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In this work we develop the theory of the Loschmidt echo and dynamical phase transitions in noninteracting
strongly disordered Fermi systems after a quench. In finite systems the Loschmidt echo displays zeros in the
complex time plane that depend on the random potential realization. Remarkably, the zeros coalesce to form a 2D
manifold in the thermodynamic limit, atypical for 1D systems, crossing the real axis at a sharply defined critical
time. We show that this dynamical phase transition can be understood as a transition in the distribution function
of the smallest absolute value of the eigenvalues of the Loschmidt matrix and develop a finite-size scaling theory.
Contrary to expectations, the notion of dynamical phase transitions in disordered systems becomes decoupled
from the equilibrium Anderson localization transition. Our results highlight the striking qualitative differences
of quench dynamics in disordered and nondisordered many-fermion systems.
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I. INTRODUCTION

Equilibrium statistical physics is one of the most general
theories in natural sciences—it has been successfully applied
to a remarkably wide variety of systems between the small-
est and the largest scales in the universe. Only recently, the
advent of modern quantum simulators and digital quantum
computers has enabled a detailed experimental access to co-
herent far-from-equilibrium quantum evolution [1–10]. One
aspect of this that has recently stimulated enormous interest
is the possibility for nonanalytic behavior generated by a
sudden quench. This phenomenon, often discussed in terms
of a many-body Loschmidt echo, has close analogies with
equilibrium phase transitions which give rise to well-known
nonanalytic properties as a function of the control parame-
ter driving the transition. In contrast, a so-called dynamical
quantum phase transition, taking place at a critical time tc,
signifies a vanishing Loschmidt echo and an abrupt change
in the temporal evolution [11]. The possibility of nonanalytic
evolution is in itself intriguing, however, the formal analogy
with equilibrium criticality has launched a search for possible
universality in far-from-equilibrium systems [11,12].

In this work we establish the theory of Loschmidt echo and
dynamical quantum phase transitions in noninteracting disor-
dered many-fermion systems. We discover that the singular
dynamics of disordered Fermi systems constitute a radical
departure from the previously studied many-body quenches.
We find that (i) the temporal evolution of the studied sys-
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tem after a generic quench is accompanied by a vanishing
Loschmidt echo after a finite time, (ii) the critical time,
when the Loschmidt echo vanishes, becomes a deterministic
nonfluctuating quantity in the thermodynamic limit, (iii) the
Loschmidt echo remains strictly zero after the critical time,
and (iv) the qualitative behavior of the Loschmidt echo does
not depend on whether the quench crosses the equilibrium
Anderson localization critical point or not. Many insights on
dynamical phase transitions have been obtained from free-
fermion systems and subsequently confirmed in a number of
strongly correlated systems. Thus, our present work provides
a baseline to understand singular dynamics of even more
complex disordered systems in the future.

II. PROTOTYPE MODEL AND QUENCH PROTOCOL

We consider sudden quenches between two generic, nonin-
teracting fermionic Hamiltonians H0 and H1. The initial state
|ψ〉 of the system at time t = 0 is taken to be an Np-particle
eigenstate of H0, which is then propagated by H1. Since both
H0 and H1 are noninteracting, the state is a Slater determinant
for all times. Collecting the Np occupied orbitals in the initial
state as columns of the matrix V , the evolved state |ψ (t )〉 is
represented by a Slater determinant of the columns of V (t ) =
exp(−itH1)V , while the associated Loschmidt echo is given
by [13]

Z (t ) = 〈ψ |ψ (t )〉 = det(M(t )), (1)

where the Loschmidt matrix M(t ) is defined as M(t ) =
V †V (t ). It is convenient to consider the echo in the eigenbasis
of H1 represented as H1 = U1E1U

†
1 , where columns of U

are the eigenstates of H1 and E1 is a diagonal matrix of the
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eigenenergies. The matrix M(t ) can be written as

M(t ) = V †U1 exp(−itE1)U †
1 V, (2)

and the echo is determined by the basis change matrix V †U1

and the distribution of the energies E1. We note that the
time t is taken to be a complex variable in general, and the
Loschmidt echo of a finite system is an analytic function on
the whole complex plane [11].

As a prototype we consider a 1D Anderson model with a
second quantized Hamiltonian of the form

H = J
L∑

i=1

(c†
i ci+1 + c†

i+1ci ) +
L∑

i=1

hic
†
i ci. (3)

We call this the microscopic model as opposed to the random
matrix model introduced below. It is instructive to first con-
sider the extreme quench where the initial Hamiltonian H0 is
free from disorder hi = 0, J = 1 while the final Hamiltonian
H1 has no hopping J = 0 and hi are drawn from a uniform
distribution in the interval [−h/2, h/2]. We quench from an
eigenstate of H0, randomly choosing Np single-particle states
to be occupied, and propagate with the Hamiltonian H1, whose
spectrum is just given by the hi. We always consider half-
filling, Np = L/2.

It is revealing to compare the microscopic model with a
random matrix model where the initial Hamiltonian H0 =
U0E0U

†
0 is drawn from the Gaussian unitary ensemble (GUE).

It then makes no difference what the eigenstates of H1 are,
as U0 is distributed according to the circular unitary ensemble
(CUE) and, by the invariance of the Haar measure, so is the
overlap matrix U †

0 U1 regardless of what U1 is. The matrix
V †U1 is thus just a randomly chosen collection of row vectors
from a CUE random matrix regardless of U1. We still assume
that the energies E1 are the same as in the microscopic model,
i.e., uniformly distributed in the interval [−h/2, h/2]. In the
following we call this model the GUE model.

Dynamical phase transitions are revealed by the zeros of
Z (t ), termed the Loschmidt zeros, in the complex t plane.
A dynamical phase transition takes place at a critical time
tc, where the manifold of zeros intersects the real time axis.
However, first we explore the Loschmidt echo by following
the evolution of the eigenvalues of M(t ) and plotting them in
the upper row of Fig. 1. As Z (t ) is the determinant of M(t ),
zeros of Z (t ) appear at points t where M(t ) has eigenvalue
zero. We notice that the spectrum of M(t ) falls within a well-
defined, bounded region at all times. After the appearance of
the first zero eigenvalue, the spectrum of M(t ) encapsulates
the origin at all times. This signifies a type of singular many-
body dynamics where the Loschmidt echo vanishes for all
times after first reaching zero and the only singularity of the
rate function is at the critical time, similarly to the quench
within the massless phase in the 2D Kitaev model [14]. Here
we observe a certain universality, as the microscopic model
and the GUE model produce essentially the same eigenvalue
distribution.

We can now confirm the nature of the DQPT also by
directly looking at the Loschmidt zeros located using the
cumulant method developed in Ref. [15]. We discuss the
specialization of the method to the noninteracting case in
Appendix B. In this case, as also clarified below, the

FIG. 1. Dynamical phase transition following a very strong sud-
den quench. The energies hi are distributed in the interval [− 1

2 , 1
2 ].

(a)–(c) Eigenvalues of the M(t )-matrix for two different models,
the GUE model and the microscopic model, which exhibit remark-
able similarity. The dynamical phase transition occurs at the point
t = tc where the boundary of the eigenvalue distribution crosses
the origin. The system size is L = 5000. (d) Loschmidt zeros for
a single realization of the microscopic model of size L = 500. The
red cross marks the dynamical phase transition point where the real
axis intersects the boundary of the area with a finite zero-density.
(e) Scaling of the average density of zeros with system size L in the
region 15 < Re(t ) < 25, |Im(t )| < 0.2 for the microscopic model.
The datapoints were calculated with 100 realizations of the random
potential for each L and the line is a linear regression.

Loschmidt zeros are organized as a 2D manifold. As seen
in the lower left panel of Fig. 1, the zeros indeed cross the
real time axis at the time tc which coincides with the first
appearance of zero eigenvalue of M(t ). The density of zeros in
the region t > tc increases proportionally to L, which we also
verify numerically in Fig. 1(e). The zeros thus form a two-
dimensional manifold previously found in two-dimensional
models [14], while one-dimensional models typically display
lines of zeros [11]. Here, however, the zero manifold is two-
dimensional for both the 1D microscopic model and for the
random matrix model where the propagating Hamiltonian
only enters through its eigenenergies, which are not directly
related to its dimensionality.

III. EIGENVALUE PHASE TRANSITION
AND SCALING THEORY

In the case of extreme quenches between clean and non-
hopping states discussed above, the eigenvalue distribution
of M(t ) appears to have a sharp boundary and the critical
time tc is easily located by simply following the evolu-
tion of eigenvalues in the complex plane. However, for
generic quenches this is not the case, as the boundary of
the eigenvalue distribution in the thermodynamic limit may
be difficult to determine from the finite set of eigenvalues
calculated for some attainable system size L. Indeed, the
question remains whether such a sharp boundary generally
exists even in the thermodynamic limit. This is demonstrated
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(a) (b)

(c) (d)
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FIG. 2. Quenching from the ground state of the (h = 0, J = 1)
system to the (h = 5, J = 1) system. (a) Eigenvalues of M(t ) for
a single potential realization in a system of size L = 5000 at the
approximate critical time t = 1.1. (b) Combined Loschmidt zeros for
system size L = 500 and Ns = 1401 potential realizations. The red
dots highlight the zeros for one realization, showing their rarity. The
red cross indicates the dynamical phase transition. (c) The density
of eigenvalues of M(t ) within a small disk of radius 0.05 around the
origin averaged over a large number of potential realizations. The
color coding for system sizes and the sample sizes are as in Fig. 3.
(d) Histogram of Ns = 10 000 samples of |λmin| for different times in
the L = 500 system. The black line is a Rayleigh distribution fitted
to the data at t = 1.25.

in Fig. 2(a) for a quench starting from the ground state of
Hamiltonian (3) at parameters (h = 0, J = 1) and propagated
with (h = 5, J = 1).

To gain a quantitative understanding of the dynamical
phase transitions in such cases, we consider ensembles of
quenches for different realizations of the random potential.
In Fig. 2(b) we plot the combined Loschmidt zeros for 100
systems of length L = 500. Although the zeros for a single
system are very sparse, the ensemble reveals a sharp boundary
where the zeros appear. From the viewpoint of the eigenval-
ues of M(t ), the same boundary is found by inspecting the
density ρλ of eigenvalues close to the origin averaged over the
ensemble [see Fig. 2(c)]. But is this sharp transition a property
of the ensemble, or a property of an individual quench in the
thermodynamic limit? If we could increase the system size
sufficiently, then would we obtain a sharp nonfluctuating crit-
ical time for an individual quench? To answer this question,
we propose to study the distribution of |λmin|, where λmin is an
eigenvalue of M(t ) with the smallest absolute value. This is
related to, although not the same as the smallest singular value
of M(t ), which has been studied in classical random matrix
ensembles [16,17].

Suppose now that a sharp boundary for the eigenvalue
distribution of M(t ) exists in the thermodynamic limit. Then,
for t < tc, the distribution of |λmin| should become increas-
ingly narrow with increasing L, and its mean 〈|λmin|〉 should
approach a finite value corresponding to the distance from
the origin to the boundary of the eigenvalue distribution.
For times t > tc, however, both the mean and the standard

(a) (b)

(c) (d)
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FIG. 3. Mean and scaled standard deviation of the distribution of
|λmin| calculated for an ensemble of Ns = 10 000 systems for L �
500 and Ns = 1000 for L � 1000. Panels a and c show the quench
of the microscopic model also considered in Fig. 1, while panels
(b) and (d) show the quench from the ground state of Hamiltonian 3
at h = 0, J = 1 propagated with the same Hamiltonian at parameters
h = 5, J = 1. Black lines are calculated by a linear extrapolation in
1/

√
L. The vertical dashed lines show the estimated critical time.

deviation σ (|λmin|) of the distribution should scale to zero
with increasing L. If we assume that the eigenvalues of M(t )
in the vicinity of the origin are drawn independently from
some smooth distribution with local density ρλ, we find that
the distribution of |λmin| converges to the Rayleigh form

f (|λmin|) = 2π |λmin|ρλ exp(−πρλ|λmin|2), (4)

as discussed in Appendix A. As it is expected that ρλ is
proportional to L, the mean and standard deviation can both
be calculated to be proportional to 1/

√
L. We therefore expect

a phase transition in the distribution of |λmin| at tc where the
scaling behavior of 〈|λmin|〉 as a function of L changes.

The distribution of λmin is plotted in Fig. 2(d) for the
L = 500 system around the critical time determined from
the Loschmidt zeros. Indeed, we see the smallest eigenval-
ues reaching zero at t ≈ 1.1 and the distribution undergoing
a qualitative transition to a form that closely follows the
Rayleigh distribution above critical times. That this is indeed
a phase transition is demonstrated in Fig. 3 for two differ-
ent quenches. In Figs. 3(a) and 3(c) we plot 〈|λmin|〉 and
σ (|λmin|)

√
L for the quench of the microscopic model also

considered in Fig. 1. We observe a plateau in 〈|λmin|〉 for t �
tc ≈ 4.6 consistently with the appearance of the Loschmidt
zeros in Fig. 1. We have verified that 〈|λmin|〉 scales as 1/

√
L in

the large-t region. A phase transition is also clearly signalled
by the jump in σ (|λmin|)

√
L observed at t = tc. The apparent

convergence of the curve for σ (|λmin|)
√

L indicates that the
standard deviation scales as 1/

√
L for all times. This confirms

that the eigenvalue distribution of M(t ) converges to a region
with a well-defined boundary.

Figures 3(b) and 3(d) show the corresponding data for
a quench starting form the ground state of model 3 with
h = 0, J = 1 and quenching to h = 5, J = 1. The behavior of
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(a) (b)

(c) (d)

FIG. 4. Disorder averaged rate function and its derivatives. Pan-
els (a), (b) show the microscopic model introduced in Fig. 1 while
panels (c), (d) show data for the ground state quench discussed
in connection with Fig. 2. The number of disorder realizations
for panels (a) and (b) is N = 10 000, N = 5000 and N = 200 for
system sizes L = 100, L = 1000 and L = 5000, respectively. For
panel (c) the number of disorder realizations is N = 1000 for L =
100, 2500 and N = 10 000 for L = 500 while for panel (d) we used
NL = 2.5 × 107.

〈|λmin|〉 is similar with an initial decrease and a transition to
a plateau where 〈|λmin|〉 approaches zero with increasing L.
The critical time can be estimated from the extrapolated data
as tc ≈ 1.1. The main difference to the previous quench is that
σ (|λmin|) decreases slower than 1/

√
L for t < tc, consistently

with the “fuzzier” boundary of the eigenvalue distribution
compared to Fig. 1. Still, the mean and the standard deviation
scale to zero for t � 1.1, indicating that |λmin| = 0 for all
realizations in the thermodynamic limit.

IV. RATE FUNCTION AND ORDER OF THE DYNAMICAL
PHASE TRANSITIONS

Above we have discussed DQPTs based on the appear-
ance of Loschmidt zeros at a certain critical time, and
linked this phenomenon to the eigenvalue distribution of the
Loschmidt matrix. Dynamical phase transitions are typically
defined in terms of nonanalyticities in the rate function φ(t ) =
log(Z (t ))/L, also dubbed the “dynamical free energy,” and
the type of the zero-manifold is connected to the order of the
phase transition. A 1D zero-manifold with a finite line-density
of zeros leads to a first order jump in the dynamical free
energy, while crossing into a 2D manifold with a sudden jump
in the 2D density of zeros corresponds to a second order
transition [11,14].

In the case of disordered systems the rate function itself
becomes a random variable. We have computed the mean of
the rate function by sampling over a large number of disorder
realizations. We can then compute derivatives of 〈φ(t )〉 using
simple finite difference differentiation. In Figs. 4(a) and 4(b)
we demonstrate the appearance of a second order phase transi-
tion in the quench of the microscopic model of Fig. 1, clearly
signalled by a peak in the first derivative of the rate function

(a) (b)

(c) (d)
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FIG. 5. Scaled mean of the distribution of |λmin| for quenches
from the ground state of Hamiltonian 3. The system is quenched from
J = J0 = 1, h = 5 to J = J1, h = 5 with the same random potential
realization in the initial and final states. The panels show results for
different J1. Ensemble sizes are as in Fig. 3.

which becomes sharper with increasing system size. We have
also checked that the density of eigenvalues of the Loschmidt
matrix M(t ) at the origin (not shown here) undergoes a transi-
tion where a jump from zero density to a finite density occurs
and becomes increasingly sharp with increasing system size.

In Figs. 4(c) and 4(d) we present data for the ground
state quench of Fig. 2. Here we may expect a higher order
phase transition, as the eigenvalue density plotted in Fig. 2(c)
does not develop a discontinuous jump. However, because
the eigenvalues of M(t ) close to zero are very sparse com-
pared to the previous case, a much larger number of potential
realizations is needed to gather good statistics. We suspect
the transition is of order 3, but we cannot perform a proper
finite size scaling analysis even with the extensive statistics
used in Fig. 4(d). Thus, despite the rather sharp appearance of
the Loschmidt zeros in Fig. 2, and the change in the scaling
behavior of the smallest eigenvalue, we cannot conclusively
identify the order of this DQPT, and the possibility even
remains that it is a continuous crossover.

V. STRONG AND WEAK QUENCHES

It has been widely observed that a sudden quench through
an equilibrium critical point typically results in rich dynamics
and DQPTs [18], in contrast to quenches within one equilib-
rium phase. This property, though not without exceptions [19],
has even been proposed as a diagnostic tool to investigate
equilibrium phase boundaries. A remarkable feature of the
transitions studied in this work is that they are not related to
the Anderson localization transitions. The model (3) exhibits
localization for any disorder strength h > 0, and one might
wonder if the DQPT is related to quenching from h = 0 to
h > 0 or vice versa. This is not the case, as demonstrated in
Fig. 5. Here the quench is between two points in the param-
eter space where the system is deep in the localized phase.
However, it is evident that the scaling of 〈|λmin|〉 with

√
L is
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(a) (b)

(c) (d)

FIG. 6. Loschmidt zeros for an ensemble of Ns = 400 systems of
size L = 500 for the same models as in Fig. 5.

different for early and late times, signifying an occurrence of
a transition in the eigenvalue distribution. This transition is
again associated with the appearance of Loschmidt zeros as
demonstrated in Fig. 6.

We finally consider the difference between “weak” and
“strong” quenches. If we let J1 approach J0, the post-quench
Hamiltonian approaches the initial Hamiltonian. If the system
had a gapped ground state, we would expect that the ground
states of H1 and H0 also approach each other, and that any pos-
sible dynamical phase transition would eventually disappear.
However, since there is no gap in the thermodynamic limit,
this argument is not applicable. In fact, it seems that the DQPT
appears also for small quenches of J but reaching the scaling
limit requires larger system sizes, as seen in Figs. 3(c) and
3(d). This is also seen in the Loschmidt zeros, whose density
decreases when the quench becomes weaker. Thus, a larger
system size or a larger ensemble of systems is required to
characterize the zero-manifold.

VI. DISCUSSION AND SUMMARY

In this work we developed the theory of Loschmidt echo
in disordered noninteracting fermionic models after a quench.
We showed that the Loschmidt zeros are best understood in
terms of the eigenvalues of the Loschmidt matrix M(t ) de-
fined in Eq. (1), and we developed a scaling theory that links
the discovered new type of singular many-body dynamics
to phase transitions in the eigenvalue distribution of M(t ).
Unexpectedly, we find that generic quenches lead to qualita-
tively similar DQPTs. Specifically, DQPTs appear also when
performing quenches deep within the localized phase, which
clearly rules out the idea that DQPTs could be employed to
pinpoint the localization transition. A similar DQPT was also
found in a generic GUE random matrix model, which points to
a rather universal phenomenon independent of details such as
dimension as long as disorder is present in the quench power
spectrum.

Our findings constitute a radical departure from previous
results in similar models. The bosonic Anderson model [20]
and the fermionic Aubry-Andre model [21] were found to

exhibit periodic Loschmidt zeros when quenched through the
localization transition point, but not when quenched within
the localized or delocalized phase. However, the crucial differ-
ence is that Ref. [21] considers a single fermion and Ref. [20]
considers many bosons in the same state, while we deal with
generic fermionic Slater determinant states. Periodic dynam-
ical phase transitions were also found in the many-body time
evolution of the interacting Aubry-Andre model with system
sizes up to L = 100 [22]. It would be interesting to revisit the
Aubry-Andre model using the eigenvalues of the M(t )-matrix
and perform a scaling analysis to determine the type of the
zero-manifolds as we have done here for the model with
Anderson disorder.

DQPTs have also been found in Ising chains with disorder
[23–26] even in quenches that do not cross the bulk local-
ization transition [23]. This was attributed to crossing into a
Griffiths phase [23], with the intuitive picture that parts of
the system, the so-called rare regions, have effectively crossed
over the phase transition point even if the bulk remains within
the same phase. It was also found that the Loschmidt zeros
can accumulate into areas instead of lines [23] in the thermo-
dynamic limit, which resembles the findings in our work. The
transverse field Ising model and its extensions considered in
Refs. [23–26] can be mapped to free fermions via the Jordan-
Wigner transformation, although the resulting Hamiltonians
do not conserve particle number and there is no direct corre-
spondence to the models we have considered. Nevertheless, it
would be interesting to study if, e.g., the rare regions might
play a part also in the DQPTs we have discussed. Another
point of view is that, besides being the essential cause of
DQPTs, disorder can modify singular dynamics appearing in
clean models, such as in the Kitaev chain [27].

Finally, the methodology developed in our work can be
useful for treating many noninteracting fermionic models
without translation invariance. Considering the eigenvalues of
M(t ) is complementary to the recently developed cumulant
method [15,28] which has been applied to strongly correlated
systems in 1D and 2D. In the present work we also developed
a variant of the cumulant method to efficiently study large
noninteracting but disordered models. We expect these ideas
to stimulate further studies of the dynamics of disordered
systems.
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APPENDIX A: EXPECTED DISTRIBUTION
OF MINIMAL EIGENVALUE

To model the distribution of the minimal eigenvalue of the
matrix M(t ) for t > tc, we consider a small circle of radius
R around the origin and assume that the eigenvalues within
this circle are independently and uniformly distributed with
density ρλ. The number of eigenvalues within the circle is
thus N = πR2ρλ. The probability that all points are outside
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a smaller circle of radius r is

P(|λmin| > r) = (1 − r2/R2)N . (A1)

The cumulative distribution function for the scaled variable
|λmin|√ρλ is then

F (x) = P(|λmin|√ρλ < x)

= P(|λmin| < x/
√

ρλ) = 1 − P(|λmin| > x/
√

ρλ)

= 1 −
(

1 − πx2

πρλR2

)N

= 1 −
(

1 − πx2

N

)N

.

(A2)

When the system size grows, we expect ρλ → ∞ so that N →
∞. The cumulative function then converges to

F (x) → 1 − exp(−πx2). (A3)

The cumulative function of the Rayleigh distribution is usu-
ally written as

FRayleigh(x) = 1 − exp(−x2/(2σ 2)), (A4)

where σ is a scale parameter. Thus, |λmin|√ρλ becomes
Rayleigh distributed with scale parameter σ = 1/

√
2π , while

the distribution of |λmin| becomes increasingly narrow as ρλ

increases, and can be approximated by a Rayleigh distribution
with the scale parameter σ = 1/

√
2πρλ.

APPENDIX B: SPECIALIZATION OF THE CUMULANT
METHOD FOR NON-INTERACTING SYSTEMS

The cumulant method developed in Ref. [15] can be used to
locate the Loschmidt zeros in the complex plane. In principle
the method can be directly applied also to the noninteract-
ing models discussed in this work. However, specializing the
computation of the cumulants to the case of Slater determinant
states naturally offers a huge numerical advantage, because it
avoids handling general many-body state vectors.

The Loschmidt echo as a function of the imaginary time τ

can be defined as

Z (τ ) = 〈	| exp(−τH1)|	〉 , (B1)

where H1 is the post-quench Hamiltonian and |	〉 is taken to
be some eigenstate of the prequench Hamiltonian H0. If H0

is a noninteracting fermionic Hamiltonian, then the state |	〉
is a slater determinant of single-particle states. We collect the
states to a tall matrix V so that each column is a single-particle
eigenstate. If we also assume that H1 is noninteracting, then
the state |	(τ )〉 = exp(−τH1) |	〉 is also always a slater de-
terminant where the single-particle states are time-developed
by H1. Thus, |	(τ )〉 is represented by the time-developed tall
matrix V (τ ) = exp(−τH1)V .

The overlap of slater determinants is given by the determi-
nant of the overlap matrix [13],

Z (τ ) = det(V †V (τ )). (B2)

In the interacting case [15] the cumulants are calculated from
the moments

μn = ∂n
τ Z (τ ). (B3)

However, the first derivative of the determinant of a matrix
M(τ ) = V †V (τ ) is

∂τ det(M(τ )) = det(M(τ ))tr(M(τ )−1∂τ M(τ )), (B4)

with successively more complicated formulas for higher
derivatives. It is thus difficult to directly compute the moments
as derivatives of the Z .

For the Slater determinant case we can instead start from
the formula for the cumulants

κn = ∂n
τ log(det(M(τ )))|τ=τ0 , (B5)

which for n = 1 becomes

κ1 = tr(M(τ )−1∂τ M(τ ))|τ=τ0 . (B6)

Let us then define a matrix function K ′(τ ) such that

K ′(τ ) = M(τ )−1∂τ M(τ ), (B7)

or equivalently

∂τ M(τ ) = M(τ )K ′(τ ). (B8)

We then have that κn = tr(∂n−1
τ K ′(τ ))|τ=τ0 .

In the case of a single particle M would be a 1 × 1 matrix
and we could just define K (τ ) = log(M(τ )) = log(Z (τ )) and
K ′(τ ) = ∂τ K (τ ). K and M would then just be the cumulant
and moment generating functions. However, we do not want
to do so because the derivative of the matrix logarithm is again
nontrivial, and we do not actually need to define K (τ ). It is
enough to have a well-defined K ′(τ ) which is not necessarily
a derivative of a known function K (τ ).

Now we can proceed as in the usual case to derive a
formula that relates cumulants to moments. But now our mo-
ments and cumulants are matrices,

K ′(τ ) =
∞∑

n=1

Kn
(τ − τ0)n−1

(n − 1)!
(B9)

and

M(τ ) =
∞∑

n=0

Mn
(τ − τ0)n

n!
. (B10)

Equating the coefficient of τ n−1 on both sides of Eq. (B8) we
get

Mn

(n − 1)!
=

n∑
k=1

Mn−kKk
1

(k − 1)!(n − k)!

= M0Kn

(n − 1)!
+

n−1∑
k=1

Mn−kKk
1

(k − 1)!(n − k)!
,

(B11)

which can be solved for Kn as

Kn = M−1
0

[
Mn −

n−1∑
k=1

Mn−kKk
(n − 1)!

(k − 1)!(n − k)!

]

= M−1
0

[
Mn −

n−1∑
k=1

(
n − 1

k − 1

)
Mn−kKk

]
. (B12)

For the 1 × 1 case this again just reduces to the usual recur-
sive formula for the cumulants in terms of the moments. In

033178-6
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fact, it is the same formula, but it has to be remembered that
the matrices do not necessarily commute.

Numerically, we first compute the moment matrices Mn =
V †∂n

τ V (τ )|τ=τ0 , and then use the recursive formula to get

the cumulant matrices Kn. The cumulants κn are then
found as the trace of the matrices Kn. Finding the zeros
using the cumulants proceeds as in the interacting case
[15].
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