wireless networks. Anyway, the work did not provide any
performance comparison between the simulators. The same
comment applies to work by Toor et al., where they presented
a survey on open source network simulators, e.g., ns-2, ns-3,
J-Sim, OMNeT++, OPNET, QualNet and MATLAB [17].
Bakni et al. proposed an evaluation approach to describe the
network simulator’s behavior, capacity, and performance [18].
The authors applied the proposed approach for the Cisco
Packet Trace network simulator and extended their work by
applying the evaluation approach to several additional Wireless
Sensor Network (WSN) modeling tools [19].

Sundani et al. provided a comparison on WSN simulators
based on key features, limitations, scalability, Central Pro-
cessing Unit (CPU), and memory usage on more than ten

Network
Edge

Fog

Internet connection
a)

b)

c)

Cloud

Datacenter

Edge servers

Fig. 2: Most common task offloading models a) Cloud Com-
puting b) Edge Computing c) Fog Computing.

This article has been accepted for publication in IEEE Sensors Journal. This is the author's version which has not been fully edited and 
content may change prior to final publication. Citation information: DOI 10.1109/JSEN.2023.3310669

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/



4 IEEE SENSORS JOURNAL, VOL. XX, NO. XX, XXXX 2023

Edge servers / gateways Edge servers / gateways

Cloud layer

Edge layer

Mobile devices

IoT layer

PureEdgeSim

YAFS, iFogSim2

IoTSim-Edge

EdgeCloudSim

Proxy server

Cloud Datacenter

Virtual infrastructure

VM
OS

VM
OS

VM
OS

VM
OS

Virtual infrastructure

VM
OS

VM
OS

VM
OS

VM
OS

CloudSim, CloudSim Plus

Fig. 3: The diversity of simulation tools for offloading scenarios and their applicability according to different abstraction levels.

simulators [20]. Weingärtner et al. proposed methodology
for performance evaluation, provides the comparison between
network simulators [21]. However, the information in the
work is partly outdated already. Sarkar et al. provided the
comparison based upon the deployment mode, type, supported
protocols, and network impairments [22]. A strong contri-
bution of this work was the presented comparison and the
provided recommendations.

Simulators specialized in computational offloading have
gained in popularity recently and started to develop rapidly.
Kunde et al. worked on theoretical and practical comparison
of Fog Computing simulators, e.g., iFogSim, MyFogSim, and
YAFS [23], showing the impact on simulation run time and
other parameters. Fakhfakh et al. analyzed the most popular
simulators for Cloud Computing and compared them based
on the supported modules (energy, mobility, etc.) [24]. Qu et
al. presented a new simulation platform for Edge Computing
with distributed learning and blockchain models. The authors
introduce a comprehensive literature review on the existing
Cloud and Edge simulators, focusing on the lack of the
federated learning concept implementation. Unfortunately, the
this simulator is not available in open source [25].

C. Set of criteria and methodology

There is no standardized method to evaluate the simulator,
but the proposed set of criteria exists in the literature [18].
Following the authors’ example, we present our criteria for
the simulator’s evaluation. At any rate, the purpose of the
simulation might differ from work to work. That’s why we
leave it to the readers to decide which tool is the best for
them, based on the preferred programming language, OS, and
the research aims.
1) Open Access: This criterion shows the code available in
Open Access, which means that it is online and free of charge.
2) Programming language: This characteristic highlights the
programming language used for writing scripts and modules.

3) User interface: Simulating tools can have a GUI to provide
a user-friendly environment.
4) Documentation availability: This criterion represents the
availability of the related documentation: manuals, tutorials,
videos, presentations, setup instructions, and so on.
5) Ease of setup: This characteristic shows the experience of
the tool’s initial configuration. It could vary from easy to hard.
6) Ease of use: This characteristic shows the experience of
the tool’s usage. It could vary from easy to hard.
7) Scalability: This characteristic shows how scalable the tool
is. The number of nodes in IoT scenarios could be more than a
hundred, so it is critical to answering whether the tool allows
scaling easily on such a number. We assume that the simulator
is scalable if it allows to connect up to 100 end devices.
8) Supported features: This characteristic represents the tool’s
key features in the implemented modules, e.g., mobility,
orchestration, or networking.

The following two subsections introduce the investigated simu-
lators. Since simulators work in the different abstraction levels,
see Figure 3, the tools were divided into two groups and
introduced in separate subsections. The first subsection empha-
sizes the tools for simulating virtual cloud environments. They
show the service availability, energy consumption, allocation
of tasks, etc. The first group includes the following tools:
CloudSim, EdgeCloudSim, IoTSim-Edge, and CloudSim Plus.
The second subsection introduces the second group of tools
that work with the network architecture. It describes the system
from user to processing server. They show task response time,
which combines server processing time and delivery time and
provides the choice of data processing location. This group
includes iFogSim2, PureEdgeSim, and YAFS. Table I provides
a comparable analysis of mentioned tools.

D. Simulators focused on computing infrastructure and

application services

1) CloudSim: The simulator was developed by the Cloud
Computing and Distributed Systems (CLOUDS) Laboratory at

This article has been accepted for publication in IEEE Sensors Journal. This is the author's version which has not been fully edited and 
content may change prior to final publication. Citation information: DOI 10.1109/JSEN.2023.3310669

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/



ALEKSEEVA et al.: DEMYSTIFYING USABILITY OF OPEN SOURCE COMPUTATIONAL OFFLOADING SIMULATORS: PERFORMANCE EVALUATION CAMPAIGN5

TABLE I: Main simulators characteristics

iFogSim2 PureEdgeSim CloudSim CloudSim Plus IoTSim-Edge EdgeCloudSim YAFS
Open access X X X X X X X
Prog. Lang. Java Java Java Java Java Java Python
GUI X X X
Documentation

availability

tutorials are in the
open access

Available
documentation

and papers

Official website
data

Community
support and

documentation

Poor
documentation

Tutorials and
community

support

Up-to-date
documentation
and guidelines

Ease of setup Easy: Follows
official guidelines

Easy: Maven build Easy: Follows
official guidelines

Moderate: Poor
guidelines, Maven
build and compile

Difficult: Manual
dependencies, no

error handling

Easy: Shell script
setup

Moderate: Manual
packages setup

Ease of use Moderate: Each
parameter needs
to be defined, no

description

Easy: Need for
specific

configurations; no
comments

Moderate: Script
contains VM and

Cloudlet
parameters,

documentation

Easy:
Straightforward in

presence of
dependencies &

files

Moderate:
Overloaded

configuration file;
possible to add

new classes

Easy: Separated
configuration files

Easy: Intelligible
script and

straightforward
structure

Supported features:

Scale medium large large large large large large
Mobility X X X X X
Orchestration X X X X
Networking X X X X X X X
Virtualization X X X
Containerization X X
Energy X X X X X
Microservices X X
Tracking events X X

OS – Operating System RAM – Random Access Memory SSD – Solid State Drive UL, DL – Uplink, Downlink N/A – not available

TABLE II: Qualitative application requirements comparison

Application

parameters
XR

* Monitoring Streaming Ref.
Qualitative legend ranging

Bitrate [26], [27], [28] < 1Mbps 1 � 100Mbps 0.1 � 1Gbps > 1Gbps

Payload [26], [28] < 0.4kB 0.4 � 1kB 1 � 1.5kB > 1.5kB

Latency [26], [27], [28], [29] < 50ms 50 � 100ms 0.1 � 0.15s > 0.15s

* XR is an umbrella term for all real-and-virtual combined environments and human-machine interactions, including AR, VR, and MR [28].

the University of Melbourne in 2009. The primary idea of this
project was to develop a toolkit for modeling and simulating
recently emerged Cloud Computing infrastructure and their
services [30]. CloudSim is an open-source simulator assisted
with documentation and installation guides.

The simulation environment contains the following entities: a
host, i.e., simulated hardware, VM, Datacenter, Cloudlets, i.e.,
tasks, services from the user, and Broker. The entity Broker
is responsible for negotiating between the user (Cloudlet) and
the cloud provider (Datacenter) and allocating the resources
there. The output results show the status of the Cloudlet
proceeding, start time and end time, processing time, and
id of the datacenter and the VM where the cloudlet was
sent. Cloudlet is defined by the following properties: length,
file size, and output size. VM, the real cloud-based virtual
machines, defined by Million Instructions per Second (MIPS),
image size (Mb), Random-Access Memory (RAM) (Mb),
bandwidth, and several CPU.

CloudSim supports virtualization, i.e., the creation of multiple
VM on the physical server (host). Furthermore, it supports
VM migration, which means that it allows simulation of
the movements from one physical host to another. In real
practice, this feature will enable us to adaptively allocate
the workload on the servers for better system performance
or to maintain the failed server without user interruption.

Among the key features, CloudSim supports Cloud Datacenter
Network topology, which includes the wireless and physical
interconnection of Datacenter components, such as storage,
computing entities, servers, switches, etc.
2) CloudSim Plus: CloudSim Plus is a new Java-based frame-
work for modeling a Cloud Computing environment first
released in 2016. Based on CloudSim but working as an
independent project, CloudSim Plus improved its performance
and simplified its usage by reducing the amount of duplicated
code and re-structuring the modules and packages [31]. The
tool has a related project, CloudSim Plus is an open-source
simulator and lots of available documentation on its webpage,
White paper, and discussions on the Google forum. The online
documentation is one of the most detailed explanations of the
implemented features.

The CloudSim Plus project is similar to CloudSim but has
improved structure, reducing the complexity of the scripts.
The simulator consists of the physical layer, which includes
servers, the logical layer, i.e., the Data Center network topol-
ogy, and the virtualization layer, used for creating VM. The
modules support the VM migration and Vertical/Horizontal
VM scaling. It uses the same entities – hosts, Datacenter,
Cloudlets, and Broker, responsible for communication between
the user and Datacenter.
3) EdgeCloudSim: It is an open-source tool for Edge-specific
modeling based on CloudSim and developed in 2017. The main

This article has been accepted for publication in IEEE Sensors Journal. This is the author's version which has not been fully edited and 
content may change prior to final publication. Citation information: DOI 10.1109/JSEN.2023.3310669

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/



6 IEEE SENSORS JOURNAL, VOL. XX, NO. XX, XXXX 2023

uniqueness of this project is that it considers both computa-
tional and networking resources compare to its predecessor
CloudSim. The project’s scripts can be run on Linux-based
systems, including Mac OS via the preferable IDE for com-
pilation [32].

The tool inherited CloudSim module for VM allocation in
the Datacenter and other computing features. Nevertheless,
EdgeCloudSim includes unique features for Edge Computing
architecture described further. The edge orchestrator module
is responsible for making critical decisions on allocating or
terminating the VM on the available resources and offloading
tasks to the cloud or edge server to increase the overall
system performance. The networking module is responsible for
Local Area Network (LAN) or Wireless Local Area Network
(WLAN) communication delay for both directions Uplink
(UL) and Downlink (DL). EdgeCloudSim supports mobility, so
the devices’ locations and, consequently, the delay are updated
according to this module.

Running the simulation requires defining the application, edge
device, and configuration parameters. To avoid the overloaded
script, the mentioned parameters are stored in three sepa-
rate files named respectively. The Application file contains
information about application data size, battery level, usage
distribution on the devices, active and idle duration, etc. The
configuration file sets the cloud and simulation parameters,
such as the number of mobile devices, orchestration policy,
and architecture. It is possible to set the computing capabilities
to mobile devices or use them as sensors without a processing
unit. The Edge device file includes edge datacenter parameters.
It defines the number and location of the Edge server, comput-
ing and storage capabilities, and the number of VMs deployed
on it. The number of edge servers is scaled – the tool allows
linking more than 10 servers and deploying multiple VMs on
each of them. Still, the specific of such structure needs to
define each server separately, thus, not user-friendly.

EdgeCloudSim benefits in investigating the Quality of Expe-
rience (QoE) for the Edge-based computing scenarios. The
supported modules simulate scalable scenarios and provide
information on package delivery in the dedicated server.
4) IoTSim-Edge: This tool was developed in 2019 and is based
on CloudSim project. It is focused on IoT-driven offloading
scenarios such as planning the capacity of Road-Side Unit
(RSU) for the Intelligent transportation system or sensor
deployment in the smart building scenario [8].

The archive file is available in GitHub and complemented with
the User Manual. Unfortunately, the file was not updated for
a long time, and no recent file is available. The project built
under Maven contains the pom.xml, but the old versions and
missing dependencies could fail the Maven build process.

The IotSim-Edge simulator consists of the following entities
Edgelet, i.e. a generated task from the IoT sensor; MicroEle-
ments (MEL), i.e. an abstract component of the application
that represents the services in the form of microservice; edge
devices, i.e. a laptop, smartphone or other devices that host
MEL; Edge Datacenter, i.e. the core edge infrastructure; and

EdgeBroker, which allocate users’ requests with accordance
to their requirements. After setting the required parameters
(MIPS, RAM, battery capacity, location, etc.), the simulator
allocates MEL for Edgelets and outputs their execution time.
The simulator supports such features as energy consumption,
mobility, and networking.

E. Simulators focused on network architecture and

resource allocation

1) YAFS: It is a Simpy-based highly configurable simulator
designed on a Complex Network theory for analysis of Fog-
driven computing scenarios developed in 2019. It allows the
creation of a scalable, dynamic network and simulates the
request in it [33].

The installation guide and project documentation are available
in the open source on the official webpage. Installation is
roughly simple. If it fails to find the matching “yafs”, the
distribution must upload manually to the Python home file.
Up-to-date documentation, user guides, referred papers, and
solutions to solve Python errors are available online.

Execution requires defining the network and application. Net-
work topology is modeled as a graph that contains computing
capacity and bandwidth information for each node and data
rate and propagation information for each link. The commu-
nication time, i.e., latency is calculated as the ratio between
message size and set bandwidth plus the propagation speed.
The service time is the time needs to process the packet.

The network architecture is presented as an orgraph with the
forest of trees topology. A node represents a Cloud server
connected to the proxy server linked to a set of gateways. Each
gateway could be linked to the defined set of mobile devices
including sensors and actuators. There is no separate entity
for them; sensors and actuators are mobile devices with no
computing capacity that generate or consume data and connect
to the main mobile device. The application is set as a group
of modules that can generate or process a packet. Modules
could be deployed on the Cloud server or in the group of
edge servers, depending on the orchestration policy.

One of the advantages of YAFS is a highly configurable and
flexible architecture that allows running a scalable network
in terms of the number of nodes and modules. It supports
virtualization, microservices, and other features easily defined
as logical relationships by the customized configurations.
2) iFogSim2: It is a tool to simulate the Fog computing
environment developed upon the CloudSim and measures
the impact of resource management techniques in network
congestion, latency, cost, and energy consumption [34]. It was
updated in 2021 and inherited features from the old version
(iFogSim). The rising number of IoT large-scale scenarios
turns iFogSim2 into a high-potential tool for simulating the
fog-driven use cases and deploying them with minimum
costs. It is an open-source simulator available from GitHub.
There are guidelines available on the GitHub page. Also, the
CloudSim tutorial page contains several guidance of iFogSim2
Project Structure for beginners as it is one of CloudSim’s
related projects.

This article has been accepted for publication in IEEE Sensors Journal. This is the author's version which has not been fully edited and 
content may change prior to final publication. Citation information: DOI 10.1109/JSEN.2023.3310669

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/



ALEKSEEVA et al.: DEMYSTIFYING USABILITY OF OPEN SOURCE COMPUTATIONAL OFFLOADING SIMULATORS: PERFORMANCE EVALUATION CAMPAIGN7

The simulation entities consist of FogDevice, representing
the actual Fog computing resource; Fog Broker, responsible
for the task distribution; and Sensor class, i.e., cameras and
temperature sensors. The output file shows the execution time
of the proposed topology and energy consumption on each
node (device, server). The topology allows the creation of
nodes in different layers.

The iFogSim2 shortcomings are partly solved in the exten-
sion MobFogSim, which primary purpose is to simulate the
mobility in the IoT gateways and Cloud Datacenters. In turn,
MobFogSim limits the scope of creating clusters in Edge/Fog
computing environments and lacks documentation.
3) PureEdgeSim: It is an open-source simulator for study-
ing dynamic and highly heterogeneous networks based on
CloudSim Plus. It was developed in 2018 for deploying
Edge, Fog, and Cloud scenarios. It allows the connection
of thousand of devices and supports their mobility with the
location manager.

Many research papers available in open source. as well as the
official GitHub pages containing the setup instructions and
step-by-step video with examples. The main simulation file
takes the parameters of cloud and edge servers and mobile de-
vices stored in the .hml files. Simulation configuration consists
of simulation time, devices count, orchestration algorithms,
and other parameters that could be changed according to the
scenario. It allows for collecting the energy-consumption, task
execution time, and task success rate.

III. SIMULATORS PERFORMANCE COMPARISON

The performance evaluation is a numerical characteristic for
comparison of the scripts. The script performance highly
depends on the programming language, used libraries, project
architecture, and other parameters. Even though all projects are
presented in the same table in this work, important to mention
that the evaluated tools differ in the initial aim and their
structure, and it is better to take in mind the difference between
the following two groups that were already introduced earlier
– tools that are major for virtualization or task allocation in
the servers/datacenter, and those that are focused on packet’s
arriving time and describe the network architecture. The
first group includes CloudSim, IoTSim-Edge, EdgeCloudSim,
while the second – PureEdgeSim, YAFS. CloudSim Plus and
iFogSim2 was not included to the performance evaluation due
to compilation problem.

A. Test scenarios

As one of the motivations, emerging resource-hungry ap-
plications should meet rigorous communication requirements
set by the standardization bodies. In contrast to traditional
light usecases, e.g., remote sensing or monitoring, 3GPP TR
26.928 “Extended Reality (XR) in 5G” considers the media
delivery bitrate > 1 Gbps to provide a sufficient media
quality and low latency, mentioning the need for potential
standardization [28], see Table II. The end-to-end latency
for the XR environment, referred to as immersive motion-to-
photon, including rendering and decoding, states around 20

ms or less [29] for a smooth user experience. Nonetheless,
the online video stream, 3GPP TR 26.925 “Typical traffic
characteristics of media services on 3GPP networks”, refers
to the 150 ms max packet delay budget that the user will
barely notice. Today, the recommended bitrate for Full HD
video lies between 3 and 12 Mbps, while for the 4K UHD,
5� 25 Mbps [27], which is smaller than the XR.

Following the standardized recommendations, we further focus
on the three scenarios taken as examples of intensive workload
and delay-tolerant scenarios to make the test scenarios closer
to real-life implementation. They also include the standards
of different modalities, static or moving, based if the user is
moving or not while delivering/accepting the service.

XR scenario corresponding to remote Augmented Reality
(AR) Assisted Telesurgery, is a used example of extremely
high data rate with intensive workload and static modality, de-
tailed in Table III, based on the standartisation summary [35].
AR applications process the video data generated by the
laparoscope, or 3D ultrasound probe, equipped with a small
camera, and process it on a server (private server, Edge,
or Cloud), according to 3GPP. The laparoscope and robotic
medical instruments (trocars, graspers, scissors) are inserted
through tiny incisions in the patient’s body. Since all organs
function during the operation, the video is transmitted to the
console monitor with ultra-small delays to prevent healthy
tissues’ perforation. The telesurgery scenario assumes that the
patient and the operating doctor are physically located on
different continents operating remotly. In that case, the IEEE
standard defines the performance requirements for multicast
video traffic for medical applications via Public Land Mobile
Network (PLMN) [36]. 3D ultrasound probe augments the
main anatomical image with the 3D volume data, producing
a data stream above 1 Gbps. The AR image from a 3D ultra-
sound probe requires a precise robotic instrument’s location
in the patient’s body. The images are exchanged in a total of
240 images per second over cellular communication.

The Monitoring scenario numerically corresponds to cardiac
telemetry, i.e., a low data rate with moderate delays and
workload requirements, and moving modality, detailed in
Table III. Wireless wearable telemetry device includes body
sensors, e.g., ECG, Respiratory Rate, and SpO2, that provides
24/7 monitoring of the patient’s health. Due to the on-body
way of wearing, the device must be small and energy-efficient.
Cardiac telemetry devices requires to keep devices alive at
least a month without re-charging. From the performance side,
it requires a highly reliable, always-on connection with the
hospital to process the patient analytics and raise the alarm
in an emergency. The number of devices varies on the patient
location: up to 1000 wearables per km2 in the hospital area
or about 10 devices per km2 in suburban areas [26].

The Streaming scenario is an example of general human traffic
with a relatively fast bit rate but moderate payload, detailed in
Table III. The application aims to provide access to the user’s
favorite online show in Full HD to watch from a mobile device.
User location could be static or moving with the user, e.g., if
the user is sitting in the train, the speed could reach up to

This article has been accepted for publication in IEEE Sensors Journal. This is the author's version which has not been fully edited and 
content may change prior to final publication. Citation information: DOI 10.1109/JSEN.2023.3310669

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/



8 IEEE SENSORS JOURNAL, VOL. XX, NO. XX, XXXX 2023

TABLE III: QoS metrics composed with [26], [36], [37]

Use case XR Scenario Monitoring Streaming

Latency < 10 ms < 100 ms < 150 ms
Availability > 99.9999 % > 99.9999 % > 99.99 %
Packet size 1500 B < 1000 B 500 B
Bit rate 4 Gbps 0.5 Mbps 9 Mbps
User speed Stationary < 500 km/h
Battery Unlimited Energy-constrained
Scale 1 device > 1000 devices 500 devices

TABLE IV: Simulation parameters for scenarios in Table II.

Parameter XR Scenario Monitoring

Scenario

Streaming

Scenario

G
en

er
al Duration 4 hours 1 month 2 hours

Task rate 10 fps 1000 sampl.ps 60 fps
Bit rate 4 Gbps 500 kbps 9 Mbps
Application 33000 MIPS 4 MIPS 5000 MIPS

G
ro

up
1

Host:
Amount 10 machines 10 machines 10 machines
RAM 16, 000 MB 16, 000 MB 16, 000 MB
Storage 100, 000 MB 100, 000 MB 100, 000 MB
CPU 4 cores 4 cores 4 cores
Processor’s speed 1000 MIPS 1000 MIPS 1000 MIPS
Bandwidth 10, 000 Mbps 10, 000 Mbps 10, 000 Mbps

VM:
RAM 512 MB 512 MB 512 MB
Storage 10, 000 MB 10, 000 MB 10, 000 MB
CPU 1 core 1 core 1 core
Bandwidth 1000 Mbps 1000 Mbps 1000 Mbps
Processor’s speed 1000 MIPS 1000 MIPS 1000 MIPS

Cloudlet:
Length 2000 MIPS 10 MIPS 100 MIPS
UL data size 1500 kB 1 kB 500 kB
DL data size 500 kB 1 kB 500 kB

G
ro

up
2

Cloud server:
RAM 16, 000 MB 16, 000 MB 16, 000 MB
Processor’s speed 100, 000

MIPS
100, 000
MIPS

100, 000
MIPS

Bandwidth 12 Gbps 12 Gbps 12 Gbps
Proxy server:

RAM 20 MB 20 MB 20 MB
Processor’s speed 10, 000 MIPS 10, 000 MIPS 10, 000 MIPS
Bandwidth 100 Mbps 5 Mbps 10 Mbps

Edge server:
RAM 20 MB 20 MB 20 MB
Processor’s speed 10, 000 MIPS 10, 000 MIPS 10, 000 MIPS
Bandwidth 100 Mbps 5 Mbps 10 Mbps

Mobile Device:
RAM 0.02 MB 0.02 MB 0.02 MB
Processor’s speed 100 MIPS 100 MIPS 100 MIPS
Bandwidth 100 Mbps 5 Mbps 10 Mbps
Devices number 1 1000 100

500 km/h. The packet size is 500 B, and the end-to-end delay
requirement is set as 150 ms [37]. The number of devices
varies up to 500 active devices in city areas.

To sum up, all three scenarios differ regarding payload and
required bit rate. The intense XR Scenario, i.e., AR Assisted
Surgery, requires transmissions of the uncompressed captured
images 256x256x256 voxels 24 bits 10 fps that is 4 Gbps.
Monitoring Scenario, i.e., Cardiac Monitoring, measures data
with a frequency of up to 1000 samples per second, thus,
requiring up to 500 kbps bit rate. Streaming Scenario, i.e.,
Online Video Streaming, transmits compressed images from/to
the user device. Full HD video resolution 1920x1080 24 bits
60 fps and H.264 gives up to 9 Mbps. The recommended
performance metrics of the use cases are presented in Table III.

B. Overall system model

The system contains 80 sensors/actuators implemented in the
IoT device for the AR Telesurgery scenario and 1000 sensors
as wearables devices for Cardic Monitoring. The devices are
wirelessly connected to the gateways, which can offload data
to the Edge or Cloud Datacenter over a 5G network. The
Datacenter allocates resources for VM or MEL to process
Cloudlet or Edgelet, which refers to the application workload.

Assume that the channel bandwidth for mobile devices over
cellular network is 1 MHz where the system bandwidth of
20 MHz and 20 users are simultaneously connected [38]. The
transformation of channel bandwidth (Hz) to bit rate (bps)
depends on many factors, including the chosen technology,
coding rate, modulation, etc. Let us say that the average 20
Mhz is approximately 100 Mbps; consequently, 1 Mhz is 5
Mbps. The proxy server is connected to the Datacenter via
optical fiber, which can reach 1 Gbps.

The processor speed, usually measured in MIPS, represents the
number of Million Instructions (MI) required in one cycle,
where by ’instruction’ means a specific hardware operation
to process the task. Specification of the widely used ARM
platform in the embedded IoT states that ARM Cortex-M4 has
100 MHz processor frequency, 128 kB RAM; ARM Cortex-
M3 has 72 MHz, 20 kB RAM [39]. Cortex-M3 and M4 cores
achieve 1.25 MIPS/MHz [40], which is approximately 125
MIPS at 100 MHz [41]. Compared to the data center capacity,
the server processor, e.g., Intel XEON [42], has 38.5 MB
Cache and 2.50 GHz processor frequency with up to 28 cores
built to process up to 100, 000 MIPS [43].

The reference simulation for the Group 1 models the allocation
of the received tasks (Cloudlets) and VMs in the Datacenter
that was generated with the required size and task frequency.
Other simulation parameters are presented in Table IV [44].

All simulations were conducted on Ubuntu OS deployed via
the VirtualBox with dedicated 4 CPUs and 12 Gb of memory.
Simulation scripts were launched in the terminal via a bash
script. The bash script runs the process after a slight delay
(5 s), fixating the start and end time of the running and
measuring the CPU utilization and memory every 1 second
via -ts Linux command. The exception was made for IoTSim-
Edge – due to the Maven compilation issues launched via
the cmd line, the script was run in Eclipse. The results were
collected the same way – measuring the CPU utilization and
memory every 1 second via -ts Linux command by process
name as Java creating its own separate process. CloudSim Plus
and iFogSim2 did not participate in the performance evaluation
due to compilation failure.

C. Evaluation results

The main aim of this section was to understand how much
hardware resources are utilized while executing the script, but
not explain the behavior of their performance, as those are
implementation specific and could not be affected. Assuming
that simulators received the same scenario according to their
capabilities, we compare each of them regarding CPU, RAM
usage, and the simulation execution time.

This article has been accepted for publication in IEEE Sensors Journal. This is the author's version which has not been fully edited and 
content may change prior to final publication. Citation information: DOI 10.1109/JSEN.2023.3310669

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/



ALEKSEEVA et al.: DEMYSTIFYING USABILITY OF OPEN SOURCE COMPUTATIONAL OFFLOADING SIMULATORS: PERFORMANCE EVALUATION CAMPAIGN9

0 50 100 150 200 250 300 350 400

CPU (%)

0

0.2

0.4

0.6

0.8

1
C

D
F

0 2 4 6 8 10 12 14 16 18 20

RAM (%)

0

0.2

0.4

0.6

0.8

1

C
D

F

YAFS CloudSim EdgeCloudSim IoTSim-Edge PureEdgeSim

Fig. 4: CPU and RAM performance for XR Scenario.

0 50 100 150 200 250 300 350 400

CPU (%)

0

0.2

0.4

0.6

0.8

1

C
D

F

0 2 4 6 8 10 12 14 16 18 20

RAM (%)

0

0.2

0.4

0.6

0.8

1

C
D

F

YAFS CloudSim EdgeCloudSim IoTSim-Edge PureEdgeSim

Fig. 5: CPU and RAM performance for Monitoring Scenario.

0 50 100 150 200 250 300 350 400

CPU (%)

0

0.2

0.4

0.6

0.8

1

C
D

F

0 2 4 6 8 10 12 14 16 18 20

RAM (%)

0

0.2

0.4

0.6

0.8

1

C
D

F

YAFS CloudSim EdgeCloudSim IoTSim-Edge PureEdgeSim

Fig. 6: CPU and RAM performance for Streaming Scenario.

1) Maximum CPU and RAM values: Table V presents the
maximum CPU and RAM values of each simulator. The
built-in Python simulator YAFS showed the best (minimum)
usage in CPU and memory for XR Scenario, see Figure 4.
It is explained by the nature of languages and their differ-
ent methods [45]. However, it showed the worst results for
Monitoring and Streaming scenarios on Figures 5 and 6. The
last two scenarios had relatively smaller workloads but applied
devices on a bigger scale. The simulator’s peculiarity is it
creates the link for each sensor/device. Thus, growing number
of devices will add to their network graph complexity and
reflect on the hardware usage. The same happened with the
EdgeCloudSim, even though, it works in the virtual abstraction,
it still requires specifying the links for the sensor nodes, see
Figure 3, thus, the growth of the hardware load. CloudSim
showed the opposite, its CPU and RAM usage stayed the
biggest during XR Scenario, as the biggest simulated workload
was applied.

IoTSim-Edge showed the best (minimum) CPU usage and
worst (maximum) RAM usage from Group 1 for all scenarios.
Figure 4, 5 and 6 show that the IoTSim-Edge slope rises
sharply during processor and softly during memory load’s
peaks. The longest raise corresponds to the highest CPU or
RAM. CloudSim was the best in terms of RAM usage from
Group 1. PureEdgeSim showed the worst RAM usage from
Group 2 for all scenarios and the worst CPU usage for XR
and Streaming scenarios. YAFS was the best in terms of RAM
usage from Group 2.
2) Load over time: Absolute values are sometimes not enough
to estimate the processor and memory load. Dedicating many
resources could increase the processing speed but overload
the processor in case of extended use. We integrated data over
time to evaluate tool’s performance, where the higher values
represent the most load.

Figure 7 presents the cumulative normalized processor and
memory load for XR Scenario, Figure 8 presents the cumula-
tive normalized processor and memory load for Monitoring
Scenario, and Figure 9 – Streaming Scenario. YAFS and
CloudSim showed the RAM curves have a slow elevation
over time, but the CloudSim CPU curve increased rapidly.
EdgeCloudSim showed a slow peak of the CPU curve over
time but a sharp curve of RAM usage. Summing up, the results
conclude the different ways of code implementation influence
the CPU and RAM usage on the hardware.
3) Simulation run time: The results about tool’s run-time be-
havior could be derived from Table V. IoTSim-Edge made
the fastest run from Group 1 in all scenarios. Python-based
YAFS from Group 2 worked very fast during XR Scenario and
was overloaded with the increased graph complexity during
Monitoring and Streaming Scenarios, where the best result
showed by PureEdgeSim.

IV. DISCUSSION AND CONCLUSIONS

Developing a good simulation tool for modeling networks is
considered as a valuable contribution to academic work. On
one hand, most of the existing reliable network simulators do

This article has been accepted for publication in IEEE Sensors Journal. This is the author's version which has not been fully edited and 
content may change prior to final publication. Citation information: DOI 10.1109/JSEN.2023.3310669

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/



10 IEEE SENSORS JOURNAL, VOL. XX, NO. XX, XXXX 2023

TABLE V: HW resource usage results

Sc. Gr. Simulator max. CPU (%) �CPU (%) CPU load (%) max. RAM (Mb) �RAM (%) RAM load (%) Time (s)

X
R G

r.
1 CloudSim 236 18.4258 43.2 120 0.1108 3.4056 33.7

EdgeCloudSim 216 33.8019 16.2 996 2.6062 56.7 30.049
IoTSim-Edge 148 29.2764 10.9 1739 6.3260 11.3 21

G
r.

2 YAFS 177 41.3611 1636.0 204 0.3114 559.5 0.747
PureEdgeSim 243 91.1760 26.0 2351 7.7460 41.3 39

M
on

ito
rin

g

G
r.

1 CloudSim 206 28.1260 19.9 120 0.1143 2.3 35.489
EdgeCloudSim 365 51.9856 41.2 996 2.6624 151.4 90.46
IoTSim-Edge 166 43.2875 7.0 1943 7.2618 11.1 18

G
r.

2 YAFS 156 42.0586 10704.0 204 0.3091 526.4 2914.81
PureEdgeSim 136 43.3098 7.7 2375 9.3983 15.9 18

St
re

am
in

g

G
r.

1 CloudSim 112 4.3031 15.9 120 0.1165 1.2 39.575
EdgeCloudSim 224 37.1019 28.9 996 2.5953 95.3 54.227
IoTSim-Edge 100 8.8019 9.4 2111 8.2061 8.7 21

G
r.

2 YAFS 136 41.9370 216.5 156 0.3385 71.1 4026.46
PureEdgeSim 188 66.6102 7.6 2339 9.3886 12.3 16

TABLE VI: Summary of simulators advantages and disadvantages

Use cases Advantages Limitations

iF
o
g
S

im
2

• Resource management
• Health Monitoring
• Crowd-sensed Data Collection
• Audio Translation Service

• Simulates a complex topology from sensor/actuator through
devices to servers;
• Allows to specify the latencies between entities;
• Shows the amount of consumed energy by each node.

• No choice of wireless connectivity (manual configuration);
• No edge communication protocols in the simulation tool;
• Minimum allowed sensor-generating data is 2 ms;
• Set communication latency as constant value;
• Allows to connect up to 15 sensors/actuators to the edge.

P
u

r
e
E

d
g
e
S

im

• Reinforcement and Deep
Learning Scenarios on Edge
computing-driven scenarios
• SDN
• Task Scheduling and Security

• Allows to specify the device’s battery parameters;
• Allows to specify the communication technology for mobile
device (e.g., cellular, WiFi, Ethernet, etc.);
• Supports the Mist Computing by setting the computing
capabilities to the end device;
• Allows for ranging of nodes for coverage variation;
• Orchestration architecture and algorithms support.

• Difficult to customize the mobility module due to complexity;
• Limits in forming node clusters;
• Limits in augmenting microservice management techniques;
• The execution time, waiting time for each packets, as well
as energy consumption for device, edge server and cloud server
calculates as the average value;
• Uniform user distribution only for square area.

C
lo

u
d

S
im

• Large-scale Cloud Computing
datacenter scenarios
• VM performance in the Cloud
Data Centers
• Allocation of resources on VMs
• Simulation of Federated Clouds

• Supports virtualization and VM migration;
• Supports modeling for containerized cloud environments,
referring to a new type of service CaaS;
• Supports the interconnection between Data Center compo-
nents;
• Trustable and validated tool with community support.

• Does not suit for PaaS or SaaS real-time applications analyzes;
• Does not suit for security algorithms or platform implemen-
tation.

C
lo

u
d

S
im

+ • VM lifecycle management
• Allocation and scheduling of
VM
• Simulation of Federated Clouds

• Supports user-defined policies for resource allocation;
• Supports virtualization and VM migration;
• Has an implemented event listener to provide event notifica-
tion for simulations.

• Does not suit for security algorithms or platform implemen-
tation.

I
o
T

S
im

-E
d

g
e • Healthcare scenarios

• Smart Buildings
• Intelligent RSU Deployment
• IoT-driven scenarios

• Works with the heterogeneous environment;
• Supports diverse communication technologies and IoT data
protocols;
• Allows to check the mobility, add velocity and location
coordinates of the device;
• Allows to specify the battery capacity for the IoT devices.

• Omits state-of-the-art communication protocols (i.e., BLE,
5G, 6G, etc.);
• Does not send processed data back to the actuators, suits
only for scenarios that need only the raw data collection from
sensors;
• The documentation does not specify the units for parameters.

E
d

g
e
C

lo
u

d
S

im • Healthcare scenarios
• AR scenarios
• VM allocation

• Has an implemented network and battery modules;
• Allows to run parallel simulations and obtain data from them;
• Uses active/idle task generation pattern to act as a real device.

• Does not support customized mobility, cluster formation, and
microservers;
• Assumes the link quality between the device and the gateway
nodes remains the same despite their distance;
• Network model is represented as constant delays.

Y
A

F
S

• Resource allocation in Fog
computing scenarios
• Crowd-sensed Data Collection
• VR games scenarios

• Dynamic topology and dynamic allocation support;
• Allows to generate the events using customized distributions;
• Provides fully customized links and nodes attributes;
• Intelligible and fully user customized configuration;
• Selective data transmission between the modules.

• Does not support communication technology diversity;
• The documentation lacks the parameters definitions and their
units;
• Network and propagation models are defined with constants.

not consider cloud entities, such as Datacenter, Host, VM,
or Broker. On the other hand, computational simulators do
not count network delays and mobility highlighting the need
for Edge- and Fog–specific simulators forced by emerging
computing paradigms.

CloudSim was one of the first open-source simulators which
implemented avant-garde technologies. It has been a validated
and trusted tool for many years. Fortunately for humanity
and unfortunately for the developers, technologies change fast,
but this tool lacks upcoming modules. Notwithstanding the
mentioned limitations, CloudSim inspired other independent
projects that used it as a base project for more improved

simulators, i.e., CloudSim Plus. In turn, CloudSim Plus in-
herited many entities and features CloudSim, but the re-
engineered project improved the performance and deployed
new modern features, e.i., event listener, VM migration, and
parallel computing. Developers advance the scripts made them
more human readable to improve the usability of the tool.

EdgeCloudSim is an easy-to-set-up and easy-in-use tool, that
simulates the task execution in various Edge-scenarios (Edge-
Cloud, Mobile-Edge) and supports orchestration and network-
ing models. A significant disadvantage of this tool is lack of
energy model and task migration. IoTSim-Edge suits primarily
if the research evaluates IoT devices and their interaction with

This article has been accepted for publication in IEEE Sensors Journal. This is the author's version which has not been fully edited and 
content may change prior to final publication. Citation information: DOI 10.1109/JSEN.2023.3310669

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/



ALEKSEEVA et al.: DEMYSTIFYING USABILITY OF OPEN SOURCE COMPUTATIONAL OFFLOADING SIMULATORS: PERFORMANCE EVALUATION CAMPAIGN
11

0 2 4 6 8 10 12 14 16 18 20

Time (s)

0

2

4

6

8

10
Pr

oc
es

so
r l

oa
d 

(%
)

0 2 4 6 8 10 12 14 16 18 20

Time (s)

0

2

4

6

8

10

M
em

or
y 

lo
ad

 (%
)

YAFS CloudSim EdgeCloudSim IoTSim-Edge PureEdgeSim

Fig. 7: CPU and RAM cumm. load for XR Scenario.

0 2 4 6 8 10 12 14 16 18 20

Time (s)

0

2

4

6

8

10

Pr
oc

es
so

r l
oa

d 
(%

)

0 2 4 6 8 10 12 14 16 18 20

Time (s)

0

2

4

6

8

10

M
em

or
y 

lo
ad

 (%
)

YAFS CloudSim EdgeCloudSim IoTSim-Edge PureEdgeSim

Fig. 8: CPU and RAM cumm. load for Monitoring Scenario.

0 2 4 6 8 10 12 14 16 18 20

Time (s)

0

2

4

6

8

10

Pr
oc

es
so

r l
oa

d 
(%

)

0 2 4 6 8 10 12 14 16 18 20

Time (s)

0

2

4

6

8

10

M
em

or
y 

lo
ad

 (%
)

YAFS CloudSim EdgeCloudSim IoTSim-Edge PureEdgeSim

Fig. 9: CPU and RAM cumm. load for Streaming Scenario.

edge devices. Despite its more user-friendly appearance, it
lacks essential features such as virtualization and orchestration.

PureEdgeSim and iFogSim2 are focused on offloading to the
edge. iFogSim2 allows to simulate complex IoT scenarios
considering the delays between sensors and IoT device. It
allows to connect the servers into N -tier hierarchy and allows
to specifies the delays between them. The tool allows to model
latency-sensitive applications, thus, suits to the AR Assisted
Surgery simulations. In contrast, PureEdgeSim comprises a
range of orchestration architectures, including Mist Comput-
ing, i.o. offloading on mobile devices, Mist-Edge, Mist-Cloud,
Edge-Cloud, which is applicable to telemetry scenarios in
medical domain. Implemented energy model shows the energy
consumption and task failures due to battery run out.

YAFS is a perspective project which provides a full sup-
port for the user in the open source. It plans to implement
geolocalization and other features to the existing ones and
solve the Python compatibility issues, hence, some limitations
might be irrelevant in the near future. Project YAFS works on
implantation modern features for Fog computing architecture,
and it allows to model VR scenarios, thus, it suitable for VR
assisted remote medical scenarios as well.

Summarizing the above, there are many tools available in the
open source designed for modeling Cloud, Fog, and Edge
computing scenarios. Each of them has their limitations and
advantages that could suit the research specific aim. Table VI
summarizes the simulation tools investigated in this work.
Choosing the best simulator for the research questions could
take some time, so this paper aims to help in minimizing
this time overviewing the most popular tools for modeling
the offloading scenarios for medical applications.

REFERENCES

[1] Y. Cheng, H. Zhao, and W. Xia, “Energy-Aware Offloading and Power
Optimization in Full-Duplex Mobile Edge Computing-Enabled Cellular
IoT Networks,” IEEE Sens. J., vol. 22, no. 24, pp. 24 607–24 618, 2022.

[2] R. Yadav, W. Zhang, I. A. Elgendy, G. Dong, M. Shafiq, A. A. Laghari,
and S. Prakash, “Smart Healthcare: RL-based Task Offloading Scheme
for Edge-Enable Sensor Networks,” IEEE Sens. J., vol. 21, no. 22, pp.
24 910–24 918, 2021.

[3] J. Liu, S. Guo, Q. Wang, C. Pan, and L. Yang, “Optimal Multi-
User Offloading with Resources Allocation in Mobile Edge Cloud
Computing,” Computer Networks, vol. 221, p. 109522, 2023.

[4] “Finland Data Centers,” https://www.datacentermap.com/finland/, Ac-
cessed: 2022-12-22.

[5] C. Yi, J. Cai, and Z. Su, “A Multi-User Mobile Computation Offloading
and Transmission Scheduling Mechanism for Delay-Sensitive Applica-
tions,” IEEE Trans. on Mob. Comp., vol. 19, no. 1, pp. 29–43, 2019.

[6] N. Mäkitalo, T. Aaltonen, M. Raatikainen, A. Ometov, S. Andreev,
Y. Koucheryavy, and T. Mikkonen, “Action-Oriented Programming
Model: Collective Executions and Interactions in the Fog,” J. of Syst.
and Softw., vol. 157, p. 110391, 2019.

[7] D. Alekseeva, A. Ometov, O. Arponen, and E. S. Lohan, “The Future
of Computing Paradigms for Medical and Emergency Applications,”
Computer Science Review, vol. 45, p. 100494, 2022.

[8] D. Nandan Jha, K. Alwasel, A. Alshoshan, X. Huang, R. K. Naha, S. K.
Battula, S. Garg, D. Puthal, P. James, A. Y. Zomaya et al., “IoTSim-
Edge: A Simulation Framework for Modeling the Behaviour of IoT and
Edge Computing Environments,” arXiv e-prints, pp. arXiv–1910, 2019.

[9] P. Mell, T. Grance et al., “The NIST Definition of Cloud Computing,”
2011.

[10] Y. Lin, L. Shao, Z. Zhu, Q. Wang, and R. K. Sabhikhi, “Wireless
Network Cloud: Architecture and System Requirements,” IBM J. of
Research and Development, vol. 54, no. 1, pp. 4–1, 2010.

This article has been accepted for publication in IEEE Sensors Journal. This is the author's version which has not been fully edited and 
content may change prior to final publication. Citation information: DOI 10.1109/JSEN.2023.3310669

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

https://www.datacentermap.com/finland/


12 IEEE SENSORS JOURNAL, VOL. XX, NO. XX, XXXX 2023

[11] F. Bonomi, R. Milito, J. Zhu, and S. Addepalli, “Fog Computing and
Its Role in the Internet of Things,” in Proc. 1st Mobile Cloud Comp.
Workshop, 2012, pp. 13–16.

[12] T. Qiu, J. Chi, X. Zhou, Z. Ning, M. Atiquzzaman, and D. O. Wu, “Edge
Computing in Industrial Internet of Things: Architecture, Advances and
Challenges,” IEEE Comm. Surv. & Tut., vol. 22, no. 4, pp. 2462–2488,
2020.

[13] V. Prokhorenko and M. A. Babar, “Architectural Resilience in Cloud,
Fog and Edge Systems: A Survey,” IEEE Access, vol. 8, pp. 28 078–
28 095, 2020.

[14] I. A. Aljabry and G. A. Al-Suhail, “A Survey on Network Simulators
for Vehicular Ad-hoc Networks (VANETS),” Int. J. Comput. Appl, vol.
174, no. 11, pp. 1–9, 2021.

[15] S. Kang, M. Aldwairi, and K.-I. Kim, “A Survey on Network Simulators
in Three-Dimensional Wireless ad hoc and Sensor Networks,” Int. J. of
Dist. Sens. Netw., vol. 12, no. 10, p. 1550147716664740, 2016.

[16] R. L. Patel, M. J. Pathak, and A. J. Nayak, “Survey on Network
Simulators,” Int. J. of Comp. Appl., vol. 182, no. 21, 2018.

[17] A. S. Toor and A. Jain, “A Survey on Wireless Network Simulators,”
Bulletin of El. Eng. and Inf., vol. 6, no. 1, pp. 62–69, 2017.

[18] M. Bakni, L. M. Moreno et al., “An Approach to Evaluate Network
Simulators: An Experience With Packet Tracer,” Revista Venezolana de
Computación, vol. 5, pp. 29–36, 2018.

[19] M. Bakni, L. M. M. Chacón, Y. Cardinale, G. Terrasson, and O. Curea,
“WSN Simulators Evaluation: An Approach Focusing on Energy Aware-
ness,” arXiv preprint arXiv:2002.06246, 2020.

[20] H. Sundani, H. Li, V. Devabhaktuni, M. Alam, and P. Bhattacharya,
“Wireless Sensor Network Simulators a Survey and Comparisons,” Int.
J. of Comp. Netw., vol. 2, no. 5, pp. 249–265, 2011.

[21] E. Weingartner, H. Vom Lehn, and K. Wehrle, “A Performance Com-
parison of Recent Network Simulators,” in Proc. of IEEE Int. Conf. on
Comm. IEEE, 2009, pp. 1–5.

[22] N. I. Sarkar and S. A. Halim, “A Review of Simulation of Telecommu-
nication Networks: Simulators, Classification, Comparison, Methodolo-
gies, and Recommendations,” J. of Sel. Areas in Telecom. (JSAT), vol. 2,
no. 3, pp. 10–17, 2011.

[23] C. Kunde and Z. Á. Mann, “Comparison of Simulators for Fog Comput-
ing,” in Proc. of 35th ACM Symp. on Appl. Comp., 2020, pp. 1792–1795.

[24] F. Fakhfakh, H. H. Kacem, and A. H. Kacem, “Simulation Tools for
Cloud Computing: A Survey and Comparative Study,” in Proc. of Int.
Conf. on Comp. and Info. Sc. (ICIS). IEEE, 2017, pp. 221–226.

[25] G. Qu, N. Cui, H. Wu, R. Li, and Y. Ding, “ChainFL: A Simulation
Platform for Joint Federated Learning and Blockchain in Edge/Cloud
Computing Environments,” IEEE Trans. on Ind. Informatics, vol. 18,
no. 5, pp. 3572–3581, 2021.

[26] 3GPP TR 22.826 V17.2.0, “Study on Communication Services for
Critical Medical Applications,” Rel. 17, March 2021.

[27] 3GPP TR 26.925 V17.1.0, “Typical Traffic Characteristics of Media
Services on 3GPP Networks,” Rel. 17, March 2022.

[28] 3GPP TR 26.928 V18.0.0, “Extended Reality (XR) in 5G,” Rel. 18,
March 2023.

[29] 3GPP TR 26.918 V17.0.0, “Virtual Reality (VR) Media Services over
3GPP,” Rel. 17, April 2022.

[30] R. N. Calheiros, R. Ranjan, A. Beloglazov, C. A. De Rose, and R. Buyya,
“CloudSim: A Toolkit for Modeling and Simulation of Cloud Computing
Environments and Evaluation of Resource Provisioning Algorithms,”
Software: Practice and experience, vol. 41, no. 1, pp. 23–50, 2011.

[31] M. C. Silva Filho, R. L. Oliveira, C. C. Monteiro, P. R. Inácio, and M. M.
Freire, “CloudSim Plus: A Cloud Computing Simulation Framework
Pursuing Software Engineering Principles for Improved Modularity,
Extensibility and Correctness,” in Proc. of Symp. on Integrated Netw.
and Serv. Management (IM). IEEE, 2017, pp. 400–406.

[32] C. Sonmez, A. Ozgovde, and C. Ersoy, “EdgeCloudSim: An Environ-
ment for Performance Evaluation of Edge Computing Systems,” Trans.
on Emerging Telecomm. Tech., vol. 29, no. 11, p. e3493, 2018.

[33] I. Lera, C. Guerrero, and C. Juiz, “YAFS: A Simulator for IoT Scenarios
in Fog Computing,” IEEE Access, vol. 7, pp. 91 745–91 758, 2019.

[34] R. Mahmud, S. Pallewatta, M. Goudarzi, and R. Buyya, “iFogSim2: An
Extended iFogSim Simulator for Mobility, Clustering, and Microservice
Management in Edge and Fog Computing Environments,” J. of Syst. and
Softw., vol. 190, p. 111351, 2022.

[35] D. Alekseeva, A. Ometov, and E. S. Lohan, “Towards the Advanced Data
Processing for Medical Applications Using Task Offloading Strategy,”
in Proc. of Int. Conf. on Wireless and Mobile Comp., Netw. and Comm.
(WiMob). IEEE, 2022, pp. 51–56.

[36] 3GPP TS 22.104 V18.0.0 , “Service Requirements for Cyber-Physical
Control Applications in Vertical Domains,” Rel. 18, March 2021.

[37] A. L. Chow, H. Yang, C. H. Xia, M. Kim, Z. Liu, and H. Lei,
“EMS: Encoded Multipath Streaming for Real-Time Live Streaming
Applications,” in Proc. of 17th Int. Conf. on Netw. Protocols. IEEE,
2009, pp. 233–243.

[38] W. B. Qaim, A. Ometov, C. Campolo, A. Molinaro, E. S. Lohan,
and J. Nurmi, “Understanding the Performance of Task Offloading for
Wearables in a Two-Tier Edge Architecture,” in Proc. of 13th Int.
Congress on Ultra Modern Telec. and Control Syst. (ICUMT). IEEE,
2021, pp. 1–9.

[39] “Cortex-M3,” https://developer.arm.com/Processors/Cortex-M3,
Accessed: 2023/07/24.

[40] “Arm® Cortex®-M4,” https://www.st.com/content/st com/
en/arm-32-bit-microcontrollers/arm-cortex-m4.html, Ac-
cessed: 2023/07/24.

[41] “Instructions per second,” https://en.wikipedia.org/wiki/Instructions per
second, Accessed: 2023/07/24.

[42] “Intel® Xeon® Platinum 8180 Processor,” https:
//ark.intel.com/content/www/us/en/ark/products/120496/
intel-xeon-platinum-8180-processor-38-5m-cache-2-50-ghz.html,
Accessed: 2023/07/24.

[43] “Export Compliance Metrics for Intel® Microprocessors,”
https://www.intel.com/content/www/us/en/support/articles/000005755/
processors.html, Accessed: 2023/07/24.

[44] E. Barbierato, M. Gribaudo, M. Iacono, and A. Jakobik, “Exploiting
CloudSim in a Multiformalism Modeling Approach for Cloud Based
Systems,” Simulation Modelling Practice and Theory, vol. 93, pp. 133–
147, 2019.

[45] S. A. Abdulkareem and A. J. Abboud, “Evaluating Python, C++,
JavaScript and Java Programming Languages Based on Software Com-
plexity Calculator (Halstead Metrics),” in Proc. of Materials Sc. and
Eng., vol. 1076, no. 1. IOP Publishing, 2021, p. 012046.

BIBLIOGRAPHIES

Daria Alekseeva received the B.Sc. and M.Sc.
degrees from the Saint-Petersburg State Univer-
sity of Telecommunications (SUT) in 2017 and
2019. She is currently pursuing the Ph.D. degree
with Tampere University (TAU), Finland. Her re-
search interests include wireless communica-
tions, network security, computing paradigms,
and neural network technologies.

Aleksandr Ometov received the M.Sc. and
D.Sc. (Tech.) degrees from Tampere University
of Technology (TUT), Finland, in 2016 and 2018.
He also holds the Specialist degree in informa-
tion security from the Saint Petersburg State
University of Aerospace Instrumentation (SUAI)
from 2013. His research interests include wire-
less communications, information security, com-
puting paradigms, and wearable applications.

Elena Simona Lohan received the MSc from
the Polytechnic University of Bucharest, Roma-
nia, in 1997, the DEA degree (French equiva-
lent of master) from Ecole Polytechnique, Paris,
France, in 1998, and the PhD from TUT, in
2003. She is currently a Professor at the Electri-
cal Engineering Unit, Tampere University (TAU),
Finland. Her current research interests include
wireless location techniques, wearable comput-
ing, and privacy-aware positioning solutions.

This article has been accepted for publication in IEEE Sensors Journal. This is the author's version which has not been fully edited and 
content may change prior to final publication. Citation information: DOI 10.1109/JSEN.2023.3310669

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

https://developer.arm.com/Processors/Cortex-M3
https://www.st.com/content/st_com/en/arm-32-bit-microcontrollers/arm-cortex-m4.html
https://www.st.com/content/st_com/en/arm-32-bit-microcontrollers/arm-cortex-m4.html
https://en.wikipedia.org/wiki/Instructions_per_second
https://en.wikipedia.org/wiki/Instructions_per_second
https://ark.intel.com/content/www/us/en/ark/products/120496/intel-xeon-platinum-8180-processor-38-5m-cache-2-50-ghz.html
https://ark.intel.com/content/www/us/en/ark/products/120496/intel-xeon-platinum-8180-processor-38-5m-cache-2-50-ghz.html
https://ark.intel.com/content/www/us/en/ark/products/120496/intel-xeon-platinum-8180-processor-38-5m-cache-2-50-ghz.html
https://www.intel.com/content/www/us/en/support/articles/000005755/%20processors.html
https://www.intel.com/content/www/us/en/support/articles/000005755/%20processors.html

	Introduction
	Features evaluation
	Background on Computational Continuum
	Related works
	Set of criteria and methodology
	Open Access
	Programming language
	User interface
	Documentation availability
	Ease of setup
	Ease of use
	Scalability
	Supported features

	Simulators focused on computing infrastructure and application services
	CloudSim
	CloudSim Plus
	EdgeCloudSim
	IoTSim-Edge

	Simulators focused on network architecture and resource allocation
	YAFS
	iFogSim2
	PureEdgeSim


	Simulators performance comparison
	Test scenarios
	Overall system model
	Evaluation results
	Maximum CPU and RAM values
	Load over time
	Simulation run time


	Discussion and conclusions
	References
	Biographies
	Daria Alekseeva
	Aleksandr Ometov
	Elena Simona Lohan


