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Abstract—The swarms of unmanned aerial vehicles (UAV) are nowadays finding numerous applications in different fields. While
performing their missions, UAVs have to rely on external positioning information to maintain connectivity and communications between
units in a swarm. However, some of the critical applications such as rescue missions are performed in locations, where this information
is partially or fully not available, e.g., deep woods, mountains, indoors. In this paper, we propose a method for dynamic topology
organization and maintenance in UAV swarms. In addition to the baseline functionality, we also design advanced features required
for dynamic swarms merging and disjoining, making it suitable for practical applications. Specifically, the proposal is based on the
virtual coordinates system allowing for the utilization of conventional geographical routing algorithms. We test the proposed algorithm
in different swarm conditions to illustrate that: (i) it is insensitive to distance estimates up to at least 30% allowing for simple estimation
techniques, (ii) the accuracy of the topology inference is at least 90% even under impairments caused by mobility and temporal loss of
connectivity, and (iii) the impact of the developed merging algorithm for swarms lasts for multiple tens of time steps that correspond to
just few seconds in practice. The set of developed algorithms can be utilized to ensure always connected topology in conditions where
positioning information is partially or fully unavailable.

Index Terms—5G, UAV swarms, autonomous operation, GNSS-denied, topology construction and maintenance, geographical routing.

✦

1 INTRODUCTION

Unmanned aerial vehicles (UAV) are nowadays considered
as an effective platform to implement various services
without direct human involvement. UAVs facilitate and
sometimes even replace human labor in many areas, from
agriculture and forestry [1], [2] to search and rescue and
healthcare [3], [4]. Nowadays, these platforms have already
taken over some of the tasks in telecommunications, both
technical, e.g., monitoring equipment on top of towers,
and more intellectual such as using UAV as a flying base
station (BS), relay or anchor [5], [6]. Therefore, both ITU
and 3GPP consider UAVs as future network users and aim
at developing standards for their direct support in fifth
generation (5G) and beyond-5G networks [7], [8].

Once the potential of individual UAVs has been discov-
ered, the idea of using joint systems, UAV swarms, started to
appear. UAV swarms have been utilized in a diverse range
of applications, including precision agriculture, search, and
rescue in disaster response, inspection and surveillance of
infrastructure, and logistics and delivery in the urban area.
Thanks to an ability to perform tasks collectively, such sys-
tems have striking advantages, e.g., to search and monitor
a wider area, possibilities to carry heavier goods, perform
tasks in a parallel mode and thus complete them faster
[9], and allow to solve more complex intellectual tasks that
are beyond the power of a single UAV. Still, a successful
and safe launch of UAV swarms poses several challenges
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and technical issues, i.e., in-flight swarm localization and
control, coordination of UAVs within the swarm, level of
UAV autonomy for navigation, choreography of swarm
actions, etc.

To enable the deployment of UAV swarms for versatile
applications, we have identified several technical gaps that
require addressing, such as developing a low-complexity
and resilient network within the swarm, implementing a
precise sensing and perception system for each individual
node, designing a robust and agile formation control al-
gorithm, and ensuring the scalability of the swarm. This
paper emphasizes the merging and disjoining functions that
are crucial for the formation control and scalability of UAV
swarms, especially in autonomous missions where external
infrastructures may be unavailable. The term ”merging”
implies the process of combining two or more sub-swarm
groups (clusters) of UAVs into a single coordinated swarm.
”Disjoining” alludes to the process of breaking apart the
swarm or separating individual drones from the group.

While performing autonomous missions, UAV swarms
typically not only gather information but collectively pro-
cess it to make decisions in real-time [10], [11], [12]. These
tasks require efficient routing of data flows between mem-
bers of the swarm. Development of efficient routing of data
flows is a challenging problem, especially for large swarms,
where the efficiency of conventional routing protocols is
affected by multiple factors such as: (i) complex three-
dimensional (3D) topology of UAV swarms, (ii) constantly
changing swarm topology due to relative mobility of UAVs
within the swarm when avoiding collisions or perform-
ing reformations, (iii) temporal loss of connectivity due to
changing propagation conditions.
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One of the potential ways to overcome the above-
mentioned issues is to utilize topology organization and
maintenance algorithms that would dynamically keep the
swarm topology up-to-date. In presence of external po-
sitioning information, such as GPS-based, one can utilize
conventional geographic routing algorithms that are known
to be very effective in terms of overheads and routing per-
formance, e.g. Greedy Perimeter Stateless Routing (GPSR)
[13] or Compass [14]. However, when this information is
not available, for example, when performing search and res-
cue operations in places inaccessible to Global Positioning
System (GPS) or cellular infrastructure (deep woods, moun-
tains, indoors), one needs to resort to conventional routing
solutions based on either periodic exchange of routing tables
or flooding-based on-demand routing. The former protocols
are long known to produce excessive communications over-
heads [15], [16] while the latter introduces significant delay
prior to the actual exchange of data [17]. As a result, both
approaches are not suitable for mission-critical UAV swarm
applications.

In this paper, we specifically target environmental and
functional conditions for UAV swarm applications, where
no external positioning information is available. For such
types of use cases, we develop a completely distributed
topology organization and maintenance algorithm that uti-
lizes only two pieces of information: (i) possibly erroneous
distance estimates to its one-hop neighbors that can be de-
duced by utilizing the propagation model and (ii) availabil-
ity information about one-hop and two-hop neighbors that
can be exchanged regularly in beacon packets. Owing to the
dynamic nature of tasks and environments, UAV swarms
necessitate adaptive merging or disjoining (splitting) ca-
pabilities. Typically, the merging function is employed to
enhance capabilities, such as expanding coverage areas,
amassing greater amounts of data, or transporting heav-
ier loads over longer distances. Conversely, the disjoining
function is utilized for searching and navigating specific
targeted areas, routes, and hard-to-reach zones that are
inaccessible to large-scale swarms. This paper devise both
basic functionality related to maintaining a consistent view
of the network at all the UAVs and advanced algorithms
related to swarms merging and disjoining. To compare the
performance of the proposed algorithms, we then develop
topological and routing metrics and proceed assessing per-
formance of the proposed technique. The proposed algo-
rithm explicitly take into account environmental specifics
such as mobility of UAVs and inaccuracy of distance es-
timates as well as use case specific impairments such as
temporal loss of connectivity between UAVs in a swarm due
to loss of spatial and temporal synchronization.

The main contributions of the study are:
• The virtual coordination system (VCS) is introduced

for 3D topology construction, maintenance and mes-
sage routing for autonomous UAV swarms. The VCS
integrates geographical and links quality dynamics to
enhance the resilience of swarming operations, particu-
larly during the merging.

• A set of fully distributed, real-time and VCS-based
topology construction and maintenance algorithms are
proposed to support the essential swarming functions,
e.g. merging and disjoining. In addition, the proposed

algorithms improve the swarm autonomy level by
using only the lightweight local (within the swarm)
information and casting off the dependence on external
location and connectivity infrastructure.

• The topological and routing metrics are introduced
to gauge the performance of the proposed algorithms
when the UAV swarm is used for collective tasks.

• Numerical results show that the proposed algorithm is
robust to the positioning error, mobility variance and
fluctuating UAV behaviour while achieving more than
90% match within the original physical topology. The
simulation results also illustrate that the performance
of VCS-based algorithms is resilient during the merging
of swarms.

The rest of the paper is organized as follows. First, in
Section 2, the review of related work is presented. The
system model is introduced in Section 3. The proposed
approach is formalized in Section 4. Section 5 introduces
the metrics utilized for further performance assessment of
the proposed approach. Numerical results are provided in
Section 6. Finally, conclusions are drawn in Section 7.

2 RELATED WORK

This section presents the related work. We start with modern
approaches to topology control in UAV swarms, followed by
the outlook of VCS-based approaches proposed so far. Con-
cluding the section, a brief classification of routing protocols
that can be utilized in UAV swarms is provided.

The approach considered in our paper is designed for
efficient routing in swarms of UAVs, where the external
information is unavailable. It allows to infer the topology
of the swarm (i.e., graph) based on limited information
that can be exchanged between UAVs in “Hello” packets.
Since the developed approach is only needed when the
external positioning information is not available, Section 2.1
describes existing approaches for inferring the coordinates
of nodes in a swarm. A special approach that received
considerable attention in the past in the context of mesh
networks and can be applied to the case of UAVs swarms
is VCS that is discussed in Section 2.2. Finally, since the
proposed approach is in fact developed for routing in UAV
swarms, a brief account of existing routing protocols is
provided in Section 2.3.

2.1 Topology Control in UAV Swarms

One of the cornerstones in successful UAV swarming is
maintaining the connectivity of the swarm. The straightfor-
ward approach for supporting connectivity and coordina-
tion in drone swarms is to rely upon some global navigation
satellite system (GNSS) for UAV positioning, such as Global
Positioning System (GPS). By following this approach, the
authors in [18] consider the application of UAV swarm
in disaster management, where the positions of individ-
ual UAVs in a swarm are detected via GPS. The authors
in [19] introduce a system for monitoring and controlling
the safety of structures based on computer vision. Using
video images photographed by UAV, the system determines
the cracking status of internal and external structures. The
connectivity within the swarm is also controlled by GPS.
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The main advantages of this approach are the reduction of
maintenance costs and inspection time of the building. The
study in [20] targets a problem of packet forwarding in aerial
networks, more precisely a way to keep connectivity even in
a moving swarm. The suggested algorithm routes a packet
using the shortest path to the destination, if it exists. The
information about the location of UAVs is provided by GPS.
The authors tested the algorithm in a real UAV swarm and
concluded that it decreases the delay and number of hops
to the destination while keeping the delivery ratio high.

When performing their missions, UAVs may suddenly
experience the loss of GPS signals, which can cause the
absence of position information. To continue a safe flight
without collisions in the so-called GPS-denied environments
[21], the authors in [22] proposed to use a method of dead
reckoning. The idea of dead reckoning is to calculate new
coordinates using known initial coordinates and motion
parameters estimated by utilizing the interval inertial po-
sitioning system based on a gyroscope and accelerometer.
After conducting a number of experiments on simulated
data of swarm trajectories and comparing the predicted
position with the real, zero collisions were observed.

One more option when GNSS systems are not available
is to rely upon a cellular infrastructure. In [23], the authors
sum up the current state-of-the-art on the use of cellular net-
works as the communication infrastructure for UAV swarms
and propose their own high-level architecture for swarm
autonomy. They provide an UAV-to-UAV (U2U) network
communication testbed, where a swarm of UAVs was able to
follow the master UAV on a predefined path. A survey [24]
focuses on synergies of 5G/B5G innovations for cellularly
connected UAVs. The paper covers a wide range of topics
from UAV swarm applications to network architectures and
channel modeling.

One of the challenging use cases for autonomous swarm
missions is operations in locations when GNSS and cellular
infrastructure is not available or damaged, e.g., disaster
situations, indoors, in deep woods and mountains, etc. In
this case, UAVs need to rely upon swarm-internal meth-
ods for topology organization and maintenance. One of
the approaches is to utilize internal positioning systems
and/or radars [25]. In [26], the authors introduced a rel-
ative localization sensor system based on gyroscopes and
accelerometers. In spite of positioning errors accumulating
over time, it is demonstrated that the proposed approach
allows to maintain swarm topology over long periods of
time when GPS and/or cellular infrastructure is not avail-
able. The study [27] aims at reducing the number of isolated
drones in a highly dynamic topology network. The ap-
proach is inspired by biological natural swarms, like swarms
of dragonflies, and reinforces it with machine learning. The
authors considered a case when UAVs are equipped with
GPS, radar mechanisms, and altitude sensors to support
connectivity. In general, the use of radars allows for precise
topology maintenance but requires additional equipment to
be available at each drone in the swarm which limits the
application of this approach [28], [29].

The paper [30] proposes an integrated vehicular sys-
tem using UAVs and UGVs for autonomous exploration,
mapping, and navigation. It implements a two-layered ex-
ploration strategy, with a coarse exploration layer using

UGVs and a fine mapping layer using UAVs. The authors
in [31] focus on path planning algorithms in the absence of
GPS signals, leveraging range information from stationary
objects called Landmarks (LMs). The optimization problem
for LM placement and vehicle routing is posed as an integer
program, and two fast heuristics are presented to find
feasible solutions. The paper [32] tackles the issue of per-
sistent excitation-based relative localization for multi-UAVs
in GPS-denied environments. It introduces synchronized
sensor sample prediction and redesigns RL estimation to
avoid error accumulation and achieve greater precision. To-
gether, these works demonstrate the potential of unmanned
systems to operate autonomously and collaboratively, using
innovative approaches to overcome challenges in navigation
and perception.

The authors in [33] develop a self-organizing flying net-
work using a hybrid multitask algorithm for UAV swarms in
communication relay networks and surveillance missions.
To address three principal challenges of UAV topology
maintenance and communications, the authors propose a
hybrid solution based on market auction paradigms and
a biologically inspired pheromone map. Even though the
proposed solution depends on the correct parametrization,
the numerical results demonstrate that it effectively serves
the outlined performance goals.

2.2 Virtual Coordinate Systems

An alternative to the radars and inertial positioning systems
in absence of GNSS and cellular infrastructure is to utilize
virtual topologies that closely resemble physical ones. The
research on such systems dates back to the seminal paper
by Rao et. al [34], where the authors proposed to utilize
virtual coordinate systems (VCS) for topology construction
and further routing in wireless sensor networks (WSN).
Motivated by the use of geographical routing on top of
VCSs, the authors in [35] considered a static 2D network
with several sink nodes acting as static anchors and devised
a VCS utilizing the number of hops to the sinks as the
main input parameter. Their numerical results show that the
mean path length of greedy geographical routing algorithms
running on top of the developed VCS exceeds the shortest
path by just a few percent.

The study [36] presents Greedy Embedding Spring Co-
ordinates (GSpring), a geographical routing algorithm that
proposes the solution for the issue of packets stuck at dead
ends. In their proposed approach, nodes detect situations
that lead to dead ends during greedy forwarding and adjust
their coordinates so as to increase the degree of connectivity
of existing voids in the routing topology. Though GSpring
improves the routing efficiency when compared to existing
geographic routing algorithms, e.g., GPSR [13] or Compass
[14], it operates only in networks with static nodes. Further,
the study in [37] considers a network, where external posi-
tioning information is not available at the nodes. Using local
connectivity information, they build a logical topology, on
top of which the lightweight geographic routing protocol is
applied. The authors test the proposed framework by using
the packet delivery ratio and node power consumption.

Along these lines, a number of approaches for VCS
construction have been proposed in the past. In general,
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they can be classified to anchor-driven [36], [35], [38], [39],
[37] and anchorless ones [40], [40], [41]. The former group
assumes the presence of static nodes in the system which
serve as universal virtual references. Anchorless systems
rely upon either modern algorithms such as distributed
hash tables (DHT) [40] or produce simple topologies such
as chain formations [42], or circular ones [41]. Most of these
systems are tailored to static deployment use cases such as
those typical for WSNs. However, recently, the use of VCSs
for topology construction in mobile mesh networks has been
demonstrated in [43], where gradual algorithms have been
proposed. This paper extends the work of [43] proposing an
algorithm suitable for fully dynamic systems such as UAV
swarms and develop enhancements such as merging and
disjoining that are critical for the considered use case.

2.3 Routing in UAV Swarms
Over time, a considerable body of literature has addressed
research on routing in communication networks [44]. These
protocols can be classified into three categories: (i) proactive
or table-driven, (ii) reactive or on-demand, and (iii) hybrid
protocols that combine features of proactive and reactive
mechanisms. The main advantage of proactive protocols is
low route acquisition latency as the routes are always kept
up-to-date. However, due to the need for regular updates,
table-driven protocols are not well suited for mobile net-
works such as UAV swarms since the routing table updates
happen often and create significant overheads. Typical ex-
amples of proactive protocols are Destination-Sequenced
Distance Vector (DSDV) [45] and Optimized Link State
Routing Protocol (OLSR) [46].

As opposed to the proactive design, reactive protocols
find the routes on-demand. The process consists of two
steps: broadcasting the route request packets to the network
and receiving return messages with a route response. To
avoid duplication, each packet has a sequence number. In
the second step, when the destination node receives the
packet, it responds with a route reply message that takes the
reverse path in the network. The downside of this approach
is the latency of route acquisition that might be critical for
UAV applications [47]. The AODV protocol, proposed in
[48] and standardized in RFC 3651, is an example of an on-
demand routing protocol.

Hybrid routing protocols combine the functions of
proactive and reactive routing protocols. Typically, they are
used to determine optimal network destination routes and
to report changes in network topology data. One possible
implementation of this combination is to keep the routing
tables from table-driven routing protocol for nodes in close
proximity and use on-demand routing protocol for nodes
on the periphery [49].

A separate class of routing protocols relies upon the use
of external information to make routing decisions. For ex-
ample, geographic routing protocols [50] use GPS locations
instead of network addresses. In this case, the source sends
packets to the destination based on its geographic location.
This solves the problem of storage and communications
overheads associated with table-driven protocols and alle-
viates long route acquisition delay of on-demand protocols.
Nevertheless, the availability of external information is a
basic requirement in these protocols.

Nowadays machine learning techniques are being em-
ployed in various fields, and routing protocols are no excep-
tion. A new routing protocol called Q-FANET for Flying Ad-
Hoc Networks (FANETs) utilizes an improved Q-learning
algorithm to reduce network delay in high-mobility scenar-
ios [51]. To suit the dynamic behavior of FANETs, the pro-
posed Q-FANET combines two routing protocols (QMR and
Q-Noise+) and uses reinforcement learning on top of it. The
results of the performance evaluation show that Q-FANET
outperforms the other reinforcement learning-based routing
protocols in terms of lower delay, lower jitter, and a minor
increase in packet delivery ratio. The proposed protocol is
relevant for UAV swarm organization as it can enhance the
reliability and performance of communication networks be-
tween drones and ground control stations, which is critical
for the safe and effective operation of drone swarms.

In this study, it is presumed that the developed VCS
will provide location-related information to all the network
nodes in a fully distributed manner. More specifically, the
developed approach is in fact a VCS that does not rely
upon anchor nodes as compared to most of the algorithms
reviewed in Section 2.2. Thus, the developed VCS provides
the routing nodes with geo-location of the destination node,
and then any geo-routing protocols can be utilized. Since the
choice of the geo-routing protocol is not important for our
paper, we have compared the performance of routing over
the developed VCS by specifying a general routing protocol
independent metric.

3 SYSTEM MODEL

In this section, we formalize the system model. We start with
the network graph inference problem with a constrained set
of readability information. Then, we proceed with specify-
ing models of impairments affecting UAV connectivity in
the swarm including loss of temporal/spatial synchroniza-
tion, mobility model, etc. The section is concluded by the
definition of metrics of interest.

3.1 Deployment Model

Consider the deployment model illustrated in Fig. 1. The
swarm is assumed to move in a certain direction with an
average speed vS m/s. Specifically, we consider an area of
size L1 × L2 × L3 cubic meters with N nodes uniformly
distributed within. It is assumed that no external GNSS
information is provided for the swarm and that no UAVs
within the swarm have cellular connectivity. The typical use
cases considered are disaster management, indoors, deep
woods, and mountain operations, where this information is
completely unavailable or temporarily blocked.

In UAV swarms, the inter-node links are inherently dy-
namic due to wireless propagation specifics that may lead
to the temporal loss of connectivity due to, e.g., loss of
synchronization between nodes. This situation is modeled
by randomly chosen nodes appearing and disappearing in
the swarm, i.e. switching between connected and discon-
nected states. These processes are assumed to be mutually
independent at all the UAVs comprising the swarm.

Another impairment related to internal UAV mobility
inside the swarm occurs while performing a mission task
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Fig. 1. UAV deployment model (red crosses in the bottom represent the
loss of GNSS signal).

or going around obstacles. Often the movements of UAVs
within the swarm are limited to small changes in the UAV
locations for a subset of units. To capture this effect, it is
assumed that at any given instant of time, no more than
g percentage of UAVs are involved in relative movements
with respect to the swarm movement. The relative speed
of these units with respect to (1 − g)% of UAVs is denoted
by vR. These UAVs move within the cubic compartments
with sizes l1 × l2 × l3 cubic meters centered around UAV’s
randomly chosen location according to the random direction
mobility model (RDM, [52]). According to this model, UAV
selects a direction of movement randomly and uniformly
within (0, 2π) and then moves toward the selected direction
at constant speed vR for exponentially distributed time
with mean β−1. The process is then repeated. We assume
a peculiar reflection of the compartment boundaries.

The proposed algorithms in this paper are independent
of the transmission technology utilized by the UAVs and
hence can be used for any particular transmission technol-
ogy. The transmission ranges ri of radios equipped at UAVs
i = 1, 2, . . . , N , are known apriori or can be estimated
by utilizing radio part parameters, e.g., carrier frequency,
transmit and receive gains, receiver sensitivity, and noise
floor. All the neighbors within the coverage radius ri are
assumed to hear and decode transmissions. If millimeter
wave communications with highly directional antennas are
utilized it is assumed that UAV may maintain connectivity
with as many neighbors as needed.

3.2 Network Graph Inference Problem
It is assumed that each UAV possesses information about
(i) distance estimates to the one-hop neighbors within its
coverage area ri and (ii) information about the two-hop

neighbors. The former can be obtained by utilizing the infor-
mation about at least the received signal strength and sub-
sequently applying the propagation model for the consid-
ered carrier frequency, such as free-space path loss (FSPL).
More comprehensive distances estimation algorithms can be
utilized such as those based on the angle/zenith of arrival
(AoA/ZoA) and the associated times of arrival if available.
The use of radars for distance estimation is not precluded as
well. To capture a wide range of potential distance estimate
methods, we model the positioning error as αD, where D
is the actual distance between neighbors and α ∈ (0, 1)
is the error factor. Specifically, the information about the
two-hop neighbors actually include IDs of UAVs that are
directly connected to one-hop neighbors of a certain UAV
and distances to them. This information is directly available
at one-hop neighbors and is assumed to be delivered to the
considered UAV in “Hello” packets. No other local or global
information is assumed to be available at each UAV locally.

The information about the neighbors can be exchanged
in ”Hello” packets or in specifically designated ”Beacon”
packets exchanged on regular intervals, i = 0, 1, . . . , of
duration T , i.e. T = ti − ti−1, ∀i. The latter variable defines
the time step of algorithm execution at different nodes.
These time steps are not necessarily synchronized between
all the UAVs in a swarm.

To keep the application as wide as possible, we assume
that directions towards neighbors is not explicitly utilized
in the algorithm. However, observe that the information
about two-hop neighbors allows to implicitly capture not
only principle reachability but the directionality as well in
a very simple form. In this way, a certain UAV running
the algorithm sees branches of UAVs connected to different
single-hop neighbors.

Having the above-mentioned information, the algorithm
is expected to be executed independently at each node at
each time step. Since the main usage is to maintain UAV
swarm topology there are two types of tasks to be solved:
(i) assignment of virtual coordinates within the swarm and
(ii) enabling seamless real-time merging and disjoining of
different swarms.

3.2.1 Assignment of Virtual Coordinates
Essentially the task is to construct distributed graph map-
ping physical space to a virtual one. To find virtual coor-
dinates it is convenient to formulate the problem in terms
of graph theory. We denote an oriented graph G = (V,A)
with a set of vertices V = {1, 2, ..., N}, a set of edges A ⊂
{(i, j)|i, j ∈ V, i ̸= j}, and edge lengths di,j > 0, (i, j) ∈ A.
That is, the goal is to find nodes’ virtual coordinates
si = (xi, yi, zi) ∈ R3, i = 1, 2, . . . , N at any time step ti,
such that for all edges (i, j) ∈ A the distance between si
and sj should be close to di,j .

3.2.2 Merging and Disjoining
When performing autonomous missions, there might be the
need to change UAV swarm formations by adding individ-
ual UAVs or swarms of UAVs to the original swarm. Alter-
natively, some of the UAVs might be lost during the mission.
For this reason, for the VCS to be of practical interest, it
has to allow for smooth swarm merging and disjoining.
Note that there might be no need for special algorithms for
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Fig. 2. Illustration of a solution to the VCS addressing the problem.

disjoining as nodes leaving the swarm functionality can be
incorporated into the VCS maintenance procedure.

3.3 Metrics of Interest
As the main goal of this paper is to introduce VCS topol-
ogy organization and maintenance algorithms for efficient
geographical routing without the use of GNSS systems,
topological and routing-related metrics of interest are con-
sidered. The topological metric is represented by the Pear-
son correlation coefficient between pairwise distances in
virtual and physical topologies. Observe that since the aim
is to enable efficient routing in dynamic UAV swarms, the
developed algorithm may not produce the virtual topology
exactly matching a physical one although it is preferable.
Further, to benchmark the routing performance without
resorting to details of specific routing protocols proposed
to date, in Section 5, we propose a generic routing metric.

4 THE PROPOSED ALGORITHMS

In this section, we first develop our algorithm for VCS
address allocations. Then, we proceed with specifying the
algorithms for swarm merging.

4.1 VCS Address Allocation Problem
4.1.1 Problem Formulation
Consider a UAV swarm represented as a finite graph G =
(V,A) whose vertices may in general be dynamic, e.g., may
disappear and move. The following notation is proposed.
The vertices of the graph, V = {1, 2, ..., N}, are the UAVs.
UAV i is able to receive a signal from other devices within
its transmission range ri, i ∈ V , which is defined by the
UAV radio characteristics. The UAVs are connected by an
edge if they are within the transmission range of each other.
The set of edges is denoted by

A ⊂ {(i, j)|i, j ∈ V, i ̸= j} , (1)

and also define edge lengths as di,j > 0, (i, j) ∈ A.
Fig. 2 illustrates the intuitive solution to the VCS address

allocation problem. Specifically, it highlights the process of
adjusting the virtual coordinates of node k. Here, node j,

as a one-hop neighbor of k, affects the choice of virtual
coordinates of node k, denoted by sk. Ideally, node k should
move to the point s′k. However, in a real scenario, node k
has multiple one-hop neighbors (not shown in Fig. 2) which
also affect the choice of virtual coordinates. Thus, making
this process non-trivial.

Let Si = {j ∈ V |(i, j) ∈ A} be the set of vertices that are
endpoints of the edges associated with vertex i, i ∈ V . We
denote by S−1

j = {i ∈ V |j ∈ A} the set of vertices which
are incident to the edges of vertex j. Further, let

r(si, sj) =
√
(xi − xj)

2
+ (yi − yj)

2
+ (zi − zj)

2
, (2)

be the distance between si and sj , σ = (s1, . . . , sN ).
As an example, consider an arbitrary vertex sk

s′k = sj + dk,j
sk − sj
r(sk, sj)

= sk+

+

(
1− dk,j

r(sk, sj)

)
(sj − sk), (3)

at a distance dk,j from sj , see Fig. 2.
To make the distance between j and k close or equal to

dk,j the node sk should be moved to the new position s′k.
If one averages the desired positions of the node sk with
respect to all surrounding nodes j ∈ Sk, then

s′k = sk +
1

|Sk|
∑
j∈Sk

(
1− dk,j
r(sk, sj)

)
(sn,j − sn,k) . (4)

This leads to the following iterative procedure

sn+1,k = sn,k +
εn
|Sk|

∑
j∈Sk

(
1− dk,j

r(sn,j , sn,k)

)
×

× (sn,j − sn,k) = sn,k − εn
|Sk|

×

×
∑
j∈Sk

(
1− dk,j

r(sn,j , sn,k)

)
(sn,j − sn,k) , (5)

for any k = 1, 2, . . . , N , n = 1, 2, . . . , where 0 < εn < 1
is the parameter determining how drastically the new value
sn+1,k of the vector sk differs from its previous value sn,k.

4.1.2 Convergence Properties

The iterations in (5) are very similar to those utilized to
minimize some function F (σ) using iterations of the form

σn+1 = σn − εnπn, n = 1, 2, . . . . (6)

There are various methods for choosing the parameters
εn and vectors πn. The classic method is the fast descent
method [53], [54], [55], where the gradient πn is taken as a
vector πn = ∇F (σn), ∇ denotes the gradient.

Consider the problem of minimizing a function

F (σ) =
N∑
i=1

∑
j∈Si

Fi,j(r(si, sj)), (7)

with differentiable terms Fi,j(x).
The gradient ∇F (σn) of this function is

∇F (σ) = (∇1F (σ),∇2F (σ), . . . ,∇NF (σ)), (8)
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where the individual gradient terms are given by

∇kF (σ) =
∑
j∈Sk

fk,j(r(sk, sj))

r(sk, sj)
+

+
∑

j∈S−1
k

fk,j(r(sk, sj))

r(sk, sj)
, (9)

and fi,j(x) = d
dxFi,j(x).

Note an important special case of graphs G = (V,A)
with symmetric adjacency matrixA, for which the following
conditions are satisfied

S−1
i = Si, i ∈ V, Fi,j(x) = Fj,i(x), j ∈ Si, i ∈ V. (10)

For such graphs (9) takes the form

∇kF (σ) = 2
∑
j∈Ek

fk,j(r(sk, sj))

r(sk, sj)
(sk − sj). (11)

Let the graph G = (V,A) have symmetric adjacency
matrix A and di,j = dj,i for all (i, j) ∈ A. Consider two
versions of the functions Fk,j(x) and the corresponding
gradients of the function F (σ)

Fk,j(x) =
Ak

4
(x− dk,j)

2, fk,j(x) =
Ak

2
(x− dk,j),

∇kF (σ) = Ak

∑
j∈Sk

(
1− dk,j
r(sk, sj)

)
(sk − sj), (12)

and also

Fk,j(x) =
Ak

8
(x2 − dk,j

2)2, fk,j(x) =
Ak

2
x(x2 − dk,j

2),

∇kF (σ) = Ak

∑
j∈Sk

(r2(sk, sj)− dk,j
2)(sk − sj). (13)

It is easy to see that the considered intuitive solution (5)
of the VCS address allocation problem is equivalent to the
solution of the minimization problem of function in (7) with
components in the form (12), where Ak = |Sk|−1.

4.1.3 Single-Step Address Allocation
The iterative procedure in (5) can be implemented in differ-
ent ways. One of the algorithms, called single step allocation,
constructs a target optimization function that incorporates
distance assessments to one-hop neighbors. The optimiza-
tion problem is solved to obtain the most fitting virtual
address for each UAV at each step independently of other
UAVs.

Consider the following utility function

Fo(sk,j) =
∑
j∈Si

[
F1(r(si, sj), di,j)+

+
∑
j∈Mi

F2(r(si, sj), di,j)

]
, (14)

where Si is the set of one-hop neighbors, and Mi is the set
of two-hop neighbors.

The main idea of (14) is to find the virtual coordinates
of UAV i by minimizing the penalty assigned to it when a
set of rules is not obeyed. The first rule is that the distance
between the UAV i and one-hop neighbors should be within
a certain predefined range dn. Specifically, UAV i should

Fig. 3. Visual illustration of single step address allocation algorithm.

not be closer than a physical distance estimation and, at
the same time, should not move away too far, as it is a
directly connected neighbor. The second rule is that the
distance between the UAV i and two-hop neighbors should
be greater than or equal to a certain predefined limit dm.
Otherwise, a two-hop neighbor falls inside the area where
UAV i is capable to receive a signal from UAV j, and UAV
j becomes a one-hop neighbor by definition.

In order to implement the first rule we defince a function
F1(r(si, sj), di,j), j ∈ Ni which operates with the current
UAV i and its one-hop neighbors which are denoted by
Ni. It compares the virtual distance r(si, sj) between UAV
i and its one-hop neighbor j and the estimation of physical
distance between i and j and assigns a certain penalty based
on its difference. In general, the function is defined as

F1(d, dn) =


||d−DL|| d ≤ DL(dn),

0 DL(dn) < d ≤ DH(dn),

||d−DH || DH(dn) < d.

(15)

where || · || denotes Euclidean distance. The limit points
of the penalty-free interval are denoted as DL and DH ,
where the former stimulates the virtual coordinates of the
node i not to overlap with its one-hop neighbor’s, and the
latter indicates the transmission range of the current one-
hop neighbor.

Similarly to (15), F2(r(si, sj), di,j) penalizes the current
UAV i for being too close to its two-hop neighbors j ∈ Mi,
as they are not in the coverage. It is given by

F2(d, dm) =

{
||d−DT || d ≤ DT (dm),

0 d > DT (dm).
(16)

An illustration of the penalty function (16) is shown in
Fig. 3. The nodes with coordinates st,j are two-hop neigh-
bors of the node i. Knowing that DT is the transmission
range of two-hop neighbors, the optimal coordinates of the
node i should be outside of it. The three-dimensional nature
of the illustration reflects the fact that three coordinates
(x, y, z) are searched, while the color represents the value
of the penalty function.
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Algorithm 1: VCS Update Algorithm
Input:

1) signaling data packets pj ∈ Pi with data:
• j - ID of the one-hop neighbor of UAV i
• sn,j - virtual coordinates of UAV j at iteration n
• Nj - a list of one-hop neighbors’ IDs of UAV j
• a set of virtual coordinates of Nj

2) di,j - an estimate of the physical distance between
UAVs i and j

Result: virtual coordinates
sn+1,i = (xn+1,i, yn+1,i, zn+1,i) of UAV i at
iteration n of the algorithm

1 During a specified time interval ∆t UAV i may
receive signaling data packets pi;

2 Calculate sn+1,i;
3 if Pi = ∅ then
4 if sn,i ̸= NULL then
5 sn+1,i = sk,i
6 else
7 sk+1,i = rand()

8 else
9 if low mobility then

10 Single step Address Allocation
11 else
12 Gradual Address Convergence

13 Ḃroadcast pi, pi = {i, sn,i, Ni, sn,j , j ∈ Ni} ;
14 Ṙepeat from point 1.

4.2 Proposed Algorithms

Recall that UAV calculates its virtual coordinates in three
cases: (i) when UAV just joined the network and obtains
its first virtual coordinates, (ii) when UAV needs to update
its virtual coordinates at iteration n, (iii) on-demand when
merging procedure is initiated. In this section, we introduce
a VCS update Algorithm 1 and describe how it can be
utilized to determine and dynamically update the virtual
coordinates of UAV i at step n of algorithm iteration. The
merging procedure is described in Section 4.3.

To initiate the algorithm, UAV i within a certain period
of time receives a signaling data packet from UAV that is
in the set V ∩ Si (line 1). Assume that UAV j is within the
transmission range of UAV i. Then, UAV i will receive a
signaling packet pj with information about (i) UAV j’s ID,
(ii) virtual coordinates of UAV j, (iii) the list of one-hop
neighbors of UAV j and their coordinates. In addition to
the signaling data packets, UAV i estimates the physical
distance to its one-hop neighbors, di,j , j = 1, 2, . . . , Nj .
The signaling data packets from the one-hop neighbors and
the physical distance estimate are the two inputs to Algo-
rithm 1. When the input data is collected, UAV i computes
its virtual coordinates based on (15) and (16) (line 2). Once
virtual coordinates are obtained, UAV i starts broadcasting
signal packets with updated virtual coordinates (line 3).

UAV may not receive any signaling data packets. This
means that UAV does not have any one-hop neighbors.
This can either be because UAV is the first UAV to join the
network or UAV is far from the connected component of the

network. In the first case, UAV is assigned random virtual
coordinates, while in the second case, the UAV keeps its
previous virtual coordinates until the next update.

4.3 UAV Swarms Merging
We now proceed specifying the merging procedure by
proposing an algorithm to recalculate virtual UAV coordi-
nates in case a UAV belonging to more than one swarm
appears. In practice, this procedure shall be initiated when
UAV having a different swarm ID joins the current swarm
formed by one or more UAVs. The proposed algorithm spec-
ifies two separate parts: (i) the operations of UAV belonging
to several swarms (”merging” UAV), and (ii) the operations
of all other UAVs.

Consider a network consisting of multiple, c > 2,
UAV swarms represented by a disjoint graph, where UAV
swarms are connectivity components of the graph. The set
C = 0, 1, . . . , c denotes the set of all swarms. It is assumed
that there are N(i) UAVs in the swarm i ∈ C . We denote
the virtual coordinates of the n-th UAV within i-th swarm
by (xi,n, yi,n). Further, assume that a randomly chosen UAV
in swarm i comes in the transmission range of a UAV
that belongs to a different swarm. We denote the virtual
coordinates of this UAV in the swarm i by (xi,0, yi,0). The
polar coordinates of the vector (xi,n − xi,0, yi,n − yi,0) are
denoted by (ri,n, θi,n). The task is to determine new virtual
coordinates of the UAVs in the new joint swarm.

The idea of coordinate reassignment is to first convert
the coordinates of all UAVs into a single coordinate sys-
tem. Since for Cartesian coordinates such an operation is
not straightforward, we propose to use a polar coordinate
system, (ri,n, θi,n). It simplifies the algorithm by the fact that
only the second coordinate, θi,n, needs to be recalculated,
while the first coordinate is determined by calculating the
distance to the reference ”merging” UAV. Finally, at the
last step, the merged polar coordinates are recalculated into
Cartesian coordinates and broadcasted in both swarms. To
avoid ambiguity, the merging UAV is marked by 0.

Algorithm 2: Swarms merging: merging UAV 0

Input:
1) 0 - ID of the merging UAV
2) (xi,0, yi,0) - virtual coordinated of UAV 0 in the

coordinate system of swarm i
3) N0 - a list of one-hop neighbors’ IDs of UAV 0 in

swarm i

1 For all i, i ∈ C :
2 Send a message polar(0, xi,0, yi,0) to all j, j ∈ N0.
3 After receiving a response message angles(j, φ, ψ)

from all j, j ∈ N0, update parameters φi,0 and ψi,k:
4 φi,0 = minn∈Ci

θi,n,
5 ψi,0 = maxn∈Ci

θi,n, i = 1, 2, ...c.
6 Calculate
7 θi = θi,min,
8 δi =

∑i−1
j=1(θj,min − θj,min).

9 Send a message cartesian(0, θi, δi) to all j,
j ∈ N0;

10 After receiving a response message ready(j) from
all j, j ∈ N0, take the coordinates (0,0).

This article has been accepted for publication in IEEE Transactions on Mobile Computing. This is the author's version which has not been fully edited and 

content may change prior to final publication. Citation information: DOI 10.1109/TMC.2023.3293034

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/



9

The merging procedure is considered from the point
of view of the merging UAV combining the swarms. The
operations that need to be performed on the merging UAV
are presented in Algorithm 2, while those that need to be
performed at all the other UAVs – in Algorithms 3 and 4.

In Algorithm 2, the merging UAV initiates a Cartesian
coordinate recalculation operation in each swarm i to which
it belongs. The merging UAV sends a polar(0, xi,0, yi,0)
message to all its neighbors in swarm i (line 2). The polar
message contains the ID of the UAV from which the message
is sent and the virtual coordinates of the merging UAV in
swarm i. Once other UAVs receive polar, they calculate
their polar coordinates, taking the merging UAV as the
center of coordinates, see Algorithm 3. Then, the merging
UAV waits for a response message angles(j, φ, ψ) from all
its neighbors (line 3). When the merging UAV has received
angles from all its neighbors, it updates the φ (line 4)
and ψ (line 5) parameters and calculates the polar angles
of the UAVs from all the swarms (line 7,8). This operation
is required further to recalculate the polar coordinates of all
the UAVs in the same coordinate system. Next, the merging
UAV converts the polar coordinates into Cartesian coordi-
nates by initiating this process with a cartesian(0, θi, δi)
message (line 9), starting Algorithm 4. When the last UAV
has performed the Cartesian translation, the merging UAV
receives the message ready(j) and assigns itself the coor-
dinates (0, 0) (line 10).

Algorithm 3 describes the actions for any UAV in the
merging swarms that receives a polar message. UAV n,
after receiving this message for the first time (line 1), deter-
mines its polar coordinates (ri,n, θi,n) and saves parameters
φi,n, ψi,n (line 3). These parameters will be further utilized
to create a unified polar coordinate system. Finally, UAV
n sends a polar message to all its neighbors except for
the UAV from which it received a polar message (line 4),
and then waits for a response message angles. If UAV n
receives a polar message again, it immediately sends an
angles message to the sending UAV. When UAV n receives
angles(m,φ, ψ) from its neighbor m, it updates the values

Algorithm 3: Polar coordinates: UAV n

Input:
1) (xi,n, yi,n) - virtual coordinated of UAV n in the

coordinate system of swarm i
2) Nn - a list of one-hop neighbors’ IDs of UAV n

1 UAV n received a message polar(k, xi,0, yi,0) from
UAV k, k ∈ Nn.

2 If the message polar(l, xi,0, yi,0) was received
earlier from some UAV l, send a message
angles(n, φi,n, ψi,n) to UAV l.

3 Calculate the polar coordinates (ri,n, θi,n), save the
parameters φi,n = θi,n, ψi,n = θi,n.

4 Send a message polar(n, xi,0, yi,0) to Nn, except k.
5 After receiving a response message angles(n, φ, ψ),

update the parameters φi,k = min(φ,φi,k),
ψi,k = max(ψ,ψi,k).

6 After receiving a response message angles(j, φ, ψ)
from all j, j ∈ Nn, j ̸= k, send angles(n, φ, ψ) to
UAV k.

Algorithm 4: Cartesian coordinates: UAV n

Input:
1) Nn - a list of one-hop neighbors’ IDs of UAV n

1 UAV n received a message cartesian(k, θi,∆i)
from UAV k, k ∈ Nn

2 If the message cartesian(l, θi,∆i) was received
earlier from some UAV l, send a message ready(n)
to UAV l.

3 Send a message cartesian(n, θi,∆i) to Nn, except
k.

4 Calculate the Cartesian coordinates (xn, yn) using
the polar coordinates (ri,k, θi,k − θi +∆i).

5 Broadcast the Cartesian coordinates (xn, yn) to all j,
j ∈ Nn.

6 After receiving a response message ready(j) from
all j, j ∈ Nn, j ̸= k, send ready(n) to UAV k.

φ,ψ (line 5). The update is designed to find the minimum
and maximum polar angles. When the angles message is
received from all the neighbors of UAV n except for the UAV
from which it received polar message, UAV n sends the
angles message to the UAV from which it received polar
(line 6). Repeating recursively, the message angles reaches
the merging UAV.

Once the described procedures in Algorithms 2 and 3 are
performed, all UAVs in the merging swarms have a pair of
coordinates – Cartesian coordinates in the original swarms
and polar coordinates computed with the help of the merg-
ing UAV. The goal of Algorithm 4 is to assign Cartesian
coordinates to all UAVs in a new joint swarm. The steps
are similar to Algorithm 3, but now the process is initiated
by the cartesian message (line 1). After converting the
coordinates to the Cartesian system (line 4), UAV n informs
all its neighbors and sends them the message ready (line
5). This message is needed to notify the merging UAV that
the transition to Cartesian coordinates is now complete.

5 TOPOLOGICAL AND ROUTING METRICS

We now introduce metrics of interest reflecting the topo-
logical and routing performance of the proposed algorithm.
First, the correlation metric is specified, and then we proceed
with the routing one.

5.1 Topological Metric

As an indicator of the similarity between physical and
virtual network topologies, the so-called topology similarity
index is used. This index is defined as the Pearson correla-
tion coefficient between pairwise distances in the virtual and
physical topologies, i.e.,

K =
cov(Dphys, Dvirt)

σDphys
σDvirt

, (17)

where Dphys and Dvirt are the pairwise distance matrix for
physical and virtual graphs respectively, cov is the covari-
ance, and σ is the standard deviation.
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5.2 Routing Metric

The main goal of the designed VCS system is to serve
as a routing underlay for geographical routing. Observe
that perfect matching of the physical and virtual topologies
ensures that routing performance over them will be the
same. However, when non-perfect matching is observed it is
difficult to make definitive conclusions. To this aim, below
we define a general routing metric that can be utilized for
benchmarking the routing performance without resorting
to specific details of various routing algorithms proposed so
far.

Recall, that the network is represented by graph G =
(V,A). The virtual coordinates of a UAV i, i ∈ V , are de-
noted as si = (xi, yi, zi). All the vertices that are associated
with UAV i are contained in the set Si. We introduce a set Si,
such that Si = Si ∪ {i}. The goal of the routing algorithm
is to determine the path from the UAV i to the UAV k in
a swarm over virtual and physical topologies. Further, let
nk(i) be UAV to which data is sent from UAV i over the
path from i to k, nk(i) ∈ Si. To determine the route to UAV
nk(i), the following optimization problem should be solved

nk(i) = argmin
j∈Si

r(sj , sk), i ̸= j. (18)

Basically, the solution for (18) looks for a UAV from Si

that is closest in a geographical sense to the destination, i.e.,
UAV k. Each UAV sends a message with probability 1/N to
one of the arbitrary N UAVs. We define a stochastic matrix
P = [P (i, j)] and a unit vector u = (1, 1, . . . , 1). Matrix P
characterizes routing and its elements are

P (i, j) =

{
1
N

∑N
k=1 δnk(i),j , i ̸= j,

1/N, i = j,
(19)

where j ∈ Si, δnk(i),j takes a value of 1 if the routing from
UAV i to UAV k includes a certain UAV and 0 otherwise.

By solving the matrix equation pP = p, pTu = 1, the
so-called routing vector p is derived. The i-th element of p
represents the proportion of the time UAV i is involved in
the routing. The final metric is defined as

ρ = ∥p1 − p2∥ , (20)

where p1 and p2 are vectors for physical and virtual graphs.
If the virtual graph exactly matches the physical one,

then the routing will be performed over the same UAVs.
Accordingly, the frequency of visiting UAVs in both graphs
will be the same. In this ideal case p1 = p2 and the
metric ∥p1 − p2∥ = 0. When matching is imperfect, the
constructed routes will be different and some components
p1 and p2 will not coincide. It means that the routs in
physical and virtual graphs are different, which influences
the frequencies of visiting nodes. In the worst case, the
routing in the graphs follows completely different routes
and the metric takes value 2. It is caused by the low accuracy
of virtual coordinates.

6 NUMERICAL RESULTS

In this section, we elaborate on our numerical results by
assessing the performance of the proposed approach. We
start with single UAV swarm performance by assessing

TABLE 1
Simulation parameters

Notation Description Value
N Number of UAVs 50 units
R Transmission range 30, 50 m
L1,L2 Sides of the area 100 m
L3 Topology (flat or 3D) 5 m, 30 m
g Percentage of moving UAVs 100 %
vR Relative UAV speed 0.1, 3 m/s
γ Positioning error 1, 30 %
f Synchronization impairment On/Off

the impact of different densities of UAVs, different types
of topologies, relative mobility, and inaccuracy of distance
estimates. As performance metrics of interest, we will utilize
topological and routing metrics defined in Section 5. The
results of the single-step algorithm are compared with those
reported in [43], where the gradual convergence approach
has been proposed.

The system parameters are provided in Table 1. We note
that such parameters as the number of UAVs and sides of
the considered area can vary depending on the application
scenario. Transmission range values are based on the IEEE
802.11n/ac standards. The standardization efforts are still
ongoing with respect to the UAV traffic regulations. As for
the percentage of moving UAVs, we consider the worst case,
when all the UAVs move with respect to each other. We
underline that by introducing the relative speed of UAVs,
we consider scenarios where UAVs have to dynamically
change their trajectories due to presence of obstacles and
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Fig. 4. Topological metric as a function of positioning error.
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thus move with respect to other UAVs in the swarm. For po-
sitioning error we consider the best case (1%) corresponding
to the use of advanced localization techniques (e.g., based
on time and angles of arrival) and worst case (30%) when
the FSPL model is utilized for estimating the distance to
the neighbors. Finally, we also consider that UAVs might
lose connectivity with their neighbors due to imperfections
of the communication technology. We take such scenarios
into account by introducing a synchronization impairment
parameter.

The considered scenario for performance assessment is
as follows. In the initial phase, the UAVs are added one
by one to the swarm every second corresponding to typical
swarm initiation. Once all the considered number of UAVs
are added, we introduce various impairments, such as mo-
bility and loss of synchronization. First, the behavior of the
single swarm system is observed for various realizations
(trajectories) of UAV swarm in terms of topological and
routing metrics. Here, the metrics of interest are topological
and routing performance before and after merging.

The Cartesian coordinate system is used to simulate
mobility. Once all UAVs are connected to the network, a
certain percentage of UAVs, g, is selected to be mobile.
Here, we consider the worst-case scenario, where all UAVs
are mobile, i.e. g = 100%. The movement of UAVs is
characterized by two parameters: the range of mobility and
the relative UAV speed. The range of mobility of one UAV
is limited by a compartment with dimensions l1× l2× l3. In
addition to mobility, UAVs in the network may suddenly
lose synchronization (connectivity) with their neighbors.
This process is simulated as follows. At each algorithm
iteration dictated by the frequency of message exchanges be-
tween UAVs, a randomly selected UAV is removed from the
swarm. The remaining UAVs in the network redefine their
virtual coordinates without the removed UAV. In the next
time step, the removed UAV appears in the swarm again
and the network adapts its virtual coordinates according to
the new information.

6.1 Single Swarm Performance

We start with characterizing the sensitivity of the proposed
approach to the accuracy of the positioning information. To
this aim, Fig. 4 illustrates the topological characteristic as a
function of time, for N = 50 UAVs each having coverage
of 50 m, where the height of the swarm is 5 m, there is
no mobility and under perfect synchronization. Here, Fig.
4(a) shows the case of 1% positioning error that can be
attained using advanced localization algorithms, while Fig.
4(b) corresponds to the 30%, i.e. the accuracy attained by
the simple approaches such as those based on FSPL model.
As one may observe, the proposed approach drastically
outperforms the gradual convergence originally proposed
in [43] by, e.g., 3-5 times. In fact, for the considered set
of parameters, the proposed approach achieves a similarity
of more than 90% between virtual and physical topologies.
Note that this holds not only for static swarm behavior but
also holds true during the UAV swarm formation phase,
where UAVs are added one by one to the swarm.

Analyzing the data presented in Fig. 4 further, one may
observe that the accuracy of the distance estimates between
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Fig. 5. Routing metric as a function of positioning error.

UAVs utilized for virtual topology construction does not
affect the performance of the proposed algorithm. That is,
even introducing a positioning error of 30% only slightly
deteriorates the considered metrics during both swarm
formation and operational phases. Importantly, once the
swarm is formed, the metric jumps to approximately 1.0.

Recall that topology matching does not ensure iden-
tical routing. Fig. 5 illustrates the corresponding routing
performance of the proposed approach for the same set
of chosen parameters. Recall that the range of the metric
is (0, 2) where 0 implies perfect matching of the shortest
path routing. As one may observe, for both 1% and 30% of
positioning error, the considered metric is close to zero with
a slight increase observed for 30% case. Importantly, it holds
for both formation and operational phases implying that
data can be routed even when the swarm formation is not
finalized. Finally, we highlight that the proposed approach
outperforms the gradual convergence significantly.

The swarm topology considered in Fig. 4 and 5 assumes
a nearly flat swarm formation with a height of just 5 m.
When performing real missions, the formation may dynam-
ically change, e.g. when avoiding obstacles. To this aim, Fig.
6 shows topological and routing metrics for swarm height
of 30 m as compared to the Fig. 4 and 5, where the height is
5 m. The rest of the parameters and swarm behavior are the
same. By cross comparing the illustrations, one may observe
that both metrics slightly degrade. The reason is that higher
swarm height leads to fewer one- and two-hop neighbors
utilized by the drones to compute their locations in the
virtual topology. One may observe similar behavior when
the communications range of UAV decreases (not shown
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Fig. 6. Topological and routing metrics for swarm height of 30 m.

here). Thus, we may conclude that the proposed approach
is best suited for dense UAV swarms.

The first typical impairment we consider is the rela-
tive mobility of UAVs in the swarm shown in Fig. 7 for
topological metric and two relative mobilities 0.1 m/s and
3 m/s. Here, N = 50 UAVs in the swarm, positioning
error of 1%, swarm height of 5 m, and no temporal loss
of synchronization between UAVs. There are two important
observations. First by cross comparing the results in Fig. 7(a)
and Fig. 4(a), one may deduce that slight relative mobility
actually improves algorithms performance as an absolutely
perfect topology match is observed in Fig. 7(a). This is due to
the additional location relaxation factor for the optimization
problem that is solved at each UAV. However, when the
relative speed increases to 3 m/s the mobility becomes
a deteriorating factor. Albeit, the topological metric still
remains higher than 0.8.

Note that one may observe two types of “jumps” in the
plots. The first “larger” type of jumps are caused by swarm
topology changes. In the initial phase, the UAVs are added
one by one to the swarm. Since the proposed algorithm
depends on the number of neighboring UAVs and their
location, continuously changing the number and location of
neighbors affects the accuracy of the algorithm. However,
once the swarm is formed, the algorithm is able to calculate
the coordinates more precisely, which causes a significant
improvement (jump) in the plot. The second type of jump is
less significant and appears due to certain orientations of the
UAVs. It may appear for several reasons: specific geometric
positions of UAVs in the swarm (for instance, when a certain
subset of drones make a ”line”), lack of a sufficient number
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Fig. 7. Topological metric as a function of UAVs’ mobility speed.

of neighbors at any given instant of time, etc.
Yet another impairment for UAV swarms is temporal loss

of synchronization between UAVs. Recall that we model
it by temporarily putting UAVs ”off” and ”on” with a
duration of 1 s. Fig. 8 illustrates the topological and routing
metrics for N = 50 UAVs in the swarm, positioning error
of 1%, swarm height of 5 m, relative mobility of 1 m/s,
and temporal flashing on/off UAV behavior. Similarly to
the case of low mobility, flashing helps to improve the
correlation between the physical and the virtual graph,
making them more similar. A rationale for this behavior is
again additional location relaxation in the virtual domain
induced by the partial absence of connected UAVs. One may
observe that once the swarm is formed, the correlation value
remains close to 1 for the rest of the experiments.

Another important impairment is the loss of packets
utilized for exchange of the sets of neighbors between
adjacent UAVs in a swarm. These losses may happen as a
result of e.g., fast fading phenomenon. Fig. 9 demonstrates
the algorithm behavior in the case when the packets are lost
with the probability 0.05 and 0.1. Numerical results reveal
that the proposed algorithm isn’t affected significantly by
packets’ loss. With a loss probability of 0.05, the proposed
algorithm achieves a similarity of more than 90% between
virtual and physical topologies (Fig. 9(a)). The probability
of 0.1 slows down the process, nevertheless, the final value
of correlation is more than 90%. Fig. 9(b) shows behavior
of the routing-based metric. With the range of (0, 2), where
0 implies perfect matching of the shortest path routing in
physical and virtual graphs, the metric is close to zero.

Finally, Fig. 10 illustrates the impact of swarm density on
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Fig. 8. Topological metric as a function of UAVs’ mobility speed.

topological and routing-based metrics. As one may note, the
suggested algorithm is more suitable for dense swarms. The
correlation between topologies increases together with the
number of UAVs. The same can be said about the routing-
based metric – the metric shows the worst results for sparse
swarms, while swarms with 70 and 100 UAVs provide better
results.

6.2 Merging Performance

We now proceed assessing the merging performance of the
proposed algorithm. The assumed scenario is where two
UAV swarms are gradually formed by adding one node at
a time until the number of UAVs in each swarm reaches
25. Then, each swarm has 10 time steps to update their
virtual coordinates, after which the merging process starts.
Initially, each swarm, called cluster hereafter, has its own
VCS, thereby the task is to translate the virtual coordinates
of the two clusters into a unified system.

Fig. 11 presents the topological correlation metric before
and after the merging of clusters for 1% and 10% positioning
errors in Fig. 11(a) and Fig. 11(b), respectively. We consider
the case of the merging of two clusters, each containing
25 nodes, swarm height of 5 m. Two cases are compared:
positioning error of 1% and 10%. For the first 25 time
steps, the nodes of the clusters exist separately, as reflected
by the orange and blue curves. From 26 to 35 time steps
the virtual coordinates are recalculated according to the
proposed algorithm. Starting from 40th time step, one may
observe the green curves which show the correlation metric
for the joint cluster.
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Fig. 9. Topological and routing metrics as a function of packet loss.
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Fig. 10. Topological and routing metrics as a function of UAVs’ density.

This article has been accepted for publication in IEEE Transactions on Mobile Computing. This is the author's version which has not been fully edited and 

content may change prior to final publication. Citation information: DOI 10.1109/TMC.2023.3293034

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/



14

merged

cluster 1

cluster 2

M
er
gi
ng

10 20 30 40 50
0.0

0.2

0.4

0.6

0.8

1.0

Step number, n

C
or
re
la
tio
n,
K

(a) Positioning error 1%

10 20 30 40 50
0.0

0.2

0.4

0.6

0.8

1.0

Step number, n

C
or
re
la
tio
n,
K

M
er
gi
ng

cluster1

cluster2

merged

(b) Positioning error 10%

Fig. 11. Topological metric during the merging of two clusters.

First of all, observe that there is no principal difference
between 1% and 10% of positioning error which is in line
with previous observations for single swarm performance.
Further, the considered metric for initial clusters having 25
UAVs reaches approximately 0.5 and 0.6 for 1% and 10%
of positioning error, respectively, and then, once all UAVs
have joined the overlay, the correlation metric improves to
0.9. The merging process initially incurs imperfections into
VCS address allocations that is reflected by the topological
metric being smaller than 0.8 in both cases just after the
merging is complete. However, immediately after it starts to
increase reaching the value of 0.9 for 1% of positioning error
already after 10 time steps. For 10% error, it remains almost
intact. Thus, one may conclude that the merging process
does not affect long-lasting performance degradation in the
VCS operation.

Fig. 12 presents the routing metric before and after the
merging process for the same set of chosen parameters. It
is noticeable that this metric has greater values right after
the merging but, nevertheless, they are well below 1. The
rationale is that the topology changes and so do the routes,
thus, further updates are required to improve the value.

7 CONCLUSIONS

To enable timely coordination and information exchange,
the swarms of UAVs performing the missions in GNSS-
denied environments such as deep woods, mountains, or in-
doors, need to be able to maintain their topology at all times.
Motivated by this task, in this paper, we developed a set
of algorithms for topology organization and maintenance
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Fig. 12. Routing metric during the merging of two clusters.

without the use of external positioning information for UAV
swarms. The developed algorithms are entirely distributed,
utilize limited information about the proximity of UAVs
that can be exchanged in link control messages such as
”hello” beacons, and may tolerate inherent dynamics of
UAV swarms in terms of loss of link synchronization and
mobility. The developed algorithm is complemented with
essential UAV swarms merging and disjoining functionality
delivering the whole package for reliable UAV operation in
hostile environments.

The performance of the proposed algorithm was in-
vestigated using both topological and routing performance
metrics. Our results reveal that the algorithm is robust to
the positioning error for directly connected UAV nodes
and may tolerate up to 30% of error. Both mobility and
synchronization loss events are handled with limited per-
formance degradation. Finally, we showed that the merging
functionality does not affect the algorithm performance and
its impact lasts for 20-50 times steps which is equivalent to
a few seconds or even less in real-time scenarios.

Several directions for future research are considered.
Firstly, the algorithm’s sensitivity to the loss of signal pack-
ets is to be investigated. The threshold of acceptable losses is
of particular interest. Secondly, frequent disconnection and
connection of drones results in significant overhead, which
could potentially be avoided by applying some heuristics
on top of the algorithm. Lastly, the algorithm should be
tested in real-life settings to analyze its scalability and
robustness in different environments with various numbers
of UAVs and obstacles. The goal is to refine the algorithm’s
parameters and identify potential limitations.
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Source Access
The source code used to produce results for this paper is
available at https://github.com/gaydamanya/GAR.git.

REFERENCES
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