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Abstract—The performance benefits of long-horizon

direct model predictive control (MPC) methods be-

come more evident when high-order systems are con-

sidered. However, such applications pose a challenge

implementation-wise as the increased size of the system

model and adoption of long horizons can significantly

increase the computational requirements of direct MPC.

In addition, variations in the system parameters may

deteriorate the controller operation. The presented method

allows to harvest the performance benefits of long-horizon

direct MPC with modest computational effort. This is

achieved by adopting a split horizon formulation that

enables the fulfillment of two tasks, namely, the prediction

of the system behavior and evaluation of the candidate

switch positions with marginal computational overhead.

Moreover, to enhance the controller robustness to param-

eter variations, a simple estimator of the grid reactance is

introduced. The effectiveness of the proposed approach is

verified with a medium-voltage three-level neutral-point-

clamped converter connected to the grid via an LCL filter.

I. INTRODUCTION

For the integration of high-power and high-

performance variable speed drives into the electrical grid,

medium-voltage (MV) converters are a viable choice.

These are often equipped with LCL filters to dampen

the harmonic components that are generated by the

switching behavior of power electronics. However, such

applications constitute high-order systems that pose a

challenge for conventional control strategies because of

their typically single-input single-output nature. Notably,

a promising alternative to the established linear control

techniques, i.e., model predictive control (MPC), contin-

ues to gain popularity in the academia also because of its

ability to handle multiple-input multiple-output (MIMO)

systems [1]. That is, for the systems of interest, MPC is

able to control the converter and the grid currents along

with the capacitor voltage.

Besides the MIMO nature, it has been shown that

MPC achieves superior performance and guarantees sta-

bility when long prediction horizons are employed [2].

However, doing this in real time, especially for finite

control set MPC (FCS-MPC) methods, where control

actions are applied directly to a converter without a

modulator stage, is a non-trivial task. This is due to

the size of the underlying optimization problem that

increases exponentially with the number of the prediction

horizon steps [3]. Existing solutions offer sophisticated

algorithms—e.g., the sphere decoder algorithm (SDA)—

that manage to find the optimal switching signals in a

significantly reduced (on average) time. The said method,

however, is limited to linear, time-invariant systems [4],

[5]. Adoption of non-trivial prediction horizons is an-

other approach in the direction towards decreasing the

computational complexity [6], [7]. Nevertheless, keeping

the calculation effort at levels suitable for a real-time im-

plementation while gaining advantages associated with

long horizons remains a challenge for MPC [1].

As its name suggests, MPC is a technique based on

the system model. Thus, the accuracy of the latter plays

an important role in the controller performance. Despite

the fact that the models of power electronic systems are

typically accurate, their parameters do not always remain

constant. For example, inductor and capacitor values in

LCL filters deviate in time but at a very slow rate,
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Fig. 1. Grid-connected three-level NPC converter with the LCL filter on the left and its equivalent circuit in the αβ-plane on the right.

mainly due to aging phenomena [8]. On the contrary, the

grid reactance varies depending on operating conditions,

and its actual value is hard to predict. Thus, its real-

time estimation improves the accuracy of the prediction

model and results in better control actions.

On a high level, estimation techniques for the grid

reactance can be divided into passive, active, and quasi-

passive. These methods either utilize information ac-

quired during transients, or by injecting perturbations,

or by a combination of both [9]. For example, to obtain

the grid reactance value with passive online techniques, a

Kalman filter is typically used [10]–[12]. Such methods

may require a trial-and-error tuning procedure [10], or a

calculation can be performed only in steady state [12], or

during a specific part of the fundamental period [11]. Al-

ternatively, a non-invasive recursive least squares (RLS)

algorithm can monitor the grid impedance. However, it

requires a change between at least two distinct converter

operating points to have a reliable estimation result [13].

Another work uses an RLS algorithm to take advantage

of the switching noise, which is—typically for direct

control methods—spread over a wide frequency range, to

obtain the grid reactance [14]. However, in order to run

the estimation algorithm in conjunction with the long-

horizon MPC, its complexity has to be as low as possible

to limit the calculation load of the control task. This point

is often not considered in other works.

Given the above, this paper proposes a long-horizon

FCS-MPC method for MV grid-connected three-level

neutral-point-clamped (NPC) converters with LCL fil-

ters that has a modest computational burden and is robust

to grid reactance variations. The latter is accomplished

by devising a simple grid-side reactance estimator. The

former is met by formulating the objective function in

a way such that only a limited number of candidate so-

lutions is considered for the optimization problem, thus

effectively decreasing its computational demands. With

the said approach, an improved steady-state performance

is achieved with a long-horizon FCS-MPC scheme that

TABLE I

MV SYSTEM RATED VALUES AND PARAMETERS

Parameter Value

Rated voltage VR 3300V

Rated current IR 1575A

Apparent power SR 9MVA

Grid frequency fg 50Hz

Dc-link voltage Vdc 5.2 kV

Grid inductance Lg 0.403 mH

Grid resistance Rg 12.6mΩ

Grid-side filter inductance Lfg 0.282 mH

Grid-side filter resistance Rfg 0.484 mΩ

Converter-side filter inductance Lfc 0.452 mH

Converter-side filter resistance Rfc 0.484 mΩ

Filter capacitance C 884.9 µF

Filter resistance Rc 0.484 mΩ

Transformer inductance Lt 0.346 mH

Transformer resistance Rt 9.1mΩ

is computationally light and, thus, suitable for real-time

implementation.

II. MODELING

The considered case study is the three-level NPC grid-

tied converter with the LCL filter shown in Fig. 1 with

parameters and rated values in Table I. The work adopts

the αβ reference frame. For simplicity the corresponding

subscript for variables in αβ-frame is dropped in the

text and figures, whereas the subscript for variables in

the abc-plane is kept. Furthermore, all SI variables are

normalized based on the rated values of the secondary

side of the step-down transformer, and the per unit (p.u.)

system is adopted.

Several simplifications are assumed for the chosen

case study. Specifically, the grid source is modeled with

an ideal and symmetrical voltage vg,abc. Likewise, the

grid resistance Rg and the grid reactance Xg are equal

for all phases and model the transmission lines. The

converter dc-link voltage Vdc is assumed to be constant,

and the neutral point potential vn is fixed to zero. The



transformer is approximated with its leakage reactance

Xt and resistance Rt.

The converter voltage vconv is derived from the con-

verter three-phase switch position uabc using the reduced

Clarke transformation matrix K [2, Chapter 2.1]:

vconv =
Vdc

2
Kuabc, (1)

with uabc = [ua ub uc]
T , where ux ∈ U = {−1, 0, 1},

x ∈ {a, b, c} is the single-phase switch position.

The conventional direction of the grid ig, converter

iconv, and capacitor ic currents (and correspondingly for

the capacitor voltage vc) are shown in Fig. 1. Then by

considering (1), and the assumptions above, the dynam-

ics of the system can be described with the continuous-

time state-space form

dx(t)

dt
= Fx(t) + Guabc(t) (2a)

y(t) = Cx(t), (2b)

where the state vector is chosen as x =
[iTconv vT

c iTg vT
g ]

T , the output y = [iTconv vT
c iTg ]

T ,

and the control input is uabc. The system dynamics is

defined by the matrix F ∈ R
8×8

F =
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 ,

with I, 0 and Q̃ =
(
0 −1
1 0

)
being the identity, zero and

rotation matrices, respectively. Note that the subscripts in

resistances Rx and reactances Lx, x ∈ {fc, fg, c}, refer

to the converter-side, grid-side and capacitor elements,

respectively. Also, the grid-side lumped resistance and

reactance are RΣ = Rfg + Rt + Rg, and XΣ = Xfg +
Xt + Xg, respectively. Furthermore, the input G and

output C matrices are

G = −
Vdc

2Xfc

[
I2 02×6

]T
K, C =

[
I6 06×2

]
.

As the last step, the prediction model for the FCS-MPC

scheme is obtained through discretization of (2) using

the forward Euler method with the controller sampling

interval Ts:

x(k + 1) = Ax(k) + Buabc(k) (3a)

y(k) = Cx(k) , (3b)

where A = I8 + FTs, and B = GTs and k ∈ N [1].

III. CONTROLLER DESIGN

A. Optimization Problem

The controller objective is to manipulate the converter

switch position uabc such that the output variables y

follow their references yref, and the system is operated at

a low switching frequency fsw. The described approach

is translated into the following objective function

J=

k+Np−1∑

ℓ=k

‖yerr(ℓ+ 1)‖2Q + λu

k+Nc−1∑

ℓ=k

‖∆uabc(ℓ)‖
2
2 . (4)

The first term in (4) denotes the tracking error

yerr = yref − y, the second one is the control effort

∆uabc(ℓ) = uabc(ℓ)− uabc(ℓ− 1), and λu > 0 sets the

trade-off between the two terms, i.e., the tracking of

the output references and the switching frequency. In

addition, the computed deviations in yerr are weighted

with the elements of the diagonal matrix Q6×6 � 0 that

set the tracking priority between the controlled variables.

Finally, the prediction horizon Np · Ts defines the time

window wherein the system state is predicted, i.e., the

output y(ℓ) is calculated using the prediction model (3),

while the control horizon Nc refers to the number

of steps wherein all feasible switch positions uabc(ℓ)
are evaluated. Based on (4), the following optimization

problem is solved

minimize
U(k)∈U

J(k) (5a)

subject to (5b)

x(j + 1) = Ax(j) + Buabc(ℓ) (5c)

y(j + 1) = Cx(j + 1),∀j = k, ... , k+Np−1 (5d)

‖∆uabc(ℓ)‖∞ ≤ 1, ∀ℓ = k, ... , k+Nc−1, (5e)

where U = U × · · · × U is the 3Nc-times Cartesian

product of the set U , and represents the feasible input

set. By solving (5) the controller concludes to the optimal

sequence of switch positions

U∗(k) =
[
u∗T
abc(k) u

∗T
abc(k+1) . . . u∗T

abc(k +Nc − 1)
]T

.

Typically, (5) is solved using an enumeration strategy,

however, the computational complexity of the problem

grows exponentially with the size of the optimization

vector, i.e., the switching sequence U(k), thus pos-

ing challenges for FCS-MPC implementations in real

time [1]. As a consequence, many works consider one-

step horizon, thus hindering the potential of long-horizon

MPC to deliver improved performance and guaranteed

stability [3].
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Fig. 2. Performance metric cf as a function of the switching

frequency fsw for horizon combinations N = {1, 1}, {4, 4}, {7, 7},

{4, 1}, and {7, 1}. Individual simulations are indicated by dots, and

their trends are approximated with polynomials.

To address the above, the horizon combination N =
{Np, Nc} is introduced in (5) with the aim to decrease

the size of the optimization problem by keeping the con-

trol horizon short Nc < Np. Nonetheless, performance

benefits associated with long prediction horizons Np can

be fully gained, since—according to the receding horizon

policy [3]—only u∗

abc(k) is applied to the converter.

Therefore, keeping the last calculated u∗

abc(k +Nc − 1)
for the remaining Np−Nc steps does not deteriorate the

system performance. The favorable controller behavior,

however, has to be ensured, as it is directly affected by

the prediction window Np · Ts, what is demonstrated in

the following subsection.

B. Assessment of the Objective Function

The objective function (4) is evaluated for a set of

simulations at nominal steady-state operation with unity

power factor, i.e., Pref = 1, Qref = 0. Each simulation

has a duration of 20 fundamental periods at a specific

fsw between approximately 200Hz and 1000Hz. The

range of fsw is defined by a corresponding set of λu

values, while the sampling interval is set to Ts = 50µs.

The grid current total harmonic distortion (THD) Ig,THD

is recorded for each fsw to calculate the metric cf =
Ig,THD · fsw. Since cf approximates a hyperbolic trade-

off between Ig,THD and fsw, its lower values correspond

to a favorable system behavior. The weighting matrix

is set to Q = diag(1, 1, 50, 50, 500, 500). As can be

understood, this way the grid current bears the highest

tracking priority, whereas the converter current has the

lowest one. This setting affects the grid current spectrum,

as will be shown in Section VI.

The said evaluation of the controller design is pre-

sented in Fig. 2, where five different horizon combina-

tions are studied. The results show that, as expected,

cf is inversely proportional to Np, at least for low

fsw. For example, the combination N = {7, 7} clearly
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Fig. 3. The trade-off curve between the grid current THD Ig,THD

and the switching frequency fsw for FCS-MPC with the horizon

combinations N = {1, 1} and {4, 1} for Ts = 50µs.

outperforms N = {4, 4}, which in turn has lower cf
values than N = {1, 1}. It can be noted that around the

system resonance frequency

fres =
ωB

2π

√
Xfc +XΣ

XcXfcXΣ
= 301Hz. (6)

the steady-state performance does not exhibit any visible

increase in the cf metric, even though the resistances of

the filter do not provide any passive damping due to their

small values, as can be deduced from Table I.

As indicated by the vertical dashed lines in Fig. 2, the

metric starts to rise at specific frequencies fsw = f crit
sw

around 420Hz for the combination N = {4, 1} and

240Hz for N = {7, 1}. This is explained by the

minimum number of anticipated changes in the switch

position when operating below the critical switching

frequency f crit
sw . For a three-level converter with 12 semi-

conductor devices f crit
sw can be found according to [15]

Np · Ts = (12f crit
sw )−1 , (7)

where the right-hand side indicates the average time be-

tween two consecutive switching transitions [7]. Then by

equating it to the time window Np ·Ts, the expression (7)

represents the system operation when only one switching

transition occurs within the prediction horizon Np.

Notably, the combination N = {4, 1} achieves sim-

ilar steady-state performance as, e.g., the combination

N = {4, 4} in Fig. 2 for fsw < 500Hz, whereas a real-

time implementation of such a long control horizon is

hardly possible with the exhaustive search algorithm.

Certainly, more sophisticated solvers can be used in-

stead, e.g., SDA [4], [5], thus allowing to deploy a

long-horizon FCS-MPC to a hardware with sampling

intervals of few µs [16]. In doing so, however, and when

system parameter deviations are concerned, updating the

prediction model at every sampling interval becomes a
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Fig. 4. Simulation results for the performance metric cf as a function of the switching frequency fsw for horizon combinations N={1, 1}
and {4, 1}. cf resulting from the nominal parameters is shown with solid lines, while cf that corresponds to cases with parameter variations

is shown with dashed lines.

time demanding task, as it involves, inter alia, matrix

inversions in real time [2, Chapter 5.2]. Thus, depending

on the application and the hardware, implementation of

the exhaustive search algorithm with a split horizon may

be a feasible approach.

To conclude the discussion above, Fig. 3 shows Ig,THD

for the horizon combinations {1, 1} and {4, 1}, which

are chosen for further analysis. It is seen that a longer

prediction horizon offers smaller current distortions by

1.5 to 2% in the low-frequency range where MV appli-

cations typically operate. Such an improvement comes

at a marginal computational cost, since the size of the

optimization problem for N={4, 1} is similar to that of

one-step FCS-MPC.

IV. ROBUSTNESS ANALYSIS

The proposed direct MPC strategy requires an accu-

rate model to predict its state over the prediction horizon

using (3). In cases where the system parameters change

over time, the controller behavior may deteriorate. To

illustrate such a dependency, a robustness analysis is con-

ducted in this section by introducing variations into the

prediction-model parameters and recording the metric cf
over the same range of fsw as in the previous section.

For completeness, the results in Fig. 4 consider varia-

tions in all the system parameters. While the maximum

deviations in the filter and transformer elements are set to

±20%, the grid reactance Xg has mismatches of ±50%.

As can be seen in Fig. 4, the controller performance



is mostly sensitive to mismatches in the filter elements,

with the converter-side reactance variations being the

most prominent affecting factor. However, the said com-

ponents change their values only slightly in practice, and

mainly due to a gradual degradation over their lifetime.

Therefore, these variations are not considered for an

online estimation in conjunction with FCS-MPC.

On the contrary, variations in the grid reactance

may lead to suboptimal operation. Fig. 4 shows that

when Xg deviates from its nominal value, the controller

performance metric is clearly compromised. Naturally,

the bigger the grid reactance value is the greater its

variations affect the grid-side lumped reactance XΣ. For

the parameters in Table I a mismatch of 50% in Xg

causes approximately a 20% change in XΣ.

Finally, resistance deviations have a negligible effect

on the performance mostly due to their low values. Note

that the results are shown only for the mismatches in the

converter-side resistance Rfc.

V. ESTIMATOR DERIVATION

The estimator design is based on the equivalent circuit

in Fig. 1 and the assumption of an ideal grid voltage.

Then, with the differential equation for the system dy-

namics

X̂Σ
dig
dt

+Xfc

diconv

dt
= vg(t)− vconv(t) , (8)

the estimated value X̂Σ can be deduced from

‖vg(k)‖
2
2 − ‖vg(k − 1)‖22 =

v2g,α(k) + v2g,β(k)− v2g,α(k − 1)− v2g,β(k − 1) = 0
(9)

that holds true as long as the amplitude of the grid volt-

age does not change between two consecutive discrete

time steps, which is typically the case. By discretizing (8)

with the forward Euler method, each term of (9) can be

calculated as

v2g,z(ℓ) = (X̂Σ∆Ag,z(ℓ+ 1)+

Xfc∆Aconv,z(ℓ+ 1) + vconv,z(ℓ) )
2 ,

(10)

where

∆Ag,z(ℓ+1) =
ig,z(ℓ+ 1)− ig,z(ℓ)

Ts

, (11a)

∆Aconv,z(ℓ+1) =
iconv,z(ℓ+ 1)− iconv,z(ℓ)

Ts

(11b)

with z ∈ {α, β}, and ℓ ∈ {k, k − 1}. For example, for

z = α and ℓ = k − 1, vg,α(k−1) is calculated as

v2g,α(k − 1) =

(
X̂Σ ·

ig,α(k)− ig,α(k − 1)

Ts

+X̂fc ·
iconv,α(k) − iconv,α(k − 1)

Ts

+ vconv,α(k − 1)

)2

.

X̂
Σ

0.22

0.24

0.26

0.28

0 5 10 15 20

Time [ms]

0.264

0.268

0.272

0 5 10 15 20

Fig. 5. Simulation results for estimation of the lumped grid-side

reactance (up) and its zoomed-in view (down).

With the help of (10) and (11), (9) can be written in the

form of the following quadratic equation [17]

X̂2
ΣA+ X̂ΣB + C = 0 , (12)

where A,B,C are given in the appendix.

After substituting (14) into (12), the grid side lumped

reactance is obtained with

X̂Σ1,2 =
B

2A

[
−1±

√
1−

4CA

B2

]
, (13)

where one of the roots is kept. The choosing criterion

for the latter is described in detail in [15].

The calculation accuracy of the lumped grid-side

reactance is shown is Fig. 5, wherein deviations of the

estimated value X̂Σ lie within the ±1% interval from the

nominal value X
syst

Σ = 0.268 p.u. To demonstrate the es-

timator operation, FCS-MPC starts to control the system

based on the nominal system reactance X
pred

Σ = X
syst

Σ ,

shown with the dashed line in Fig. 5. Following, the

grid reactance Xg in the prediction model is reduced

by 50% at 2ms, resulting in a lumped grid-side reac-

tance decreased by ≈ 20%, yielding X
pred

Σ ≈ 0.21 p.u.

Meanwhile, the estimator calculates X̂Σ in parallel to

the control scheme up to t = 10ms when the direct

MPC starts to use the estimated values for updating the

prediction model, i.e., X
pred

Σ = X̂Σ.

VI. ESTIMATOR PERFORMANCE EVALUATION

In this section, the operation of the proposed FCS-

MPC scheme with the estimation algorithm is verified in

the time domain. The simulation results for steady-state

operation are shown in Fig. 6 with the settings mentioned
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introduced in the grid reactance Xg and the estimator is active. The

gray bars in the spectrum indicate grid current distortion limits set

by [18].

in Section III-B, while the value of λu is chosen to

maintain fsw ≈ 245Hz. The prediction model (3) is

updated at every sampling interval with the calculated

value of the lumped grid-side reactance X̂Σ, i.e., the

scheme works in the presence of the −50% mismatch

in Xg that is compensated for by the estimator.

The controller clearly demonstrates the ability to track

all the references, thanks to its MIMO nature, while the

grid current THD is Ig,THD ≈ 3.6% . The grid current

harmonics do not violate the IEEE 519 standard [18],
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Fig. 7. Simulation results at transient operation with the proposed

FCS-MPC for N = {4, 1} when a mismatch of −50% is introduced

in the grid reactance Xg and the estimator is active.

but they are spread over a wide range of frequencies,

something typical for direct control methods. Moreover,

as it can be observed, the most pronounced harmonics

are concentrated at low frequencies, with the 7th and 11th

being the most pronounced ones.

The transient operation of the scheme during power

steps is examined in Fig. 7. At 5ms, Pref is changed from

1 to 0.2 p.u., and Qref is changed from 0 to 0.8 p.u. At

15ms, the power levels return to their initial values. The

controlled variables y accurately follow their references

yref with very short settling times, which are below 4ms.

Such behavior is typical for direct control methods, as



they can exploit all the available voltage margin when

minimizing the tracking error.

VII. CONCLUSION

This paper proposed a long-horizon FCS-MPC algo-

rithm tailored for MV grid-tied three-level NPC convert-

ers with LCL filters. The scheme comes with a reduced

calculation load and an effective, yet simple, estima-

tion algorithm to account for mismatches in the grid

reactance. The presented results show superior steady-

state performance for the chosen range of switching

frequencies as compared to the conventional one-step

FCS-MPC. Moreover, the presented time domain results

demonstrated the favorable multi-output tracking ability

of the control scheme both for steady-state and transient

operation.

APPENDIX

Coefficients in (12) are defined as

A = ∆A2
g,α(k + 1) + ∆A2

g,β(k + 1)

−∆A2
g,α(k)−∆A2

g,β(k) , (14a)

B = 2 · (∆Ag,α(k + 1)vconv,α(k)

+ ∆Ag,β(k + 1)vconv,β(k)−∆Ag,α(k)vconv,α(k − 1)

−∆Ag,β(k)vconv,β(k − 1)

+Xfc · (∆Ag,α(k + 1)∆Aconv,α(k + 1)

+ ∆Ag,β(k + 1)∆Aconv,β(k + 1)

−∆Ag,α(k)∆Aconv,α(k)

−∆Ag,β(k)∆Aconv,β(k) )) , (14b)

C = v2conv,α(k) + v2conv,β(k)

− v2conv,α(k − 1)− v2conv,β(k − 1)

+ 2Xfc · (∆Aconv,α(k)vconv,α(k)+∆Aconv,β(k)vconv,β(k)

−∆Aconv,α(k − 1)vconv,α(k − 1)

−∆Aconv,β(k − 1)vconv,β(k − 1) )

+X2
fc · (∆A2

conv,α(k + 1) + ∆A2
conv,β(k + 1)

−∆A2
conv,α(k)−∆A2

conv,β(k) ) . (14c)
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