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Abstract— This letter proposes a methodology for phase-
normalization of the complex-valued I/Q inputs of a real-valued
time delay neural network (RVTDNN). The normalization
enables modeling of the nonlinear behavior of a radio frequency
(RF) power amplifier (PA) in a more efficient way, by complying
with the physical characteristics of the distortions at RF. The
presented digital predistortion (DPD) linearization experiments
with a Doherty GaN PA at 3.5 GHz show a 4-dB improvement in
the output linearity compared to state-of-the-art neural network
(NN) and polynomial-based DPD models, allowing linearization
to below −50 dBc adjacent channel leakage ratio (ACLR) levels
with feasible processing complexity.

Index Terms— Behavioral modeling, digital predistortion
(DPD), nonlinear distortion, radio frequency (RF) power ampli-
fier (PA), time-delay neural network (NN).

I. INTRODUCTION

HIGH transmission linearity is key to achieving the data
rates envisioned for 5G-advanced and 6G communica-

tions. Yet, the trend toward higher bandwidth and high peak-
to-average power ratio (PAPR) of modern transmit waveforms
challenge linear amplification at high efficiency. Efficient
power amplifiers (PAs), supporting such high bandwidth,
demand additional correction to ensure linear transmission.
Digital predistortion (DPD) is the de facto implementation
approach for linearizing PAs, wherein a distortion model
is applied at baseband to cancel out the PA’s nonlinear
and dynamic passband behavior [1]. Several Volterra- and
polynomial-based models, such as the generalized memory
polynomial (GMP) [2], or the dynamic deviation reduction
(DDR) model [3] have been successfully applied. However,
these models face limitations when scaled to greater accuracy,
as the high correlation of polynomial kernels impedes the
identification of suitable model coefficients [4].

As high linearity is a crucial requirement for high
throughput communication, neural networks (NNs) are being
researched as a potential modeling solution, offering enhanced
scalability and generality compared to polynomial approaches.
The real-valued time-delay NN (RVTDNN) is proposed for
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PA modeling and DPD in [5], [6] where the in-phase (I) and
quadrature-phase (Q) signal parts are individually provided to
a single time-delay NN. Since the nonlinear distortions at radio
frequency (RF) mainly depend on the envelope of the passband
signal, it is suggested in [6] to augment the RVTDNN by
providing the baseband amplitudes as NN inputs, as well as
powers thereof. Deep, convolutional, and residual feed-forward
NN structures are discussed in [4], [7], [8], and [9], which all
rely on a similar input data configuration with decomposed I
and Q inputs, and the same approach has been employed for
linearizing a load-modulated balanced PA [10], beamforming,
or MIMO transmitters [11], [12], [13], for joint DPD and
PAPR reduction [14], or self-interference cancellation in full-
duplex radio [15], [16]. Recurrent NN (RNN) structures have
also been studied as an alternative to feed-forward NNs, suited
especially for strong PA memory effects [17], [18], [19], [20].
RNNs are, however, complex to train, since the recurrent
structures need to be unrolled to ensure temporal consistency
during training. This work thus limits itself to feed-forward
NN structures.

Although RVTDNN can be scaled to outperform traditional
approaches, it can be challenged whether a real-valued NN,
provided with separated I/Q baseband signals, can efficiently
model the RF behavior of the PA, since the real-valued
nature of the NN prevents it from understanding the role of
the complex baseband phase for the bandpass nonlinearity.
Instead, the RVTDNN will model the distortion in a 2-D
I/Q space and consequently needs to learn the nonlinear
mapping for each individual I/Q phase angle, without support
for the physical nature of the problem. On the other hand,
the high generality of the RVTDNN allows modeling effects
that are nonphysical at RF, including I/Q imbalance [6].
This generality comes at the cost of a high complexity. The
problem is addressed in [21] with a physically inspired model,
using decomposed I/Q phase differences alongside the signal
envelope to produce an absolute output and a phase difference.
While complying with the physical origin of the distortions,
the NN has to map inputs from the I/Q space to an angular
phase difference, which complicates the modeling. In [22], the
vector-decomposed time-delay NN (VDTDNN) is proposed,
where only envelope inputs are provided to a fully connected
NN layer. The NN is followed by a linear structure, to recover
the complex phase. This phase recovery is compatible with the
bandpass characteristic of the distortion; yet, it allows only for
a linear dependency on past phases. The phase, however, is a
nonnegligible component, crucial for the modeling of PM–AM
and PM–PM distortions [21]. Thus, the VDTDNN has limited
capability due to a lack of relevant degrees of freedom, which
is why an RVTDNN will outperform the VDTDNN, when
provided with sufficiently many nodes.
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Fig. 1. (a) RVTDNN with proposed phase normalization, highlighted in red. The phase of the I/Q inputs is normalized by applying r(k) and restored at the
NN output. Grayed inputs are additionally pruned as redundant or zero. (b) Illustration of phase normalization for two example inputs (yellow and purple).

This letter presents a novel approach for RVTDNN mod-
els with decomposed I/Q inputs, which yields a significant
improvement in modeling accuracy. The proposed method is
compliant with the physical characteristics of the nonlinear
distortions, allowing the NN to map PA nonlinearity in a
more efficient way. Specifically, we propose an I/Q phase
normalization for preprocessing the I/Q inputs to an RVTDNN,
where the current and past I/Q samples are rotated with respect
to the angle of the instantaneous sample. The original phase
is added at the output of the network. Thus, the NN will only
learn mappings with reference to a normalized phase. The
proposed scheme is experimentally evaluated in the context of
PA behavioral modeling and DPD linearization, and shown to
outperform the state-of-the-art. Section II details the proposed
method, while Section III provides the behavioral modeling
and DPD measurement results. Section IV concludes the
findings of this letter.

II. PROPOSED PHASE NORMALIZATION

During RF up-conversion, the amplitude of complex base-
band samples gets mapped to the RF envelope, while the
derivative of the baseband phase modulates the frequency of
the transmitted waveform. Consequently, the specific base-
band phase of the signals is not seen by the nonlinear
PA and is irrelevant to the modeling problem. We propose
a phase-normalization input layer for preprocessing of the
RVTDNN I/Q inputs, which removes the specific phase such
that the NN can efficiently focus on memory effects with
respect to the relative phases. Thus, instead of modeling the
distortion for any possible input phase, the real-valued NN will
map the PA behavior with respect to only a single reference
phase and provide a complex-valued output relative to that
reference, which enables greater accuracy at lower complexity.
The specific phase is then restored at the model output. The
NN operates on the envelope and the relative phase of the
input signal, thus theoretically having unconstrained modeling
potential for RF nonlinearity. The proposed scheme is depicted
in Fig. 1, with additions to the RVTDNN highlighted in red.
As examples, the normalization of two independent sets of NN
I/Q inputs is illustrated, where the current samples are rotated
toward zero phase and related memory samples are rotated
accordingly.

In order to normalize the phase, the I/Q inputs X(k) are
rotated by multiplication with a normalization factor r(k),

such that the instantaneous input has a zero phase. Thus, the
normalization is applied on a per processed input sample x(k)
and memory I/Q inputs are rotated according to the phase of
x(k). The factor r(k) is given by the complex conjugate of
the instantaneous input, normalized by its absolute as

r(k) = x∗(k)/|x(k)| (1)

where x∗ denotes the complex conjugate of x . The complex-
valued samples coming out of the input delay line of the
TDNN are denormalized by multiplying with r(k) as

X(k) = r(k) [x(k), x(k − 1), x(k − 2), . . . , x(k − M)] (2)

and the composite real-valued input vector to the NN reads

8(k) = [ℜ(X(k)), ℑ(X(k)), A(k), . . . , A(k)P
] (3)

where A(k) is a real-valued envelope vector

A(k) = [|x(k)|, |x(k − 1)|, . . . , |x(k − M)|]. (4)

In consequence of the phase normalization, the real part of the
instantaneous sample in X(k) will coincide with its absolute
value while its imaginary part becomes zero. These zero and
redundant inputs can be pruned from the input vector 8(k),
additionally reducing the complexity of the NN. We note that
any other reference phase angle may be chosen instead of the
zero phase without affecting the proposed method.

The input vector 8(k) is processed by a real-valued feed-
forward nonlinear NN 4[·] with an arbitrary architecture,
usually comprising one or more hidden-layers with nonlinear
activation, followed by a linear output layer. This is formally
expressed as

Y(k) = 4[8(k)]. (5)

The hidden layers can be fully connected or convolutional
layers or residual NN structures [4], [7], [8], [9]. Without loss
of generality, NNs with fully connected layers are considered
in this letter. The output layer provides two outputs Y(k) =

[YI (k), YQ(k)], which resemble the I and Q parts, but with ref-
erence to the normalized input. For the complex-valued model
output the specific phase is restored by multiplying with a
denormalization factor given by the normalized instantaneous
input, or preferably, the complex conjugate of the already
defined normalization factor, expressed as

ŷ(k) = x(k)/|x(k)|
(
YI + jYQ

)
= r∗(k)

(
YI + jYQ

)
. (6)



FISCHER-BÜHNER et al.: PHASE-NORMALIZED NN FOR LINEARIZATION OF RF PAs 1359

Fig. 2. Forward modeling results of the proposed and reference methods.

Fig. 3. Measured ACLR and EVM versus DPD model complexity. EVM
performance is bounded by clipper-induced floor of 1.14%.

III. MODELING AND DPD MEASUREMENT RESULTS

First, we demonstrate the proposed method in the context
of PA forward modeling. Three models are evaluated with
an input-output data of a Doherty GaN PA (RTH18008S-30)
running a 100-MHz 5G OFDM waveform [30 kHz subcarrier
spacing (SCS), 273 resource blocks (RBs)] [23] at 1.8 GHz.
The NN models were trained for 1000 epochs on 120k
samples using the adaptive moment (ADAM) optimizer, and
the normalized mean-squared error (NMSE) was evaluated on
40k samples. Each setting is evaluated five times and results
are averaged, to account for the random initialization of the
NN coefficients. All the compared models use a memory depth
M = 7 and first- and third-order envelope terms. The evaluated
NN models have one hidden layer with varied neuron count
and Sigmoid activation. Fig. 2 shows the achieved NMSE
of the RVTDNN with and without the proposed phase nor-
malization, alongside the approaches of [21] and [22]. The
modeling results indicate a clear improvement when applying
the proposed phase normalization for low as well as high
complexity models.

Next, we apply the proposed phase normalization for lin-
earizing a GaN Doherty PA (QPA3503) with +35.6 dBm
output power, running a 5G compliant 160-MHz multicarrier
waveform at 3.5 GHz, with 8.5 dB overall PAPR and four
40-MHz carriers (30 kHz SCS, 106 RBs per carrier) [23].
The NI PXIe-5840 vector signal transceiver (VST) is used for
analog signal generation and RF upconversion, and as receiver
for the amplified signal. We utilize the iterative learning con-
trol (ILC) scheme [24] to derive an ideal DPD signal, which
we then use to train the NN models. The same training con-
figuration is applied as in the forward modeling experiment.
Note that the ILC-based training approach was chosen for
model evaluation purposes. In an adaptive real-time deploy-
ment, ILC based pretraining may be combined with indirect
learning [6] or closed-loop adaptation of the models [10].
A GMP [2] predistorter is provided for reference, tuned using
least-squares fitting on the ILC data; the complex-valued

TABLE I
DPD EXPERIMENT RESULTS WITH DOHERTY GaN PA AT 3.5 GHz

Fig. 4. Power spectrum of the PA output using different DPD models.

Fig. 5. AM–AM and AM–PM plots for the original and linearized PA.

coefficients were considered as two real-valued equivalent
coefficients for complexity comparison. Fig. 3 depicts the
linearization performance in terms of worst adjacent channel
leakage ratio (ACLR) and the error vector magnitude (EVM).
With the proposed phase normalization applied, the RVTDNN
reaches an ACLR of below −50 dBc if scaled to beyond
600 parameters. Table I reports detailed results for the different
models and Fig. 4 shows the corresponding power spectra.
AM–AM and AM–PM plots showing the linearized behavior
are presented in Fig. 5. The proposed phase normalized
RVTDNN clearly outperforms the state-of-the-art.

IV. CONCLUSION

A novel phase normalization scheme for NN I/Q inputs was
presented, which enables an RVTDNN to efficiently model
RF nonlinear distortions at baseband. The provided modeling
and DPD linearization RF experiment results show significant
performance gains when applying the method, or alternatively,
a significant reduction in NN complexity for achieving the
same linearization. Furthermore, the phase normalization does
not restrict the modeling degrees of freedom and thus allows
scaling toward high parameter counts and higher model-
ing accuracy. The proposed scheme can be combined with
any feed-forward-type TDNN model available in the DPD
literature.
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