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Abstract—In this paper, we propose a new service orchestration
approach for in-network fully distributed dynamic compute
composition with limited involvement from the consumer and no
centralized coordinator. The service is composed fully inside the
network including assembling data and software, and compute
node selection, leveraging standardized NDN functionalities. The
use of the proposed approach will enable smooth support of
dynamic compute services over wireless/mobile edge and edge/fog
NDN-based systems, where the use of conventional IP approach
faces fundamental difficulties related to dynamic allocation of
IP addresses. We will also outline extensions of the proposed
approach for streaming data, function chaining and re-use of
partially computed results. Our numerical results show that the
proposed method improves service reliability at the edge by
increasing the Interest satisfaction by 5-10 times depending on
the considered deployment, network topology, and resources.

Index Terms—Dynamic edge computing; named data network-
ing; in-network service orchestration; function chaining.

I. INTRODUCTION

With the rapid development of Internet of Things (IoT) and
Internet of Everything (IoE), the number of connected devices
at the edge grows rapidly, leading to an increase in the amount
of data being collected and processed. This gave rise to Edge
and Fog Computing paradigms to bring the benefits and power
of the cloud close to where data are created, analyzed, and
acted upon. [1], [2].

However, a large number of devices are also present beyond
where traditional edge computing stops today, typically at the
base station or within the operator’s network, often referred to
as a far edge. Examples of such far edge devices include lap-
tops/desktops, tablets and smartphones, processors in vehicles
or servers at businesses, etc. It is expected that the number of
such devices [3] to be over 28 billion, making it a powerhouse
of resources (sensors, storage, compute, data, etc.) at the far
edge. They have the potential to form a horizontal layer of
resources that can provide services to other clients. This aspect
is today largely untapped since there is no easy way to harness
these chaotic, potentially mobile resources that are not under
a control of a single orchestrator and operate independently.

Named Data Networking (NDN) is a realization of Informa-
tion Centric Networking (ICN) that can enable dynamic com-
position of compute services at the edge. NDN networks lever-
age flexible resources through a decentralized architecture,

eliminating the need for a central entity to manage resource
discovery and facilitate computational tasks on edge nodes.
This approach has the potential for considerably enhancing
user experience (e.g., via reduced latency) from compos-
ing/employing compute services as well as for facilitating new
services, which are unavailable with the existing (IP-based)
network architectures. While NDN was largely developed for
data delivery over wired networks, its potential for enabling
advanced services over the wireless network has not been
deeply studied.

It has been demonstrated that NDN provides significant
gains over conventional IP solutions and may efficiently op-
erate in regimes, where IP solutions face difficulties, such
as mesh disconnected from the Internet [4], [5]. However,
the usage of NDN-based dynamic compute solution either
presumes exact knowledge of the requested service or requires
additional translation layer to be added to each compute node
that maps the requested user function name to the set of avail-
able computes [6]. Both approaches are inherently centralized
and do not account for network-wide knowledge of the service
[7]. The reuse of computation has been shown to benefit the
edge system because it can significantly speed up the execution
of tasks at the edge [8], [9]. A framework described in [10]
further enables computation reuse at the pervasive edge where
a service may be offered by multiple distributed edge nodes
by enhancing the naming design. Additional enhancements
by efficient usage of the previously computed results which
might be fully or partially available in the network were
also combined in our work. Finally, there are value-added
functionalities that can be added on top of it including the
support for function chaining and streaming data. No such
versatile solutions for dynamic compute orchestration has been
proposed so far.

In this paper, we propose a dynamic compute service design
for the mobile NDN-enabled edge systems. Instead of relying
upon user to construct the service, we outsource this function-
ality to the network. By utilizing standardized functions of
NDN networks, nodes coordinate themselves combining data,
software and compute resource to execute the instructed task.
The main contributions of the paper are:

¢ In-network dynamic compute service orchestration ap-

proach that does not require a central coordinator, relies
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Fig. 1. Illustration of the “network makes decision” operation.

upon limited involvement from the consumer (user) in
service provisioning, and allows for re-use of partially
computed results minimizing redundant computations;

« Observation that outsourcing the compute service compo-
sition to the network addresses the problem of unreliable
wireless access while NDN caching capabilities allow
handling of extremely high load conditions;

o The comparison with a typical client-server approach
reported in [11] showing that our method improves the
Interest satisfaction by 5-10 times, depending on the
system and deployment parameters.

Our paper is organized as follows. In Section II we review
the related work. Further, in Section III we introduce the
proposed solution. Enhancements are proposed in Section IV.
We evaluate performance of the proposed solution in Section
V. Conclusions are drawn in the last section.

II. RELATED WORK

In [11], [12], the authors proposed two dynamic network
orchestration mechanisms named “source makes decision”
and “delegated node makes decision”. The former approach
assumes that the source is the one that not only initiates the
service, but is also involved in the choice of the compute,
software, and data resources that need to be utilized for
service composition. In the delegated node solution, these
functionalities are outsourced to one of the network nodes
and the source is only responsible for initiating the service
request. The main idea is to improve service reliability when
running over unreliable wireless last mile access, e.g., Wi-
Fi Networks. The biggest challenge of the “source makes
decision” in [11] is the tight involvement of the consumer
in the service orchestration, where compute server, data, and
software selection need to be performed at the consumer. The
“delegated node makes decision” alleviates these shortcomings
but involves a third fully trusted party, that is responsible
for service composition. This may require additional security
measures and/or usage of specialized hardware/software at
access points.

NFN (Named Function Networking) is an extension to
existing ICN networks that enables an ICN network to deliver
not only data that was already published but also on-demand

results of computations, whereby the network can optimize
where a computation is executed [13]. NFN performs in-
network resolution of expressions instead of mere content
retrieval of a single name. NFN orchestrates computations
for a specific user at the edge of the network as well as for
services inside the network. However, the existing work in
NFN assumes that the functions are already available on the
compute servers and clients always have the raw data to be
processed, which is a very limited scenario. A more general
scenario of the real edge network is that the raw data, functions
and compute resource may reside in different places.

A framework described in [14] provides means to charac-
terize the computation tasks, decide how to distribute, and
provide scheduling and caching to meet performance require-
ments. However, it still assumes that the computation servers
already have the requested functions and the network topology
info and resource information are a prior knowledge to all
nodes in the network.

III. IN-NETWORK COMPUTE ORCHESTRATION

In this section, we first present basic operation principles
of the proposed strategy. Then, we proceed specifying the
handling of the Interest packet at network nodes.

A. Operational Principles

We consider an NDN network with the following entities:
(i) NDN nodes containing specific data required for the
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Fig. 2. NDN packet structure.



Remove “/compute” Node has
delegation compute?
No
Remove “/soft” Yes ode has
delegation soft?
No
Remove “/data” Yes Node has
delegation data?

No
HopLimit No Forwarding
reached? int is empty2.
No

Yes

Forward to
compute

Forward using
Forwarding hint

(a) Intermediate node

Inbound
data or soft

Does node
have data
and soft

Make
“computation”
and Schedule
result response

Does node
have data
and soft

Save
Data/soft
and wait

Make
“computation”
and Schedule

result response

Save
Interest
and wait

(b) Destination node

Fig. 3. Handling of the Interest message at intermediate nodes and destination.

computational task — data producer, NDN nodes containing
software required for the computational task — software pro-
ducer, compute nodes with enough resources for performing a
computational task — compute node. By utilizing these entities,
a user is assumed to generate a request for processing selected
data with selected software on one of the compute nodes
available in the network. The only information that needs
to be available to the user is the data name and compute
function to be executed. Having this knowledge a user could
create NDN Interest packet for dynamic compute execution as
described below. The benefit of using NDN is that the network
layer understands the names of the software, data and compute
resources and is able to route the requests accordingly.

The proposed mechanism, called “network makes decision”,
allows to dynamically combine software, data and select the
server to execute computations within the network with limited
involvement of the user requesting the service. By utilizing
NDN terminology, the node requesting the service is called
the consumer, while the nodes providing data, software, com-
putational resources are called data/soft/compute producers.

The basic principle of the proposed approach lies in utiliza-
tion of the ForwardingHint field which is an optional field in
the NDN Interest packet that, if present, must be handled by
the nodes, as shown in Fig. 2. Specifically, we assume that the
requested service for the GenericNameComponent (GNC) is

result/

soft-full-name/

data- 1-full-name/

data-2-full-name/

data- N -full-name (D

resulting in the overall Interest name
ndn://result/soft_func_fl/data_1/data_2.

To enable in-network search functionality we utilize the
ForwardingHint field in the Interest packet that now contains

the following field

ResultName
?ForwardingHint = /datal/data2/soft/compute
?Nonce = Random int

?HopLimit = N. 2)

An example of the trace of the packet traversing the network
is shown in Fig. 1(a) while the associated signaling diagram is
illustrated in Fig. 1(b). Here, the consumer-generated request
for service result/soft_func_fl/data_I using the ForwardingH-
int having the following “?ForwardingHint = [/data, /soft,
/compute]”, where ”_” acts as a delimiter, which temporary
replaces ”/”. This approach temporarily turns full names of
data and software into NDN Name Components enabling
intermediate nodes to understand which parts of the full name
represent software and data. Note that other types of delimiters
can be utilized if the ”_” symbol is not acceptable for a
particular naming scheme.

As the packet traverses the network, it first encounters
data, software, or compute producers. A node that can satisfy
one of these sub-names removes the respective Delegation
from the ForwardingHint. For example, if the data producer
is encountered first, the content of the ForwardingHint in
the Interest packet is modified to ?ForwardingHint = /soft,
/compute, and the packet is forwarded further. When further
software producer is encountered, the content of the Forward-
ingHint in the Interest packet is modified to, ?ForwardingHint
= [/compute] and the packet is forwarded next.

If data (software) delegation is missing from the Forward-
ingHint, it indicates that data (software) is available through
the Face Interest came from, and FIB should be updated at
this and each next node. When the compute node is reached,
result-search strategy removes /compute delegation from the
ForwardingHint and updates FIB. After it the compute node
requests software and data by generating individual Inter-
est packets for them. If data and/or software was encoun-
tered before reaching compute node, ForwardingHint will be
missing data and/or software delegation and default routing



should lead towards the Face the Interest came from. In case
when data and/or software Delegation is still present in the
ForwardingHint compute node can decide to send interest(s)
anyway or forward the result interest toward data or software.
Upon reception of the data and software, the computation is
performed and finally, the result is sent back to the consumer
satisfying the original result interest.

B. Handling of the Interest at Network Nodes

Handling of the service Interest packet at an intermediate
NDN node and at the destination node is shown in Fig. 3.
The “network makes decision” is implemented via the “result-
search” NFD forwarding strategy that must be installed at
the network nodes supporting the service. If the strategy
is not installed, a standard forwarding strategy is utilized
to forward Interest without changes. If the strategy is not
installed, and the node cannot act as data/software/compute
producer (or does not have these capabilities), the Interest
packet is unchanged and forwarded using the default NDN
forwarding strategy. Otherwise, the actions are as shown in
Fig. 3(a). Other situations, such as reaching the hop limit, are
handled in a standard way.

Handling of the inbound “network makes decision” Interest
packet at the destination node is shown in Fig. 3(b). Notably,
the order in which /data, /software, and /compute producers’
names are specified in ForwardingHint acts as a suggested
order of search of the needed components but does not man-
date it. The order can be specified by the user application and
may depend on the assumptions of components’ reachability,
scarcity, size, etc. Nodes utilizing result-search strategy as well
as the default forwarding strategy will prefer faces that satisfy
routes toward earlier names in the ForwardingHint.

Note that as compared to the system, where an edge node
has already the service installed, the proposed approach adds
the overheads associated with finding the service executables
(application). These overheads are standard overheads for
an NDN system, However, we note that the knowledge of
compute nodes already having an application is generally not
available at the consumer or has to be provided by an addi-
tional external entity making service provisioning complicated.

We also note that whenever the node who has cached the
data removes them for the cache, all the other nodes on the
path should update their FIB by removing those relevant faces.
However, those nodes would not get notified of the removed
content and hence cannot update their FIB, which results in
potential miss-forwarding. Thus, the route has to be discovered
again by utilizing the flooding mechanism of the NDN system.
This shortcoming cannot be addressed without modifying the
NDN operation and making the proposed solution incompati-
ble with NDN.

IV. EXTENSIONS

The proposed approach allows for several enhancements
making it suitable for different use-cases and applications. In
this section, we will consider the use of already pre-computed
results, function chaining executions, and streaming data.

User

Fig. 4. Use case for streaming data application.

A. Partial data/compute results

The proposed approach can utilize data and or compute
results that have already been computed in the network and
are available in NDN nodes caches via standard caching
functionality of NDN systems.

Since the individual components (data and software) have
specific names as well as the full result name, the correspond-
ing Data packets will be cached in the network nodes and can
be reused if their freshness is satisfactory. The result-search
forwarding strategy upon receiving result interest should not
only check FIB for the presence of local producers but also
check the cache for data (software.) If the computed result is
available at one of the nodes, interest passing through, it will
be satisfied automatically by NDN default operation.

B. Function Chaining

The proposed approach can be extended to support function
chaining. Here, in the GNC that may look as in (1), where full-
name can be another result name, for example, resulting in the
overall Interest name

ndn://result/soft_func_fl/result_sofft, 3)

representing the compute function fi(f2(x1), z2) in traditional
form, where the function f; is applied to x — 2 and the result
of the function fo(x1) that takes x7 as an input.

In this case, to enable chaining of compute functions, at

compute node, for processing, we need to replace ”_” with /,
,9_’7 ,9_’7 With ’7_’,’ and ”_’7 ”_’7 ”_’7 With ’7_” ’7_”’ etC’ Where
the number of ”_” symbols specifies the nesting level. In the

example above, new Interest packets are generated by the
compute node in the following form

Soft interest:soft/func/fI

Data interest 1: result/soft_func_f2/data_x_1I

Soft interest: soft/func/f2

Data interest: data/x/1

Data interest 2: data/x/2. 4)

Handling of the result/soft_func_f2/data_x_I Interest packet
is similar to the standard “network makes decision” procedure
described above. Here, the compute node for the initial Interest
acts as a consumer of the result.



C. Streaming Data

The proposed approach can also be used for non-atomic
services, for example, for streaming data. Here, the use-case
might be related to, e.g., utilizing a video camera to detect
suspicious activities and events. Here, the service might be
composed as follows, (i) after the first interest server reserves
compute for = seconds, (ii) compute sends interest for x
seconds of the video stream, (iii) after computing over y,
y < x, seconds of the video, the server sends the result to the
user, (iv) every y new second of video needs a new interest,
which updates the reservation. Here, the GNC might look as

result/soft_N/stream_t=x, 5)

where x is the absolute of relative timestamp expressed in
seconds, N is the software ID.

Then the standard “network makes decision” mechanisms
discussed above apply. The proposed extensions for partial
data/compute as well as function chaining also apply.

V. PERFORMANCE EVALUATION

In this section, we evaluate performance of the “network
makes decision” strategy proposed in Section III and compare
it to the user-centric and delegated-node strategies developed
in [11]. We also compare the proposed approach with “’source
makes decision” and “delegated node makes decision” ap-
proaches from [11]. The main metric of interest is the fraction
of satisfied Interests.

The considered topology represents the standard mobile
edge scenario, specifically, a highway/street with Wi-Fi access
points (APs) installed along the street. Vehicles, whose passen-
gers request compute service, move along the street at a certain
speed. Compute servers are available at both infrastructure
nodes and vehicles themselves. The simulated scenario is
depicted in Figure 5, where lower part represents wireless
mobile part of the network, and all the installed application
(i.e. roles) are represented by symbols next to each node. The
default “best route” strategy is considered. The simulations
have been performed using ndnSIM simulator [15] with all the
standard options enabled such as caching. The default system
parameters are provided in Table I.
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Fig. 5. Illustration of the evaluation setup.

TABLE I
DEFAULT SYSTEM PARAMETERS.

Parameter Values
Number of APs 6

AP spacing 100 m
Number of routers 2

Number of servers per router 2 (4 in total)
Compute nodes per server 1

Number of consumer nodes 100

Number of mesh nodes 50

Spacing between consumer nodes (Mobile) 10 m

Speed of consumer nodes 15 kmph

Number of channels 1

Propagation model FSPL
Interest frequency 1/s [1-10]
Decision time 10 ms
Number of computes in mesh/edge All
Number of cores in mesh/edge servers 1

Edge compute time 10-50 ms
Interest packet Lifetime 2s

Data/Software size 1IMB (667 packets)

Number of data/soft1/soft2 contents 10/10/10
Number of services 100
Cache 50MB
Runs in total 40
Single simulation run time 20's
Wi-Fi MAC type AdHoc

Wi-Fi version 802.11ax SGHz

We start with the basic operation of the proposed approach
in Fig. 6 illustrating the satisfied Interest fraction of the
proposed scheme and those schemes considered [11]. Note
that in addition to the standard proposed strategy we also
illustrate the effect of using one optional feature — flooding
in wireless (mesh) part of network. As one may observe, the
performance of the proposed scheme (Result) is significantly
better as compared to ’source make decision” and “delegated
node makes decision”. The rationale is that there is no ad-
ditional signalling at the wireless edge, and the service is
constructed. Implementing flooding feature, however, makes
the performance worse, however in some particular cases (e.g.,
high mobility) flooding may help to satisfy interest that cannot
be routed otherwise, but overall utilization of flooding should
be limited only to cases where flooding is only “last hope”, not
to overload the wireless network. Finally, observing the overall
performance, one may notice that is degrades drastically with
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Fig. 6. Satisfied Interests fraction for basic operation.
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Fig. 8. Performance of chained and conventional compute.

the intensity of interest. This is explained by both inherently
unreliable wireless communications and lack of computing
resources to serve arriving service requests.

The capability of intermediate node to cache the data they
forward is a critical advantage of NDN systems. In context
of dynamic compute application, the previously cached data,
software and even results that are fully or partially available
at intermediate nodes may greatly enhance the proposed of
the proposed approach. To showcase the gains of caching Fig.
7 shows the satisfied Interest fraction with enabled caching
that allows data and results to be dynamically cached. As
one may observe, The performance of the proposed scheme
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Fig. 9. Performance of streaming compute.

dramatically increases allowing to handle 20 Interest per sec-
ond arrival rate from more than 100 consumers. The reason is
that the bottleneck related to the limited amount of computing
resources is efficiently addressed as the results are available
is caches in the network. At the same time, performance
of the source and delegated node approaches is still low.
These observations highlight the importance of outsourcing
the compute orchestration to the network itself.

So far we considered static scenario corresponding to traffic
jam on the street. Operating over Wi-Fi AP while on the
move brings additional packet losses associated with han-
dovers between APs and may degrade the performance. These
expectations are confirmed in Fig. 8 that presents comparison
between chained and conventional compute according to the
proposed approach in Sections III and IV for static and mobile
scenarios, where vehicles move at the speed 15 km/h. Here,
the chained approach is in the form g(f(z)) while the standard
operation executes it sequentially by first computing y = f(x)
and then estimating ¢(y).

Discussing the impact of mobility of nodes, we see that for
both considered implementations the performance drastically
degrades when nodes are mobile. Here, of special interest is
the observation that the non-chained approach performs better
as compared to the chained one on both static and mobile
conditions. The rationale is the complexity of the chained



service resulting in inherent “fragility”, where losses at any
stage may lead to the failure for the whole service delivery,
i.e., IV consecutive requests may work better than a chain of [V
functions in terms of satisfied Interest fraction. In general, in
spite its attractiveness, the use of chained in-network services
requires careful parameters’ optimization.

Finally, we consider the performance of streaming compute
illustrated in Fig. 9, where both chained g(f(z)) and non-
chained, y = f(x), z = g(y), implementations are presented.
Here, by following the Fig. 4, we assume that the consumer
signs up with a single Interest for a camera stream segmented
at a lower level. After the first Interest, producer reserves
compute for 3 seconds and then, compute node sends interest
for 3 seconds of the stream. After computing over 1 second of
the video, the server sends the result to the user. Every second
producer needs a new Interest, to update the reservation.

By analyzing the presented results, we observe that the
performance of the proposed approach for streaming data is
virtually similar to conventional ones. This should not come as
a surprise, as the only modifications needed is to dynamically
update the reservation. Also, similarly to the results demon-
strated in Fig. 8 performance of chained implementation is
significantly worse as compared to consecutive requests.

VI. CONCLUSIONS

Motivated by the increasing amount of computing resources
on the edge and inherently unreliable nature of Wi-Fi access, in
this paper we proposed in-network dynamic compute orches-
tration mechanism for NDN edge/fog systems that requires
limited involvement from the consumer in service provisioning
and minimizes the usage of wireless infrastructure. We also
specified several extensions for the baseline operation includ-
ing reuse of partially pre-computed results, function chaining
and enhancements for streaming computed service.

Our numerical results demonstrate that outsourcing the
compute service compositions to the network allows to address
the problem of unreliable wireless access while NDN caching
capabilities allows to handle extremely high load conditions.
Further, the comparison with alternative approaches showing
that the proposed method allows to improve the Interest satis-
faction ratio by 5-10 times depending on the deployment. We
also observed that chained-based implementation is inherently
fragile due to complex structure of the service and requires
further fine-tuning of parameters.

We note that we evaluated the performance of the proposed
approach by utilizing the satisfied Interest fraction as the main
metric of interest. Analyzing the edge computing scenarios
and also accounting for composite nature of the proposed
approach, latency becomes an important metric. We plan to
evaluate it in our future studies.
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