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This paper introduces a mesh-based magnetic equivalent circuit (MEC) modeling technique for induction machines (IMs) in healthy
and broken rotor bars conditions. The MEC model is presented as a highly accurate and computationally efficient alternative to
finite element (FE) models. By incorporating modifications to the air gap coupling method, including a new Lagrange interpolation
function, and utilizing a harmonic MEC model, the accuracy of the solution is improved while reducing electrical and mechanical
transients. Compared to experiments and 2D FE models, this model achieves precise results for electromagnetic torque, rotational
speed, and forces across various conditions. The Lagrange interpolation function forms the basis for the air gap coupling between
stator and rotor flux densities. The results demonstrate the MEC model’s exceptional accuracy in predicting speed oscillations,
calculating forces, and analyzing current harmonics in faulty IMs. Furthermore, the MEC model performs over 30 times faster than
the 2D FE models.

Index Terms—Broken rotor bar faults, induction machines, magnetic equivalent circuit (MEC), non-linear, reluctance network
(RN).

I. INTRODUCTION

INDUCTION MACHINES (IMs) are extensively employed
in various applications owing to their reliability. As a result,

multiple modeling techniques have been developed over time.
While finite element (FE) models offer high accuracy [1], they
may not be the most efficient tool for quick results during
initial machine design or real-time simulation integration.
Consequently, analytical tools have been devised [1], [2]. A
comprehensive overview of these models, covering various
types of faults in IMs, can be found in [1].

The magnetic equivalent circuit (MEC) model [3], [4] offers
a valuable alternative in electric machine modeling. It strikes
a balance between accuracy and computational efficiency by
providing higher accuracy than analytical models while requir-
ing fewer computational resources compared to FE models.
However, the study presented in [4] indicates that while the
computational times are low, the accuracy of torque ripple
prediction falls short compared to 2D FE models. Additionally,
the forces generated in different fault scenarios were not
included in any of the models discussed. These forces can
be crucial for conducting further vibration analysis of electric
machines, as highlighted in [5].

The Lagrange interpolation function described in [6] for
the MEC model is used for coupling the stator and rotor
nodes. This technique is applied to the nodal-based MEC for
permanent magnet machines. Raising the interpolation order in
the Lagrange function has been observed to result in instability
in the solution and necessitates a greater number of iterations to
attain the desired tolerance. This article presents modifications
made to the air gap coupling method described in [6] for
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the mesh-based MEC. Instead of considering only the central
angle in the Lagrange function, the approach now involves
dividing each block into multiple angles and taking the average
of the Lagrange function. This modification ensures a highly
accurate solution. This approach is applied in this study to
analyze various broken bar faults in IMs. The paper provides a
description of the air gap coupling methodology and the stator
and rotor electric circuit equations. Furthermore, a harmonic
MEC model is developed to initialize the time-stepping MEC
and minimize mechanical and electrical transients. Non-linear
iterations are handled using the Newton-Raphson technique.

II. MEC MODEL INTRODUCTION

The MEC models for a stator and a rotor tooth are depicted
in Figs. 1 (a) and (b) respectively. The magneto-motive forces
(MMFs) Fs(d,1-2) and Fs(d+1,1-2) in Fig. 1 (a), correspond
to stator slots d and d+1. They increase linearly from the
bottom of the slot to their maximum values at the stator yoke.
Similarly, the induced loop currents in the rotor bars, illustrated
in Fig. 1 (b), are associated with the MMFs Fr(c,1-3) and
Fr(c+1,1-3) of rotor bars c and c+1. The MEC model adopts
varying circumferential elements in the radial direction.

The model incorporates the non-linear behavior of the iron
material using the Newton-Raphson technique. The non-linear
elements are represented by the red-colored reluctances [7]. In
addition, the rotor skewing effect is modeled using the multi-
slice 2D modeling approach [7]. To account for the impact
of broken rotor bar conditions on mechanical transients, the
model takes the mechanical torque as input and adjusts the
rotational speed based on the electromagnetic output torque of
the model and the system’s mechanical inertia.
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Fig. 1. MEC models for the stator and the rotor. The magneto-motive forces
Fs(d,1-2), Fs(d+1,1-2), Fr(c,1-3), and Fr(c+1,1-3) are associated with the
stator slots d and d+1, as well as the rotor slots c and c+1, respectively. The
vector ϕs represents the flux loop vector in the stator, excluding the flux loops
present in the stator’s air gap denoted as ϕsg. Similarly, ϕr corresponds to the
loop flux vector in the rotor, excluding those in the rotor’s air gap represented
as ϕrg. Moreover, Vsg and Vrg indicate the stator and rotor scalar potential
vectors in the air gap region, respectively.

A. Air Gap Coupling

The coupling between the stator and rotor nodes is done us-
ing the Lagrange interpolation function [6]. This interpolation
function is a high-order polynomial of order n that couples
the radial flux density variation in the air gap region and also
the scalar potential in the stator Vs1-Vs4 and the rotor Vr1-Vr4,
shown in Figs. 1 (a) and (b) respectively. To obtain a complete
coupling between the stator and rotor, additional equations
are included in the system matrix. In order to improve the
accuracy of the interpolation technique for each MEC block,
instead of using a single central angle for each stator and rotor
block, k child angles for each block are used. This leads to a
total of k2 combinations between each angle. The average of
all combinations is then obtained by dividing the sum of all
combinations by k2. This approach results in a much more
accurate interpolation technique, thus improving the overall
performance of the MEC model. The stator’s scalar potential
at a primary stator block j, denoted by Vsj , based on the
rotor’s scalar potential at a primary block w, denoted by Vrw

is expressed as:

Vsj =
1

k2

k∑
u=1

k∑
v=1

n∑
w=1

(
Vrw

n∏
b=1,b̸=w

θsju − θrbv
θrwv

− θrbv

)
, (1)

where the stator angle at a primary block j and a child angle
division u is denoted by θsju . In contrast, the rotor angle at
a primary block b and a child angle division v is denoted by
θrbv , and the rotor angle at a primary block w and a child
angle division v is denoted by θrwv . The third summation and
the product indicate the Lagrange interpolation order n for the
adjacent main angles. Similarly, the rotor flux density at each
block w denoted as Brw can be expressed as a function of the
stator flux density at a primary block j, denoted by Vsj . The

total vector ϕtot to be solved can be expressed as:

ϕtot =
[
ϕs

T ϕsg
T Vrg

T ϕrg
T ϕr

T V T
bo

]T
, (2)

where ϕs is the flux loop vector in the stator excluding the flux
loops in the stator’s air gap ϕsg, shown in Fig. 1 (a). Similarly,
ϕr is the loop flux vector in the rotor, excluding the ones in the
rotor’s air gap ϕrg, shown in Fig. 1 (b). Vrg is the rotor scalar
potential vector defined in (1) and Vbo is a scalar potential
vector to describe the symmetry conditions. In this case the
residual function r can be expressed as:

r =LRtotdL
Tϕtot +Gϕtot − (MsIs (t) +MrIr (t)) , (3)

where L is a connection matrix of each branch flux and the
loop flux [7]. Rtotd is a diagonal matrix comprising of all
reluctance elements. G is a matrix that relates the air gap
stator loop fluxes ϕsg and rotor loop fluxes ϕrg with the rotor
scalar potentials Vrg and ensures the equality of the air gap
flux densities. In addition, G includes the relation between the
symmetry scalar potential vector Vbo and the total flux loop
vectors. Ms and Mr link each loop flux equation with the
corresponding stator phase current vector Is and rotor loop
current vector Ir respectively. Is and Ir have sizes of (m× 1)
and (Nr × 1) respectively, where m and Nr are the number of
phases and the number of rotor bars respectively.

B. Stator and Rotor Electric Circuit Equations

To include the stator electric circuit, additional equations
are required to input the stator voltage at each time step. The
model can consider either a star or a delta-connected machine
but only a delta-connected one is presented here. For a delta-
connected machine, the stator line voltages are applied directly
to the terminals of the machine. They are organized into a
vector Vs of a size (m × 1). The phase resistances and end
winding inductances are formed in diagonal matrices of Rs

and Ls respectively. The rotor electric circuit consists of Nr

loop current equations that form vector INr
. In each loop, the

bar resistance and the end ring resistance are considered to
form the rotor resistance matrix Rr. Similarly, the end ring
inductance in each loop is used to form the rotor inductance
matrix Lr. To consider the broken rotor bars, the conductivity
of Rb of a certain bar is controlled to present the fault.

The utilization of the Crank-Nicolson method transforms the
stator and rotor time differential equations into finite difference
form, which leads to the incorporation of a new residual
function r.

r =

LRtotdL
T +G −Ms −Mr
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(4)
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where qs represents the number of symmetries considered. ∆t
is the time step considered between time instants kt and kt−1.
To minimize mechanical and electrical transients, the suggested
approach is to employ a time-harmonic steady-state MEC
model. In this model, the time derivatives in the stator electric
circuit equations are converted to −iωs, where ωs represents
the supply angular frequency. While the time derivatives in the
rotor electric circuit equations are converted to −isωs, with s
denoting the slip of the induction machine. Furthermore, the
slip is adjusted until the electromagnetic torque matches the
desired input mechanical torque. The output flux loops and
currents output from the time-harmonic model are the solution
at the first time step for the time-stepping MEC model indicated
in (4) for efficient transient reduction.

III. SIMULATION AND EXPERIMENTAL RESULTS

The experimental setup for data collection is illustrated in
Fig. 2. In this setup, a 4-pole, 50 Hz induction machine with a
power rating of 7.5 kW is employed as the test machine. For
every experimental trial, the rotor featuring a broken rotor bar
is substituted. Various parameters including speed, torque, and
3-phase currents are measured at a sampling rate of 20 kHz.

All 2D FE and MEC simulations are conducted on a 11th
Gen Intel(R) Core(TM) i5-11600 with 32GB installed RAM.
Two radial slices are considered to model the skewing effect of
the rotor in both the 2D FE and MEC models. The simulations
are conducted for 100 cycles, each cycle with 400-time steps.
The 2D multi-slice FE models are developed using COMSOL
software. The number of triangles in the 2D FE model is 38338
with linear shape function elements for the 2 axial slices. The
MEC model has 1380 mesh elements for the stator and 1244
for the rotor for the 2 axial slices.

Various simulation scenarios are performed to test the re-
silience of the MEC model. These simulations include different
conditions, such as a healthy state, one broken rotor bar
(1BRB), two broken rotor bars (2BRB), and three broken rotor
bars (3BRB). In order to examine the impact of child number
divisions k in the Lagrange interpolation, diverse loading
conditions are applied to both the experimental setup and the
MEC models, specifically for values of k equal to 1 and 3.

The rotor speed of the MEC model, shown in Fig. 3, is
compared with the experimental and 2D FE model results for
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Fig. 2. Measurement setup.
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Fig. 3. Rotor speed for different broken bars conditions for the experiments,
2D FE, and MEC models at rated loading condition.

different broken rotor bars at rated loading conditions. The
results show that the MEC model can obtain similar speed
oscillations and average speed with great accuracy compared
to experiments and the 2D FE model. The amplitudes of the
harmonic spectrum of the current waveform Îa at the steady
state of the MEC model, shown in Fig. 4, is compared with
the experiments and the 2D FE model for a different number
of broken rotor bars at rated loading conditions. It is clear that
the MEC and 2D FE models can capture the lower sidebands
(LSB) and upper sidebands (USB) amplitudes and frequencies
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Fig. 4. Harmonic spectrum for the stator phase current for different broken
bars conditions for the experiments, 2D FE, and MEC models at rated loading
condition.
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Fig. 5. Forces for different broken bar conditions for FE and MEC models.

of the faults with great accuracy. The horizontal forces Fx are
also compared in Fig. 5 for both models for different broken
bars at rated loading conditions. The forces are computed using
Maxwell’s stress tensor [8]. The results show the robustness
of the MEC model. To assess the efficacy of the proposed
model, varying loading levels are tested in the MEC model,
considering different child division numbers, namely k equal
to 1 and 3. The investigation also includes one, two, and three
broken rotor bars. The amplitudes of the LSB and USB currents
denoted as ÎLSB and ÎUSB, are observed. As the number of
broken rotor bar increase, the MEC model with k equal to 3
exhibits higher accuracy compared to the case of k equal to 1
for detecting the LSB and USB amplitudes.

Table I shows the CPU time comparison between the 2D
FE model and the MEC model for both cases of child number
discretizations of k equal to 1 and 3. The table shows that the
MEC model is 30 times faster than the 2D FE model without
a significant difference between k equal to 1 and 3.

IV. CONCLUSIONS

The magnetic equivalent circuit (MEC) model efficiently
represents the electromagnetic properties of induction ma-
chines, both in healthy and broken bar conditions. Compared
to 2D FE models, the MEC model offers high accuracy while
requiring shorter computational times. It employs a novel
Lagrange interpolation technique, enabling it to effectively
capture harmonic sidebands and accurately compute electro-
magnetic forces during faults. Moreover, the MEC model can

TABLE I
CPU TIME COMPARISON.

2D FE Model MEC Model (k = 1) MEC Model (k = 3)

CPU Time [ms] 1500 54 58
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Fig. 6. LSB and USB current amplitudes for different broken bar conditions
at different loadings.

serve as valuable input for future vibration analysis purposes
and can be extended for various types of electric machines.
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